
1 / 28

2007

London, United Kingdom, July 7-11, 2007

Finding Safety Errors with ACO

Enrique Alba

 
and Francisco Chicano

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work



2 / 28

2007

London, United Kingdom, July 7-11, 2007

� Nowadays software is very complex

� An error in a software system can imply the loss of lot of money

 

…

… and even human lifes

� Techniques for proving the correctness

 

of

the software are required

� Model checking

 

→ fully automatic

Motivation

Motivation

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work



3 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi

 

automaton

� Objective: Prove that model

 

M satisfies the property  :  

� SPIN: the property f is an LTL formula

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3

s0

s1

s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

 

f

∩ =

Explicit State MC   Safety Properties

 

State Explosion   Heuristic MC

Explicit State Model Checking

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work



4 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi

 

automaton

� Objective: Prove that model

 

M satisfies the property  :  

� SPIN: the property f is an LTL formula

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3

s0

s1

s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

 

f

∩ =

Explicit State MC   Safety Properties

 

State Explosion   Heuristic MC

Explicit State Model Checking

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work



5 / 28

2007

London, United Kingdom, July 7-11, 2007

Intersection Büchi

 

automaton

� Objective: Prove that model

 

M satisfies the property  :  

� SPIN: the property f is an LTL formula

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3

s0

s1

s2

s3

s4

s5

Model M

s1

s0 s2

q
p∧!q

!p∨q

LTL formula ¬

 

f

∩

Using Nested-DFS

=

Explicit State MC   Safety Properties

 

State Explosion   Heuristic MC

Explicit State Model Checking

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work



6 / 28

2007

London, United Kingdom, July 7-11, 2007

� Safety properties

 

are those expressed by an LTL formula of the form:

� Finding one counterexample ≡
 

finding one accepting state

� Classical algorithms for graph exploration can be used: DFS

 

and BFS

f

 
= □

 
p

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3

Intersection automaton

Safety Properties

Deadlocks

Invariants

Assertions

…

Safety Properties

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Explicit State MC

 

Safety Properties State Explosion   Heuristic MC

where p

 

is a past formula



7 / 28

2007

London, United Kingdom, July 7-11, 2007

s0

s4

s7

s6

s2

s1

s8
s9

s5

s3

� Number of states very large

 

even for small models

� Example: Dining philosophers with n

 

philosophers

 

→ 3n

 

states

20 philosophers → 1039 GB

 

for storing the states

�

 

Solutions: collapse compression, minimized automaton representation, bitstate

 hashing, partial order reduction, symmetry reduction

� Large models cannot be verified but errors can be found

Memory

State Explosion Problem

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Explicit State MC

 

Safety Properties

 

State Explosion

 

Heuristic MC



8 / 28

2007

London, United Kingdom, July 7-11, 2007

�

 

The search for errors can be directed by heuristics using algorithms 

like A*, IDA*, WA*

 

and Best-First

� Different kinds of heuristic functions have been proposed in the past:

� Formula-based

 

heuristics

� Structural

 

heuristics

s0

s4

s7

s6

s2

s1

s8

s9

s5

s3

2

0

3

5

1

2

4
0

7

6

Heuristic value

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Explicit State MC

 

Safety Properties

 

State Explosion   Heuristic MC

Heuristic Model Checking

� Deadlock-detection

 

heuristics

� State-dependent

 

heuristics



9 / 28

2007

London, United Kingdom, July 7-11, 2007

� Designed to solve optimization problems

Maximize or minimize a given function: the fitness function

� They can find “good”

 

solutions with a “reasonable”

 

amount of resources

Single solution Population

Metaheuristic

 

