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Abstract
For a connected graph G = (V, E) and s, t ∈ V , a non-separating s-t path is a path P between s and
t such that the set of vertices of P does not separate G, that is, G− V (P ) is connected. An s-t path
is non-disconnecting if G−E(P ) is connected. The problems of finding shortest non-separating and
non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from
the viewpoint of parameterized complexity. We show that the problem of finding a non-separating s-t
path of length at most k is W[1]-hard parameterized by k, while the non-disconnecting counterpart
is fixed-parameter tractable parameterized by k. We also consider the shortest non-separating path
problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs,
split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is
fixed-parameter tractable parameterized by k on planar graphs and polynomial-time solvable on
chordal graphs if k is the shortest path distance between s and t.
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1 Introduction

Lovász’s path removal conjecture states the following claim: There is a function f : N→ N
such that for every f(k)-connected graph G and every pair of vertices u and v, G has a path
P between u and v such that G− V (P ) is k-connected. This claim still remains open, while
some spacial cases have been resolved [4, 15, 16, 22]. Tutte [22] proved that f(1) = 3, that
is, every triconnected graph satisfies that for every pair of vertices, there is a path between
them whose removal results a connected graph. Kawarabayashi et al. [15] proved a weaker
version of this conjecture: There is a function f : N→ N such that for every f(k)-connected
graph G and every pair of vertices u and v, G has an induced path P between u and v such
that G− E(P ) is k-connected.

As a practical application, let us consider a network represented by an undirected graph
G, and we would like to build a private channel between a specific pair of nodes s and t. For
some security reasons, the path used in this channel should be dedicated to the pair s and t,
and hence all other connections do not use all nodes and/or edges on this path while keeping
their connections. In graph-theoretic terms, the vertices (resp. edges) of the path between s

and t does not form a separator (resp. a cut) of G. Tutte’s result [22] indicates that such
a path always exists in triconnected graphs, but may not exist in biconnected graphs. In
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23:2 Finding shortest non-separating and non-disconnecting paths

addition to this connectivity constraint, the path between s and t is preferred to be short
due to the cost of building a private channel. Motivated by such a natural application, the
following two problems are studied.

I Definition 1. Given a connected graph G, s, t ∈ V (G), and an integer k, Shortest
Non-Separating Path asks whether there is a path P between s and t in G such that the
length of P is at most k and G− V (P ) is connected.

I Definition 2. Given a connected graph G, s, t ∈ V (G), and an integer k, Shortest
Non-Disconnecting Path asks whether there is a path P between s and t in G such that
the length of P is at most k and G− E(P ) is connected.

We say that a path P is non-separating (in G) if G − V (P ) is connected and is non-
disconnecting (in G) if G− E(P ) is connected.

Related work. The shortest path problem in graphs is one of the most fundamental
combinatorial optimization problems, which is studied under various settings. Indeed, our
problems Shortest Non-Separating Path and Shortest Non-Disconnecting Path
can be seen as variants of this problem. From the computational complexity viewpoint,
Shortest Non-Separating Path is known to be NP-hard and its optimization version
cannot be approximated with factor |V |1−ε in polynomial time for ε > 0 unless P = NP [23].
Shortest Non-Disconnecting Path is shown to be NP-hard on general graphs and
polynomial-time solvable on chordal graphs [18].

Our results. We investigate the parameterized complexity of both problems. We show
that Shortest Non-Separating Path is W[1]-hard and Shortest Non-Disconnecting
Path is fixed-parameter tractable parameterized by k. A crucial observation for the fixed-
parameter tractability of Shortest Non-Disconnecting Path is that the set of edges in a
non-disconnecting path can be seen as an independent set of a cographic matroid. By applying
the representative family of matroids [11], we show that Shortest Non-Disconnecting
Path can be solved in 2ωk|V |O(1) time, where ω is the exponent of the matrix multiplication.
We also show that Shortest Non-Disconnecting Path is OR-compositional, that is,
there is no polynomial kernelization unless coNP ⊆ NP/poly. To cope with the intractability
of Shortest Non-Separating Path, we consider the problem on planar graphs and show
that it is fixed-parameter tractable parameterized by k. This result can be generalized to
wider classes of graphs which have the diameter-treewidth property [9]. We also consider
Shortest Non-Separating Path on several classes of graphs. We can observe that the
complexity of Shortest Non-Separating Path is closely related to that of Hamiltonian
Cycle (or Hamiltonian Path with specified end vertices). This observation readily proves
the NP-completeness of Shortest Non-Separating Path on bipartite graphs, split graphs,
and planar graphs. For chordal graphs, we devise a polynomial-time algorithm for Shortest
Non-Separating Path for the case where k is the shortest path distance between s and t.

