
Finding Resilience-Friendly Compiler Optimizations using
Meta-Heuristic Search Techniques

by

Nithya Narayanamurthy

B. E., Anna University, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

October 2015

c© Nithya Narayanamurthy, 2015

Abstract

With the projected increase in hardware error rates in the future, software needs

to be resilient to hardware faults. An important factor affecting a program’s error

resilience is the set of optimizations used when compiling it. Compiler optimiza-

tions typically optimize for performance or space, and rarely for error resilience.

However, prior work has found that applying optimizations injudiciously can lower

the program’s error resilience as they often eliminate redundancy in the program.

In this work, we propose automated techniques to find the set of compiler opti-

mizations that can boost performance without degrading its overall resilience. Due

to the large size of the search space, we use search heuristic algorithms to efficiently

explore the space and find an optimal sequence of optimizations for a given pro-

gram. We find that the resulting optimization sequences have significantly higher

error resilience than the standard optimization levels (i.e., O1, O2, O3), while at-

taining comparable performance improvements with the optimizations levels. We

also find that the resulting sequences reduce the overall vulnerability of the appli-

cations compared to the standard optimization levels.

ii

Preface

This thesis is based on a work conducted by myself in collaboration with Dr.

Karthik Pattabiraman. I was responsible for coming up with the solution and vali-

dating it, evaluating the solution and analyzing the results. Karthik was responsible

for guiding me on all the core aspects like formalization of the problem, with the

solution reasoning, methodology, and analysis and interpretation of results.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

List of Acronyms . x

Acknowledgments . xi

Dedication . xii

1 Intoduction . 1
1.1 Motivation . 1

1.2 Research Goal and Proposed Solutions 2

1.3 Contributions . 3

2 Background and Fault Model . 5
2.1 Error Resilience and SDC . 5

2.2 Genetic Algorithm (GA) . 6

2.3 Simulated Annealing (SA) . 7

2.4 Fault Model . 8

iv

2.5 Summary . 9

3 Study on Compiler Optimizations 11
3.1 Compiler Optimizations . 11

3.2 Fault Injection Study . 13

3.3 Analysis on Individual Optimization 13

3.4 Summary . 16

4 Methodology . 17
4.1 Problem Statement and Complexity 17

4.2 GA-Based Approach . 18

4.2.1 Representative Example 23

4.3 SA-Based Approach . 24

4.4 Measuring Resilience . 26

4.5 Summary . 29

5 Experimental Setup . 30
5.1 Implementation . 30

5.2 Benchmarks . 31

5.3 Tuning of the GA parameters . 31

5.4 Tuning of the SA parameters . 33

5.5 Resilience Evaluation . 33

5.6 Performance Evaluation . 34

5.7 Summary . 34

6 Results . 35
6.1 Effect of GA Parameters . 35

6.1.1 Mutation Rate . 35

6.1.2 Selection Strategy . 36

6.1.3 Population Size . 37

6.1.4 Optimization Types . 38

6.2 Effect of SA parameters . 39

6.2.1 Rate of Cooling . 39

6.3 Resilience Evaluation . 40

v

6.4 Performance Evaluation . 42

6.5 Vulnerability Evaluation . 44

6.6 Summary . 45

7 Discussion . 48
7.1 GA-based Vs SA-based . 48

7.2 Sensitivity Analysis . 49

7.2.1 Order of the optimizations 50

7.2.2 Resilience vs Vulnerability measuring fitness function . . 51

7.2.3 Evolution of the GA-based approach 53

7.2.4 Resilience-Enhancing Compiler Optimizations 54

7.3 Limitations of our Approaches 55

7.4 Summary . 56

8 Related Work . 57
8.1 Effect of Compiler Optimizations on Resilience 57

8.2 Choosing Compiler Optimizations 58

8.3 Software Errors and Genetic Algorithms 59

9 Conclusion and Future Work . 60

Bibliography . 62

vi

List of Tables

Table 2.1 Coverage of the fault model 9

Table 3.1 Different types of compiler optimizations and their characteristics 12

Table 5.1 Benchmark programs that are used in our experiments 32

vii

List of Figures

Figure 3.1 Resilience of blackscholes and swaptions optimized with dif-

ferent individual optimizations (Black line represents the re-

silience of the unoptimized version of blackscholes; Blue line

represents the resilience of the unoptimized version of swaptions) 14

Figure 3.2 Effect of running the LICM optimization on a code snippet (a)

Unoptimized version, (b) Optimized version. 15

Figure 3.3 Effect of running the LOOP-REDUCE optimization on a code

snippet (a) Unoptimized version, (b) Optimized version. . . . 16

Figure 4.1 Crossover Operations: Entities such as ‘a’, ‘b’, ‘c’ etc are in-

dividual compiler optimizations in an optimization sequence. . 21

Figure 4.2 Mutation Operations: Entities such as ‘a’, ‘b’, ‘c’ etc are indi-

vidual compiler optimizations in an optimization sequence. . . 22

Figure 4.3 Choosing the neighbor states from current state (a, b, c,.. are

individual optimizations) . 25

Figure 4.4 (a) Correlation between Total Dynamic instruction count vs

SDC rate (for Blackscholes), and (b)Data-flow Regression Model’s

Estimation vs Actual SDC rate 28

Figure 6.1 Number of generations taken to generate the candidate solution

with different mutation rate values. 36

Figure 6.2 Number of generations taken to generate the candidate solution

by the random selection and score based selection strategies. . 37

viii

Figure 6.3 Number of generations taken to generate the candidate solution

with different population sizes. 38

Figure 6.4 Number of generations taken to generate the candidate solution

with different optimization types. 39

Figure 6.5 Number of iterations taken to generate the candidate solution

by the SA-based approach with different cooling rate. 40

Figure 6.6 Aggregate percentage of SDC, crash and benign results across

benchmarks for the unoptimized version. 41

Figure 6.7 Resilience of the Unoptimized, candidate solutions, O1, O2

and O3 levels. (Higher values are better). 42

Figure 6.8 SDC rate of the unoptimized code, candidate solutions, O1, O2

and O3 levels. (Lower values are better) 42

Figure 6.9 Runtime of the unoptimized code, candidate solutions, O1, O2

and O3 levels. (Lower values are better). 44

Figure 6.10 Vulnerability of the unoptimized code, candidate solutions, O1,

O2 and O3 levels. (Lower values are better). 46

Figure 7.1 Resilience of blackscholes with loop-reduce, gvn and candi-

date solutions obtained from GA-based and SA-based approaches

with the unoptimized code’s resilience as baseline. Black line

represents the resilience of the unoptimized code. 49

Figure 7.2 Resilience of blackscholes with the candidate solution-GA based

(CS) and the different combinations of the sequence (C1,C2,....C23)

with the unoptimized code’s resilience as baseline. 51

Figure 7.3 Vulnerability of the candidate solutions with resilience and

vulnerability target. Lower values are better. 52

Figure 7.4 Mean population fitness scores during the GA evolution pro-

cess for each program. 53

Figure 7.5 Resilience of the candidate solutions obtained from GA-based

and Unbounded GA-based approaches. 55

Figure 7.6 Mean population fitness scores during the Unbounded GA evo-

lution process for each program. 56

ix

List of Acronyms

LLVM Low Level Virtual Machine

LLFI LLVM based Fault Injector

IR Intermediate Representation

SDC Silent Data Corruption

EDC Egregious Data Corruption

GA Genetic Algorithm

SA Simulated Annealing

CS Candidate Solution

x

Acknowledgments

I would like to thank my advisor Prof. Karthik Pattabiraman for his support,

valuable guidance and encouragement. Karthik has always been motivating me

to ponder beyond the norm and guided me in the right direction. He constantly

encouraged for my progressive work, at times when I faced difficulties and disap-

pointments. His enthusiasm to share one’s thoughts and interrogate on new ideas

is something that I find very inspiring.

I would like to thank my lab colleagues with whom I have had many insight-

ful discussions. Their questions have often made me think in diverse directions.

Thanks to my colleagues and the professors at the CSRG meetings who helped me

expand my knowledge in other research fields.

This would have never been possible without the support from my family and

friends. I want to thank my parents, sisters and brother-in-laws for their sincere

love and support through this journey. Words cannot do justice to their contribu-

tion. Special thanks to my friend Vignesh who has made me strong through this

entire journey. I wish to thank all my friends in India who helped and encouraged

me to plan my graduate studies. Thanks to all my friends in Canada who made me

feel this new country as my home.

Last but not the least, I thank the almighty for providing me with the above!

xi

Dedication

To my parents

xii

Chapter 1

Intoduction

1.1 Motivation
Transient hardware faults (i.e., soft errors) are becoming more frequent as fea-

ture sizes shrink and manufacturing variations increase [3]. Unlike in the past,

when such faults were handled predominantly by the hardware, researchers have

predicted that hardware will expose more of these faults to the software applica-

tion [10, 19]. This is because the traditional methods of handling hardware faults

such as dual modular redundancy and guard banding consume significant amounts

of energy, which makes their use challenging for most commodity systems where

energy is a first class constraint. Therefore, it becomes critical to design software

applications that are resilient to hardware faults.

One of the most important decisions a programmer wishing to build error-

resilient applications must make is whether to run compiler optimizations on it.

Compiler optimizations, while boosting performance, can often have a deleterious

effect on resilience [8, 28, 34] as they remove some of its redundancy. On the other

hand, applying optimizations can make programs run faster, thus making them less

vulnerable to hardware errors in the first place 1.

In this work, we ask the question: “Do compiler optimizations hurt or improve

1We define vulnerability as the probability that an error occurs in the program and leads to a
failure, and resilience as the conditional probability that an error leads to a failure given that it occurs
in the first place. Thus vulnerability = (1− resilience)∗ executionTime.

1

error resilience and vulnerability of programs ?”. This question is important for

programmers to decide whether to apply optimizations to those programs for which

resilience matters. Prior work [8, 28] has investigated this question by studying the

effect of compiling with the standard optimization levels (i.e., O1, O2 and O3) on

programs’ error resilience or vulnerability. While this is useful, the standard opti-

mization levels group together many optimizations, and hence prior work does not

disambiguate the effects of individual optimizations on error resilience (and vulner-

ability). Thomas et al. [34] have considered the effect of individual optimizations

on error resilience, but they limit themselves to soft-computing applications, or

those applications that are inherently error tolerant, e.g., multi-media applications.

To the best of our knowledge, there is no work that has evaluated the effect of

individual optimizations on the error resilience of general-purpose programs.

1.2 Research Goal and Proposed Solutions
In this work, we first perform an experimental study (Chapter 3) to understand the

effect of individual optimizations on program’s error resilience. As mentioned,

we distinguish between error resilience and vulnerability to separate the effects of

compiler optimizations on execution time and code structure. We find that there

is a significant difference in the error resilience achieved by individual optimiza-

tions, and that this effect varies significantly across applications. Further, contrary

to what prior studies have shown [8, 28], we find that some compiler optimizations

can actually improve the error resilience of the program in addition to its perfor-

mance, thus doubly reducing the program’s vulnerability.

Based on this insight, we devise automated techniques to find a sequence of

optimizations for a given application that preserves its error resilience. In other

words, we attempt to find sequences of individual optimizations for an application

that do not degrade the application’s error resilience, while improving its perfor-

mance, thus reducing its overall vulnerability. However, the space of all possible

optimizations to consider when optimizing for both resilience and performance

is extremely large and brute force search is intractable. Therefore, we leverage

meta-heuristic techniques proposed in prior work for performance and memory

optimizations [6, 16, 38].

2

The meta-heuristic search techniques we use in this work are Genetic Algo-

rithms (GA) and Simulated Annealing (SA). Based on our results we suggest GA

over Simulated Annealing (SA), as we found that GA was faster and yielded bet-

ter solutions in our experiments. Applying GAs and SA to the problem of finding

resilience-preserving optimizations requires two things. First, we need to develop

appropriate operators for the GA and SA to find optimization sequences that satisfy

the desired resilience levels. Secondly, we need to come up with a set of parame-

ters for the algorithms to ensure that they converge within a reasonable amount of

time. To the best of our knowledge, we are the first to use a meta-heuristic search

algorithms such as GA and SA to find compiler optimization sequences that can

improve performance without degrading error resilience.

1.3 Contributions
We make the following contributions in our work:

• Study the effect of individual optimizations on different programs’ error re-

silience through fault-injection experiments,

• Propose GA-based and SA-based techniques to find a compiler optimization

sequence for a given application that does not degrade the error resilience,

• Implement the techniques in a production, open-source compiler, LLVM [17],

• Experimentally tune the parameters of the GA-based and SA-based approaches

to achieve fast convergence to solution,

• Evaluate our technique on 12 programs from the PARSEC [2] and Par-

boil [33] benchmark suites using fault-injection experiments, in terms of its

error resilience, performance and vulnerability, and compare it to the stan-

dard optimization levels.

