FINDING REGULAR SIMPLE PATHSIN GRAPH DATABASES'
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Abstract. We consider the following problem: given a labelled directed graph G and aregular expression R,
find al pairs of nodesconnected by a simple path such that the concatenation of the labels along the path satisfies R.
The problem is motivated by the observation that many recursive queriesin relational databases can be expressedin
thisform, and by theimplementation of a query language, G, based on this observation. We show that the problem
isin general intractable, but present an algorithm than runsin polynomial time in the size of the graph when the
regular expression and the graph are free of conflicts. We also present a class of languages whose expressions can
awaysbeevaluatedin time polynomial in the size of both the graph and the expression, and characterize syntactically
the expressionsfor such languages.
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1. Introduction. Much of the success of the relational model of data can be attributed
to its simplicity, which makes it both amenable to mathematical analysis and easy for users
to comprehend. In this latter respect, the availability of non-procedural query languages
has been a great asset. However, the fact that queries which are especialy useful in new
application domains are not expressible in traditional query languages has led to proposas
for more powerful query languages, such as the logic-based | anguage Datalog [23] and our
query language G [9, 10].

Theorigind proposal for therelational model included two query languages of equiva ent
expressive power: the relational calculus and the relational algebra [7]. These languages
have been used astheyardstick by which other query languagesare classified; aquery language
is said to be relationally complete if it has (at least) the expressive power of the relationa
calculus. However, this notion of completeness has been questioned since it was shown that
certain reasonable queries, such as finding the transitive closure of a binary relation, cannot
be expressed in the calculus [3, 4]. This particular l[imitation is overcome in the languages
Gt and Datal og through their ability to express recursive queries.

The design of Gt is based on the observation that many of the recursive queries that
arisein practice—and in theliterature—amount to graph traversals (for example, [1, 12, 19]).
In Gt, we view the database as a directed, labelled graph, and pose queries which are
graph patterns; the answer to a query is the set of subgraphs of the database that match the
given pattern. Useful applications for such alanguage can be found in systems representing
trangportation networks, communication networks, hypertext documents, and so on. In our
prototype implementation, queries are drawn on a workstati on screen and the database and
query results are also displayed pictorialy.

Examplel. Let (G be agraph describing ahypertext document: nodes are chunks of text
and edges are links (cross-references). Readers read the document by followinglinks. Inthis
context, one might be interested in a query such as: |Is there a way to get from Section 3.1
to Section 5.2 and then to the Conclusion, without reading any node more than once? The
corresponding Gt query is shown in Figure 1. The left-hand box in the figure contains the
pattern graph, whilethe right-hand box contains the summary graph which specifies how the
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FiG. 1. Query to test for the existence of a simple path in a hypertext document.

| [0

FiG. 2. Query to find pairs of cities connected by some Air Canada flight.

output is to be presented to the user. The nodesin this case are |abelled with constants to be
matched with thosein the database. The edges of a pattern graph can be labelled with regular
expressions; in this case the desired expression is link™, representing a nonzero sequence
of links. This regular expression is used to match the edge labels along simple pathsin G,
thereby satisfying our original request. |

Example 2. Let G be agraph representing airlineflights: the nodes of ¢ denote cities,
and an edge labelled @ from city b to city ¢ means that thereis aflight from & to ¢ with airline
a. Assume that we want to find all pairs of cities that are connected by a sequence of flights
such that (8) at least one flight iswith Air Canada (AC), and (b) no city is visited more than
once. This query can be expressed by the graph pattern of Figure 2. The pattern graph in
this example comprises only two nodes, this time labelled with variables, while the edge is
labelled with the regular expression * AC'_* (where the underscore matches any edge label
inG, and AC isregarded asasingle symbol). Once again, thefact that only simple paths are
matched during query eva uation ensures that the desired answer is computed. |

Although queries in Gt can be a lot more general than exemplified in the above two
examples, thespecial case suggested by Example 2 ischallenging enough from an algorithmic
point of view if wewant to process queriesefficiently. The problem addressed inthispaper is:
given aregular expression R and agraph &, find al pairs of nodesin (G which are connected
by a simple path p, where the concatenation of edge labels comprising p isin the language
denoted by R.

When trying to find an efficient solution for this problem to incorporate in our imple-
mentation of GT, we were somewhat surprised to discover that the queries of Examples 1
and 2 are in fact both NP-complete. Using resultsin[11, 17], we show in §2 that for certain
fixed regular expressions (such as R in Example 2), the problem of deciding whether a pair
of nodesisin the answer of a query is NP-complete, making the genera problem NP-hard.
We first attacked this problem by determining what it isin the language of R that makes the
problem hard. In §3, we present a class of languages for which query evaluation is solvable
in time polynomial in both the length of the regular expression and the size of the graph.
We characterize these languages syntactically in terms of the regular expressionsthat denote
them and the finite automata that recognize them. This characterization assumes we have no
knowledge concerning the structure of the graph being queried. In §4, we consider extensions
where we are given aconstraint which the cycles of theinput graph are known to satisfy. This
knowledge alows us to characterize potentialy larger classes of querieswhich can be solved
in polynomial time,

We then designed a general algorithm, presented in §5, which is correct for arbitrary
graphs and queries, and is guaranteed to run in polynomial time in the size of the graph if
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the regular expression and graph are free of “conflicts’, in a sense to be defined precisey
in that section. As special cases, any query is free of conflicts with any acyclic database
graph and any restricted expression query is free of conflicts with any arbitrary graph. Since
we cannot restrict our prototype to work only on conflict-free queries and graphs, and it
is expensive to test for conflict-freedom beforehand, it is quite convenient to have asingle
algorithm that worksin all cases, and we have in fact incorporated the algorithm of §5 into
our implementation.

2. Intractability Results. Inthis section, we prove some negative results regarding the
complexity of finding certain types of simple paths in a particular class of directed graphs.
We begin by defining the graph structures aswell as the class of queries over these structures
in which we are interested.

DerINITION 1. A databasegraph (db-graph, for short) G = (N, E, ¢, Z, X) isadirected,
labelled graph, where N isa set of nodes, £ isaset of edges, and ¢ is an incidence function
mapping £ to N x N. Note that multiple edges between a pair of nodes are permitted in
db-graphs. The labels of G are drawn from the finite set of symbols Z, called the al phabet,
and X isan edge labelling function mapping £ to .

DEFINITION 2. Let X be afinite alphabet digoint from {¢,,(,)}. A regular expression
R over X isdefined as follows.

1. The empty string ¢, the empty set §, and each a € Z are regular expressions.

2. If A and B are regular expressions, then (A + B), AB, and (A)* are regular

expressions.

3. Nothing elseisaregular expression.
Theexpression (A + B) iscalled thealternationof A and B, (AB) iscalled theconcatenation
of A and B, and (A)* is caled the closure of A. We use the underscore (_) to denote the
dternation of adl elements of Z. Also, AT denotes A A*, the positive closure of A.

The Ianguage L(R) denoted by R is defined as follows.
L(e) = {6}
)=

a) = {a} fora € X.
A+ B)y=L(A)ULB) ={w|we L(A) orw € L(B)}.
AB) = L(A)L(B) = {wiwz| w1 € L(A) andw; € L(B)}.
. L(A*) = U2 L(A)', where L(A)° = {e} and L(A)" = L(A)'"~1L(A).
Regular expressions R1 and R, are equivalent, written Ry = Ry, if L(R1) = L(R2). The
length of regular expression R, denoted | R|, is the number of symbols appearing in the string
R.

L(®
L(
L(
L(

G’SHP.UON'-‘

DEFINITION 3. Let G = (N, E,¢,Z, A) beadb-graphand p = (v1,e1,...,en_1,vn),
wherev; € N,1<i<mn,ande¢; € £, 1< j < n— 1, beapath (not necessarily asimple
path) in . We cal thestring A(eq) - - - A(en—1) the path label of p, denoted by A(p) € Z*.
Let R bearegular expression over X. We say that the path p satisfies R if A(p) € L(R). The
query Q) r on db-graph G is defined as the set of pairs (z, y) such that there is a simple path
from z to y in G which satisfies R. If (z, y) € Qr(G), then (z, y) satisfies Q.

A naive method for evaluating a query (Qz on a db-graph G isto traverse every simple
path satisfying R in G exactly once. The penalty for thisis that such an agorithm takes
exponential time when G has an exponential number of simple paths. Nevertheless, we
will see below that in general we cannot expect an algorithm to perform much better, since
we prove that, for particular regular expressions, the problem of deciding whether a pair
of nodes isin the answer of a query is NP-complete. On the other hand, refinements can
lead to guaranteed polynomial time eva uation under conditions studied in the following two
sections.



Consider the following decision problem.

REGULAR SIMPLE PATH

Instance: Db-graph GG = (N, E, ¢, Z, A),nodes z,y € N, and regular expression R over X.
Question: Does & contain a directed simple path p = (ex, . .., ;) from  to y such that p
satisfies R, that is, A(e1)A(e2) - - - Aler) € L(R)?