2 Preliminaries

We use standard terminologies and known results in matroid theory and parameterized
complexity theory, which are briefly discussed in this section. See [6, 20] for details.

Graphs. Let G be a graph. The vertex set and edge set of G are denoted by V (G)
and E(G), respectively. For v ∈ V (G), the open neighborhood of v in G is denoted by
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NG(v) (i.e., NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)}) and the closed neighborhood of v

in G is denoted by NG[v] (i.e., NG[v] = NG(v) ∪ {v}). We extend this notation to sets:
NG(X) =

⋃
v∈X NG(v) \X and NG[X] = NG(X) ∪X for X ⊆ V (G). For u, v ∈ V (G), we

denote by distG(u, v) the length of a shortest path between u and v in G, where the length
of a path is defined to the number of edges in it. We may omit the subscript of G from these
notations when no confusion arises. For X ⊆ V (G), we write G[X] to denote the subgraph
of G induced by X. For notational convenience, we may use G−X instead of G[V (G) \X].
For F ⊆ E, we also use G− F to represent the subgraph of G consisting all vertices of G

and all edges in E \ F . For vertices u and v, a path between u and v is called a u-v path. A
vertex is called a pendant if its degree is exactly 1.

Matroids and representative sets. Let E be a finite set. If I ⊆ 2E satisfies the following
axioms, the pair M = (E, I) is called a matroid: (1) ∅ ∈ I; (2) Y ∈ I implies X ∈ I for
X ⊆ Y ⊆ 2E ; and (3) for X, Y ∈ I with |X| < |Y |, there is e ∈ Y \X such that X ∪{e} ∈ I.
Each set in I is called an independent set ofM. From the third axiom of matroids, it is
easy to observe that every (inclusion-wise) maximal independent set ofM have the same
cardinality. The rank of M is the maximum cardinality of an independent set of M. A
matroidM = (E, I) of rank n is linear (or representable) over a field F if there is a matrix
M ∈ Fn×|E| whose columns are indexed by E such that X ∈ I if and only if the set of
columns indexed by X is linearly independent in M .

Let G = (V, E) be a graph. A cographic matroid of G is a matroidM(G) = (E, I) such
that F ⊆ E is an independent set ofM(G) if and only if G−F is connected. Every cographic
matroid is linear and its representation can be computed in polynomial time [20].

Our algorithmic result for Shortest Non-Disconnected Path is based on representa-
tive families due to [11].

I Definition 3. LetM = (E, I) be a matroid and let F ⊆ I be a family of independent sets
of M. For an integer q ≥ 0, we say that F̂ ⊆ F is q-representative for F if the following
condition holds: For every Y ⊆ E of size at most q, if there is X ∈ F with X ∩ Y = ∅ such
that X ∪ Y ∈ I, then there is X̂ ∈ F̂ with X̂ ∩ Y = ∅ such that X̂ ∪ Y ∈ I.

I Theorem 4 ([11, 17]). Given a linear matroidM = (E, I) of rank n that is represented
as a matrix M ∈ Fn×|E| for some field F, a family F ⊆ I of independent sets of size p, and
an integer q with p + q ≤ n, there is a deterministic algorithm computing a q-representative
family F̂ ⊆ F of size np

(
p+q

p

)
with

O

(
|F| ·

((
p + q

p

)
p3n2 +

(
p + q

q

)ω−1
· (pn)ω−1

))
+ (n + |E|)O(1)

field operations, where ω < 2.373 is the exponent of the matrix multiplication.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ ×N, where Σ
is a finite alphabet. We say that L is fixed-parameter tractable (parameterized by k) if there
is an algorithm deciding if (I, k) ∈ L for given (I, k) ∈ Σ∗ × N in time f(k)|I|O(1), where f

is a computable function. A kernelization for L is a polynomial-time algorithm that given an
instance (I, k) ∈ Σ∗ × N, computes an “equivalent” instance (I ′, k′) ∈ Σ∗ × N such that (1)
(I, k) ∈ L if and only if (I ′, k′) ∈ L and (2) |I ′|+ k′ ≤ g(k) for some computable function g.
We call (I ′, k′) a kernel. If the function g is a polynomial, then the kernelization algorithm is
called a polynomial kernelization and its output (I ′, k′) is called a polynomial kernel. An
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23:4 Finding shortest non-separating and non-disconnecting paths