The main results of our experimental evaluation are: (1) the resilience of the

candidate optimization sequences found by our techniques (GA and SA) is much

better than those of the standard optimization levels, and in many cases, even bet-

ter than that of the unoptimized code, (2) the performance of the optimized code

3

with our techniques is on par with or only slightly lower than the performance of

the code with the standard optimization levels (GA based - better than O1, O2 and

sligthly worse than O3 by 0.39%; SA based - 0.61%, 2.27% and 2.72% worse

than O1, O2 and O3 respectively), (3) On average, our techniques considerably

lower the overall vulnerability of the application (GA- 8.12 (±0.21) and SA- 8.51

(±0.22) on average), while the standard optimization levels O1 increase the over-

all vulnerability of the application (O1-9.53 (±0.25) on average) and O2 and O3

reduce it slightly (O2-9.22 (±0.24) and O3-9.11 (±0.24)). Thus, for a small per-

formance loss compared to the most aggressive optimization level, our techniques

significantly reduces the overall application vulnerability from the unoptimized

code.

4

Chapter 2

Background and Fault Model

In this chapter, we first define error resilience and vulnerability. We then present a

brief overview of Genetic Algorithms, Simulated Annealing and then describe our

fault model.

2.1 Error Resilience and SDC
A hardware fault can cause a program to fail in one of three ways: it may cause the

program to crash, hang, or have an Silent data corruption(SDC). SDC is an outcome

that results in incorrect output without any indication, hence the name “silent”. We

focus on SDCs as they are considered the most severe kind of failures in a program

(the other failures, namely crashes and hangs can be detected through hardware

exceptions and timeout mechanisms respectively). Error Resilience is the ability

of the program to prevent an error that occurs in it from becoming an SDC. In other

words, resilience is the conditional probability that a program does not produce an

SDC given that it is affected by a hardware fault (i.e., the fault is activated). This

is different from vulnerability, which is the unconditional probability of a fault

occurring in the program and leading to an SDC. As mentioned earlier, we define

the Resilience = (1−SDCrate), and Vulnerability = (SDCrate∗Executiontime),

where SDCrate is the fraction of SDCs observed over the set of all activated faults

(i.e., faults that manifest to the software).

Note that our definition of vulnerability differs from the commonly used no-

5

tion of the Architectural Vulnerability Factor [21], which is defined in terms of the

number of bits in a hardware structure that are needed for architecturally correct

execution (ACE). We eschew the traditional definition as it is tied to the architec-

tural state of the processor, while we want to capture the effect of the error on the

application. Further, AVF studies often employ detailed micro-architectural simu-

lators which are slow, and hence do not execute the application to completion. On

the other hand, we want to execute applications to completion on the real hardware

as we are interested in the ultimate effect of the error (i.e., whether or not it results

in an SDC).

In our work, we attempt to choose optimizations that maintain the error re-

silience of the application compared to the unoptimized version. We focus on

resilience to separate the effects of compiler optimizations on code structure and

execution time. Since all the optimizations we choose aim at improving perfor-

mance, the vulnerability will be reduced if the resilience is maintained the same

after the optimization is applied (due to shorter execution time).

2.2 Genetic Algorithm (GA)
A Genetic Algorithm (GA) [14] is a search heuristic algorithm that is inspired by

natural evolution. The algorithm starts with an initial set of candidate solutions.

They are collectively called as the Population. The algorithm has a fitness function

that is used to calculate a candidate’s fitness score. The fitness score depends on

how good the candidate is at solving a problem, and it is the parameter that eval-

uates a candidate’s rank towards the optimal solution. One or two candidates are

chosen from the population to perform recombination at each stage.

The recombination operations are of two types: Crossover and Mutation. Two

candidates undergo Crossover whereas, for mutation, only one candidate takes part.

The crossover operation performs a randomized exchange between solutions, with

the possibility to generate a better solution from a good one. This operation tends

to narrow the search and move towards a solution. On the other hand, mutation

involves flipping a bit or an entity in a solution, which expands the search explo-

ration of the algorithm. Crossover and mutation rate are the probabilities at which

the respective operations are performed [11] [29]. The choice of these probability

6

values reflects the trade-off between exploration and exploitation (or convergence).

A higher mutation rate for example, leads to better exploration but can delay con-

vergence. On the other hand, a high crossover rate can lead to faster convergence,

but may get stuck in a local maxima.

Typically, recombination gives rise to new better performing members, which

are added to the population. Members in the population that have poor fitness

scores are thus eliminated gradually. This process is repeated iteratively until either

a population member has the desired fitness score, thereby finding a solution, or

the algorithm exceeds the time allocated to it and is terminated.

2.3 Simulated Annealing (SA)
Simulated annealing is a meta-heuristic search algorithm that derives its name from

the metallurgical process, “Annealing” [35]. Annealing [9] is a process used to

alter the properties of a metal in which the metal is heated to a certain high temper-

ature and then allowed to slowly cool with a specific cooling rate. Similarly, SA

explores the search space controlled by variables T-temperature and α-Cooling

rate.

The algorithm starts by selecting a random state as its current state from the

given initial set, and the variable temperature T is assigned to a high value. It ex-

plores a neighboring state from the current state, and evaluates it by comparing its

score with the current state. A neighboring state is evolved by applying some slight

modifications to the current state. The score of a state determines how good the

state is as a potential solution for a given problem. The probability of accepting

a state depends on its score, and the variables T and α . Initially when T is high,

the probability of accepting a state with a bad score is also high, thus expanding

the scope of the search for finding an optimal solution. T is gradually decreased

depending on the cooling rate α as the algorithm progresses, and hence the prob-

ability of accepting a weak state also decreases. If a state is accepted, then the

algorithm evolves a new stats from the accepted state for the next iteration. This

process continues until an optimal solution is obtained.

This algorithm handles the problem of local maxima suffered by Genetic Algo-

rithm as its evolution accepts a good number of bad states (states with a bad score)

7

and tends to proceed towards global maxima [20].

2.4 Fault Model
Transient hardware faults occur when particle strikes or cosmic rays affect the flip-

flops or the logic elements. Particle strike or cosmic rays might impact various chip

components, namely memory, instruction cache, data cache, ALU, pipeline stages.

Memory and cache are typically protected by error correcting codes or parity. They

have the ability to correct/detect single bit flips caused by the particle strike. Faults

occurring in the instructions encoding can be detected by the use of simple codes

as the instructions do not have the ability to change over execution while the data

can change. However, when a particle strikes the computational components like

the ALU, registers, processor pipelines, logic gates etc, they affect the result of the

instruction that is currently being executed in that component. This faulty result

is consumed by the subsequent dependent instructions ultimately impacting the

application’s outcome if allowed to propagate.

Propagation of an error from the component to the application level due to a

particle strike is illustrated in the following example. Let us consider an application

A that is being executed in the processor exclusively. Consider the snapshot of the

processor during a clock cycle n. Instructions i5, i4, i3, i2, i1 are currently in the

pipeline stages Fetch, Decode, Execute, Memory, Write back stages respectively. If

the particle strikes a component in the execute stage of the pipeline, result of the

instruction in that stage - i3 is compromised and produces erroneous outcome.

The fault model that we consider replicates this physical phenomenon of a par-

ticle striking the processor components. Coverage of the chip components by the

fault model is given in table 2.1. We simulate a particle strike affecting the covered

components in the following way. While the application is in execution, one of its

dynamic instruction is picked randomly from an uniform distribution. We perform

a bit-flip in any register content of this instruction. This randomness adheres to

the uniform probability of a fault impacting any computational component of the

processor at a given time. In the given example, the fault occurring at the execute

stage of instruction i3 would result in storing the faulty value in the destination

register, and we replicate this by performing a bit flit in the value stored in the

8

Table 2.1: Coverage of the fault model

Components Covered?
Memory No
Instruction and Data
cache

No

Processor pipeline stages Yes
ALU Yes
Data bus No
Control unit No
Registers Partially (Specific target

is selected; no uniform
distribution)

destination register. We use the single bit-flip model to represent transient faults.

Prior work [5] has found that there may be significant differences in the raw rates

of faults exposed to the software layer when fault injections are performed in the

hardware. However, we are interested in faults that are not masked by the hard-

ware and make their way to the application. Therefore, we inject faults directly at

the application level. The assumption in this fault model is that the application of

interest is currently being executed in the processor exclusively. If multiple appli-

cations are running in the processor and a particle strikes a component where an

instruction of one of the applications is running, only that application gets affected.

The other applications continue to run unaffected. Hence, this fault model is also

independent of the underlying architecture and the number of applications. We

consider single bit flips as this is the de-facto fault model for simulating transient

faults in the literature. Finally, we assume that at most one fault occurs during an

application’s execution, as transient faults are relatively rare events. A similar fault

model has been used by prior work in this area [11, 20, 22].

2.5 Summary
In this chapter, we defined Silent Data Corruption (SDC) and explained its im-

portance over the other outcomes of transient hardware faults such as crashes and

hangs. We then explained our definition of error resilience and vulnerability of

9

software applications. We also explained the general working of Genetic Algo-

rithms and Simulated Annealing that were adopted in our automated techniques

for finding the resilience friendly compiler optimizations. We finally defined the

fault model used in our automated techniques to evaluate the error resilience of

software applications.

10

Chapter 3

Study on Compiler Optimizations

In this chapter we perform an initial fault-injection study that analyzes the effect

of individual compiler optimizations on error resilience of software applications.

The experimental setup and the benchmarks considered here are described later in

Chapter 5.

3.1 Compiler Optimizations
There are several optimizations available in standard optimizing compilers. An

optimization is a code transformation that seeks to improve some property of the

program e.g., its performance, size. Different code versions can be achieved by

applying some optimizations more than once and in different sequences. As men-

tioned earlier, optimizations are often grouped into packages, or levels such as

O1, O2, and O3, which are common sequences of optimizations that offer differ-

ent trade-offs between performance improvement and memory. Programmers can

choose to invoke either a predefined optimization level, or individual optimizations

(from a set of pre-defined optimizations), when compiling their code. Table 3.1

lists different common kinds of compiler optimizations and their characteristics.

Optimizations can also affect the error resilience of a program [8, 34]. For ex-

ample, many optimizations attempt to reduce redundant computations in the pro-

gram in order to improve its performance. Unfortunately, this also has the effect of

increasing the proneness of the program to errors that cause SDCs thereby making

11

Table 3.1: Different types of compiler optimizations and their characteristics

Type Optimization Description

Data flow
optimizations

Constant propagation
(constprop)

Replaces instructions which have only
constant operands with a constant value

Sparse conditional
constant propagation
(sccp)

Removes certain types of dead code
and propagates a constant through the
entire program

Common subexpression
elimination(cse)

Eliminates common subexpressions
and replaces them with a variable that
computes that common subexpression

Loop
Optimizations

Loop invariant code
motion(licm)

Moves the invariant code within the
loop to the loop pre-header if it is not
affected by the loop iterations

Loop Strength Reduction
(loop-reduce)

Replaces expensive operations within
the loop with simpler operations

Unroll Loops
(loop-unroll)

Eliminates/rewrites an instruction with
repeated independent instructions in
the loop to increase the program speed

Unswitch loops
(loop-unswitch)

Moves the conditional inside the loop
to outside and duplicates the loop in ‘if’
and‘else’ clause

Global
Optimizations

Inter-procedural Constant
Propagation(ipconstprop)

Similar to constant propagation
optimization which is applied across
procedures

Inter-procedural Sparse
Conditional Constant
Propagation(ipsccp)

Inter-procedural variant of sccp
(decides on basic blocks, constants
and conditional branches)

Inlining(inline) Replaces the function call with the
body of the function

Others

Global value Numbering
(gvn)

Assigns a number value to variables
and expressions that are provably
equivalent

Merge Constants
(mergeconst)

Merges duplicate global constants to a
single shared constant

Instruction combine
(instcombine)

Combines redundant and simple
algebraic instructions

them less error resilient. On the other hand, some optimizations can increase the

resilience of a program (see below).

12

3.2 Fault Injection Study
We chose 10 individual optimizations at random from about 50 optimizations avail-

able from the LLVM compiler. We performed an initial study to analyze the im-

pact of individual optimizations on the error resilience of two applications from

the PARSEC benchmark suite, namely Blackscholes and Swaptions. We first com-

piled each program with the chosen ten different optimizations using the LLVM

compiler [17].

We performed fault injection experiments on the unoptimized version and the

ten different optimized versions of the programs to measure their respective er-

ror resilience. Figure 3.1 shows the resilience (in %) of the different optimized

versions of the two programs compared to the resilience of the unoptimized ver-

sion (baseline). As can be seen in the figure, some optimizations degrade the error

resilience of the program, while some optimizations improve the resilience. For

example, the loop-reduce optimization improves the error resilience of Blacksc-

holes, while instcombine degrades the error resilience.Further, the resilience effect

of an optimization differs from one application to the other. For example, while

the loop-reduce optimization improves the resilience of Blackscholes, it degrades

that of Swaptions. Therefore, we need an application-specific technique to find op-

timization sequences that do not degrade error resilience but improve performance

for a given application. This is the goal of this thesis.

3.3 Analysis on Individual Optimization
To further understand why individual optimizations enhance or degrade a pro-

gram’s error resilience, we wrote a series of micro-benchmarks that each attempt to

exercise a single optimization. We then performed fault-injection studies into these

micro-benchmarks in order to study the effect of these optimizations. This gives

us an idea of why a particular optimization increases or decreases error resilience.