Thisisequivalenttoasking“Is(z, y) € Qr(G)?". When theinstance comprisesonly the
db-graph, we refer to the problem as FIXED REGULAR PATH(R), that is, for FIXED REGULAR
PATH(R) we measure the complexity only in terms of the size of the db-graph. We first prove
below that, for certain regular expressions R, FIXED REGULAR PATH(R) is NP-complete. In
doing so, we will refer to the following two decision problems.

EVEN PATH

Instance: Directed graph G = (N, ), andnodes z, y € N.

Question: |s there a directed simple path of even length (that is, with an even number of
edges) from « to y?

DISIOINT PATHS

Instance: Directedgraph G = (N, F), andtwo pairsof distinct nodes(w, z), (y, z) € N x N.
Question: Isthereapair of digoint directed simple pathsin ¢, onefrom w to = and the other
fromyto z?

The following theorem uses the above two decision problemsto prove the NP-compl ete-
ness of FIXED REGULAR PATH(R) for two particular regular expressions.

THEOREM 1. Let 0 and 1 be distinct symbolsin ~. FIXED REGULARPATH(R), in which R
iseither (1) (00)*, or (2) 0*10*, is NP-complete.

Proof. (1) In[17], EVEN PATH is shown to be NP-complete. We can reduce EVEN PATH
to FIXED REGULAR PATH(R), where R = (00)*, as follows. Given an instance (&, x, y of
EVEN PATH, construct adb-graph A isomorphicto (&, except that every edgein H islabelled
with 0. Thereis an even simple path from = to y in G if and only if there is a simple path
fromz to y in H which satisfies 2. It iseasy to see that FIXED REGULAR PATH(R) isin NP,
we conclude that FIXED REGULAR PATH(R), where R = (00)*, is NP-compl ete.

(2) The fact that DISIOINT PATHS is NP-complete follows immediately from resultsin
[11]. We reduce DISIOINT PATHS to FIXED REGULAR PATH(R), where R = 0*10*. Given
aninstanceG, w, x, y, z of DISIOINT PATHS, construct adb-graph H isomorphicto 7, except
that every edge of 7 islabelled with 0. Now add anew edge (z, y) labelled 1to /. Thereis
asimple path from w to z satisfying R in H if and only if there are dig oint simple pathsfrom
wtox and from y to z in G. We conclude that FIXED REGULAR PATH(R), where R = 0*10%,
isalso NP-complete. |

COROLLARY 1. REGULAR SIMPLE PATH is NP-compl ete.

Proof. NP-hardness follows from Theorem 1. To show that REGULAR SIMPLE PATH is
in NP, we observe that, for an arbitrary regular expression R, given asimple path from « toy
in G with path label w, we can check in polynomial time in the lengths of R and w whether
ornot w isin L(R) [2]. |

Itisinterestingtonotethat if G isundirected, then both EVEN PATH and DISJIOINT PATHS
can be solved in polynomia time. EVEN PATH can be solved in polynomial time by using
matching techniques [17], while a polynomia time algorithm for DISJOINT PATHS is given
in[20].



Each of the two NP-completeness results of Theorem 1 can be generalized. We first
generalize from the regular expression (00)* to expressions of the form w™, for any w € **
such that |w| > 2. For thiswe use the foll owing NP-compl ete problem from [17], which was
used there to show the NP-completeness of EVEN PATH.

PATH VIA A NODE
Instance: Directed graph G = (N, F), and nodes z,y, m € N.
Question: Isthere adirected simple path from « to y viam?

THEOREM 2. FIXED REGULAR PATH(R), in which R = w*, for any w € * such that
|w] > 2, is NP-complete.

Proof. Once again, membership in NP is easy to demonstrate. We reduce PATH VIA A
NODE to FIXED REGULAR PATH(R) using a variation of the construction from [17]. Given
aninstance GG, x, y, m of PATH VIA A NODE, construct adb-graph 7 = (N’, E’) asfollows:

N = ((N—={m}) = {1,2}) U{m},
(1 E = {((u,1),(v,2) [ue N —{m}}u
(2 ((u,2),(v,1)) | (u,v) € E}U
((v,2) (
(

U

©) ,m) u,m) € KU
4) (m, (u, 1)) | (m,u) € £}

The proof now divides into two parts, depending on whether w is of even or odd length.
Rather than introducing additional nodes into the above structure, which we believe would
obscure the proof, below we alow edges to be labelled with strings of symbols. The length
of apath isthe length of its concatenated edge |abels.

Assume that w = wiwy, where |w;| = n and |wy| = n, n > 1. There are two copies of
each edge of types 1 and 2 above, one copy labelled with wy, the other with w,. Edges of
type 3 are labelled with w,, while edges of type 4 are labelled with w1. We claim that there
isasimple path from z to y through m in G if and only if thereis a simple path from (z, 1)
to (y, 2) satisfying R in H.

If thereis a path p from « to y through m in G, then let p; be the subpath of p from «
to m, and p, be the subpath of p from m to y. Let u be the predecessor of m on p; and v
be the successor of m on p,. Thenin H we can traverse asimple path from (2, 1) to (u, 2)
which satisfies (w1ws)* w1, followed by the edges labelled w, and wq from (u, 2) to m and
from m to (v, 1), respectively, followed by a simple path from (v, 1) to (y, 2) which satisfies
(waw1)*wo. The overall path thus satisfies (w1w2)* and is guaranteed to be simple.

Now assume there is a simple path p from (x, 1) to (y, 2) in H which satisfies R. All
stringsin L(R) are of length mn, where m is even. Any path from (z, 1) to (y, 2) which
does not pass through m must be of length kn, where k is odd. We conclude that p must pass
through m in H; hence, there isasimple path from = toy viam inG.

We now consider the case in which |w| = 2n 4+ 1, n > 1. Let w = agwi = waaz,,
where |w1| = |ws| = 2n, n > 1. One copy of each edge of type 1 in H islabelled with ag,
the other with a,. One copy of each edge of type 2 is labelled with w1, the other with ws.
Type 3 edges are labelled with w1, while type 4 edges are labelled with w.

Itiseasy toseethat if thereisasimplepath from « toy viam in G, there must beasimple
path satisfying 2 in H. For the other direction, it suffices to notethat simple pathsin H from
(z,1) to (y, 2) which do not pass through m havelengthm(2n + 1) + 1, m > 0, whilethose
which do pass through m have length k(2n + 1), & > 2, which are also the lengths of strings

<
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in L(R). These two can never be equal for n > 0. We conclude that if there isasimple path
from (z,1)to(y, 2) in H satisfying R, there must be asimple path from z toy viaminG. 1

We now generalize the NP-completeness result for FIXED REGULAR PATH(R) where
R=010*. If S C Z, let S dso denote the adternation of its el ements.

THEOREM 3. Let R be a regular expression of the form S*w7™, where S and 7" are
subsetsof = and w € Z*. In addition, assume that either (1) some a in w appearsin neither
S nor T, or (2) there are symbols b € S and ¢ € 7" such that neither appearsin w. Then
FIXED REGULAR PATH(R) is NP-complete.

Proof. Once again, FIXED REGULAR PATH(R) isobvioudy in NP. We use essentially the
same reduction from DISJOINT PATHSto FIXED REGULAR PATH(R) asin Theorem 1 for this
more general case.

Given aninstance G, w, x, y, z of DISIOINT PATHS, construct a db-graph H isomorphic
to (&, except that two copies of each edge of H are made, one labdlled with & € S, and one
labelled with ¢ € 7. For case (2), b and ¢ are those symbolsmentioned in the statement of the
theorem; for case (1), we choose & # a and ¢ # a. Assumethat w = ajaz- - - a,. Now add
n—21nodeswv, vy, . .., vp—1t0 H,dlongwiththepathp,, = (z,e1,v1, ..., €n_1, Vn_1,€n, Y),
wheree; islabdled witha;, 1 < i < n.

If there are digoint simple paths from w to « and from y to z in (7, it iseasy to see that
there must be asimple path from w to = satisfying R in H. Assume now that thereisasimple
path p from w to z satisfying R in H. Then p must be of the form p1p,, p2, Since, in both cases
(1) and (2), p,, containsan edge label which appears nowhereelsein A and has to appear on
any pathin H satisfying R. We conclude that there must be digoint ssmple paths from w to
zandfromytozin H,and henceinG. |

Theorems 2 and 3 are rather negative results, since they imply that queries might require
timewhichisexponentia in the size of the db-graph, not only theregular expression, for their
evaluation. Thus, for regular expressions such as those in Theorems 2 and 3, we certainly
would not expect an evaluation agorithm to run in polynomial time. One such example is
the “Air Canada’ query used in Example 2 (as long as the alphabet > contains at least two
symbols). These results, however, are not a function of the particular regular expression but
rather of the nature of the language denoted by the regular expression. A class of languages
for which REGULAR SIMPLE PATH isin Pisthe subject of the next section.

3. Restricted Regular Expressions. In this section, we characterize a class of queries
about regular simple paths which can be evaluated in polynomia time. We first introduce
some terminology and definitions.