OR-composition is an algorithm that given p instances (I1, k), . . . (Ip, k) ∈ Σ∗ × N of L,
computes an instance (I ′, k′) ∈ Σ∗×N in time (

∑
1≤i≤p |Ii|+k)O(1) such that (1) (I ′, k′) ∈ L

if and only if (Ii, k) ∈ L for some 1 ≤ i ≤ p and (2) k′ = kO(1). For a parameterized problem
L, its unparameterized problem is a language L′ = {x#1k : (x, k) ∈ L}, where# /∈ Σ is a
blank symbol and 1 ∈ Σ is an arbitrary symbol.

I Theorem 5 ([3]). If a parameterized problem L admits an OR-composition and its unpa-
rameterized version is NP-complete, then L does not have a polynomial kernelization unless
coNP ⊆ NP/poly.

3 Shortest Non-Separating Path

We discuss our complexity and algorithmic results for Shortest Non-Separating Path.

3.1 Hardness on graph classes
We obverse that, in most cases, Shortest Non-Separating Path is NP-hard on classes
of graphs for which Hamiltonian Path (with distinguished end vertices) is NP-hard. Let
G = (V, E) be a graph and s, t ∈ V be distinct vertices of G. We add a pendant vertex p

adjacent to s and denote the resulting graph by G′. Then, we have the following observation.

I Observation 6. For every non-separating path P between s and t in G′, V (G)\V (P ) = {p}.

Suppose that for a class C of graphs,
the problem of deciding whether given graph G ∈ C has a Hamiltonian path between
specified vertices s and t in G is NP-hard and
G ∈ C implies G′ ∈ C.

By Observation 6, G′ has a non-separating s-t path if and only if G has a Hamiltonian path
between s and t. This implies that the problem of finding a non-separating path between
specified vertices is NP-hard on class C.

I Theorem 7. The problem of deciding if an input graph has a non-separating s-t path is
NP-complete even on planar graphs, bipartite graphs, and split graphs.

The classes of planar graphs and bipartite graphs are closed under the operation of adding
a pendant. Recall that a graph G is a split graph if the vertex set V (G) can be partitioned
into a clique C and an independent set I. Thus, for the class of split graphs, we need the
assumption that the pendant added is adjacent to a vertex in C.

As the problem trivially belongs to NP, it suffices to show that Hamiltonian Path
(with distinguished end vertices) is NP-hard on these classes of graphs1. For split graphs,
it is known that Hamiltonian Path is NP-hard even if the distinguished end vertices are
contained in the clique C [19]. Let G be a graph and let v ∈ V (G). We add a vertex v′

that is adjacent to every vertex in NG(v), that is, v and v′ are twins. The resulting graph
is denoted by G′. It is easy to verify that G has a Hamiltonian cycle if and only if G′ has
a Hamiltonian path between v and v′. The class of bipartite graphs is closed under this
operation, that is, G′ is bipartite. For planar graphs, G′ may not be planar in general.
However, Hamiltonian Cycle is NP-complete even if the input graph is planar and has

1 These results for bipartite graphs and planar graphs seem to be folklore but we were not able to find
particular references.
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V1 V2 V3

s t

v∗

v

u

w

G H

Figure 1 The left figure depicts an instance G of Multicolored Clique and the right figure
depicts the graph H constructed from G. Some vertices and edges in H are not drawn in this figure
for visibility. The edges of a clique C and the corresponding non-separating s-t path P are drawn as
thick lines.

a vertex of degree 2 [14]. We apply the above operation to this degree-2 vertex, and the
resulting graph G′ is still planar. As the problem of finding a Hamiltonian cycle is NP-hard
even on bipartite graphs [19] and planar graphs [14], Theorem 7 follows.

3.2 W[1]-hardness
Next, we show that Shortest Non-Separating Path is W[1]-hard parameterized by k.
The proof is done by giving a reduction from Multicolored Clique, which is known
to be W[1]-complete [10]. In Multicolored Clique, we are given a graph G with a
partition {V1, V2, . . . , Vk} of V (G) and asked to determine whether G has a clique C such
that |Vi ∩ C| = 1 for each 1 ≤ i ≤ k.