We give two examples below, one optimization that degrades error resilience and

another that enhances error resilience.

Resilience degrading optimization: Consider the commonly used loop op-

timization loop-invariant code motion (LICM), which attempts to reduce the op-

erations performed inside loops. It moves the loop-invariant expressions inside

13

lic
m

in
st

co
m

bi
ne cs

e
gv

n

ip
-s
cc

p

in
lin

e

lo
op

-re
du

ce

lo
op

-u
nr

ol
l

lo
op

-u
ns

witc
h

sc
cp

Individual Optimizations

40

50

60

70

80

90

100
R

e
si

lie
n
ce

 (
in

 %
)

Blackscholes

Swaptions

Figure 3.1: Resilience of blackscholes and swaptions optimized with differ-
ent individual optimizations (Black line represents the resilience of the
unoptimized version of blackscholes; Blue line represents the resilience
of the unoptimized version of swaptions)

the loop to the pre-header block of the loop without affecting the semantic of the

program.

Figure 3.2a shows a code snippet(unoptimized) where the LICM optimization

can perform some transformations on the loops and Figure 3.2b shows the code

optimized by the LICM optimization. Our original code snippet includes multiple

such loops with similar operations - however, we show only one loop for simplicity.

It can be seen that the expression that computes alpha (line 3 in Figure 3.2a) inside

the loop does not depend on the induction variable of the loop. Thus the LICM

optimization moves those expressions to the pre-header block of the loop and min-

imizes the computations performed inside the loop as shown in Figure 3.2b.

We performed 3000 fault injections in both the unoptimized and LICM op-

timized program versions, and observed that the LICM optimization reduces the

error resilience of the program.

To understand why the resilience is degraded, assume that the LICM optimized

code experiences a fault in the computation alpha = (x * c) + s (line 1 in

Figure 3.2b). This fault will affect all values of the array rs1 in all loop iterations.

The original code on the other hand, computes alpha = (x * c) + s (line 3

14

1 for(i=0; i<10; i++) 1 alpha=(x*c)+s;
2 { 2 for(i=0; i<10; i++)
3 alpha=(x*c)+s; 3 {
4 rs1[i]=i+(alpha*7); 4 rs1[i]=i+(alpha*7);
5 } 5 }

Figure 3.2: Effect of running the LICM optimization on a code snippet (a)
Unoptimized version, (b) Optimized version.

in Figure 3.2a) on every iteration of the loop, and hence a fault in the computation

affects only the values of the array in that loop iteration, namely rs1. Therefore,

the transformed code has a greater likelihood of experiencing an SDC due to the

fault, and its resilience is lowered. This is an example of how an optimization may

lower the error resilience of an application.

Resilience enhancing optimization: Consider another loop optimization loop

strength reduction (LOOP-REDUCE), that performs strength reduction on array

references by replacing complex operations inside the loop involving the loop in-

duction variable with equivalent temporary variables and simpler operations. Sim-

ilar to the previous example, Figure 3.3a shows a sample code snippet and how

it is transformed by the LOOP-REDUCE optimization. The loop induction vari-

able that is used for array references and value computation in the expression,

rs1[i] = i*alpha (line 4 in Figure 3.3a) is replaced with temporary variables

temp and temp1 for the address and value of array rs1 as shown in Figure 3.3b

(line 6-8). Hence the induction variable here is only used to control the loop entry

and exit after the optimization.

As in the previous example, we performed 3000 fault injection experiments in

both versions of the programs, and observed that the LOOP-REDUCE optimiza-

tion enhances the resilience of the program. To understand why the resilience is

enhanced in the case of the LOOP-REDUCE optimization, consider a fault that oc-

curs in the computation of the loop induction variable. In the unoptimized version,

the fault would affect the value and references of array rs1. On the other hand,

in the optimized version, the loop induction variable is restricted to the role of it-

erating and exiting the loop, and a fault occurring in this induction variable would

not affect the array reference and its contents. Thus the optimized version is more

15

1 alpha=(x*c)*s; 1 alpha=(x*c)*s;
2 for(i=0; i<10;i++) 2 temp=&rs1;
3 { 3 temp1=0;
4 rs1[i]=i*alpha; 4 for(i=0; i<10;i++)
5 } 5 {

6 *temp=temp1*alpha;
7 temp1=temp1+1;
8 temp=temp+sizeof(int);
9 }

Figure 3.3: Effect of running the LOOP-REDUCE optimization on a code
snippet (a) Unoptimized version, (b) Optimized version.

resilient that the unoptimized version. This example shows how an optimization

can improve the error resilience of an application.

3.4 Summary
In this chapter, we study the behavior of different individual optimizations based

on a fault injection study. Our study shows that different optimizations have dif-

ferent effects on a program’s error resilience, with some optimizations degrading

resilience and others improving it. Further, it is often difficult to judge apriori

whether an optimization will lower or improve the error resilience, as it is de-

pendent on the application’s characteristics. This is why we build an automated

method to find optimization sequences that do not lower error resilience of a given

application.

16

Chapter 4

Methodology

In this chapter, we first present the problem statement and discuss its complexity.

We then present our GA-based and SA-based approaches for solving the above

problem. We finally discuss the implementation details of our approaches.

4.1 Problem Statement and Complexity
We devise automated methods to solve the following problem: given a program

P, find an optimization sequence that provides performance improvement without

degrading resilience. If γ = [α1,α2,α3, ...αn] where α1,α2,α3, ..αn are individual

compiler optimizations and γ is the superset of optimizations, our goal is to find a

non-empty optimization sequence ϕ = {αx1αx2...αxt}, where 1 ≤ x1,x2, ..xt ≤ n,

that retains the resilience of the program, i.e., Resilience(ϕ(P)) ≥ Resilience(P)

and |ϕ| ≥ 1. The latter constraint is necessary to prevent the trivial solution where

ϕ is an empty set, i.e., when no optimizations are performed on the program and

the resilience is the same.

Note that a modern compiler has more than 50 optimizations at its disposal.

So a naive search strategy to solve this problem would have to search through 250

combinations, simply to find the sets of optimizations to run on the program. Each

set can in turn be permuted in different ways (with repetitions allowed), and hence

there is an exponential number of possibilities for solving this problem. This is why

we need an efficient way to search the space of optimizations for resilience, which

17

is provided by the meta-heuristic search algorithms. While other meta-heuristic

search methods are also possible (e.g., Hill Climbing), we use GA and SA as they

have been used in prior works on finding compiler optimization sequences for per-

formance and memory.

4.2 GA-Based Approach
We explain our GA-based approach for finding the appropriate compiler optimiza-

tion sequence for an application that does not degrade its error resilience. We begin

with a set of unique individual compiler optimizations as our initial population. In

GA terms, these individual optimizations constitute the gene and the resulting com-

binations of optimizations constitute a chromosome. The optimizations can consist

of all the optimizations available in a standard optimizing compiler such as gcc or

llvm. We obtain the initial error resilience of the unoptimized version of the appli-

cation through fault injection experiments. This is the target error resilience for the

algorithm.

The GA-based algorithm is presented in Algorithm 1. The steps are further

explained as follows.

1. Initialization: Every individual member of the population is called as a

candidate. The candidates in the initial population are unique individual compiler

optimizations. The fitness score of every candidate in the population is calculated

using the fitness function (discussed in Step 2). This is shown in the initialization

part of the Algorithm 1. The size of the initial population determines the con-

vergence rate of the algorithm and the quality of its solution. We experimentally

choose the initial population size in Chapter 6.

We first check if there is any candidate in the initial population that does not

lower the program’s error resilience. If such a candidate exists, it is considered as

an optimal candidate solution with the desired resilience and the algorithm termi-

nates (lines 2-4). This is a trivial condition and is unlikely to occur. For example,

we did not encounter this condition in any of our experiments.

2. Fitness Function: In GA, the fitness score of a candidate is used to de-

termine whether the candidate should be carried forward to the next generation.

We devise a fitness function (Θ()) that measures the error resilience of a candi-

18

Algorithm 1: GA-based approach to find an optimization sequence that does not
degrade error resilience
α1,α2,α3, ...← Individual optimizations
Θ()← FitnessFunction()
smin←Minimum fitness score of population
αmin← Candidate with fitness score smin

smax←Maximum fitness score of population
αmax← Candidate with fitness score smax

starget ← Resilience of unoptimized version
δc←CrossoverRate
δm←MutateRate
population← [(α1,Θ(α1)),(α2,Θ(α2)),(α3,Θ(α3)), ...]
Input: Source code, population
Output: Optimization sequence that retains the resilience of the given source
code

1: procedure OPTIMIZATION SEQUENCE FOR RESILIENCE

2: smax = max(Θ(α1),Θ(α2),Θ(α3), ...)
3: αmax = getCandidate(population[smax])
4: while smax ≤ starget do
5: αa,αb = TournamentSelection(population)
6: if Random()< δc then
7: α̂ = crossover(αa,αb)
8: else
9: α̂ = αa

10: end if
11: if Random()< δm then
12: α̂ = mutation(α̂)
13: end if
14: smin = min(Θ(α1),Θ(α2),Θ(α3), ...)
15: if smin < Θ(α̂) then
16: αmin = getCandidate(population[smin])
17: Eliminate(population,αmin)
18: Add(population,(α̂,Θ(α̂)))
19: end if
20: smax = max(Θ(α1),Θ(α2),Θ(α3), ...)
21: αmax = getCandidate(population[smax])
22: end while
23: return αmax

24: end procedure

19

date optimization sequence. However, as an advanced option any function that

measures both performance and resilience/vulnerability can be considered, where

the algorithm searches for an optimization sequence that guarantees enormous im-

provement in performance and resilience. Since we consider only error resilience,

the fitness function can be based on a resilience model or on fault injection exper-

iments. We use fault injection for this purpose as we were unsuccessful in finding

a fitness function to predict a program’s resilience based on its code structure (see

appendix). Note however that our method is generic and is not tied to the use of

fault injection.

The fitness function Θ is used to rank the resilience of the candidate. Based

on this rank, the GA decides whether the candidate should be considered for the

next evolution round. It is important to ensure that we can obtain tight confidence

intervals on the error resilience as we use it to compare solutions with each other

in terms of resilience. Therefore, we perform a few thousand fault injection exper-

iments in each iteration of the GA to determine the fitness score, depending on the

benchmark’s characteristics.

3. Tournament Selection: The goal of the tournament selection is to determine

which pair of candidates should be recombined with each other to form the next

generation of the GA. In our algorithm, we choose two candidates from the popula-

tion based on a heuristic (line 5). We consider two different heuristics: (i) Random

selection (ii) Score based selection. In random selection, we pick two candidates

randomly from the population. In score based selection, we pick two best candi-

dates (top two fitness scores), the intuition being that the fittest candidates can give

rise to better offspring. We evaluate the effectiveness of both these heuristics in

Chapter 6.

4. GA Recombination operations: We perform recombination operations on

the candidates chosen from tournament selection (line 6 -13). Recombination op-

erations are of two types: (i) Crossover (ii) Mutation. CrossoverRate and Mu-

tateRate determine the probability at which these operations are performed. The

CrossoverRate is chosen as suggested and used by classical papers in the GA

area [1, 7, 22, 24, 31]. The MutateRate was chosen based on our analysis dis-

cussed in the Chapter 6, as there is no consensus in the literature on this value.

We devise new crossover and mutation operations in order to explore the large

20

space of optimizations and drive the algorithm towards obtaining an optimization

set that retains the resilience. We briefly describe these operators.

(i) Crossover: Crossover operation involves either append or swap operation.

These operations increase the chances of combining the sequences of the two cho-

sen candidates to evolve a new candidate with a higher resilience. The append

operation simply appends the entities of the two selected candidates as shown in

Figure 4.1. Swap operation is similar to the two-point crossover, where the entities

within the two selected index are swapped between the candidates.

Candidate 1 a b c d Candidate 2

Append

Swap

e f a

a b c d e f a

a f a d

Candidate 1 a b c d Candidate 2 e f a

New Candidate

New Candidate

Figure 4.1: Crossover Operations: Entities such as ‘a’, ‘b’, ‘c’ etc are indi-
vidual compiler optimizations in an optimization sequence.

(ii) Mutation: In some cases, we found that a single compiler optimization in

the candidate set degrades the overall resilience, and hence by replacing it with

another individual optimization or deleting it, the GA can generate a better candi-

date. Thus we devise a mutation operation to add, delete or replace an individual

optimization with another one. Figure 4.2 shows adding, deleting or replacing an

optimization in the candidate optimization sequence.

5. Elimination: The goal of the elimination step is to eliminate the unfit can-

didates from the population. The fitness score of the weakest candidate from the

population is compared with the fitness score of the new candidate generated from

the recombination operations. If the weakest candidate’s fitness score is smaller

21

Candidate

a b c d

Add

k

Delete

a b d

Replace

b f d

Add k optimization

Delete c optimization

Replace c with f optimization

a b c d

a

Figure 4.2: Mutation Operations: Entities such as ‘a’, ‘b’, ‘c’ etc are individ-
ual compiler optimizations in an optimization sequence.

than that of the new candidate, it is eliminated from the population. In this case,

the new candidate with a better resilience is added to the population, hence will be

considered for the next generation’s evolution. If its fitness score is not smaller,

the new candidate is not added to the population, and the population remains un-

modified. This is shown in lines 14-19 in Algorithm 1. The main intuition here is

that weaker candidates have lower probability of giving rise to stronger offspring,

and hence need to be eliminated from the pool of candidates to carry forward to

the next generation.