DerINITION4. A nondeterministicfiniteautomaton (NDFA) M isa5-tuple(S, Z, 6, so, F),
where S isafinite set of states, Z istheinput alphabet, ¢ isthe state transition functionwhich
maps S x (XU {e}) totheset of subsetsof S, sg € S istheinitial state, and 7' C S isthe set
of final states. The extended transition function é* isdefined asfollows. For s, t € S, a € Z,
andw € ¥*

8*(s,€) = {s}, and

6*(5’ wa) = Uteé*(s,w) 6(t’ Cl)
The NDFA M acceptsw € Z* if §*(so, w) N F' # §. Thelanguage L(M ) accepted by M is
the set of al strings accepted by M. A deterministic finite automaton (DFA) isan NDFA in
which the state transition functionis amapping from S x >to S.

DEFINITION 5. Let M = (S5, Z, 8, so, F') bean NDFA. The transition graph associated
with M is adirected, labdlled graph (S, Ear, ¥ar, Z, Apr). Ift € 6(s,a) for s,t € S and
a € X, thenthereisan edge e in Eyy With ¢3r(e) = (s,t) and Ayr(e) = a. By confusing
representations, we will sometimes say there is a transition from state s to state ¢ in A (or
t isasuccessor of S) if t € (s, a), and thereisapath from s to ¢ if t € 6* (s, w) for some
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FiG. 3. Transition graph 7" of a DFA.

w € Z*. Again, similar definitions apply for aDFA.

DEFINITION 6. Given an NDFA M = (S5,Z, 6, so, F'), for each pair of states s, € S,
we define the language from s to ¢, denoted by 7., as the set of strings that take M from
state s to state ¢. Then, for state s and set of states 7", we can define the language from s to
T, denoted by L7, as|J,cp Lst- In particular, for astate s € .5, the suffix language of s,
denoted by L, ¢ (or [s], for short), isthe set of stringsthat take M from s to some find state.
Clearly, [so] = L(M ). Similar definitions apply for a DFA.

Givenaregular expression R over 2, ane-freeNDFA M = (S, Z, 8, so, F') which accepts
L(R) can beconstructed in polynomial time[2]. From now on, wewill assumethat all NDFAS
are e-free.

Example 3.  Figure 3 shows the transition graph 7" of aDFA M. State s isthe initial
state of M, while al states are final (denoted by a double circle). (We do not show (reject)
states which are not on some path from the initiad stateto afina state)) Z(M) is denoted by
theregular expression 0*1*0*. The suffix language of state s is[s1] = 1*0*, while[sp] = 0*.
|

Let R; and R, beregular expressions. Inthe subsequent analysis, it will beuseful torefer
to an NDFA which accepts the language L(R1 N R2). The construction of such an NDFA is
defined as follows.

DEFINITION 7. Let M; = (S]_, 2, 61, po, F]_) and M, = (Sz, 2, 62, qo, Fz) be NDFAs.
TheNDFA for MyNMyisi = (S]_ x S2, 2,6, (po, qO), I % Fz), where, fora € Z, (Pz, Q2) S
8((p1,q1), a) if and only if p2 € 81(p1,a) ad g2 € é2(q1, a). We call thetransition graph of
I theintersection graph of A/; and M.

We saw in the previous section that, for certain regular expressions R, itisvery unlikely
that we will find an algorithm for evaluating @ g on an arbitrary graph GG which will aways
run in time polynomid in the size of . One such regular expression is 0*10*. However,
it turns out that if the regular expression R = 010" 4 0* is specified instead, then Qr is
evaluable in polynomid time on any db-graph G. The reason isthat if there is an arbitrary
path from node « to node y in G which satisfies R, then there is a simple path from z to y
satisfying R. In such a case, we need not restrict ourselves to looking only for simple paths
in GG, but can instead look for any path satisfying 2. We define the corresponding decision
problem bel ow.

REGULAR PATH
Instance: Db-graph GG = (N, E, ¢, Z, A),nodes z,y € N, and regular expression R over X.
Question: Does (& contain adirected path (not necessarily simple) p = (eq, ..., ex) from x

to y such that p satisfies R, that is, A(e1)A(ez2) - - - Alex) € L(R)?

LEMMA 1. REGULAR PATH can be decided in polynomial time.
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FiG. 4. A graph containing a non-simple path.

Proof. Given db-graph G adong with nodes » and y in G, we can view G as an
NDFA with initia state # and fina state y. Construct the intersection graph 7 of & and
M = (5,%,6,s0, F'), an NDFA accepting L(R). Thereisapath from x to y satisfying R if
and only if thereisapathin I from (z, so) to (y, s¢ ), for some s; € F. All thiscan be done
in polynomial time[14]. |

In[22], Tarjan providesapolynomial -timeal gorithm for constructing aregul ar expression
which represents the set of al paths between two nodes of a given graph. Asan dternativeto
the above procedure, one could decidein polynomial timewhether there was a path between «
and y in G satisfying R by first using Tarjan’s a gorithmto construct aregular expression R,
representing all paths between z and y in &, and then determining whether the intersection
of L(R) and L(R., ) was nonempty using NDFAs. The results of the previous section show
that it is unlikely that a polynomial-time analogue of Tarjan’s algorithm exists for describing
the set of all simple paths between two nodes.

DEFINITION 8. Let G beadb-graph, M = (S,%, 6, so, I') aDFA or NDFA, and I the
intersection graph of G and M. Wecall anode(«, so) inI aninitial node, and anode(y, s¢),
sy € I, afinal node.

We are interested in conditions under which REGULAR SIMPLE PATH (which is appro-
priate because of our semantics) can be reduced to REGULAR PATH. The following lemma
states one such condition.

LEMMA 2. REGULAR SIMPLE PATH can be decided in polynomial time on acyclic db-
graphs.

Proof. Followsimmediately from Lemma 1 and the fact that every path in an acyclic
graphissimple. |

Suppose that we want to characterize a class of regular expressions for which we can
guarantee that REGULAR SIMPLE PATH is solvablein polynomial time. If we assume that we
know nothing about the structure of the db-graphs, we have to ensure that, for such aregular
expression R, whenever string w isin L( R), every string obtai nablefrom w by removing one
or more symbols must also bein Z(R). Otherwise, if w = zay isin L(R) but zy isnot in
L(R) (Wherea € X and z,y € ¥*), we can construct agraph GG comprising asingle simple
path from v to v and passing through z, inwhich thereisaloop at z labelled a, the path from
u toz islabelled z, and the path from z to v islabelled y (see Figure4). Thereisanon-simple
path from « to v in G which satisfies R but no simple path from u to v satisfying R.

DEerINITION 9. An abbreviation of astring w is any string which can be obtained from
w by removing one or more symbolsof w [6].

So we are looking for a class of regular expressions which denote languages that are
closed under abbreviation. Now consider the following definition for the class of restricted
regular expressions.

DEerINITION 10. For a € Z, denote theregular expression (a + ¢) by (a?) (asisdonein



the grep utility of Unix?, for example). Given aregular expression R, let R’ be the regular
expression obtained by replacing some occurrence of asymbol ¢ € Z in R by (a?). Ris
restricted if and only if R = R’, for any R’ obtained from R as defined above.

Note that the above definition of restricted regular expressions is semantic rather than
syntactic. This has two significant consequences. on the one hand, we are able to prove an
equivalence theorem below (Theorem 4) relating restricted regular expressions to languages
and automata; on the other, therecognition problem for restricted regular expressionsbecomes
difficult (Corollary 3).

Example4. Theregular expression0™1*0* isrestricted: itisequivalentto (0?)*(1?)*(0?)*.
Recall, from Theorem 1, that FIXED REGULAR PATH(R) is NP-completefor & = 0*10*. R
is not restricted, but 2/ = 0*10* + 0" isrestricted, since R’ can be written as 0% (1 + ¢)0*,
which isequivaent to (0?)*(1?)(0?)". |

DerINITION 11. ADFA M = (S, %, é, so, I') exhibitsthe Suffix Language Contai nment
Property (the Containment Property, for short) if, for each pair s,¢ € S such that s and ¢ are
on apath from so to somefinal state and ¢ isasuccessor of s, [s] D [¢] (thatis, Lsp 2 Lip).

The following result, athough not used & sawhere, provides some interesting restrictions
on the structure of DFAs that exhibit the Containment Property.

PROPOSITION 1. Let M = (S,%,4,s0, F') be a DFA. If M exhibits the Containment
Property, then

1. every statein M, which ison a path from s to a statein #, isfinal,
2. theminimum DFA for M exhibitsthe Contai nment Property, and
3. if M isminimum, then every cyclein M isaloop.

Proof. (1) Every final statein M accepts e. By thetrangitivity of “ D", every state which
ison apath from sp to astatein #' must also accept ¢, and hence must befinal.