From an instance (G, {V1, . . . , Vk}) of Multicolored Clique, we construct an instance
of Shortest Non-Separating Path as follows. Without loss of generality, we assume
that G contains more than k vertices. We add two vertices s and t and edges between s and
all v ∈ V1 and between t and all v ∈ Vk. For any pair of u ∈ Vi and v ∈ Vj with |i− j| ≥ 2,
we do the following. If {u, v} ∈ E, then we remove it. Otherwise, we add a path Pu,v of
length 2 and a pendant vertex that is adjacent to the internal vertex w of Pu,v. Finally,
we add a vertex v∗, add an edge between v∗ and each original vertex v ∈ V (G), and add a
pendant vertex p adjacent to v∗. The constructed graph is denoted by H. See Figure 1 for
an illustration of the graph H.

I Lemma 8. There is a clique C in G such that |C ∩ Vi| = 1 for 1 ≤ i ≤ k if and only if
there is a non-separating s-t path of length at most k + 1 in H.

Proof. Suppose first that G has a clique C with C ∩ Vi = {vi} for 1 ≤ i ≤ k. Then,
P = 〈s, v1, v2, . . . , vk, t〉 is an s-t path of length k + 1 in H. To see the connectivity of
H − V (P ), it suffices to show that every vertex is reachable to v∗ in H − V (P ). By the
construction of H, each vertex in V (G) \ V (P ) is adjacent to v∗ in H − V (P ). Each vertex
z in V (H) \ (V (G) ∪ {v∗, p}) is either the internal vertex w of Pu,v for some u, v ∈ V (G) or
the pendant vertex adjacent to w. In both cases, at least one of u and v is not contained in
P as V (P ) \ {s, t} is a clique in G, implying that z is reachable to v∗.

Conversely, suppose that H has a non-separating s-t path P of length at most k + 1 in
H. By the assumption that G has more than k vertices, there is a vertex of G that does
not belong to P . Observe that P does not contain any internal vertex w of some Pu,v as
otherwise the pendant vertex adjacent to w becomes an isolated vertex by deleting V (P ),
which implies H − V (P ) has at least two connected components. Similarly, P does not
contain v∗. These facts imply that the internal vertices of P belong to V (G), and we have

CVIT 2016



23:6 Finding shortest non-separating and non-disconnecting paths

|V (P ) ∩ Vi| = 1 for 1 ≤ i ≤ k. Let C = V (P ) \ {s, t}. We claim that C is a clique in G.
Suppose otherwise. There is a pair of vertices u, v ∈ C that are not adjacent in G. This
implies that H contains the path Pu,v. However, as P contains both u and v, the internal
vertex of Pu,v together with its pendant vertex forms a component in H − V (P ), yielding a
contradiction that P is a non-separating path in H. J

Thus, we have the following theorem.

I Theorem 9. Shortest Non-Separating Path is W[1]-hard parameterized by k.

3.3 Graphs with the diameter-treewidth property
By Theorem 9, Shortest Non-Separating Path is unlikely to be fixed-parameter tractable
on general graphs. To overcome this intractability, we focus on sparse graph classes. We first
note that algorithmic meta-theorems for FO Model Checking [12, 13] does not seem to
be applied to Shortest Non-Separating Path as we need to care about the connectivity
of graphs, while it can be expressed by a formula in MSO logic, which is as follows. The
property that vertex set X forms a non-separating s-t path can be expressed as:

conn(V \X) ∧ hampath(X, s, t),

where conn(Y ) and hampath(Y, s, t) are formulas in MSO2 that are true if and only if the
subgraph induced by Y is connected and has a Hamiltonian path between s and t, respectively.
We omit the details of these formulas, which can be found in [6] for example2. By Courcelle’s
theorem [5] and its extension due to Arnborg et al. [1], we can compute a shortest non-
separating s-t path in O(f(tw(G))n) time, where n is the number of vertices and tw(G)
is the treewidth3 of G. As there is an O(tw(G)tw(G)3

n)-time algorithm for computing the
treewidth of an input graph G [2], we have the following theorem.

I Theorem 10. Shortest Non-Separating Path is fixed-parameter tractable parameter-
ized by the treewidth of input graphs.