6. Termination: If a new candidate is added to the population, we check

whether its resilience is greater than or equal to the target resilience i.e., the re-

silience of the unoptimized program. If this is the case, we call it the candidate

solution and stop the algorithm (line 4, and line 23). Otherwise, we repeat the

above steps of Recombination and Elimination until we obtain a candidate solu-

tion. It is possible that such a candidate solution takes too long to obtain, or is

never obtained. To resolve this, we terminate the algorithm if the average fitness

score of the entire population does not change for numerous generations. In this

case, the algorithm returns the best candidate from the population that is closest to

the resilience of the unoptimized version as the candidate solution.

22

4.2.1 Representative Example

To understand how a candidate solution (optimization sequence) is obtained by our

GA-based algorithm, we illustrate its running with the Blackscholes benchmark

program from PARSEC [2]. To simplify the presentation, we present only the

steps that were involved in the evolution of the final candidate solution.

1. Initialization: We initialized the population with a set of 10 individual op-

timizations from the LLVM compiler [17]. Let us consider the following as the

initial population:{licm, instcombine, gvn, early-cse, loop-reduce, sccp, inline, ip-

sccp, loop-unroll, loop-unswitch} (these optimizations are explained in Table 3.1).

2. Fitness Function: The fitness score of every candidate in the population is

calculated using a fault injection experiment as explained earlier.

3. Tournament Selection: As explained in Section 4.2, the crossover and muta-

tion operations are performed based on the probability values CrossoverRate and

MutateRate. We consider the Random Selection strategy for tournament selection.

4. Unrolling the algorithm: Assume that two random candidates namely loop-

reduce and loop-unroll are chosen from the population (line 5). A random number

is generated and is found to satisfy the CrossoverRate probability. Again a random

number is generated to perform either a swap or append operation. In this case,

assume that append operation is performed on the two candidates and results in the

new candidate [loop-reduce, loop-unroll] (lines 6-9). The contents within a square

bracket represent a single optimization sequence.

Regardless of whether we perform the crossover operation, a random number

is generated to see if it satisfies the MutateRate probability (line 11). If crossover

was performed, the new candidate undergoes mutation. Otherwise, the first of

the two randomly picked candidate undergoes mutation and gives rise to a new

candidate. Assume that in this case, the probability does not satisfy MutateRate.

So [loop-reduce, loop-unroll] is the candidate sequence. Fitness score for this

candidate is calculated and found to be better than the weakest member, early-

cse. Hence, the new candidate replaces the weakest candidate in the population.

For clarity we have underlined the new candidate added to the population. Now,

the population is {licm, instcombine, gvn, [loop-reduce, loop-unroll], loop-reduce,

sccp, inline, ipsccp, loop-unroll, loop-unswitch} (lines 14-21). This is the end of

23

the first generation.

In the first generation, the desired target resilience is not yet reached and hence

the algorithm proceeds to the second generation. In this generation, gvn and loop-

unroll are chosen as the candidates for selection. In the crossover step, the two

candidates give rise to the new candidate, [gvn, loop-unroll]. Now assume that

the mutation probability happens to be satisfied in the second generation and the

replace operation is performed on this candidate to give rise to the new candidate

[gvn, inline]. Now, the population is {licm, instcombine, gvn, [loop-reduce, loop-

unroll], loop-reduce, [gvn, inline], inline, ipsccp, loop-unroll, loop-unswitch}.
In the second generation, the target resilience is not yet attained and the algo-

rithm continues. Let us assume the two candidates chosen in the third generation

are [licm, loop-reduce] and [gvn, inline]. Assume that the CrossoverRate is satis-

fied and the two candidates undergo an append operation to yield the new candidate

[loop-reduce, loop-unroll, gvn, inline], and that the MutateRate is not satisfied in

this generation. We find that the resilience of this new candidate satisfies the target

resilience and the algorithm terminates. This candidate optimization sequence is

presented as the candidate solution that achieves the desired target resilience (line

23). Thus, the algorithm took three generations to obtain the candidate solution in

this example. Note that in reality it took many more generations for the program,

but we present only three generations to simplify the presentation.

4.3 SA-Based Approach
As in the GA-based approach, we start with an initial set that includes a subset of

optimizations available in the compiler. In this approach a state is defined as an op-

timization sequence, while the score of a state is defined as the resilience(%) of the

optimized program. Similar to our GA-based approach we consider the resilience

of the unoptimized program as the baseline here (i.e., the target resilience).

The SA-based algorithm is shown in Algorithm 2. The step wise execution of

the SA-based algorithm is as follows:

1. Initialization: We begin by choosing a random individual optimization from

the initial set and consider it to be the current state of the algorithm (line 2 of

Algorithm 2). The resilience of the program optimized with the optimization(s) in

24

the current state is measured and it is associated as the score of the current state

(scurrent). This score is compared with the target resilience i.e the resilience of

the unoptimized program and we terminate the algorithm if the resilience score of

the current state is better than or same as that of the target resilience (line 3-4 of

Algorithm 2). However, as in the GA-based approach, this trivial condition with

an individual optimization was never satisfied in our experiments.

2. Choosing Neighbor state: We then generate a neighbor state (sneighbor) from

the current state (line 5 of algorithm 2) (ChooseNeighbor()). The process of gener-

ating the neighbor state involves tweaking the current state with specific operations.

These operations include add, delete and replace as shown in the Figure 4.3. The

add operation involves selecting a random individual optimization from the initial

set and appends it to the current state. The replace operation replaces a random

optimization in the sequence of the current state with an optimization randomly

chosen from the initial set. Finally, the delete operation removes a random opti-

mization from the sequence of the current state.

Current State
(Optimization Sequence)

[a b c d e]

Example Neigbhor States

Add – [a b c d e x]
Replace – [a b c y e]
Delete – [a b d e]

Figure 4.3: Choosing the neighbor states from current state (a, b, c,.. are
individual optimizations)

3. Score Calculation: Once the neighbor state is generated, the resilience of

the program optimized with the optimization sequence in the neighbor state is mea-

sured (sneighbor) (line 6 of Algorithm 2).In simulated annealing, the score of a state

(ResilienceScore()) is similar to the fitness score in GA. It determines whether the

neighbor state should be carried forward as the current state to the next iteration.

Similar to the GA-based approach this score is the error resilience measure of a

state. As before we perform fault injections to calculate it.

4. Accepting neighbor state: The neighbor state is accepted if its score is

better than the score of the current state. However if the neighbor state has a lower

25

resilience score, the probability of accepting the neighbor state depends on the

variables T (temperature) and α (cooling rate) in the algorithm. The probability of

acceptance of a weak neighbor state is given by the Equation 4.1 where ∆S is the

difference in resilience scores of the current state and neighbor state (line 7-16 of

Algorithm 2).

P = e−∆S/T (4.1)

The temperature T is decremented slowly over a period of time (line 18 of

Algorithm 2). This cooling down process is determined by the cooling rate α . On

every iteration, T is updated based on the Equation 4.2. We later discuss about how

the values of T and α are chosen in 6.

T = T ∗α (4.2)

As mentioned is Chapter 2 initially when T is high the probability of accepting a

weak neighbor state is also high. However as T reduces over iterations, the value

of ∆S/T increases, and hence the probability of accepting a weak neighbor state

decreases. Thus initially the probability of accepting a weak state is high and

gradually decreases over time in the algorithm. If the neighbor state is accepted,

then it will be the current state for the next iteration of the algorithm (line 15-16 of

Algorithm 2).

4. Termination: The above steps 2 and 4 are repeated until a new neighbor state

generated satisfies the terminating condition. As mentioned earlier, the termination

condition in our case is the resilience score of the unoptimized program (line 20 of

Algorithm 2).

4.4 Measuring Resilience
Both our approaches require us to estimate the error resilience of a candidate opti-

mization sequence in each generation of the algorithm. We attempt to find such a

tool based upon program level metrics. If strong correlations exist between a met-

ric ’X’ and error resilience, we can then estimate the resilience of a candidate based

on measuring the metric ’X’, rather than doing time consuming fault-injection ex-

26

Algorithm 2: SA-based approach to find an optimization sequence that does not
degrade error resilience
δ ← [Individual optimizations]
T ← Initial Temperature
α ← Rate of cooling
P← Acceptance Probability
starget ← Resilience of unoptimized
Input : Source code, Set of individual optimizations
Output: Optimization sequence that does not degrade resilience

1: procedure OPTIMIZATION SEQUENCE FOR RESILIENCE

2: µcurrent = Random(δ)
3: scurrent = ResilienceScore(µcurrent)
4: while scurrent <= starget do
5: µneighbor =ChooseNeighbor(µcurrent)
6: sneighbor = ResilienceScore(µneighbor)
7: if sneighbor < scurrent then
8: ∆S = scurrent − sneighbor
9: P = e−∆S/T

10: if Random(0,1)< P then
11: µcurrent = µneighbor
12: scurrent = sneighbor
13: end if
14: else
15: µcurrent = µneighbor
16: scurrent = sneighbor
17: end if
18: T = T ∗α

19: end while
20: return µcurrent

21: end procedure

periments. However, as we will see, determining such factors is very difficult, and

we could not find evidence of such correlations for SDCs based on the factors iden-

tified in prior work [25, 34] for other kinds of failures. This is why we decided to

use fault injections.

We consider two kinds of program metrics to measure the correlation with

SDC rates of programs. The first corresponds to instruction counts of the program

27

that were proposed by Thomas et al. [34]. The second corresponds to data-flow

metrics that were suggested by Pattabiraman et al. [25]. Although neither paper

advocates the use of these metrics for SDCs, we wanted to measure how good

these metrics were for predicting SDCs in an application. We performed the fault

injection experiments using the experimental setup and benchmarks described in

Chapter 5.

Thomas et al [34] have found a correlation between the dynamic instruction

count of a program and its resilience for soft-computing applications, i.e., those

applications that have relaxed correctness requirements. We wanted to see if this

applies to general-purpose applications too.

Figure 4.4A plots total dynamic instruction count versus the SDC rate for

Blackscholes, one of the programs in the PARSEC benchmark suite [2] for 10

different optimizations. It can be seen from the figure that total dynamic instruc-

tion count has poor correlation with SDC rate. Hence, dynamic instruction count

is not a reliable indicator of the SDC rates of an application.

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Dynaminc Instruction Count(107)

0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59

SD
C

ra
te

0.1 0.2 0.3 0.4 0.5 0.6
Predicted SDC rate

0.1

0.2

0.3

0.4

0.5

0.6

Ac
tu

al
 S

DC
 ra

te

Figure 4.4: (a) Correlation between Total Dynamic instruction count vs SDC
rate (for Blackscholes), and (b)Data-flow Regression Model’s Estima-
tion vs Actual SDC rate

Pattabiraman et al. [25] have found that data-flow metrics such as fan-outs can

be used to predict applications’ vulnerability to failures. Based on this intuition,

we investigated the following data flow analysis metrics (i) static backward slicing

(ii) fan-in and fan-out of variables (iii) loop dependency. Using these factors, we

tried to fit a linear regression model that estimates the SDC rate. Figure 4.4B plots

28

the estimated SDC rate by the regression model against the actual SDC rate for

5 benchmark programs with 10 different compiler optimizations. As can be seen

from the figure, the estimated SDC rate by the model has very poor correlation with

the actual SDC rate (a similar result was obtained by Hari et al [12]). Therefore, it

is nontrivial to determine the error resilience of the program using these factors, and

hence we use a fault injection experiment for fitness function and score calculation

in our approaches.

4.5 Summary
In this chapter, we described our problem statement and its complexity, motivating

the need for automated techniques to solve this problem. We then described our

GA-based and SA-based approaches, explaining the step by step process involved

in both algorithms. We followed up explaining our GA-based approach with a

representative example to have a better understanding on its evolution, obtaining an

optimization sequence that does not degrades resilience. Since both our approaches

requires us to measure the error resilience of an optimized program, we attempted

to find a model/tool measuring the resilience of a program based on its program

level metrics. Since we were unsuccessful in finding such a model/tool, we used

a fault injection tool for this purpose. In the following chapter, we present our

experimental setup for evaluating our approaches.

29

Chapter 5

Experimental Setup

In this chapter, we first present the implementation details of our techniques and

then describe the benchmarks used for our evaluation. We later explain how we

tune the GA and SA parameters, and evaluate the resilience, vulnerability and per-

formance overhead of the program compiled with our candidate solutions.

5.1 Implementation
We implemented our approaches using the LLVM compiler [17] , the LLFI fault

injection tool [37], and the Java language. LLVM is a popular optimizing com-

piler that includes a host of standard optimizations, and is used in a wide variety

of real-world platforms (including the Mac platform). LLVM allows us to specify

individual optimizations to be run on the application, as well as the standard op-

timization levels. For seeding our techniques, we pick a subset of optimizations

consisting of data-flow, loop, global and a few other optimizations available in the

LLVM compiler [17]. This subset comprises around 10 different optimizations (we

explain why we choose 10 in Chapter 6).