(2 Let M’ = (5',%, &, s0, F') betheminimum DFA equivalentto M. Each statein M’
represents a set of equivaent statesin M. Assumethat s € S’ represents {s1, . . ., si, }, where
s5;€8,1<i<k,andthatt € S’ represents{¢4,...,t,}, wheret; € 5,1 < j < m. There
isatransition 8'(s,a) = ¢ in M’ only if, for each s5;, 1 < i < k, in M, thereisatransition
8(si,a) =t;,, forsomel < j; <m.InM,[s] D [¢;,], 1 <ji <m,1<i<k. SinceM'is
equivaentto M, [s] = [s;], 1 <i < k,and [t] = [{;,], 1 < ji < m, 1< i < k. Weconclude
that [s] D [¢].

(3) Consider a cycle in M which is not a loop, and let s and ¢ be two states on the
cycle. Since [u] D [v] for every pair of consecutive states on the cycle, we conclude from the
transitivity of “ 2" that [s] D [¢] and that [¢] D [s]. Butthens = ¢, and so M isnot minimum,
a contradiction. ]

Example 5. Consider the regular expression R = 0*1*0*, and the DFA M accepting
L(R) whose transition graph 7' is given in Figure 3. We can verify that M exhibits the
Containment Property by noting that [s;] is denoted by 0%, [s1] by 1*0*, and [sg] by 0*1*0*.
Obviously, [so] 2 [so], [s1] 2 [s1], ad [s2] D [s2]. Itiseasy to check that [s1] D [s2] and
[so] 2 [s1]. Noteasothat, by Proposition1, each stateisfinal and, since M isminimal, every
cyclein M isaloop. Thefact that M exhibits the Containment Property and R is restricted
is no coincidence, as we demonstrate bel ow. |

THEOREM 4. Let R bearegular expression over 2, and M = (5, Z, 8, so, F') be a DFA
accepting L(R). The following three statements are equivalent:

1. Risarestricted regular expression,
2. L(R) isclosed under abbreviations, and
3. M exhibits the Containment Property.

1 Unix isatrademark of AT&T.



Proof. In our proof, we will use the NDFA My = (T,Z, u,to, £) constructed from
regular expression R (suchthat L(Mpg) = L(R)) asdetailed in[2], and in which e-transitions
are usualy present. There is a one-to-one correspondence between non-¢-transitionsin Mg
and occurrences of symbols in R, so that it makes sense to refer to the transition in Mg
corresponding to an occurrence of symbol « in R, and vice versa. Furthermore, replacing an
occurrence of a in R by (a?) is equivaent to including an e-transition from the source state
to the target state of the transitionin Mg corresponding to the occurrence of «.

(1) = (2) Assume that R isrestricted but that L(R) is not closed under abbreviations.
Then thereisasymbol « € X and strings =, y € X* such that xay € L(R) but zy ¢ L(R).
Now consider M. Let T" = p*(to, ¢), that is, the set of states My can be in after reading
z. Since L(Mg) = L(R) and zy ¢ L(R), fornor € T" can y bein [#]. On the other hand,
zay € L(Mp), so thereisastatep € T’ such that ¢ € pu(p,a) and y € [¢]. Since R is
restricted, adding an e-transition from p to ¢ leaves L( M) unchanged. But if we do so, then
y € [p], zy € L(Mg), and L(Mg) isno longer equal to L( k), which is a contradiction. We
concludethat L( R) is closed under abbreviations.

(2) = (3) We prove the contrapositive. Assume that [s] 2 [¢] for some pair s, ¢ of
reachable statesin M/ such that 6(s, a) = t, for somea € X. That is, thereisastringy € >*
forwhichy € [t] but y ¢ [s]. Let # € ¥* beastring for which 6*(so, ) = s. It follows
that zay € L(M), butthat zy ¢ L(M). Since L(M ) = L(R), we concludethat L(R) isnot
closed under abbreviations.

(3) = (1) Once again we provethe contrapositive. Assumethat R isnot restricted. Then
thereisan a-transitionin Mg from s to ¢ for which adding an e-transition from s to ¢ alters
L(Mg). Let z € Z* beastring for which s € p*(to, ). That is, thereisastring y € [t] such
that y ¢ [r] for any » € u*(to, ); hence, zy & L(Mg). Now consider the DFA M. Assume
that 6" (so, #) = p. Since L(Mg) = L(M) and xay € L(Mg), there must be a state ¢ in
M such that §(p,a) = ¢ and y € [¢]. However, y ¢ [p], for otherwise zy € L(M) which
would mean that L(M) = L(Mg). Hence, [p] 2 [4], S0 M does not exhibit the Containment
Property. |

THEOREM 5. REGULAR SIMPLE PATH can be decided in polynomial time for restricted
regular expressions.

Proof. Let thedb-graph G and the regular expression R, where R isrestricted, constitute
an instance of REGULAR SIMPLE PATH. By Lemma 1, it is sufficient to show that whenever
thereisapath from z to y in G which satisfies R, thereisasimple path from « to y satisfying
R. Assumethat p = (v1,e1,...,en—1,v,) iSanon-simple path fromz = vy toy = v,
inG. Since p is non-simple, v; = v;, for some 1 < 4,7 < n. Assume that ¢ < j, tha
iSp=1(v1,...,6-1,V,...,6_1,0,€,...,0),andletp’ = (vi,...,e;_1,v,€;,...,05).
Since p satisfies R, A(p) € L(R). The path label A(p’) is an abbreviation of A(p). By
Theorem 4, L(R) is closed under abbreviations; hence, A(p') € L(R) and p’ satisfies R.
Removing al such cycles from p will leave a simple path from = to y which satisfies R.

Thus the class of restricted regular expressions is one for which query evauation can
be performed efficiently. We now show that, even though the classes of restricted regular
expressions and regular languages closed under abbreviati ons are subclasses of their regular
counterparts, at least they are closed under the regular operators.

THEOREM 6. Let > bean alphabet. Theclass of regular languagesover >~ whichisclosed
under abbreviationsis also closed under alternation, concatenation and closure.

Proof. Let .1 and L, beregular languages closed under abbreviations. Itisimmediatethat
L1+ Ly isclosed under abbreviationstoo. Now let . = L1, and consider w = wyw, € L
such that wy € Ly and wy € Ly, Let w' = wjw) be an abbreviation of w. Clearly, string
w; is an abbreviation of w;, i = 1,2, and since L1 and L, are closed under abbreviations,
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Algorithm S: Compute the suffix language containment relation for aDFA.

INPUT:
DFA M = (S,Z, 6, so, F)

OUTPUT:
For each pair s,¢ € .S, whether [s] D [¢] or not.

METHOD:

1 for seS— Fandt e F domark (s,t) od

2. for each ordered pair of distinct states (s,¢) € ((S x S) — ((S — F) x F)) do
3. if forsomea € X (6(s, a), 8(t, a)) ismarked then

4. mark (s, t)

5. recursively mark all unmarked pairs on thelist for (s, ¢) and

on thelists of other pairsthat are marked at this step
ese/* nopair (6(s, a),8(t,a)) ismarked */
. fordla e Xdo
7. put (s,t) onthelistfor (6(s, a), 6(, a)) unlessé(s, a) = 6(t, a)
od
fi
od

FiG. 5. Computing the suffix language containment relation for DFA M = (S, Z, §, so, F).

wj € Ly and wh, € Ly. Hence, wiw), = w' isin L, alowing us to conclude that L is closed
under abbreviations.

Let L be a regular language closed under abbreviations. Since ¢ € L and regular
languages closed under abbreviationsare a so closed under concatenation, L* must be closed
under abbreviations. |

COROLLARY 2. The class of restricted regular expressions over X is closed under
alternation, concatenation and closure.

Example 6.  One of the simplest restricted regular expressionsis 0*. Since the class of
restricted regular expressionsis closed under aternation, concatenation and closure, 0* + 1*
and 0*1*0* (which we have aready seen) are restricted. On the other hand, restricted
expressions can a so sometimes be built from expressions which are not restricted; examples
include 0* 4+ 1*, 0*10* + 0* (which we have already seen), (00)* + 0%, and ((0*1)* + 0*)*.
|

Given aquery @ r, we would liketo test whether R is restricted in order to know that it
is safe to use a polynomial time evaluation algorithm. By adapting an a gorithm to minimize
the number of states of a DFA [13], we can compute the suffix language containment rel ation
for all pairs of statesin aDFA M. The suffix language containment relation will be used in
subsequent sections; it also provides an obvious method for testing whether or not a regular
expression R isrestricted (using Theorem 4). Thea gorithmfor computing thesuffix |anguage
containment relation, Algorithm S, isshown inFigure5. Lines3to 7 of AlgorithmSaretaken
directly from the agorithmin [13]. That algorithm marks pairs of inequivalent states, so it
considers unordered pairs of states. Lines 1 and 2 of our agorithm are altered appropriately
in order to consider ordered pairs of states. If (s,t) ismarked by Algorithm S, then [s] 2 [t].