A class C of graphs is minor-closed if every minor of a graph G ∈ C also belongs to C.
We say that C has the diameter-treewidth property if there is a function f : N → N such
that for every G ∈ C, the treewidth of G is upper bounded by f(diam(G)), where diam(G)
is the diameter of G. It is well known that every planar graph G has treewidth at most
3 ·diam(G)+1 [21]4, which implies that the class of planar graphs has the diameter-treewidth
property. This can be generalized to more wider classes of graphs. A graph is called an apex
graph if it has a vertex such that removing it makes the graph planar.

I Theorem 11 ([7, 9]). Let C be a minor-closed class of graphs. Then, C has the diameter-
treewidth property if and only if it excludes some apex graph.

For C ⊆ V (G) that induces a connected subgraph G[C], we denote by GC the graph
obtained from G by contracting all edges in G[C] and by vC the vertex corresponding to C

in GC . Since G[C] is connected, vertex vC is well-defined.

2 In [6], they give an MSO2 sentence hamiltonicity expressing the property of having a Hamiltonian
cycle, which can be easily transformed into a formula expressing hampath(X, s, t).

3 We do not give the definition of treewidth and (the optimization version of) Courcelle’s theorem. We
refer to [6] for details.

4 More precisely, the treewidth of a planar graph is upper bounded by 3r + 1, where r is the radius of the
graph.
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I Lemma 12. Let C ⊆ V (G) be a vertex subset such that G[C] is connected. Let P be
an s-t path in G with V (P ) ∩ C = ∅. Then, P is non-separating in G if and only if it is
non-separating in GC .

Proof. Suppose first that P is non-separating in G. Let u, v ∈ V (G) \ V (P ) be arbitrary.
As P is non-separating, there is a u-v path P ′ in G− V (P ). Let u′ be the vertex of GC such
that u′ = u if u /∈ C and u′ = vC if u ∈ C. Let v′ be the vertex defined analogously. We
show that there is a u′-v′ path in GC − V (P ) as well. If P ′ does not contain any vertex in
C, it is also a u′-v′ path in GC , and hence we are done. Suppose otherwise. Let x and y be
the vertices in V (P ′) ∩ C that are closest to u and v, respectively. Note that x and y can
be the end vertices of P ′, that is, C may contain u and v. Let Pu,x and (resp. Py,v) be the
subpath of P ′ between u and x (resp. y and v). Then, the sequence of vertices obtained by
concatenating Pu,x after Py,v − {y} and replacing exactly one occurrence of a vertex in C

with vC forms a path between u′ and v′. Since we choose u, v arbitrarily, there is a path
between any pair of vertices in GC − V (P ) as well. Hence, P is non-separating in GC .

Conversely, suppose that P is non-separating in GC . For u, v ∈ V (GC) \ V (P ), there is a
path P ′ in GC − V (P ). Suppose that neither u = vC nor v = vC . Then, we can construct a
u-v path in G− V (P ) as follows. If vC /∈ V (P ′), P ′ is also a path in G− V (P ) and hence we
are done. Otherwise, vC ∈ V (P ′). Let Pu and Pv be the subpaths in P ′ − {vC} containing
u and v, respectively. From Pu and Pv, we have a u-v path in G by connecting them with
an arbitrary path in G[C] between the end vertices other than u and v. Note that such a
bridging path in G[C] always exists since G[C] is connected. Moreover, as V (P ′)∩C = ∅ and
V (P ) ∩C = ∅, this is also a u-v path in G− V (P ). Suppose otherwise that either u = vC or
v = vC , say u = vC . In this case, we can construct a path between every vertex w in C and
v by concatenating P ′ and an arbitrary path in G[C] between w and the end vertex of the
subpath P ′ − {vC} other than v. Therefore, P is non-separating in G. J

Now, we are ready to state the main result of this subsection.

I Theorem 13. Suppose that a minor-closed class C of graphs has the diameter-treewidth
property. Then, Shortest Non-Separating Path on C is fixed-parameter tractable
parameterized by k.