Algorithms

Metaheuristic
 

Algorithms

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



10 / 28

2007

London, United Kingdom, July 7-11, 2007

Single solution

Iterative 

Improvement

Iterated Local 

Search

Guided Local 

Search

Variable 

Neighborhood

 
Search

Greedy Randomized 

Adaptive Search 

Procedure

Tabu

 
Search

Simulated 

Annealing

Evolutionary 

Computation

Scatter 

Search

Estimation of 

Distribution 

Algorithms

Ant Colony 

Optimization

Particle Swarm 

Optimization

Population

Metaheuristics
 

Classification

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



11 / 28

2007

London, United Kingdom, July 7-11, 2007

Single solution

Iterative 

Improvement

Iterated Local 

Search

Guided Local 

Search

Variable 

Neighborhood

 
Search

Greedy Randomized 

Adaptive Search 

Procedure

Tabu

 
Search

Simulated 

Annealing

Evolutionary 

Computation

Scatter 

Search

Estimation of 

Distribution 

Algorithms

Ant Colony 

Optimization

Particle Swarm 

Optimization

Population

Genetic Algorithms

Alba & Troya, 1996

Godefroid

 

& Khurshid, 2002, 2004

Metaheuristics
 

Classification

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



12 / 28

2007

London, United Kingdom, July 7-11, 2007

�

 

Ant Colony Optimization (ACO) metaheuristic

 

is inspired by the 

foraging behaviour of real ants

� ACO Pseudo-code

ACO: Introduction

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO ACOhg



13 / 28

2007

London, United Kingdom, July 7-11, 2007

� The ant selects its next node stochastically

� The probability of selecting one node 

depends on the pheromone trail and the

heuristic value (optional) of the edge

� The ant stops when a complete 

solution is built

i

j

l

m

k

Ni

τij

ηij

k
Trail

Heuristic

ACO: Construction Phase

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO ACOhg



14 / 28

2007

London, United Kingdom, July 7-11, 2007

� Pheromone update

During the construction phase

After the construction phase

� Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

with

ACO: Pheromone Update

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO ACOhg

with



15 / 28

2007

London, United Kingdom, July 7-11, 2007

�

 

Existing ACO models cannot be applied

 

to the search for errors in concurrent 

programs

The graph is very large, the construction of a complete solution could require 

too much time and memory

In some models the number of nodes of the graph is used for computing the 

initial pheromone values

� We need a new model

 

for tackling these problems: ACOhg

 

(ACO for Huge Graphs)

Constructs the ant paths and updates the pheromone values in the same way as 

the traditional models

Allows the construction of partial solutions

Allows the exploration of the graph using a bounded amount of memory

The pheromone matrix is never completely stored

ACOhg: Motivation

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



16 / 28

2007

London, United Kingdom, July 7-11, 2007

The length of the ant 

paths is limited by λant λant
Objective node

What if…?

Initial node

ACOhg: Huge Graphs Exploration

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



17 / 28

2007

London, United Kingdom, July 7-11, 2007

The length of the ant 

paths is limited by λant λant
Objective node

What if…?

Expansion Technique: λant

 

changes 

λant

 

= λant

 

+ δl

After σi

 

steps

Initial node Two alternatives

ACOhg: Huge Graphs Exploration

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



18 / 28

2007

London, United Kingdom, July 7-11, 2007

The length of the ant 

paths is limited by λant λant
Objective node

What if…?

Expansion Technique: λant

 

changes 

λant

 

= λant

 

+ δl

After σi

 

steps

Missionary Technique: starting nodes for path construction change

After σs

 

steps

Second stage Third stage

Initial node Two alternatives

ACOhg: Huge Graphs Exploration

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



19 / 28

2007

London, United Kingdom, July 7-11, 2007

� The number of pheromone

 

trails increases during the search

� This leads to memory problems

� We must remove

 

some pheromone 

trails from memory

Steps

P
h

er
o

m
o

n
es

Steps

P
h

er
o

m
o

n
es

Remove pheromone trails τij

 
below a given threshold τθ

Steps

P
h

er
o

m
o

n
es

Stage

In the missionary technique, 

remove all pheromone trails 

after one stage

ACOhg: Pheromones

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



20 / 28

2007

London, United Kingdom, July 7-11, 2007

� The fitness function must be able to evaluate partial solutions

� Penalties are added for partial solutions

 

and solutions with cycles

Partial solution

with cycle

Partial solution 

without cycle
Complete solution

Total penalty Penalty constant for 

partial solutions
Penalty constant for 

solutions with cycles
Path length

ACOhg: Fitness Function

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Metaheuristics

 

ACO

 