For the fitness function and score evaluation in our approaches, we use LLFI,

a fault injection tool that operates at the LLVM Intermediate Representation (IR)

code level [17] , to inject hardware faults into the program’s code. We use LLFI

as it has been found to be accurate for measuring the SDC rate of an application

relative to assembly-level fault injection [37]. LLFI first takes the IR code as the

30

input and determines the target instructions/operands for fault injection. It then

instruments the target instructions/operands with appropriate calls to the fault in-

jection functions. These fault injection functions are the ones that injects specific

faults (in our case single bit flips) to the specific instruction operand. At each run

the compiled program is executed, and LLFI randomly chooses a single dynamic

instance of the instrumented instructions to call its fault injection function which

executes fault injected instruction. We then compare the outputs of the fault injec-

tion experiments with the fault free outcome to measure the error resilience of the

program. Since hardware faults are random occurrences, LLFI randomly selects a

dynamic instruction at runtime for fault injection.

5.2 Benchmarks
We evaluate our techniques on twelve programs, five from the PARSEC [2] and

seven from the Parboil [33] benchmark suites. The benchmarks represent a wide

variety of tasks ranging from video processing to high-performance computing,

and are all written in C/C++. They range in size from a few hundred to a few

thousand lines of code. The benchmarks chosen and their characteristics are shown

in Table 5.1.

5.3 Tuning of the GA parameters
We first evaluate the performance of the GA approach in order to tune its param-

eters to obtain faster convergence. One way to measure performance of the algo-

rithm is by using wall clock execution time. However, the execution time for the

GA is dominated by the time it takes to perform the fault injections in each itera-

tion of the GA to evaluate the fitness of each candidate. Therefore, the number of

generations taken by the algorithm is a more meaningful measure of performance,

as the greater the number of generations, the more the number of candidate se-

quences generated, and hence the more the number of total fault injections that

must be performed to evaluate the candidates.

We consider the effects of the following parameters in order to tune the GA.

These parameters are explained in Section 4.2.

(1) MutateRate: We vary this value based on what the literature on GA recom-

31

Table 5.1: Benchmark programs that are used in our experiments

Program Benchmark
suite

Description

Blackscholes PARSEC Computes the price of options using blacksc-
holes partial differential equation.

Swaptions PARSEC Computes the price of portfolio of swaptions
by employing Monte Carlo(MC) Simulations.

x264 PARSEC An H.264/AVC video encoder, that achieves
higher output quality with lower bit rate.

Fluidanimate PARSEC Simulates an incompressible fluid for interac-
tive animation purposes.

Canneal PARSEC Minimizes the routing cost of a chip design
using a cache-aware simulated annealing.

Bfs Parboil Implements a breadth first search algorithm
that computes the path cost from a node to
every other reachable node.

Histo Parboil Computes a 2-D saturating histogram with a
maximum bin count of 255.

Stencil Parboil An iterative Jacobi solver of heat equation us-
ing 3-D grids.

Spmv Parboil Implements a Sparse-Matrix Dense-Vector
Product

Cutcp Parboil Computes short-range electrostatic potentials
induced by point charges in a 3D volume

Sad Parboil Computes sum of absolute differences for
pairs of blocks which is based on the full-
pixel motion estimation algorithm

Sgemm Parboil Performs a register-tiled matrix-matrix multi-
plication

mends [13], from low to high values.

(2) Population size: We vary this value from 10 to 40 as we have a total of 50

optimizations in LLVM.

(3) Tournament selection strategy: We consider two strategies, random selec-

tion and score-based selection.

(4) Optimization Types: We vary the optimization types (data-flow, loop, global

and others) considered in the population.

32

Once we tune the GA parameters, we use these values to derive the candidate

solutions used in the resilience and performance evaluation experiments described

next.

5.4 Tuning of the SA parameters
Similar to the GA-based approach we also tune the SA parameters to evaluate

the performance of the SA-based approach for faster convergence. We know that

initially the value of T should be high, so that the probability of accepting weak

solutions is high. Choosing the initial value of T depends on the possible values of

P (probability of acceptance). We observed that the least possible value of ∆S is

0.1. Hence the possible maximum value of T for which P starts from 0.99 is T=10.

Similar to tuning GA parameters, we tune the SA parameter cooling rate by

varying its values with 0.5, 0.7, 0.9 and 0.99. We choose cooling rate values from

0.5 as T would decrease rapidly when α is low(T = T ∗α).

5.5 Resilience Evaluation
We first compile each of the programs using LLVM with the -O0 option (no opti-

mizations) for generating the unoptimized program. We then measure its resilience

by performing fault injection experiments using the fault injection tool LLFI (as ex-

plained in Chapter 5.1). We consider this as the baseline for our experiments. We

perform a total of 1000 fault injection experiments per benchmark program (one

fault per run), in order to get tight confidence bounds on the SDC rate. The error

bars range from 0.85% to 2.501% depending on the benchmark for the 95% confi-

dence interval. In each run, our fault injector injects a single bit flip into the result

of a single dynamic instruction chosen at random from the set of all instructions

executed by the program. This is in line with our fault model in Section 2.4.

We compare the results of our techniques with standard optimization levels

O1, O2 and O3 as no other prior work has proposed an algorithm for selecting

optimizations for resilience. We repeat the above process for each of the optimiza-

tion levels O1, O2, and O3, for each benchmark program, and obtain their error

resilience. We then run our GA-based and SA-based approaches to identify a can-

didate solutions (i.e., optimization sequence) for each benchmark program, and

33

then repeat the same experiment for these candidate solutions. We compare each

of the resilience values to the baseline resilience of the unoptimized version, and

measure the increase or decrease in error resilience with respect to the baseline.

Also in order to be accurate, we consider the error bars into account on every itera-

tion of the algorithm while comparing the resilience of the optimization sequences

with the target resilience.

There are a total of 72000 injections performed in our experiments (12 bench-

marks, 1000 injections, 6 executables namely, O1, O2, O3, unoptimized and GA

and SA candidate solutions). Note that these fault injection experiments do not

include the overall fault injections performed by the GA-based and SA-based al-

gorithms to evaluate a candidate solution, which are many more in number.

5.6 Performance Evaluation
We then evaluate the performance improvement obtained by each of the optimiza-

tion levels and the candidate solutions obtained by our approaches. We measure

the execution time of the executable compiled with the appropriate set of optimiza-

tions i.e., O1, O2, O3 and the GA and SA candidate solutions on our hardware

platform. The platform we use is a Intel E5 Xeon machine with 32G memory run-

ning Ubuntu Linux 12.04. We measure the execution time by taking an average

of 10 trials for each configuration to obtain tight error bars ranging from 0.28% to

3.38% for the 95% confidence interval.

5.7 Summary
In this chapter, we discuss the implementation details of our techniques and also

explain the working of LLFI (fault injection tool), that was used in our techniques

for measuring the error resilience of a given program. We present the twelve bench-

marks used in our evaluation and also discuss about tuning the various algorithm

parameters to improve the performance of both approaches. We then discuss our

evaluation of the candidate solutions obtained from our approaches with respect to

performance and resilience, compared with the standard optimization levels (O1,

O2 and O3).

34

Chapter 6

Results

We first present the results of how we tune the parameters of our GA-based and SA-

based algorithms for faster convergence. We then present the results for evaluating

the error resilience of the candidate solutions (i.e., optimization sequences) found

by our approaches, and that of the standard optimization levels. Finally, we present

the results of the performance improvement and vulnerability reduction of each of

these optimization sequences over the unoptimized version.

6.1 Effect of GA Parameters
We consider the effect of four parameters on the GA-based approach’s convergence

rate. In these experiments, we only present the results for two benchmarks, bfs and

blackscholes due to space constraints, but the results we obtained were similar for

the other programs.

6.1.1 Mutation Rate

We first considered the effect of varying the mutation rate of the GA-based algo-

rithm, keeping the other parameters fixed. As explained in Chapter 2, this parame-

ter represents the trade-off between search space exploration (leading to potentially

better solutions) and convergence (leading to faster solutions). A larger mutation

rate is associated with better exploration but slower convergence.

Figure 6.1 shows the effect of varying the mutation rate on the convergence

35

blackscholes bfs
Benchmark Programs

0

50

100

150

200

250

300

350

Nu
m

be
r o

f G
en

er
at

io
ns

Mutation rate values
0.01
0.1

0.3
0.5

Figure 6.1: Number of generations taken to generate the candidate solution
with different mutation rate values.

rate. We performed these experiments with four different mutation rate values:

0.01, 0.1, 0.3, 0.5. We observe that the algorithm that obtains the candidate solution

in the least number of generations is for mutation rate = 0.3. Therefore, we choose

a mutation rate of 0.3 for our technique.

6.1.2 Selection Strategy

As mentioned in Section 4.2, there are two possible selection strategies in each

iteration of our GA-based algorithm. One strategy is to randomly choose any two

candidates in the population to move forward to the next generation (random). An-

other strategy is to choose the two best candidates, i.e., the candidates with the

highest fitness scores in each generation (score-based). We compared the number

of generations taken by each strategy to attain convergence across the benchmark

programs (all other values are kept the same). The results of this comparison is

shown in Figure 6.2. It can be observed that for the blackscholes benchmark, the

score based selection method takes many more generations than the random se-

lection to obtain the candidate solution. The difference is much lesser for the bfs

benchmark. The poor performance of score based selection is because it moves

faster, but gets stuck at local maxima, trying to select the best candidates in every

36

generation, following which it takes a long time to attain convergence. On the other

hand, the random selection method moves towards the candidate solution slower,

but does not get stuck in the local maxima, making it converge faster. We therefore

use the random selection strategy in our approach.

blackscholes bfs
Benchmark Programs

0
50

100
150
200
250
300
350
400

Nu
m

be
r o

f G
en

er
at

io
ns Random-selection

Score-based selection

Figure 6.2: Number of generations taken to generate the candidate solution
by the random selection and score based selection strategies.

6.1.3 Population Size

represents the number of individual optimizations present in the initial population

considered by our GA-based approach. To evaluate the effect of the population

size, we examined the number of generations that the algorithm takes to converge

for different population sizes ranging from 10 to 40.

Figure 6.3 shows the results of this experiment. The figure shows that the

number of generations taken to attain convergence increases with the increasing

population size. Hence, a smaller population size would arrive at an optimal so-

lution faster. On the other hand, increasing the population size may lead us to a

better solution. We however find that even by restricting the population size to just

10 optimizations, we are able to achieve satisfactory performance without degrad-

ing the error resilience (Section 6.4). Based on our results, we choose a population

size of 10 for our GA-based approach.

37

0 10 20 30 40
Population size

0

50

100

150

200

250

300

Nu
m

be
r o

f g
en

er
at

io
ns

blackscholes
bfs

Figure 6.3: Number of generations taken to generate the candidate solution
with different population sizes.

6.1.4 Optimization Types

Compiler optimizations are classified into different types based on the transforma-

tion they perform on the program. As described in Chapter 3, they are classified

into data-flow optimizations, loop optimizations, global optimization and others.

For the initial population in our approach, we pick a subset that contains a combi-

nation of optimizations from the available classes. We wanted to investigate if we

could achieve faster convergence by using only a specific class of optimizations as

the population. For this experiment, we restrict the types of optimizations to each

of the above categories, and compare the number of generations taken to obtain

the candidate optimization sequence. We also compare it to the convergence rate

obtained when all the categories are combined together, called “combination of

all’.

The results are shown in Figure 6.4. From the figure, it is evident that no single

class of optimization outperforms the rest for both benchmarks. This suggests that

there is no one universal set of optimizations that can accelerate the convergence.

Hence, we chose a population that consists of a combination of all the optimization

types in our experiments, i.e., we do not restrict ourselves to a specific optimization

type.

38

blackscholes bfs
Benchmark Programs

0

200

400

600

800

1000

Nu
m

be
r o

f G
en

er
at

io
ns

Optimization Types
Data-flow optimizations
Loop optimizations
global optimizations
Other optimizations
Combination of all

Figure 6.4: Number of generations taken to generate the candidate solution
with different optimization types.

6.2 Effect of SA parameters

6.2.1 Rate of Cooling

Rate of cooling is the rate at which the temperature is reduced over iterations in

SA. The goal of the algorithm is to obtain an optimal solution by accepting more

number of bad states initially, and this can be achieved by reducing the temperature

slowly over iterations. Since T = T ∗α and α lies between 0-1, α should be high

for reducing T slowly. However to choose a suitable value of α we evaluate the

time of convergence of the algorithm for different α values.

Figure 6.5 shows the effect of varying al pha on the convergence rate. We

experimented with four different values: 0.5, 0.7, 0.9 and 0.99. We choose values

from 0.5 because any value below 0.5 would decrease the temperature rapidly.

We observe that our SA-based approach obtains the candidate solution in the least

number of iterations is for al pha = 0.99. Therefore, we choose alpha as 0.99 for

our SA-based approach.