Proof. Let G ∈ C. We first compute B = {v ∈ V (G) : dist(s, v) ≤ k}. This can be done in
linear time. If t /∈ B, then the instance (G, s, t, k) is trivially infeasible. Suppose otherwise
that t ∈ B. Let C be a component in G−B. By definition, every non-separating s-t path P

of length at most k does not contain any vertex of C. Let G′ be the graph obtained from G

by contracting all edges in E(G− B). For each component C in G− B, we denote by vC

the vertex of G′ corresponding to C (i.e., vC is the vertex obtained by contracting all edges
in C). Then, we have diam(G′) ≤ 2k + 2 as diam(G[B]) ≤ k and every vertex in V (G′) \B

is adjacent to a vertex in B. By Lemma 12, G has a non-separating s-t path of length at
most k if and only if so does G′. Since C is minor-closed, we have G′ ∈ C and hence the
treewidth of G′ is upper bounded by f(2k + 2) for some function f . By Theorem 10, we can
check whether G′ has a non-separating s-t path of length at most k in O(g(k)|V (G′)|) time
for some function g. J

3.4 Chordal graphs with k = dist(s, t)
In Section 3.1, we have seen that Shortest Non-Separating Path is NP-complete even on
split graphs (and thus on more general chordal graphs as well). To overcome this intractability,
we restrict ourselves to finding a non-separating s-t path of length dist(s, t) on chordal graphs.

CVIT 2016



23:8 Finding shortest non-separating and non-disconnecting paths

A graph G is choral if it has no cycles of length at least 4 as an induced subgraph. In the
following, fix a connected chordal graph G.

I Lemma 14. Let S ⊆ V (G) be a vertex set such that G[S] is connected. For u, v ∈ S, every
induced u-v path P in G satisfies that V (P ) ⊆ N [S].

Proof. Suppose to the contrary that an induced u-v path P contains a vertex x /∈ N [S].
Since P starts and ends in S, it contains a subpath Q = 〈a, . . . , x, . . . , b〉 such that a, b ∈ N(S)
and all other vertices in Q belong to V −N [S]. As a, b ∈ N(S) and G[S] is connected, G has
an induced a-b path R with all internal vertices belonging to S. Since the internal vertices of
Q have no neighbors in S, Q ∪R induces a cycle. Both a-b paths Q and R have length at
least 2 as a and b are not adjacent, and thus the cycle G[Q ∪R] has length at least 4. This
contradicts that G is chordal. J

For u, v ∈ V (G), a set of vertices S ⊆ V (G) \ {u, v} is called a u-v separator of G if there
is no u-v path in G−S. An inclusion-wise minimal u-v separator of G is called a minimal u-v
separator. A minimal separator of G is a minimal u-v separator for some u, v ∈ G. Dirac’s
well-know characterization [8] of chordal graphs states that a graph is chordal if and only of
every minimal separator induces a clique.

I Lemma 15. Let s, t ∈ V (G) be such that {s, t} /∈ E(G). If v ∈ V (G) \ {s, t} is an internal
vertex of a shortest s-t path P , then N [v] \ {s, t} is an s-t separator of G.

Proof. Let d = dist(s, t). For 0 ≤ i ≤ d, let

Di = {v ∈ V (G) : dist(s, v) = i ∧ dist(v, t) = d− i}

and V (P ) ∩Di = {ui}. Let j (0 < j < d) be the index such that v = uj .
Suppose to the contrary that there is an induced s-t path Q such that V (Q) ∩ (N [uj ] \

{s, t}) = ∅. By Lemma 14, V (Q) ⊆ N [V (P )] =
⋃

0≤i≤d N [ui] holds. Since Q starts in
N [u0] and ends in N [ud], there are indices i and k with 0 ≤ i < j < k ≤ d such that Q

consecutively visits a vertex vi ∈ N [ui] and then a vertex vk ∈ N [uk] in this order. Since
dist(ui, uk) = k − i ≥ 2 and {vi, vk} ∈ E, at least one of vi 6= ui and vk 6= uk holds. By
symmetry, we assume that vi 6= ui.