If M hasn states, then Algorithm S runsin O(n?) time (assuming a constant al phabet)
[13]. (An dternative, dmost linear-time algorithm is given in [2].) Since the construction
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of aDFA M accepting L(R) may take exponential time (in the size of R), using Algorithm
Sto test whether aregular expression is restricted is not efficient. However, it isimportant
to stress that we are trying to avoid the possibility of spending exponential time in the size
of the db-graph in answering a query. Also, it turns out that determining whether or not R is
restricted is a hard problem. Consider the following result.

PrOPOSITION 2 ([21]). Determining whether aregular expression over alphabet {0} does
not denote 0* is NP-complete.

We will usethisresult to show that the problem of deciding whether aregular expression
over aphabet X is not restricted is NP-hard. To do so, wefirst prove the following.

THEOREM 7. Let R bea starred regular expression over alphabet {0}. Deciding whether
Risnot restricted is NP-complete.

Proof. We first show that the problemisin NPR. If R is not restricted, then L(R) is not
closed under abbreviations (Theorem 4). Thus, thereisastring in 0* that isnot in L(R). If
L(R) # 0%, then, by considering a DFA accepting L (), it can be seen that there must be an
n < 2l suchthat 0" ¢ L(R). A nondeterministicpolynomial time agorithm can verify that
R isnot restricted by first guessing the binary representation of », and then testing whether
thereisapath in the transition graph of an NDFA accepting Z( R) of length n to afinal state.
The latter step can be done deterministically in time polynomial in thelength of R [21].

We reduce the problem of Proposition 2 to the present problem by showing that R is
not restricted if and only if R does not denote 0*. We have aready shown that if R isnot
restricted, then L(R) # 0*. Conversely, assume that R does not denote 0*. Let » be the
shortest stringin 0* thatisnotin L(R). Since R isstarred, L( R) isinfinite, so thereisastring
zy € L(R) for which y # ¢. But z isan abbreviation of zy; hence, by Theorem 4, R isnot
restricted. |

COROLLARY 3. Deciding whether a regular expression over alphabet X is not restricted
isNP-hard.

4. Constrained Cyclesin Db-Graphs. In some instances, knowledge about the cyclic
structure of adb-graph G allowsusto determine (without consulting G itself) that a particular
query Qg can be evaluated in polynomial time on G. We have aready shown that, in the
extreme case when GG isacyclic, Qg isaways evauable in polynomia time. Let us assume
that we know that the cyclic structure of G is constrained by a regular expression C'; that is,
every cyclelabd in G isin L(C').

DEFINITION 12.  Let C' be aregular expression over ¥, and G = (N, E, ¢, % \) bea
db-graph. Let Y bethe set of cyclelabelsin GG, namely

Y = {X(e)|cisacycleinG}.

We say that G complieswith C' if Y C L(C). The regular expression C' is caled a cycle
constraint.

Each cycle congtraint C' defines a class of db-graphs whose cyclic structure satisfies C'.
For example, in thisway we can define the classes of bipartite graphs, loop-free graphs, and
acyclic graphs by specifying the regular expressions (_ _)*, _ (_*), and , respectively?. The
class of db-graphs with unconstrained cycles is defined by the expression _+, which denotes
>t

Before continuing, we need to introduce some terminology regarding properties of the
intersection graph of a db-graph and a transition graph.

DerINITION13. Let I betheintersectiongraphof db-graph G = (N, E, ¢, Z, A) andtran-
sitiongraph 7" of NDFA M = (S, Z, 6, so, F'). Wesay thatapathp = ((v1, 51), ..., (¥n, 8n)),

2 Recall that if = = {a1,...,an}, then _ (underscore) is shorthand for ag + - - - + an,.
12



wherev; € N and s; € 5, in [ isdo-simpleif v; # v;, 1 <4, j < n. In other words, p is
db-simpleif and only if (v1,...,v,) isasimplepathin . In addition, we call I simplicial
if whenever thereisapah p = ((v1, s1), ..., (vn, sn)), Where vy # v, and s,, € F, thereis
adb-simple path from (v, s1) t0 (v,, s}, ), s, € F, in which the first components of nodes
form a subset of the first components of nodes on p.

From the above definition and Lemma 1, it is clear that if the intersection graph 7 of a
db-graph and the transition graph corresponding to aregular expression R issimplicia, then
@ r can beevauated in polynomial timeinthesize of 7. Thefollowingtheorem characterizes
simplicial intersection graphsin the presence of cycle constraints.

THEOREM 8. Let C be a cycle congtraint. For query Qg, let M = (S, %, 6,50, F') bea
DFA accepting L(R) and T be thetransition graph of M. For every db-graph GG complying
with C', the intersection graph / of G and 7" is simplicial if and only if whenever thereisa
path froma reachable state s to ¢ in 7" satisfying C, [s] D [t].

Proof. (If) Let G = (N, E, ¢, Z, ) be adb-graph complying with C' and

p:(Ul,...,62'_1,1}2',...,ej_l,vi,...,vn)

be a non-simple path satisfying R in . Hence, there is a path ¢ from (v1, so) t0 (v, s¢),
sy € F,in1. For notational simplicity, let w1 = A(e1) - - - A(ei—1), w2 = Ale;) -+ - Alej_1),
and wz = /\(6]') .- ~/\(6n_1). SO wiwows € L(R) Since G compI|$W|th C,wp € L(C)
Assume that 6 (so, w1) = s and §*(s, w2) = t. SothereisapathinT from s to¢ satisfying
C' and a path from (v;, s) to (v;, ) in I; hence, by assumption, [s] D [¢]. Thestring ws isin
[] because p satisfies R, s0 w3 € [s] aswell. It followsthat wyws € L(R) and therefore that

/
Pr=(v1,. .., 61,0, €41, ..., 0n)

satisfies R. Thisprocess can berepeated to obtainadb-simplepath ¢’ from (w1, so) to (v, s}),
st € I, such that the first components of ¢’ form a subset of the first components of ¢. We
concludethat 7 issimplicial.

(Only if) Assume that thereis a path p from s to ¢ in 7" which satisfies C' but for which
[s] 2 [t]. The congtraint C' cannot be , for otherwise p would not satisfy C'. Since s is
reachablein T', thereisastring wy such that é*(so, w1) = s. Furthermore, [¢] cannot be, for
otherwise [s] D [t]. So let w3 beastringin [¢] but not in [s], and w» be the path label of p.
The string w, cannot be ¢ since p must be of length greater than zero. We can construct a
db-graph G = (N, E, ¢, %, X) comprising asingle non-simple path

qI(Ul,...,62'_1,1}2',...,6]'_1,1}2',...,Un)

such that /\(61) .- ~/\(6i_1) = wy, /\(62) .- ~/\(6]'_1) = wy, and /\(6]') .- ~/\(6n_1) =ws3. G
complieswith C' sincethe only cyclein (& islabelled with w, whichisin L(C'). The path ¢
satisfies R because wiwows € L(R). Hence, thereisapath from (vq, so) to (vn, s5), sy € F,
in [. However, the path
¢ =(v1,...,€i-1,0i, €541, ..., Vn)
does not satisfy R since wiws € L(R) (otherwise w3 would bein [s]). Consequently, there
is no db-simple path from (v1, s0) t0 (v, s%), s’ € I, in I, and we conclude that I is not
simplicial. |
The above result does not depend on the particular DFA accepting L( R). Consider two
DFAs, M; = (S]_, 2, 61, So, F]_) and M, = (Sz, 2, 62,10, Fz), accepting L(R), andlets € 5;
and t € S, be apair of states such that there is a string « for which 63 (so, z) = s and
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R restricted G acyclic
U U

G complieswith acycle constraint compatible with R

FiG. 6. Relationship between regular expression R and db-graph GG for query Q .

85(to, ¥) = t. Because L(M1) = L(M>), it must be the case that [s] = [¢] (that is, s = ¢).
In other words, the fact that Theorem 8 is true independent of the particular DFA chosen is
a consequence of the Myhill-Nerode theorem, which states that a language is accepted by
a DFA if and only if it is the union of some of the equivalence classes of a right-invariant
equivalence relation of finiteindex [13]. Thisleads usto the following definition.

DEFINITION 14. Let R bearegular expression and 7" be the transition graph for a DFA
accepting L(R). We say that R is compatiblewith cycle constraint C' if whenever thereisa
path from (areachable state) s tot in T satisfying C, [s] D [t].

Theorem 8 generalizes our previousresults. For the case when (& isacyclic, C' =, and no
path in 7" satisfies C' so the result holds vacuoudly. In other words, every regular expression
is compatible with . When the cyclic structure of G is unconstrained, C' denotes =+, and
every path in T satisfies C', so [s] must contain [¢] for al pairs of reachable statesin 7. This
corresponds to the case of restricted regular expressions; that is, a regular expression R is
compatible with C' (where C' denotes =1) if and only if R is restricted. The relationship
among these propertiesis shown in Figure 6.

By appesling once again to the result of Lemma 1, we obtain the following corollary to
Theorem 8.

COROLLARY 4. Let C' bea cycle constraint and &G be a db-graph that complies with C'.
A query Qg on G can be evaluated in polynomial time in the size of both ? and GG if R is
compatiblewith C'.