39

0.5 0.7 0.9 0.99
Cooling Rate

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f i
te

rt
io

ns

blackscholes
bfs

Figure 6.5: Number of iterations taken to generate the candidate solution by
the SA-based approach with different cooling rate.

6.3 Resilience Evaluation
Figure 6.6 shows the aggregate fault injection results across benchmarks for the

unoptimized, original versions. The percentages of SDCs across all benchmarks

is 19.0%. Crashes constitute 36.8% and benign injections constitute 44.2%. We

observed that hangs are negligible in our experiments. Note that we include only

the activated faults in the above results, or those faults that are actually read by the

system and affect the program’s data, as this is line with the definition of resilience

(see Section 2.1).

We compare the resilience of the program compiled with the optimization se-

quence (i.e., candidate solution), obtained from our GA-based and SA-based ap-

proaches, with the resilience of the unoptimized program, and that of the compiler

optimization levels O1, O2 and O3. Figure 6.7 shows the resilience (in %) of the

unoptimized, candidate solutions (from GA and SA) and the different optimization

levels.

As can be seen in the figure, the optimization levels O1, O2 and O3 have de-

graded the resilience of the application compared to the unoptimized version, for

all the benchmarks. On the other hand, the candidate solutions (i.e., optimiza-

tion sequence) generated by our techniques (GA and SA approach) provides a re-

40

Crash

36.8%
SDC 19.0%

Benign

44.2%

Figure 6.6: Aggregate percentage of SDC, crash and benign results across
benchmarks for the unoptimized version.

silience better than or on par with the unoptimized version of the program. It can

be observed that for most benchmarks (except x264, cutcp and blackscholes) the

candidate solution obtained from the GA-based approach provides better resilience

than the SA-based approach. The reason is as follows: an optimization sequence

evolved in an iteration in the GA-based approach cumulatively depends on the cur-

rent population that contains a set of best candidates (optimization sequences with

better resilience) evolved until the previous iteration. Whereas in the SA-based

approach, an optimization sequence evolved in an iteration depends only on one

optimization sequence that was evolved in the previous iteration. That said, the

resilience achieved by the candidate solutions obtained from the two techniques do

not differ significantly.

The arithmetic mean of the error resilience across benchmarks, of the unopti-

mized version and the GA-candidate solution, SA-candidate solution, O1, O2 and

O3 levels are respectively 76.14 (±1.54), 79.125 (±1.57), 78.36 (±1.55), 72.77

(±1.6), 73.15 (±1.6) and 73.38 (±1.54).1 Further we show the SDC rates of the

unoptimized, candidate solutions (GA and SA) and the optimization levels in Fig-

ure 6.8. The arithmetic mean of the SDC rate across benchmarks show that our

candidate solutions lower the SDC rate significantly compared to the unoptimized

version, O1, O2 and O3.
1We use the arithmetic means (AMs) for computing the averages as we are comparing the absolute

values.

41

flu
ida

nim
ate bfs

ca
nn

ea
l

his
to

sw
ap

tio
ns

x2
64

ste
nc

il
sp

mv
cu

tcp sa
d

bla
ck

sch
ole

s

sg
em

m

Ave
rag

e

Benchmark Programs

40

50

60

70

80

90

100
Re

si
lie

nc
e

(in
 %

)
Unoptimized
GA-Candidate solution
SA-Candidate solution
O1
O2
O3

Figure 6.7: Resilience of the Unoptimized, candidate solutions, O1, O2 and
O3 levels. (Higher values are better).

flu
ida

nim
ate bfs

ca
nn

ea
l

his
to

sw
ap

tio
ns

x2
64

ste
nc

il
sp

mv
cu

tcp sa
d

bla
ck

sch
ole

s

sg
em

m

Ave
rag

e

Benchmark Programs

0

10

20

30

40

50

60

SD
C

ra
te

 (i
n

%
)

Unoptimized
GA-Candidate solution
SA-Candidate solution
O1
O2
O3

Figure 6.8: SDC rate of the unoptimized code, candidate solutions, O1, O2
and O3 levels. (Lower values are better)

6.4 Performance Evaluation
As in the resilience experiment, we compare the performance of the unoptimized

version of the program with the candidate solutions, O1, O2 and O3. Figure 6.9

shows the execution time (in sec) of the unoptimized code, candidate solutions

42

found by our techniques (GA and SA) and the optimization levels O1, O2 and

O3. The figure shows that the candidate solution from our techniques provides

better performance than the unoptimized version (as expected). Also we observed,

our GA-candidate solutions’ average of execution time across benchmarks is bet-

ter than those of the optimization levels O1 and O2, and slightly worse than O3

(by 0.39%). Similarly, the SA-candidate solutions’ average of execution time is

0.61%, 2.27% and 2.72% worse than O1, O2 and O3 respectively. This shows

that resilience friendly optimizations obtain performance improvements that are

comparable to the standard optimization levels.

In fact, in some cases, the performance of the candidate solutions found by

our approaches is better than the performance provided by the optimization levels.

For example, in the case of the blackscholes program, our optimization sequences

(both GA and SA) provides a better performance than the optimization levels O1

and O2. However, this is not the case for other benchmarks such as fluidanimate

and canneal, where the candidate solution’s performance is much worse than the

optimization levels. Analyzing further, we observed that the “union” data type

in the fluidanimate program has been optimized by -scalarrepl optimization, and

caused this major performance improvement. However, -scalarrepl was not in-

cluded in our initial population. Similar behavior was observed in canneal. It can

also be observed that in some programs such as swaptions, cutcp, sad and sgemm

the candidate solution obtained from SA-based approach do not provide signif-

icant performance improvement as compared to that provided by the candidate

solution from GA-based approach (error bars do not overlap). In the remaining

programs considered the candidate solutions obtained from SA-based approach

and GA-based approach provide performance improvement with overlapping error

bars. Hence it is difficult to decide on one approach to be better than the other.

Note that performance improvement is not an explicit goal of our techniques,

though it is implicit in the fact that we choose to use standard compiler optimiza-

tions that are predominantly focused on performance improvement.

43

flu
id

an
im

at
e

ca
nn

ea
l

hi
st

o
x2

64

sp
m

v

bl
ac

ks
ch

ol
es

sg
em

m

Benchmark Programs

0

0.01

0.02

0.03

0.04

0.05

0.06

E
x
e
cu

ti
o
n
 t

im
e
 (

in
 s

e
c)

Unoptimized

GA-Candidate solution

SA-Candidate solution

O1

O2

O3

bf
s

sw
ap

tio
ns

st
en

ci
l

cu
tc

p
sa

d

Benchmark Programs

0

0.2

0.4

0.6

0.8

0.1

1

1.2

1.4

1.6

1.8

E
x
e
cu

ti
o
n
 t

im
e
 (

in
 s

e
c)

Unoptimized

GA-Candidate solution

SA-Candidate solution

O1

O2

O3

Figure 6.9: Runtime of the unoptimized code, candidate solutions, O1, O2
and O3 levels. (Lower values are better).

6.5 Vulnerability Evaluation
Compiler optimizations often reduce run time of the program, thereby reducing its

time of exposure to transient faults. Hence it is important to evaluate the vulnera-

bility of the program in addition to its resilience (Chapter 2). Since vulnerability is

calculated as the product of execution time and SDC rate, it is dependent on both

these factors.

Similar to the above evaluations, we compare the vulnerability of different ver-

sions of the program. Figure 6.10 shows the comparison of vulnerability of the

candidate solutions (GA and SA) with optimization levels O1, O2 and O3. Er-

44

ror bars for vulnerability (product of SDC rate and execution time) is calculated by

adding the relative errors which is the standard way for uncertainty calculation for a

product [27] The figure shows that in most of the benchmark programs (except flu-

idanimate, and the O3 level in both sad and blackscholes), the candidate solutions

obtained from our techniques reduces the overall vulnerability of the program. On

the other hand, the optimization levels O1 and O2 increase the overall vulnerability

of the program, while O3 reduces it but not to the level of our candidate solutions.

On an average the vulnerability of programs compiled with standard optimization

levels O1,O2 and O3 are 9.53 (±0.25) , 9.22 (±0.24) and 9.11 (±0.24). In com-

parison, the candidate solutions found by our GA-based and SA-based approaches

lower the vulnerability to 8.12 (±0.21) and 8.51 (±0.22) than the unoptimized ver-

sion (9.25 (±0.25). Since the candidate solutions obtained from our GA-based ap-

proach provides resilience and performance improvement better than the SA-based

approach, the GA-based approach provides better vulnerability reduction as well.

However, in the case of x264 since SA-based approach provides better resilience

and performance improvement, it considerably lowers the vulnerability.

In the case of fluidanimate, the standard optimizations reduce vulnerability

much more than our candidate solutions. This is because the optimizations reduce

the program’s execution time by 50% or more, which far outweighs the increased

SDC rate due to the optimizations. We have explained the reason for this massive

reduction in execution time in Section 6.4.

In the case of blackscholes and sad, both candidate solutions do worse than the

optimization level O3 in terms of vulnerability reduction. Again, the optimization

level O3 reduces the execution time by nearly 40% in these programs, and this

outweighs the increase in the SDC rate, resulting in lower vulnerability.

6.6 Summary
In this chapter, we first evaluated the performance of our techniques by varying the

values of the mentioned GA and SA parameters. Based on the results, we chose the

suitable values for the rest of our experiments. We then evaluated the performance,

error resilience and vulnerability of the candidate solutions obtained from our tech-

niques and that of the standard optimization levels (O1, O2 and O3). We observed

45

flu
ida

nim
ate

ca
nn

ea
l

his
to

x2
64

sp
mv

bla
ck

sch
ole

s

Benchmark Programs

0

0.1

0.2

0.3

0.4

0.5

0.6
Vu

ln
er

ab
ili

ty
 (S

DC
 ra

te
*

Ru
nt

im
e) Unoptimized

GA-Candidate solution
SA-Candidate solution
O1
O2
O3

bfs

sw
ap

tio
ns

ste
nc

il
cu

tcp sa
d

sg
em

m

Benchmark Programs

0

10

20

30

40

50

60

70

Vu
ln

er
ab

ili
ty

 (S
DC

 ra
te

*R
un

tim
e)

Unoptimized
GA-Candidate solution
SA-Candidate solution
O1
O2
O3

Figure 6.10: Vulnerability of the unoptimized code, candidate solutions, O1,
O2 and O3 levels. (Lower values are better).

that the resilience of the candidate optimization sequences found by our techniques

(GA and SA) is much better than those of the standard optimization levels. Also

the performance of the optimized code with our techniques is on par with or only

slightly lower than the performance of the code with the standard optimization lev-

els (GA based - better than O1, O2 and slightly worse than O3 (by 0.39%); SA

based - 0.6%, 2.27% and 2.72% worse than O1, O2 and O3 respectively). Finally

on an average, our techniques considerably lower the overall vulnerability of the

application (GA- 8.12 (±0.21) and SA- 8.51 (±0.22) on average), while the stan-

46

dard optimization levels O1 increase the overall vulnerability of the application

(O1- 9.53 (±0.25) on average) and O2 and O3 reduce it slightly (O2-9.22 (±0.24)

and O3-9.11 (±0.24)). In the following chapter, we perform further analysis based

on our results.

47

Chapter 7

Discussion

In this chapter, we examine the implications of our results. We first compare and

analyze the candidate solutions obtained from our GA-based and SA-based ap-

proaches. Based on our analysis, we recommend that GA-based approach is more

suitable for our problem statement, and hence we perform further analysis on the

results obtained from the GA-based approach to understand its sensitiveness. We

finally reflect on the limitations of our approaches.

7.1 GA-based Vs SA-based
We compare the candidate solutions obtained from our two approaches and analyze

whether the resilience improvement is caused by the common individual optimiza-

tions they share. We do this analysis to group those individual optimizations as

the resilience-friendly optimizations and these optimizations can be directly con-

sidered for finding the optimization sequence.

Given that we have two candidate solutions obtained from different approaches

for a program, we compare them to examine whether there exists a fixed set of in-

dividual optimizations that provides better performance and resilience. For this

purpose, we analyzed the common individual optimizations in the candidate solu-

tions obtained from the GA-based and SA-based approaches for each program. We

evaluate the impact of these individual optimizations on the resilience of the pro-

gram, and observed that the resilience improvement of the candidate solutions is

48

not because of the individual optimizations, but is the effect of the optimization se-

quence as whole. For example, we extracted the common individual optimizations

loop-reduce and gvn from the candidate solutions obtained by the GA-based and

SA-based approaches for the blackscholes program. Figure 7.1, shows that loop-

reduce and gvn do not provide such high resilience improvement as rendered by

the candidate solutions. This shows that the resilience improvement provided by

the candidate solutions is caused by the entire optimization sequence. The trans-

formation performed by loop-reduce and the explanation for how it improves the

error resilience has already been explained in Chapter 3. In the case of gvn, the

resilience improvement lies within the error bar, and hence we cannot conclude

anything about its resilience improvement.

loop-reduce gvn GA-based SA-based
Optimizations

48

50

52

54

56

58

60

62

R
e
si

lie
n
ce

 (
in

 %
)

Figure 7.1: Resilience of blackscholes with loop-reduce, gvn and candidate
solutions obtained from GA-based and SA-based approaches with the
unoptimized code’s resilience as baseline. Black line represents the re-
silience of the unoptimized code.