If vk = uk, then vi ∈ N(ui) ∩N(uk). In this case, we have i = j − 1 and k = j + 1 since
otherwise P admits a shortcut using the subpath 〈ui, vi, uk〉. This implies that dist(s, vi) ≤
dist(s, ui)+1 = i+1 = j and dist(vi, t) ≤ 1+dist(vk, t) = 1+dist(uk, t) = 1+(d−k) = d−j.
Since dist(s, vi) + dist(vi, t) ≥ d, we have dist(s, vi) = j and dist(vi, t) = d− j. This implies
that vi ∈ Dj ⊆ N [uj ] \ {s, t}, a contradiction

Next we consider the case vk 6= uk. Recall that we also have vi 6= ui as an assumption.
In this case, we have k − i ≤ 3 as 〈ui, vi, vk, uk〉 is not a shortcut for P . Assume first
that k − i = 3. By symmetry, we may assume that i = j − 1 and k = j + 2. Since
dist(s, vi) ≤ dist(s, ui) + 1 = j and dist(vi, t) ≤ 2 + dist(uk, t) ≤ 2 + (d− k) = d− j, we have
vi ∈ Dj ⊆ N [uj ] \ {s, t}, a contradiction. Next assume that k− i = 2. That is, i = j − 1 and
k = i + 1. Since vi, vk /∈ N [uj ] \ {s, t} and P is shortest, the vertices vi, ui, uj , uk, vk are
distinct and form a cycle of length 5. Observe that vi /∈ {s, t} since otherwise 〈vi = s, vk, uk〉
or 〈ui, vi = t〉 is a shortcut. Similarly, vk /∈ {s, t}. Hence, vi, vk /∈ N [uj ]. Therefore, the
possible chords for the cycle 〈vi, ui, uj , uk, vk〉 are {ui, vk} and {uk, vi}. In any combination
of them, the graph has an induced cycle of length at least 4. J

Let d and Di be defined as in the proof of Lemma 15, and let D =
⋃

0≤i≤d Di. Note
that each Di is a clique: if i ∈ {0, d}, then it is a singleton; otherwise, it is a minimal s-t
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separator of the chordal graph G[D]. Observe that if |Di| = 1 for all 0 ≤ i ≤ d, then G

contains a unique shortest s-t path, and thus the problem is trivial. Otherwise, we define
` to be the minimum index such that |D`| > 1 and r to be the maximum index such that
|Dr| > 1. Since |D0| = |Dd| = 1, we have 0 < ` ≤ r < d.

Our algorithm works as follows.
1. If G contains a unique shortest s-t path P , then test if P is non-separating.
2. Otherwise, find a shortest s-t path P satisfying the following conditions.

a. V (P ) does not contain a minimal a-b separator for a ∈ D` and b ∈ V \D.
b. V (P ) does not contain a minimal a-b separator for a ∈ D` and b ∈ Dr.

I Lemma 16. The algorithm is correct.

Proof. The first case is trivial. In the following, we prove the correctness of the second case.
First we show that the condition 2a is necessary. Let a ∈ D` and b ∈ V \ D. Since

|D`| > 1 and |V (P ) ∩D`| = 1, there is a vertex a′ ∈ D` \ V (P ), where a′ may be a itself.
Since V (P ) ⊆ D, it holds that b /∈ V (P ). Hence, a′ and b belong to the same connected
component of G− V (P ). Since D` is a clique, a ∈ N [a′]. Thus, a and b belong to the same
connected component of G − (V (P ) \ {a, b}). Therefore, V (P ) does not contain any a-b
separator.

Next we show that the condition 2b is necessary. Let a ∈ D` and b ∈ Dr. As before, it
suffices to show that a and b belong to the same connected component of G− (V (P ) \ {a, b}).
By the same reasoning in the previous case, there are vertices a′ ∈ D`\V (P ) and b′ ∈ Dr\V (P )
and they belong to the same connected component of G− V (P ). Now, since a ∈ N [a′] and
b ∈ N [b′], a and b belong to the same connected component of G− (V (P ) \ {a, b}).

Finally we show that the conditions 2a and 2b together form a sufficient condition for
P to be non-separating. Assume that a shortest s-t path P satisfies the conditions 2a and
2b. Since |D`| > 1 and |V (P ) ∩D`| = 1, there is a connected component C of G − V (P )
that contains at least one vertex of D`. Now the condition 2a implies that V \D ⊆ V (C)
(recall that V (P ) ⊆ D), and the condition 2b implies that (D` ∪Dr) \ V (P ) ⊆ V (C) holds.
To complete the proof, it suffices to show that Di \ V (P ) ⊆ V (C) for all i. If i < ` or i > r,
then Di \ V (P ) = ∅. Let v ∈ Di \ V (P ) for some i with ` ≤ i ≤ r. Observe that v is an
internal vertex of a shortest path from the unique vertex u ∈ D`−1 to the unique vertex
w ∈ Dr+1. By Lemma 15, N [v] \ {u, w} is a u-w separator. Since C is connected and u, w

have neighbors in C, G[V (C) ∪ {u, w}] contains a u-w path Q. Since N [v] \ {u, w} is a u-w
separator, Q contains a vertex q such that

q ∈ V (Q) ∩ (N [v] \ {u, w}) = (V (Q) \ {u, w}) ∩N [v] ⊆ V (C) ∩N [v].