A simple algorithm for testing whether a regular expression is compatible with a cycle
constraintisgivenin Figure7. Becauseit constructs DFAsfrom regular expressions R and C,
the algorithm can take exponential timeinthelength of R and C'. However, deciding whether
R and C' are compatible is NP-hard, since deciding whether R isrestricted is a special case
of testing compatibility.

THEOREM 9. Given aregular expression R and a cycle constraint ', deciding whether
R and C' are compatibleis NP-hard.

Example 7. Let R = (00)*. A DFA My accepting L(R) is shown in Figure 8(a).
Because [a] 2 [b], we know that R is not restricted. In fact, we saw in Theorem 1 that
deciding if (z,y) € Qgr(G) is NP-complete for db-graphs in general. However, Qg can
be evaluated in polynomial time on bipartite graphs. As we have aready seen, the regular
expression C' = (- _)* defines the class of bipartite graphs. A DFA M accepting L(C') is
shownin Figure 8(b), whiletheintersection graph / of Mz and M isgivenin Figure9. The
only pathsin / satisfying C' which start fromanode containingtheinitia state of A/~ and end
a anode containing afinal stete of M arefrom (a, A) to (a, D) and from (b, A) to (b, D).
Since[a] D [a] and [b] D [b], Corollary 4tellsusthat ) r can be evauated in polynomial time
on any bipartite graph. |

Given aquery Qg and adb-graph &, if we know that G complies with cycle constraint
C', we can test whether R is compatible with C' using the above agorithm. If so, we can
use a polynomia time algorithm to evauate @ on G. On the other hand, if we do not
know about the cyclic structure of G, it seems that we might have to resort to an exponentia
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Algorithm: Testing whether aregular expression is compatible with a cycle constraint.

INPUT:
Regular expression R and cycle constraint C'.

OuTPUT:
Whether or not R is compatiblewith C'.

METHOD:

=

Construct DFAS M = (51, 2, 81, i1, F1) accepting L(R) and

Me = (Sz, Z, (52, iz, Fz) accepting L(C)

Compute the suffix containment relation for Mg (Algorithm Sin §3).
Construct theintersection graph | of Mg x Mc.
Computethetransitiveclosure I of I.

If [s] D [¢] for each edge ((s, i2), (¢, f)) iInIt, where f € F,, answer “yes’;
otherwise answer “no”.

gk

FiG. 7. Testing whether a regular expressionis compatiblewith a cycle constraint.

@ (b)

FiG. 8. DFAs (a) Mg for R = (00)* and (b) M for C = (_)*.

FiG. 9. Theintersection graph I of Mz and M (Figure8).
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FiG. 10. ADFA M and db-graph G.

timealgorithmif R isnot restricted. In the next section, however, we describe an evauation
algorithmwhich runsinpolynomial timeinthesize of GG if G happensto comply withacyclic
constraint with which R iscompatible.

5. An Evaluation Algorithm. In this section, we describe an agorithm for evaluating
aquery Qi onadb-graph G. Asisto be expected from the results of §2, the algorithm does
not run in polynomial time in generd. It does, however, run in polynomia time under the
sufficient conditionsidentified in §3 and §4, namely, when G isacyclic, R isrestricted, or G
complies with a cycle constraint compatible with R. In fact, we show that the algorithm runs
in polynomia timeif G and R are conflict-free, a conditionimplied by those above.

Theeva uation algorithmtraverses pathsin &, usingaDFA A accepting L( R) to control
the search by marking nodes asthey arevisited. We must record with which stateof A/ anode
isvisited, since we must allow anode to be visited with different states (which correspond to
distinct nodes in the intersection graph of G and M). In order to avoid visiting a node twice
in the same state, we would like to retain the state markings on nodes as long as possible.
Unfortunately, the following example shows that, in general, requiring answer nodes to be
connected by simple pathsin G and retaining state markings can lead to incompleteness in
guery evauation.

Example 8. Consider the query g, where R = 0*11t0*. An automaton M accepting
L(R) and a db-graph GG are shown in Figure 10. Note the similarity between M and the
automaton of Figure 3in §3. Assume that we start traversal from node A in &, and follow the
pathto B, C'and D. Nodes A, B, C' and D are marked with states a, «, b and b, respectively,
andtheanswers (A, C') and (A, D) arefound, since b isafind state. We cannot mark C' with
state ¢ because (A, B, C, D, ') isanon-simplepath. If we now backtrack to node C', we can
mark E with b, resulting in the answer (A, E') being found. Node D is still marked with b
(as shown in Figure 10), so we backtrack to C'. However, once again we cannot mark B with
state ¢ because (A, B, C, B) isanon-simple path. So we backtrack to A, and find that ¥ is
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G complieswith acycle constraint compatible with R

U

G and R are conflict-free

FiG. 11. Relationship between regular expression R and db-graph G for query @ .

aready marked with state b. Consequently, the search terminates without the answer (A, B)
being found. |

Itturnsout that it is safe to retain markingswhen GG isacyclic or R isrestricted. However,
because of the structure of a particular db-graph &, it might be the case that we can retain
markings and evaluate () g in polynomia timeevenif G isnot acyclic and R isnot restricted.

DEFINITION 15.  Let / be the intersection graph of a db-graph G and a DFA M =
(S,Z,6,s0, F). Aninitial path in I is any path of the form ((vo, so), ..., (vn,s,)). The
initial path p is conflict-freeif (1) p isdb-simple, or (2) p isq - (v, s), where ¢ is conflict-free
and if v appearsin ¢, then for some (v, ) ing, [t] D [s]. If forno (v, ¢) in ¢ isit the case that
[t] D [s], then thereisaconflict at v.

If every simpleinitia pathin I is conflict-free, then I is said to be conflict-free®, as are
G and R.

Itisobviousthat if G isacyclic, then I is conflict-free no matter what regular expression
R appearsin Qr. Also, if R isrestricted, then, by Theorem 4, M exhibits the Contai nment
Property; hence, I is conflict-free irrespective of the structure of . Findly, if G complies
with acycle constraint compatible with &, then, by Theorem 8, ¢ and R are conflict-free. We
will show that (7 can be evaluated in polynomial timeif / is conflict-free. Hence, conflict-
freedom isanother (weaker) sufficient conditionfor (g to be polynomial time evaluable (see
Figure11).

The result of the followinglemmais used in our evaluation a gorithm.

LEMMA 3. Let 7 betheintersectiongraphof adb-graph G andaDFAM = (S, Z, 6, so, I')
accepting L(R). Aninitial pathp in I isconflict-freeif and onlyif (1) p isdb-simpleor (2) p
isg- (v, s), where ¢ isconflict-freeand if v appearsin ¢, then for thefirst (v, %) ing, [t] D [s].

Proof. The “if” direction is trivial. Assume that p is conflict-free but not db-simple.
Furthermore, assumethat pisq - (v, s), where ¢ isconflict-freeand v appearsin ¢. We prove,
by induction on the number of occurrences of v in ¢, that [t] D [s] where (v, t) isthe first
occurrence of v ingq.

Thebasisinwhich v occursonly oncein ¢ istrivia. Assumethat theinductivehypothesis
istrue for fewer than n occurrences of v in ¢, and let p be ¢ - (v, s). Since p is conflict-free,
we know from the definition that for some (v, 7) ingq, [#] D [s]. By theinductive hypothesis,
[t] D [r]; hence, [t] D [s], asrequired. |

Example 9. Consider again the DFA A/ and the db-graph ¢ of Example 8 shown in
Figure 10. The intersection graph / of G and M is shown in Figure 12. Recal that, if
markings were retained, the answer (A, B) would not be found. However, thereis a conflict
inI. Thisisbecause thereisan initial pathin I from (A4, «) via(B, a)to (B, ¢), but [a] 2 [c].

3 Thisis astrictly weaker definition of conflict-freedom than that given in [18].
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FiG. 12. Theintersection graph I of db-graph G and DFA M of Figure 10.
Algorithm C: Evauation of a query on adb-graph.

INPUT:
Db-graph G = (N, E, ¢, Z, A), query Qr.

OUTPUT:
Qr(G), thevalueof Qr onG.

METHOD:

1. Constructan DFA M = (S, %, 6, so, F) accepting L(R).
2. InitidizeQg(G) to 0.

3. Foreachnodev € N, st CM[v] and PM[v]to.

4. Test [s] D [¢] for each pair of states s and ¢ in M.

5. Foreachnodev € N,

(a) call SEARCH(v, v, so,conflict) (see Figure 14)
(b) reset P M [w] to § for any marked nodew € N.

FiG. 13. Evaluation of a query on a db-graph.