7.2 Sensitivity Analysis
We compare the resilience improvement rendered by the candidate solutions ob-

tained from our GA-based and SA-based approaches. Based on our results we

49

observed that it is difficult to decide one among them as the better approach for

finding resilience friendly compiler optimizations. This is because we notice that

for some benchmarks GA-based approach performs better, while for others SA-

based approach performs better. However the candidate solutions obtained from

our GA-based approach provide performance improvement that is 5.5% better than

SA-based. Also, it depends on the optimization sequences obtained from the two

approaches. For example the candidate solution for blackscholes from GA-based

approach included inline, while that from SA-based approach did not. Analyzing

the optimized code we observed that the inline optimization has a major contribu-

tion to the performance improvement in the candidate solution obtained from the

GA-based approach. Since the candidate solution from SA-based approach did not

contain inline or any other similar optimization that improves performance compa-

rably, it does not provide as good performance improvement as GA-based, O1, O2

or O3 optimization levels. Hence our further analysis in this chapter is based on

the results of the GA-based approach.

7.2.1 Order of the optimizations

We evaluate the sensitivity of error resilience with the order of individual opti-

mizations in the optimization sequences (candidate solutions) obtained from our

techniques. We measure the resilience of the program optimized with all possible

permutations of optimizations in the sequence. If there are ‘n’ individual optimiza-

tions in the sequence, then we have n! sequences to be validated. For example,

the candidate solution obtained from GA-based approach for the blackscholes pro-

gram includes 4 individual optimizations [loop-reduce, loop-unroll, gvn, inline],

and hence we have 24 sequences. Figure 7.2 shows the resilience of the candidate

solution (CS) obtained from the GA-based approach and the different sequences

(we denote different sequences as C1,C2,...C23). In some cases like CS and C4,

the order of the optimizations in a sequence is sensitive to resilience (beyond error

bars). However, in others since the error bars of the resilience measurements over-

lap, we cannot draw such a definitive conclusion that the resilience of the program

is sensitive to every change in the order of the optimizations.

50

CS C1 C2 C3 C4 C5 C6 C7 C8 C9
C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23

Optimization Sequences

50

51

52

53

54

55

56

57

58

59

60

61
N

o
rm

a
liz

e
d
 R

e
si

lie
n
ce

 (
in

 %
)

Figure 7.2: Resilience of blackscholes with the candidate solution-GA based
(CS) and the different combinations of the sequence (C1,C2,....C23)
with the unoptimized code’s resilience as baseline.

7.2.2 Resilience vs Vulnerability measuring fitness function

We evaluate the candidate solutions obtained by the GA-based approach, varying

its fitness function for resilience and vulnerability measurement. The goal of the

algorithm with the vulnerability measuring fitness function is to find an optimiza-

tion sequence that does not increase the vulnerability of the program. Figure 7.3

compares the vulnerability of the candidate solutions (GA-based) with resilience

and vulnerability measuring fitness functions, O1, O2 and O3. It shows that the

vulnerability improvement rendered by the candidate solutions obtained with vul-

nerability measuring fitness function is comparable to those of candidate solutions

obtained with resilience measuring fitness function. However, in most cases the

vulnerability reduction of the candidate solutions obtained with the vulnerability

measuring fitness function was due to its performance improvement and not due

to resilience improvement. On the other hand, our GA-based algorithm with re-

silience measuring fitness function improves resilience and performance reason-

ably,thus improving vulnerability. This shows that the algorithm with vulnerability

measuring fitness function mainly optimizes to generate optimization sequence that

improve performance which is another way of improving vulnerability. Also, if the

51

algorithm with resilience measuring fitness function took x iterations to obtain the

candidate solution the vulnerability measuring fitness function took about 1.2x to

10x iterations depending on the application. This is because the algorithm with vul-

nerability measuring fitness function tries to optimize for both, time and resilience.

Hence the resilience measuring fitness function is more suitable than vulnerability

measuring fitness function.

flu
ida

nim
ate

ca
nn

ea
l

his
to

sw
ap

tio
ns

x2
64

sp
mv

bla
ck

sch
ole

s

Benchmark Programs

0

0.1

0.2

0.3

0.4

0.5

0.6

Vu
le

ra
bi

lit
y

(S
DC

 ra
te

*R
un

tim
e)

GA-Resilience Target
GA-Vulnerability Target

bfs
ste

nc
il

cu
tcp sa

d

sg
em

m

Benchmark Programs

0

10

20

30

40

50

60

70

Vu
le

ra
bi

lit
y

(S
DC

 ra
te

*R
un

tim
e) GA-Resilience Target

GA-Vulnerability Target

Figure 7.3: Vulnerability of the candidate solutions with resilience and vul-
nerability target. Lower values are better.

52

7.2.3 Evolution of the GA-based approach

We now examine how our GA-based approach achieves its objectives. We first

compare our algorithm with a random walk search heuristic. In the random walk,

we begin with the same individual optimizations that constituted the initial popu-

lation in our experiments. In every iteration, a random optimization sequence is

generated from these individual optimizations and its resilience is evaluated. This

process is repeated until an optimization sequence that does not degrade the pro-

gram’s resilience is obtained. The main difference between the random walk and

our approach is that there is no fitness function in the random walk. We observed

that the random walk never converged to a solution even after a long time. For

example, in the case of the Blackscholes program, the random walk did not obtain

a solution even after 4 days (230 iterations), whereas our GA-based approach ob-

tained a solution in 4 hours time (24 iterations). Similar results were obtained for

other programs.

0 10 20 30 40 50 60 70 80 90 100
%Generation count

0

10

20

30

40

50

60

70

80

90

100

No
rm

al
iz

ed
 M

ea
n

fit
ne

ss
 s

co
re

 o
f p

op
ul

at
io

n blackscholes
bfs
canneal
histo
x264
fluidanimate

swaptions
stencil
cutcp
spmv
sad
sgemm

Figure 7.4: Mean population fitness scores during the GA evolution process
for each program.

Thus, the main feature of the GA-based approach that allows it to find the target

optimization sequence is its evolution, i.e., with every generation, new candidates

with better fitness score are evolved. Figure 7.4 shows the mean fitness score of

53

the population during the lifetime of GA as it progresses from one generation to

another for each of the benchmarks. To ensure uniformity across benchmarks, we

normalize the number of generations to the total number of generations taken by

the GA to evolve the candidate solution for the benchmark. We do the same for the

error resilience by normalizing it to the final resilience of the candidate solution.

As can be seen from the figure, the fitness score of the population (i.e., resilience)

gradually improves in each generation, until finally the target resilience is reached.

7.2.4 Resilience-Enhancing Compiler Optimizations

In this paper, we restricted ourselves to finding compiler optimizations that pre-

serve the error resilience of the unoptimized version. However, as we found earlier,

compiler optimizations can often enhance the resilience of a program. So we ask

what happens if we remove the restriction of simply preserving the error resilience

of the program, and attempt to improve the resilience instead.

To explore this notion, we modified our GA-based algorithm to an Unbounded

GA-based algorithm. The Unbounded GA-based approach is the same as our GA-

based approach, except that the terminating condition is that the average fitness

score of the candidates in the population remains constant for numerous genera-

tions.

The results are shown in Figure 7.5. As can be seen, the candidate solutions ob-

tained from the Unbounded GA-based approach generates optimization sequences

with resilience either comparable to or better than the GA-based approach. How-

ever, the difference in the geometric means of the two approaches is only 2%,

which is within the error bars of the measurement. This shows that the solutions

obtained by our GA-based approach are comparable to the solutions obtained by

the unbounded GA-based approach in terms of error resilience. However, the Un-

bounded GA-based approach took about 2x to 20x the number of iterations as the

GA-based approach. Thus, our GA-based approach achieves similar results as the

Unbounded GA-based approach, but takes much less time.

Figure 7.6 shows the mean fitness score of the population during the lifetime of

the Unbounded GA-based approach as it progresses from one generation to another

for each of the benchmarks. We normalize the number of generations and the

54

flu
id

an
im

at
e

bf
s

ca
nn

ea
l

hi
st

o

sw
ap

tio
ns

x2
64

st
en

ci
l

sp
m

v

cu
tc

p
sa

d

bl
ac

ks
ch

ol
es

sg
em

m

Ave
ra

ge

Benchmark Programs

40

50

60

70

80

90

100
R

e
si

lie
n
ce

 (
in

 %
)

GA-Candidate solution

Unbounded GA-Candidate
solution

Figure 7.5: Resilience of the candidate solutions obtained from GA-based
and Unbounded GA-based approaches.

fitness score to the total number of generations and the average fitness score of the

last generation’s population for the benchmark. As can be seen from the figure,

the average fitness score of the population improves over generations, and remains

constant after a particular generation. This is because either the algorithm has

gotten stuck in the local maxima or it has attained the maximum resilience that can

be obtained from the given set of individual optimizations in the initial population.

7.3 Limitations of our Approaches
While our approaches lead to faster convergence than the random walk, they have

three limitations. First, as with all optimization techniques, the GA-based approach

can get caught in local maxima and result in sub-optimal solutions. This is partially

mitigated by the choice of the parameters such as the mutation rate, but ultimately,

there is no guarantee that the approach will converge to the optimal solution. How-

ever our SA-based approach would probably prevent from getting stuck at local

maxima. A second limitation is that our approaches can take a long time to con-

verge to a solution. Although the algorithms itself are very fast, the fault injection

to evaluate the resilience of the candidates in each generation takes a long time. We

can however parallelize the injections as there are no dependencies among individ-

55

0 10 20 30 40 50 60 70 80 90 100
%Generation count

0

10

20

30

40

50

60

70

80

90

100
No

rm
al

iz
ed

 M
ea

n
fit

ne
ss

 s
co

re
 o

f p
op

ul
at

io
n

blackscholes
bfs
canneal
histo
x264
fluidanimate

swaptions
stencil
cutcp
spmv
sad
sgemm

Figure 7.6: Mean population fitness scores during the Unbounded GA evolu-
tion process for each program.

ual injection runs, to obtain faster running times, at the cost of higher computational

resources. A third limitation of our approaches is that our results were obtained on

our x86-based hardware platform, and may not apply to other platforms. To miti-

gate this issue, we chose only the optimizations that are machine-independent, and

are hence portable across platforms. Finally, we have considered only SDC’s in our

definition of resilience as they are the most critical outcomes, however crashes and

hangs may also be important in some cases. These can be considered by suitably

modifying the fitness function and score calculation.

7.4 Summary
In this chapter, we performed various analysis on the results. We first analyzed

the results of our GA-based and SA-based approaches, to chose the most suitable

approach. Based on this comparison we recommended the GA-based approach

over SA-based approach and further examined why our approach performs better

in this space. We finally discussed the limitations of both the approaches.

56

Chapter 8

Related Work

8.1 Effect of Compiler Optimizations on Resilience
Demertzi et al. [8] have analyzed the effect of standard optimization levels on the

application’s vulnerability. Unlike us, they do not consider the final outcome of

the application due to the error, and whether the error results in an SDC. Further,

our technique uses fault injections to evaluate the applications’ resilience, while

they use ACE analysis [21], which has been shown to be less accurate than fault

injection [36].

Rehman et. al. [26] devise new optimizations that attempt to decrease the over-

all vulnerability of the program. The main difference between our work and theirs

is that we consider the standard compiler optimizations rather than devise new op-

timizations for resilience. Further, our technique is able to increase the resilience

of the application, without compromising on its performance.

Sangchoolie et. al. [28] consider the effect of compiler optimization level on

SDCs for different applications. The main difference between their work and ours

is that we consider individual optimizations such as loop invariant code motion,

rather than the aggregate optimization level such as O1. This is important for

two reasons. First, the optimization levels such as O1 and O2 are developed for

performance and/or memory reasons, and do not consider error resilience. As a

result, when choosing a standard optimization level, one may be including opti-

mizations that hurt error resilience, leading to sub-optimal choices. Secondly, and

57

more importantly, the resilience effect of optimization levels may vary for differ-

ent hardware platforms and applications. Therefore, it is important to develop an

automated technique for choosing the appropriate set of optimizations for a given

hardware platform and application.

Thomas et al [34] study the impact of optimizations on error resilience for

soft computing applications. They measure the impact of optimization on Egre-

gious Data Corruptions (EDCs), which are significant deviations from fault-free

outcomes. Based on this study, they recommend a set of optimization that are

“safe” against EDCs, i.e., do not significantly increase the EDC rate. There are

two main differences between their work and ours. First, EDCs are only a subset

of SDCs, and do not apply to general purpose applications where any deviation

in the output from the fault-free outcome, no matter how small, is unacceptable.

Second, they do not have an automated method to choose the set of optimizations

for a given application and platform, relying instead on simple heuristics such as

dynamic code size. Such heuristics may not work well for all platforms and ap-

plications. Cong et al [5] proposed a metric for measuring the loop reliability to

analyze the impact of loop transformations on software reliability. Similar to the

previous work they mainly focus on soft computing applications and EDC out-

comes. Also they restrict their analysis for loop optimizations, while we consider

all compiler optimizations in general.