ACOhg



21 / 28

2007

London, United Kingdom, July 7-11, 2007

� We selected 5 Promela

 

models

 

for the experiments

* Theoretical result

� For all except needham, the states do not fit into the main memory of the computer

Model LoC States Processes
Safety 

Property

giop22 717 unknown 11 Deadlock

marriers4 142 unknown 5 Deadlock

needham 260 18242 4 LTL formula

phi16 34 43046721* 17 Deadlock

pots 453 unknown 8 Deadlock

Promela
 

Models

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Models   Parameters

 

Results

 

Previous Results



22 / 28

2007

London, United Kingdom, July 7-11, 2007

�

 

The ACOhg

 

model was implemented inside the MALLBA

 

library and then 

included into the HSF-SPIN

 

model checker

� Fitness function: length of the path + heuristic + penalty for partial solutions

� Two variants: using no heuristic (ACOhg-b) and using it (ACOhg-h)

� Machine: Pentium 4 at 2.8 GHz with 512 MB

Parameter Value Parameter Value

Steps 100 ξ 0.5

Colony size 10 a 5

λant 10 ρ 0.8

σs 2 α 1.0

s 10 β 2.0

Parameters for ACOhg

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Models

 

Parameters   Results

 

Previous Results



23 / 28

2007

London, United Kingdom, July 7-11, 2007

�

 

We compare the results of ACOhg

 

algorithms against state-of-the-art model checker 

algorithms: DFS, BFS, A*, and BF

�

 

ACOhg

 

algorithms are the only ones

 

that are able to find errors in very large models 

(marriers20). 

Results I: Efficacy

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Models

 

Parameters

 

Results Previous Results

Which

 

algorithm

 

finds

 

errors?



24 / 28

2007

London, United Kingdom, July 7-11, 2007

Results II: Details

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Models

 

Parameters

 

Results Previous Results



25 / 28

2007

London, United Kingdom, July 7-11, 2007

� Error trail length vs. memory graph

�

 

In general, unlike exhaustive algorithms, ACOhg

 

algorithms keep all the results in a 

good performance region (high accuracy and efficiency)

Results III: Graphical Comparison

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Models

 

Parameters

 

Results Previous Results

ACOhg

 

algorithms require 

less memory than BFS

They also get shorter (better) 

error trails than DFS



26 / 28

2007

London, United Kingdom, July 7-11, 2007

� GA

 

is the previous metaheuristic

 

algorithm applied to this problem

� Godefroid

 

& Khurshid

 

(2002), found errors in phi17

 

and needham

 

models with GA

�

 

To the best of our knowledge, this is the most recent result

 

for this problem using 

metaheuristics

�

 

The results state that ACOhg

 

has higher efficacy and efficiency

 

than GA (even taking 

into account the differences in the machines)

�

 

But we cannot do a fair comparison

 

because the models and the model checkers are 

different (Verisoft

 

against HSF-SPIN)

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Previous Results with Metaheuristics

Models

 

Parameters

 

Results

 

Previous Results



27 / 28

2007

London, United Kingdom, July 7-11, 2007

�

 

ACOhg

 

is able to outperform state-of-the-art algorithms

 

used nowadays in current 

model checkers for finding safety errors

�

 

ACOhg

 

is able to explore really large concurrent models

 

for which traditional model 

checking techniques fail

�

 

This represents a promising starting point

 

for the use of metaheuristic

 

algorithms in 

model checking and an interesting subject in SBSE

Conclusions

Future Work

�

 

Combine ACOhg

 

algorithms with other techniques for reducing the amount of 

memory: Partial Order Reduction and Symmetry Reduction (in progress)

� Include ACOhg

 

into JavaPathFinder

 

for finding errors in Java programs (in progress)

� Parallel implementation of ACOhg

 

for this problem (parallel model checkers)

Conclusions and Future Work

Introduction Background
Ant Colony 

Optimization
Experiments

Conclusions 

& Future Work

Conclusions and Future Work



28 / 28

2007

London, United Kingdom, July 7-11, 2007

Questions?

Finding Safety Errors with ACO

Thanks for your attention !!!


	Finding Safety Errors with ACO
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