Algorithm C detects such conflicts and unmarks nodes on backtracking, enabling the answer
(A, B) to befound. |

We now proceed with a description of Algorithm C, shown in Figure 13. The algorithm
usesaDFA M = (S,%,4,s0, F') accepting L(R) to control a depth-first search of the db-
graph GG (Line 1). There are two reasons why a DFA rather than an NDFA is used. The first
isto ensure that no conflicts are encountered when R isrestricted. The second reason isto
avoid detecting unnecessary conflictsin 7. Inan NDFA, if [s] 2 [t], it might be the case that
there is a state ¢ such that both s and ¢ arein 6*(so, w), for some w € *, and [¢] D [t]. If
nodev in & isfirst marked with s, followingwhich acycle at v satisfying L istraversed, a
conflict would beregistered. Thisisunnecessary since v would subsequently be marked with
q, and any simple path from v satisfying [¢] would be found because [¢] D [¢].

Algorithm C traverses the transition graph of A/ and the db-graph ¢ simultaneously,
in effect performing a depth-first search of the intersection graph 7 of G and M. We will
often refer to trees of the depth-first search forest generated by Algorithm C. Because of
Line 5(a), each tree 7" in the forest isrooted at an initial node of /. When afinal nodeof / is
reached, Line 8 adds the appropriate pair of nodes from G to Q (). Lines 9 and 10 force
the algorithm to consider only pathsin GG which satisfy R, that is, pathsin /.

While the traversal of / isrestricted to simple paths, it is not necessarily restricted to
db-simple paths; we will prove below that it is safe to traverse non-db-simple paths in the
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procedure SEARCH (u, v, s, var conflict)
/*
v and v are nodes in the db-graph
sisastateinthe DFA
db-cycleisaBoolean flag

6. conflict — false

7. CM[v] — CM[v]U {s}

8. if s € F then Qr(G) — Qr(G) U {(u,v)} fi
9. for each edge in G from v to w with label ¢ do

10. if 6(s,a) =tandt ¢ CM[w]andt & PM[w] then
11. if FIRST(C'M[w]) = q and ([¢g] 2 [t]) then
12. conflict — true

ese/* CM[w] = 0or[g] D [t]*/
13. SEARCH (u, w, t, new-conflict)
14. conflict — conflict or new-conflict

fi

fi
od

15, CM[v] — CM[v] — {s}
16.  if not conflict then PM[v] — PM[v]U {s} fi
end SEARCH

FiG. 14. Search procedurefor query evaluation.

absence of conflicts. Nodesin G are marked with states of A/ when they are visited. Two
sets of markings are used for each node v: (1) a set of current markings (C' M [v]) which
indicates the states with which v isassociated on the current path on the stack of procedure
SEARCH (Lines 7 and 15), and (2) a set of previous markings (P M [v]) which represents
earlier markings of v, excluding the current path (Line 16). Current markings are used to
avoid cyclesin I and to detect conflicts, while previous markings are used where possible
to prevent anode in G from being visited more than once in the same state during a single
execution of Line 5(a). The function FIRST applied to marking set C'M[v] returns the first
state marking for v on the current path, or false if thereis no marking.

A node w isvisitedin state ¢ only if ¢ isnot in the previous markings of w and either w
iscurrently unmarked (C M [w] is empty) or thefirst state marking ¢ for v on the current path
issuch that [¢] D [¢], that is, there is no conflict between ¢ and ¢ a v (Lines 10 to 13). Note
that there may in fact be a conflict between ¢ and some later marking of » on the current path,
but this does not affect the correctness of the algorithm, as we will demonstrate bel ow.

Lines 6, 11 and 12 implement the conflict detection; that is, conflict is trueif thereisa
conflict between states ¢ and ¢ at node w. If conflict is set to true at Line 12, then Lines 14,
15 and 16 ensure that the marking of any node which was on the stack at the timethe conflict
was detected isremoved once that nodeisunstacked. If no conflict occurs on any path rooted
a (v, s), then s isadded to the previous markings of v in Line 16.

In the proofs that follow, we will often say that (v, s), for example, is on the stack of
procedure SEARCH. The variables v and s refer to the middle two parameters of SEARCH
and correspond to the node (v, s) in the corresponding intersection graph. The reason for
excluding the other two parameters of SEARCH isthat « (thefirst) remains unchanged during
an execution of Line 5(a), while we are not always concerned about the value of conflict. We
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(B, a) (E,b) (E,b) (B, a)
. AN | |
(C,b) (D, b) (D,b) - (C,b)
. ) N |
(D‘, b) (B,¢) (E‘, b) (C‘, ¢) (C‘, ¢)
(Ce) (D‘, b) (B,¢) (B,¢)
(B,¢) (C'., ¢)
(B, o)
@ (b)

FiG. 15. Two possible depth-first search trees.

will al so sometimes exclude conflict when referring to aparti cul ar invocation of SEARCH, for
example, SEARCH(«u, v, s). Before proving the correctness of Algorithm C, we demonstrate
its behaviour by means of an example.

Example 10. Consider again the intersection graph 7 of Figure 12. Two possible depth-
first search trees (DFSTS) traversed by Algorithm C are shown in Figure 15. Note that nodes
in a DFST can be repeated because of unmarking; for example, node (D, b) appears three
times in Figure 15(8). Dotted edges in the figure lead to nodes for which SEARCH is not
caled, either because of a conflict (thosein (a)), or because the node is aready marked via
either CM or PM (asin(b)). Theselatter edges correspond to forward, back and cross edges
in aconventional DFST [2].

Assume that Algorithm C starts traversal from node (A, @), that is, SEARCH(A, 4, a))
iscaled a Line 5(a), and that the order of traversal isaccording to the DFST in Figure 15(a).
Since initialy nodes B, C' and D have no current marking, Line 11 evaluates to false and
SEARCH is called successively with (B, a), (C,b) and (D, b). Because b isafina state,
(A,C)and (4, D) areadded to @ r(G) by Line8. Although C' aready has a current marking
(namely b), the fact that [6] D [¢] means that Line 11 again evaluates to false and SEARCH
is caled with (C', ¢). Now because the first marking for B isa and [a] 2 [¢], a conflict is
registered at Line 12. The algorithm now backtracks, removing current markings (Line 15)
and not assigning previous markings (Line 16).

Considering (B, ¢) from (C, b) again gives rise to a conflict, so the algorithm tries the
path via(E, b). Notethat (D, b) and (C, ¢) are no longer marked so they are revisited, once
again givingriseto aconflict. By thetime the algorithm backtracksto (A, «) all nodes (other
than A) are unmarked, so that the db-simple path to (B, ¢) can finaly be found and (A, B)
added to Qr(G).

If thepathto (B, ¢) via( £, b) had been chosen first by Algorithm C (asin Figure 15(b)),
then no conflicts would have been detected, resulting in previous markings being kept for
B, D and E. Ontraversing the path to (C, b), Line 10 would ensure that (B, ¢), (D, b) and
(E,b) arenot revisited and no conflicts are registered. |
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LEMMA 4. If conflict is false at Line 16 of SEARCH(«u, v, s), then Algorithm C has
performed an entire depth-first search of I fromnode (v, s).

Proof. The proof proceeds by induction on the length of the longest simple path p from
(v,s) in I. If p isof length zero, the result follows trivialy. Assume the result holds for
nodesin I from which thelongest simple path isof length » — 1, and consider node (v, s) for
which the longest simple path in 7 is of length n.

For conflict tobefalseat Line 16 of SEARCH(u, v, s), it must be that, for each successor
(w,t) of (v,s) in I, either (1) t € PM[w] at Line 10, or (2) new-conflict must have been
fdseat Line 14. In case (1), conflict must have been fase a Line 16 of SEARCH(u, w,t)
in order for ¢ to be added to P M[w]. In case (2), conflict must have been false at Line 16
of SEARCH(u, w, t) so that new-conflict isfase at Line 14. Since the longest simple path
from (w, t) in I must be of length less than or equal to » — 1, we conclude from theinductive
hypothesis that an entire depth-first search from (w, ¢) has been performed by Algorithm C.
Clearly, Lines 9 and 10 consider every successor of (v, s) in I, so theresult follows. |

DEFINITION 16. A node (v, s) in depth-first search tree T is called aconflict predecessor
if, for some successor (w, t) of (v, s) in I, w appearsin an ancestor of (v, s) in 7" and, for the
first such occurrence (from the root), say (w, ¢), it isthe case that [¢] 2 [¢]. In other words,
thereisaconflict between ¢ and ¢ a w.

LEMMA 5. Consider the execution of SEARCH(u, v, s) in DFStree 7. Sate s is added
to P M[v] inLine 16 if and only if no descendant of (v, s) in T" isa conflict predecessor.

Proof. If s is added to PM[v] in Line 16, then conflict must be false. Hence, by
Lemma 4, an entire depth-first search of I from (v, s) must have been performed. But a
conflict predecessor is anode (w, ) in T which has a successor in I that does not appear as
asuccessor of (w,t) inT. Thus, no conflict predecessor can appear as a descendant of (v, s)
inT.

