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� Nowadays software is very complex

� An error in a software system can imply the loss of lot of money

 

…

… and even human lifes

� Techniques for proving the correctness

 

of

the software are required

� Model checking

 

→ fully automatic
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Intersection Büchi

 

automaton

� Objective: Prove that model

 

M satisfies the property  :  

� SPIN: the property f is an LTL formula
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� Safety properties

 

are those expressed by an LTL formula of the form:

� Finding one counterexample ≡
 

finding one accepting state

� Classical algorithms for graph exploration can be used: DFS

 

and BFS
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� Number of states very large

 

even for small models

� Example: Dining philosophers with n

 

philosophers

 

→ 3n

 

states

20 philosophers → 1039 GB

 

for storing the states

�

 

Solutions: collapse compression, minimized automaton representation, bitstate

 hashing, partial order reduction, symmetry reduction

� Large models cannot be verified but errors can be found

Memory
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�

 

The search for errors can be directed by heuristics using algorithms 

like A*, IDA*, WA*

 

and Best-First

� Different kinds of heuristic functions have been proposed in the past:

� Formula-based

 

heuristics

� Structural

 

heuristics
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� Deadlock-detection

 

heuristics
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� Designed to solve optimization problems

Maximize or minimize a given function: the fitness function

� They can find “good”

 

solutions with a “reasonable”

 

amount of resources

Single solution Population

Metaheuristic

 

Algorithms
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�

 

Ant Colony Optimization (ACO) metaheuristic

 

is inspired by the 

foraging behaviour of real ants

� ACO Pseudo-code

ACO: Introduction
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� The ant selects its next node stochastically

� The probability of selecting one node 

depends on the pheromone trail and the

heuristic value (optional) of the edge

� The ant stops when a complete 

solution is built

i
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Ni

τij

ηij

k
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ACO: Construction Phase
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� Pheromone update

During the construction phase

After the construction phase

� Trail limits (particular of MMAS)

Pheromones are kept in the interval [τmin, τmax]

with

ACO: Pheromone Update
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�

 

Existing ACO models cannot be applied

 

to the search for errors in concurrent 

programs

The graph is very large, the construction of a complete solution could require 

too much time and memory

In some models the number of nodes of the graph is used for computing the 

initial pheromone values

� We need a new model

 

for tackling these problems: ACOhg

 

(ACO for Huge Graphs)

Constructs the ant paths and updates the pheromone values in the same way as 

the traditional models

Allows the construction of partial solutions

Allows the exploration of the graph using a bounded amount of memory

The pheromone matrix is never completely stored

ACOhg: Motivation
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The length of the ant 

paths is limited by λant λant
Objective node

What if…?

Initial node

ACOhg: Huge Graphs Exploration
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The length of the ant 

paths is limited by λant λant
Objective node

What if…?

Expansion Technique: λant

 

changes 

λant

 

= λant

 

+ δl

After σi

 

steps

Initial node Two alternatives
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The length of the ant 

paths is limited by λant λant
Objective node

What if…?

Expansion Technique: λant

 

changes 

λant

 

= λant

 

+ δl

After σi

 

steps

Missionary Technique: starting nodes for path construction change

After σs

 

steps

Second stage Third stage

Initial node Two alternatives
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� The number of pheromone

 

trails increases during the search

� This leads to memory problems

� We must remove

 

some pheromone 

trails from memory
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In the missionary technique, 

remove all pheromone trails 

after one stage

ACOhg: Pheromones
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� The fitness function must be able to evaluate partial solutions

� Penalties are added for partial solutions

 

and solutions with cycles

Partial solution

with cycle

Partial solution 

without cycle
Complete solution

Total penalty Penalty constant for 

partial solutions
Penalty constant for 

solutions with cycles
Path length

ACOhg: Fitness Function
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� We selected 5 Promela

 

models

 

for the experiments

* Theoretical result

� For all except needham, the states do not fit into the main memory of the computer

Model LoC States Processes
Safety 

Property

giop22 717 unknown 11 Deadlock

marriers4 142 unknown 5 Deadlock

needham 260 18242 4 LTL formula

phi16 34 43046721* 17 Deadlock

pots 453 unknown 8 Deadlock

Promela
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�

 

The ACOhg

 

model was implemented inside the MALLBA

 

library and then 

included into the HSF-SPIN

 

model checker

� Fitness function: length of the path + heuristic + penalty for partial solutions

� Two variants: using no heuristic (ACOhg-b) and using it (ACOhg-h)

� Machine: Pentium 4 at 2.8 GHz with 512 MB

Parameter Value Parameter Value

Steps 100 ξ 0.5

Colony size 10 a 5

λant 10 ρ 0.8

σs 2 α 1.0

s 10 β 2.0

Parameters for ACOhg
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�

 

We compare the results of ACOhg

 

algorithms against state-of-the-art model checker 

algorithms: DFS, BFS, A*, and BF

�

 

ACOhg

 

algorithms are the only ones

 

that are able to find errors in very large models 

(marriers20). 

Results I: Efficacy
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Results II: Details
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� Error trail length vs. memory graph

�

 

In general, unlike exhaustive algorithms, ACOhg

 

algorithms keep all the results in a 

good performance region (high accuracy and efficiency)

Results III: Graphical Comparison
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less memory than BFS

They also get shorter (better) 

error trails than DFS
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� GA

 

is the previous metaheuristic

 

algorithm applied to this problem

� Godefroid

 

& Khurshid

 

(2002), found errors in phi17

 

and needham

 

models with GA

�

 

To the best of our knowledge, this is the most recent result

 

for this problem using 

metaheuristics

�

 

The results state that ACOhg

 

has higher efficacy and efficiency

 

than GA (even taking 

into account the differences in the machines)

�

 

But we cannot do a fair comparison

 

because the models and the model checkers are 

different (Verisoft

 

against HSF-SPIN)
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�

 

ACOhg

 

is able to outperform state-of-the-art algorithms

 

used nowadays in current 

model checkers for finding safety errors

�

 

ACOhg

 

is able to explore really large concurrent models

 

for which traditional model 

checking techniques fail

�

 

This represents a promising starting point

 

for the use of metaheuristic

 

algorithms in 

model checking and an interesting subject in SBSE

Conclusions

Future Work

�

 

Combine ACOhg

 

algorithms with other techniques for reducing the amount of 

memory: Partial Order Reduction and Symmetry Reduction (in progress)

� Include ACOhg

 

into JavaPathFinder

 

for finding errors in Java programs (in progress)

� Parallel implementation of ACOhg

 

for this problem (parallel model checkers)

Conclusions and Future Work
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Questions?

Finding Safety Errors with ACO

Thanks for your attention !!!
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