8.2 Choosing Compiler Optimizations
There has been a substantial amount of work to automatically choose the best set

of compiler optimizations for performance improvement or memory reduction, for

a given platform and application [4, 23]. Researchers have proposed the use of var-

ious search heuristics algorithms for this purpose (e.g., simulated annealing [38]).

The most popular techniques in this space has been genetic algorithms (GAs) and

Simulated Annealing (SA), which had been used to find compiler optimization se-

quences that optimize for performance [16, 32, 38], energy consumption [30], and

code size [6]. None of them consider error resilience, which is our focus.

58

8.3 Software Errors and Genetic Algorithms
There has been considerable work on the use of genetic algorithms to repair soft-

ware errors in programs [15, 18]. Given a test suite with one or more failing test

cases, the main idea is to repair the program by (1) localizing the line of code

which is responsible for the failure, and (2) replacing the faulty line with another

line from the same program in an adaptive and iterative fashion using GA, till all

the test cases in the suite pass. There are two main differences between this work

and ours. First, we target hardware faults, while they target software bugs. Sec-

ondly, we aim to make the program resilient without knowing ahead of time where

it will fail. Thus, our approach does not require a failing test case or test suite to

guide the adaptation.

59

Chapter 9

Conclusion and Future Work

Compiler optimizations perform code transformations for improving the perfor-

mance of an application. They mostly target to improve a specific aspect of the

program like time, memory or code size. However, these code transformations

would mostly affect the error resilience of the program.

In this work, we first performed a fault injection study to analyze the effect of

individual optimizations on program’s resilience. Based on the study we observed

that some optimizations degrade program’s resilience and others improve it. We

also observed that this effect of optimizations on program’s resilience depends on

the application’s characteristics as well. Hence we proposed automated techniques

for finding resilience friendly compiler optimizations for a given application.

We leveraged search heuristic algorithms, Genetic Algorithms (GA) and Simu-

lated Annealing (SA) to find an optimization sequence that improves the program’s

performance without degrading its error resilience. We evaluated our techniques

on twelve benchmark programs, and found that it finds optimization sequences that

provides resilience on par with or even better than the standard optimization lev-

els (O1, O2 and O3), while achieving comparable performance improvement as

the optimization levels. Further, it also lowers the vulnerability of applications,

compared to the standard optimization levels.

For future work, we plan to look at aspects other than performance, such as

code size, energy efficiency, and trade them off for error resilience. It would be

interesting to explore different strategies to avoid getting stuck at local maxima

60

in our techniques. This might lead to obtaining better solutions. For example,

modifying the selection strategy at the tournament selection step in the GA-based

approach; adaptively changing the mutation and crossover rate over the generation

in the algorithm; exploring other suitable operations for mutation, crossover and

neighbor state; finding a hybrid algorithm based on our two approaches.

Further, resilience friendly compiler optimizations with similar impact on ap-

plications with similar behavior can be analyzed. The sequences obtained for these

applications can be grouped together and fed as the population/input in our algo-

rithm for obtaining better optimization sequences.

Based on the resilience-friendly sequences obtained from our approach, it would

be interesting to find a model that can predict the effect of a give optimization on

program’s resilience. For this, the impact of the optimizations on application’s

code structure has to be studied.

61

Bibliography

[1] J. E. Baker. Adaptive selection methods for genetic algorithms. In
Proceedings of an International Conference on Genetic Algorithms and their
applications, 1985. → pages 20

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite:
Characterization and architectural implications. In PACT, 2008. → pages 3,
23, 28, 31

[3] S. Borkar. Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation. MICRO, Nov. 2005.
ISSN 0272-1732. doi:10.1109/MM.2005.110. URL
http://dx.doi.org/10.1109/MM.2005.110. → pages 1

[4] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle, and O. Temam.
Rapidly selecting good compiler optimizations using performance counters.
In CGO, March 2007. doi:10.1109/CGO.2007.32. → pages 58

[5] J. Cong and C. H. Yu. Impact of loop transformations on software reliability.
In ICCAD, 2015. → pages 58

[6] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced
code space using genetic algorithms. In LCTES, 1999.
doi:10.1145/314403.314414. URL
http://doi.acm.org/10.1145/314403.314414. → pages 2, 58

[7] K. A. De Jong and W. M. Spears. An analysis of the interacting roles of
population size and crossover in genetic algorithms. In PPSN. 1991. →
pages 20

[8] M. Demertzi, M. Annavaram, and M. Hall. Analyzing the effects of
compiler optimizations on application reliability. In IISWC, 2011. → pages
1, 2, 11, 57

62

http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/CGO.2007.32
http://dx.doi.org/10.1145/314403.314414
http://doi.acm.org/10.1145/314403.314414

[9] G. E. Dieter and D. Bacon. Mechanical metallurgy, volume 3. McGraw-Hill
New York, 1986. → pages 7

[10] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic soft
error reliability on the cheap. In SIGARCH, 2010. → pages 1

[11] J. Grefenstette. Optimization of control parameters for genetic algorithms.
SMC, Jan 1986. ISSN 0018-9472. doi:10.1109/TSMC.1986.289288. →
pages 6

[12] S. K. S. Hari, R. Venkatagiri, S. V. Adve, and H. Naeimi. GangES: Gang
error simulation for hardware resiliency evaluation. In ISCA, 2014. → pages
29

[13] R. L. Haupt. Optimum population size and mutation rate for a simple real
genetic algorithm that optimizes array factors. In APSURSI, 2000. → pages
32

[14] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence.
1992. ISBN 0262082136. → pages 6

[15] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned
from human-written patches. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 802–811, Piscataway,
NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL
http://dl.acm.org/citation.cfm?id=2486788.2486893. → pages 59

[16] S. R. Ladd. Analysis of compiler optimizations via an evolutionary
algorithm. https://packages.debian.org/sid/devel/acovea. → pages 2, 58

[17] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, 2004. → pages 3, 13, 23, 30

[18] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic
method for automatic software repair. IEEE Trans. Softw. Eng., 38(1):54–72,
Jan. 2012. ISSN 0098-5589. doi:10.1109/TSE.2011.104. URL
http://dx.doi.org/10.1109/TSE.2011.104. → pages 59

[19] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou. Swat: An error resilient system. SELSE, 2008. → pages 1

[20] A. Lim, B. Rodrigues, and X. Zhang. A simulated annealing and
hill-climbing algorithm for the traveling tournament problem. European
Journal of Operational Research, 174(3):1459–1478, 2006. → pages 8

63

http://dx.doi.org/10.1109/TSMC.1986.289288
http://dl.acm.org/citation.cfm?id=2486788.2486893
http://dx.doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1109/TSE.2011.104

[21] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A
systematic methodology to compute the architectural vulnerability factors
for a high-performance microprocessor. In MICRO, 2003. → pages 6, 57

[22] K. Nara, A. Shiose, M. Kitagawa, and T. Ishihara. Implementation of
genetic algorithm for distribution systems loss minimum re-configuration.
IEEE Transactions on Power Systems, Aug 1992. ISSN 0885-8950.
doi:10.1109/59.207317. → pages 20

[23] Z. Pan and R. Eigenmann. Fast and effective orchestration of compiler
optimizations for automatic performance tuning. In CGO, March 2006.
doi:10.1109/CGO.2006.38. → pages 58

[24] B. J. Park, H. R. Choi, and H. S. Kim. A hybrid genetic algorithm for the job
shop scheduling problems. Computers & industrial engg., 2003. → pages 20

[25] K. Pattabiraman, Z. Kalbarczyk, and R. Iyer. Application-based metrics for
strategic placement of detectors. In PRDC, Dec 2005.
doi:10.1109/PRDC.2005.19. → pages 27, 28

[26] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel. Reliable software for
unreliable hardware: Embedded code generation aiming at reliability. In
CODES+ISSS, Oct 2011. → pages 57

[27] M. Richmond. Examples of uncertainty calculations.
http://spiff.rit.edu/classes/phys273/uncert/uncert.html. → pages 45

[28] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson. A study of the
impact of bit-flip errors on programs compiled with different optimization
levels. In EDCC, 2014. → pages 1, 2, 57

[29] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R. Das. A study of
control parameters affecting online performance of genetic algorithms for
function optimization. In GEM, 1989. ISBN 1-55860-006-3. URL
http://dl.acm.org/citation.cfm?id=93126.93145. → pages 6

[30] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer. Post-compiler
software optimization for reducing energy. SIGARCH, Feb. 2014.
doi:10.1145/2654822.2541980. URL
http://doi.acm.org/10.1145/2654822.2541980. → pages 58

[31] M. Srinivas and L. Patnaik. Genetic algorithms: a survey. Computer, 1994.
ISSN 0018-9162. doi:10.1109/2.294849. → pages 20

64

http://dx.doi.org/10.1109/59.207317
http://dx.doi.org/10.1109/CGO.2006.38
http://dx.doi.org/10.1109/PRDC.2005.19
http://dl.acm.org/citation.cfm?id=93126.93145
http://dx.doi.org/10.1145/2654822.2541980
http://doi.acm.org/10.1145/2654822.2541980
http://dx.doi.org/10.1109/2.294849

[32] M. Stephenson, U.-M. O’Reilly, M. C. Martin, and S. Amarasinghe. Genetic
programming applied to compiler heuristic optimization. In EuroGP, 2003.
ISBN 3-540-00971-X. URL
http://dl.acm.org/citation.cfm?id=1762668.1762691. → pages 58

[33] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-m. W. Hwu. Parboil: A revised benchmark suite for
scientific and commercial throughput computing. CRHC, 2012. → pages 3,
31

[34] A. Thomas, J. Clapauch, and K. Pattabiraman. Effect of compiler
optimizations on the error resilience of soft computing applications. In AER,
2013. → pages 1, 2, 11, 27, 28, 58

[35] P. van Laarhoven and E. Aarts. Simulated annealing. In Simulated
Annealing: Theory and Applications, volume 37 of Mathematics and Its
Applications, pages 7–15. Springer Netherlands, 1987. ISBN
978-90-481-8438-5. doi:10.1007/978-94-015-7744-1 2. URL
http://dx.doi.org/10.1007/978-94-015-7744-1 2. → pages 7

[36] N. J. Wang, A. Mahesri, and S. J. Patel. Examining ACE analysis reliability
estimates using fault-injection. In SIGARCH, 2007. → pages 57

[37] J. Wei, A. Thomas, G. Li, and K. Pattabiraman. Quantifying the accuracy of
high-level fault injection techniques for hardware faults. In DSN, 2014. →
pages 30

[38] S. Zhong, Y. Shen, and F. Hao. Tuning compiler optimization options via
simulated annealing. In FITME, Dec 2009. doi:10.1109/FITME.2009.81. →
pages 2, 58

65

http://dl.acm.org/citation.cfm?id=1762668.1762691
http://dx.doi.org/10.1007/978-94-015-7744-1_2
http://dx.doi.org/10.1007/978-94-015-7744-1_2
http://dx.doi.org/10.1109/FITME.2009.81

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	Dedication
	1 Intoduction
	1.1 Motivation
	1.2 Research Goal and Proposed Solutions
	1.3 Contributions

	2 Background and Fault Model
	2.1 Error Resilience and SDC
	2.2 Genetic Algorithm (GA)
	2.3 Simulated Annealing (SA)
	2.4 Fault Model
	2.5 Summary

	3 Study on Compiler Optimizations
	3.1 Compiler Optimizations
	3.2 Fault Injection Study
	3.3 Analysis on Individual Optimization
	3.4 Summary

	4 Methodology
	4.1 Problem Statement and Complexity
	4.2 GA-Based Approach
	4.2.1 Representative Example

	4.3 SA-Based Approach
	4.4 Measuring Resilience
	4.5 Summary

	5 Experimental Setup
	5.1 Implementation
	5.2 Benchmarks
	5.3 Tuning of the GA parameters
	5.4 Tuning of the SA parameters
	5.5 Resilience Evaluation
	5.6 Performance Evaluation
	5.7 Summary

	6 Results
	6.1 Effect of GA Parameters
	6.1.1 Mutation Rate
	6.1.2 Selection Strategy
	6.1.3 Population Size
	6.1.4 Optimization Types

	6.2 Effect of SA parameters
	6.2.1 Rate of Cooling

	6.3 Resilience Evaluation
	6.4 Performance Evaluation
	6.5 Vulnerability Evaluation
	6.6 Summary

	7 Discussion
	7.1 GA-based Vs SA-based
	7.2 Sensitivity Analysis
	7.2.1 Order of the optimizations
	7.2.2 Resilience vs Vulnerability measuring fitness function
	7.2.3 Evolution of the GA-based approach
	7.2.4 Resilience-Enhancing Compiler Optimizations

	7.3 Limitations of our Approaches
	7.4 Summary

	8 Related Work
	8.1 Effect of Compiler Optimizations on Resilience
	8.2 Choosing Compiler Optimizations
	8.3 Software Errors and Genetic Algorithms

	9 Conclusion and Future Work
	Bibliography