If no descendant of (v, s) inT" isaconflict predecessor, then conflict isfalsefor al such
descendants and hence for (v, s) itself. Thus, s isadded to P M [v] in Line 16. |

THEOREM 10. Let G = (N, E, ¢, %, A) be a db-graph, and R be a regular expression
over X. Let M = (S,Z, 4, so, F') be a DFA accepting L(R), and I be the intersection graph
of G and M. AlgorithmC iscorrect; thatis, AlgorithmC adds (u, z) to Qr(G') if and only if
there isa db-simple path from (u, so) to (2, s5), sy € F,inI (thatis, thereis a simple path
fromu to z in G satisfying R).

Proof. Algorithm C clearly terminates, since Line 10 ensures that only ssimple pathsin /
are considered, and no simple path from an initial node is considered more than once.

(Onlyif) If theagorithmadds (u, z) to @r((), then it must traverse a depth-first search
tree 7' rooted at (u, so) inwhich thereisasimple path p from (u, so) to (z,r), 7 € F.

Assumethat p isnot db-simple, and that the db-node v appears more than once on p. Let
the first occurrence of v on p be in I-node (v, s) and the last such occurrence bein (v, t).
Thus s was the first state added to C'M [v], and in order for SEARCH(«, v, t) to have been
called in Line 13, Line 11 must have ensured that [s] D [¢]. Hence, thereisapath p’ from
(v,5) to(z,q), ¢ € F,in I such tha the sequence of db-nodes on p’ isidentical to that on
the path from (v, t) to (z, ) on p. Since (v, s) and (v, t) are thefirst and last occurrences,
respectively, of v on p, there isa path from (u, so) to (2, ¢), ¢ € F', in I which isdb-simple
with respect to v.

A simple induction on the number of repeated db-nodes on p shows that there is a
db-simplepath from (u, sg) to (z,s¢), s; € F.

(If) Assume thereis adb-simple path p from (u, so) to (2, s¢), sy € F,in 1. Obvioudly,
if the algorithm traverses p we are done. Assumethat it does not. Let (v, s) be thelast node
on p that is traversed, and (w, t) be the successor of (v, s) on p. The reason (w,t) is not
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visited cannot be because of aconflict, since p isdb-simple. So it must have been the case that
t € PM[w]atLinel0. By Lemmas 4 and 5, an entire depth-first search of I from (v, s) must
have been performed. Since there is a path from (v, s) to (z,s¢) in I, SEARCH(u, z, s¢)
must have been called in which case (u, z) would have been added to @ r(G) inLine8. B

THEOREM 11. In the absence of conflicts, Algorithm C runsin an amount of time which
isbounded by a polynomial in the size of the db-graph.

Proof. The essential point is that, in the absence of conflicts, Algorithm C performs
anormal depth-first search of the intersection graph which is polynomial in the size of the
db-graph. A detailed analysis of the time complexity of the agorithm follows.

Let Qg be aquery where R is of length m, and G be a db-graph with n nodes and e
edges. Although there can be as many as O(2™) statesin aDFA accepting L(R), thisisjust
a constant in terms of the size of . Nevertheless, we will assume that M has ¢ states and
will include ¢ in our anaysis of the time complexity of Algorithm C. Since M has at most
O(¢?) transitions, theintersection graph I for G and M has O(¢qn) nodes and O(q%¢) edges.

Line 1 of Algorithm C can be done in O(¢?) time, while Line 2 requires only constant
time. Line 3 takes O(n) time and Line 4 O(¢?) time. Line 5 is executed n times, and, in any
execution, each nodein / isvisited a most once if / is conflict-free. Thisis because when
(v, s) is stacked s is added to C'M [v] and Line 10 ensures that (v, s) cannot be restacked;
when (v, s) is unstacked, s is added to P M [v] (Line 16) and is not removed from P M [v]
until the present execution of Line 5(8) has terminated. Once again, Line 10 ensures that
(v, s) cannot be revisited during the present execution of 5(a).

Only constant timeis needed for Lines 6, 12 and 14. For each db-node v, C' M [v] can be
implemented as a stack with access to its bottom element through the function FIRST. Hence,
Lines 7, 11 and 15 can be performed in constant time, as can Line 16 since {s} and P M [v]
are digoint (by Line 10). Line 8 can be implemented to take O(g¢) time: the pair (u, v) is
added to Q () if and only if there is no other final state in PM[v]. Line 10 can also be
donein O(q) time. Lines 9 and 10 inspect each edge leaving anodein 7, and since no node
in I can be revisited, SEARCH can be called O(¢%¢) times. Each call takes O(q) time, so a
single execution of Line 5(a) takes O(¢%¢) time. A single execution of Line 5(b) takes O(n)
time, so thetotal time spent inLine5isO(n(¢3%¢ + n)). Consequently, Algorithm C runsin
O(n(g3 + n)) time. Interms of the size of &, Algorithm C runsin O(ne) time (under the
assumption that there are more edges than isolated nodes). |

From the relationship depicted in Figure 11, we obtain the following.

COROLLARY 5. Algorithm C evaluates @z on G in time polynomial in the size of i if

1. Risrestricted,
2. Gisacyclic, or
3. G complieswith a cycle constraint compatiblewith k.

Even in the presence of conflicts, Algorithm C can run in polynomial time in the size of
(. Thisisthe case, for example, if R isa (*)-free regular expression. Let ¢ be the length
of R. If Ris(*)-free, there are only afinite number of stringsin L(R) and the length of the
longest such string is ¢. Thisthen is aso then an upper bound on the length of the longest
db-simple path in I. Hence, there can be at most O(n?) db-simple pathsin I. So even if
Algorithm C traverses every db-simple path in / exactly once (the worst case), it till runsin
polynomial timeinthesize of .

A number of circumstances other than thoseidentified above can |ead to polynomial-time
solutions. For exampl e, there are certainly queriesthat can be evaluated in polynomial timeon
arbitrary db-graphsbut whose regul ar expressionsare not restricted. One such class of regular
expressions are those of the form wa*, where w is a string of fixed length. Unfortunately,
there are db-graphs on which Algorithm C takes exponential time to eval uate the associated
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queries.

Clearly, there is much scope for further investigation. Additional classes of queries/db-
graphsfor which polynomial -timeeval uation is possibl e shoul d be i dentified and appropriate,
more general evaluation algorithms developed. Algorithm C itself could be enhanced so that
it reacts in a more sophisticated manner on detecting a conflict. One possibility isto flag the
source of the conflict and not to unmark nodes until the al gorithm backtracks from the flagged
node.

6. Conclusions. We have addressed the problem of finding nodesin alabelled, directed
graph which are connected by a simple path satisfying a given regular expression. This
study was motivated by the observation that many recursive queries on relationa databases
can be expressed in thisform, and by the implementation of a query language based on this
observation.

We began by describing how a naive agorithm might evaluate such queries. Although
this algorithm runs in exponentia time in the worst case, we showed that we cannot expect
to do better since the evaluation problem is in general NP-hard. Using the fact that the
associated problem for pathsin general (as opposed to simpl e paths) is solvablein polynomial
time, we characterized the class of restricted regular expressions, whose associated queries
can be evaluated in polynomial time,

Having considered restrictions on the structure of regular expressions, we turned our
attention to the cyclic structure of the graphs being queried. We introduced the notion of a
cycle constraint, and showed that if a graph G' complied with a cycle constraint which was
compatible with aregular expression R, then @ r(G') could be evaluated in polynomial time.
Finally, we presented an agorithm for evaluating arbitrary expressions on arbitrary graphs.
This agorithm runs in polynomial time if (8) the regular expression is restricted or closure-
free, (b) the graph complies with a cycle constraint compatible with the regular expression
(aspecia case being when the graph is acyclic), or (c) the regular expression and graph are
conflict-free.

Whileitisdifficult to say how often the above conditionswill be encountered in practice,
we did show that the class of restricted regular expressions is closed under the regular
operators. A good starting point for investigation into larger classes of expressions and
graphs with polynomial-time eva uation agorithmswould be to attempt to identify the class
of expressions and graphs which are not conflict-free, but on which Algorithm C runs in
polynomial time.

Our emphasis in this paper has been on identifying circumstances in which the regular
simple path problem can be solved in polynomial time, rather than designing the most efficient
algorithmfor these cases. We believethisisatopicfor futureresearch. For example, it would
be interesting to see whether techniques used on sparse graphs, such as those in [16], could
be employed in our algorithmin order to improve its efficiency on sparse graphs.

We should point out that the analysisin this paper, and theimplementation itself, assume
the graph can be entirely stored in main memory. Thisis a reasonable assumption in many
cases, especialy because in the intended applications of our query language Gt the graph
is often only the fraction of the database that can be presented visually in a natural way.
Relaxing this assumption provides an interesting area for further study. Other researchers,
investigating similar algorithmsfor transitive closure, have claimed that they are amenableto
efficient secondary storage implementation [15].

Finally, we note that research has been done on the expressive power of graph-based
query languages in which the restriction of simple path semantics is dropped. One such
language that captures exactly the queries computable in nondeterministic logarithmic space
ispresented in[8]. On-linealgorithmsfor regular path finding are givenin [5], whileasurvey

23



of many results can be foundin [24].
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