Therefore, v has a neighbor (i.e., q) in V (C), and thus v itself belongs to C. J

I Lemma 17. The algorithm has a polynomial-time implementation.

Proof. Since G is chordal, each minimal separator of G is a clique. Since P is a shortest
path, the size of a clique in G[V (P )] is at most 2. Therefore, every minimal separator of G

contained in V (P ) has size at most 2. Furthermore, every size-2 minimal separator {u, v} is
an edge of G. This observation gives us the following implementation of the algorithm that
clearly runs in polynomial time.

For i ∈ {1, 2}, let Fi be the set of size-i minimal a-b separators of G such that a ∈ D`

and b ∈ (V \ D) ∪ Dr. It suffices to find a shortest s-t path P such that no element of
F1 ∪ F2 is a subset of V (P ). To forbid the elements of F1, we just remove the vertices that
form the size-1 separators in F1. Similarly, to forbid the elements of F2, we remove the
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edges corresponding to the size-2 separators in F2. Now we find a shortest s-t path P in the
resultant graph. If P has length d = distG(s, t), then P is a non-separating shortest s-t path
in G. Otherwise, G does not have such a path. J

I Theorem 18. There is a polynomial-time algorithm for Shortest Non-Separating
Path on chordal graphs, provided that k is equal to the shortest path distance between s and
t.

4 Shortest Non-Disconnecting Path

The goal of this section is to establish the fixed-parameter tractability and a conditional
lower bound on polynomial kernelizations for Shortest Non-Disconnecting Path.

4.1 Fixed-parameter tractability
I Theorem 19. Shortest Non-Disconnecting Path can be solved in time 2ωknO(1),
where ω is the matrix multiplication exponent and n is the number of vertices of the input
graph G.

To prove this theorem, we give a dynamic programming algorithm with the aid of
representative families of cographic matroids. Let (G, s, t, k) be an instance of Shortest
Non-Disconnecting Path. For 0 ≤ i ≤ k and v ∈ V (G), we define dp(i, v) as the family
of all sets of edges F satisfying the following two conditions: (1) F is the set of edges of
an s-v path of length i and (2) G− F is connected. An edge set F is legitimate if F forms
a path and G − F is connected. For a family of edge sets F and an edge e, we define
F on e := {F ∪ {e} : F ∈ F} and leg(F) as the subfamily of F consisting of all legitimate
F ∈ F . The following simple recurrence correctly computes dp(i, v).

dp(i, v) =



{∅} i = 0 and s = v (1)
∅ i = 0 and s 6= v (2)

leg

 ⋃
u∈N(v)

(dp(i− 1, u) on {u, v})

 i > 0 . (3)

A straightforward induction proves that dp(i, t) 6= ∅ if and only if G has a non-
disconnecting s-t path of length exactly i and hence it suffices to check whether dp(i, t) 6= ∅
for 0 ≤ i ≤ k. However, the running time to evaluate this recurrence is nO(k). To reduce the
running time of this algorithm, we apply Theorem 4 to each dp(i, v). Now, instead of (3), we
define

dp(i, v) = repk−i

leg

 ⋃
u∈N(v)

(dp(i− 1, u) on {u, v})

 , (3’)

where repk−i(F) is a (k − i)-representative family of F for the cographic matroid M =
(E(G), I) defined on G. In the following, we abuse the notation of dp to denote the families
of legitimate sets that are computed by the recurrence composed of (1), (2), and (3’).

I Lemma 20. The recurrence composed of (1), (2), and (3’) is correct, that is, G has a
non-disconnecting s-t path of length at most k if and only if

⋃
0≤i≤k dp(i, t) 6= ∅.
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Proof. It suffices to show that dp(k′, t) 6= ∅ if G has a non-disconnecting s-t path P of length
k′ ≤ k. Let P = (v0 = s, v1, . . . , vk′ = t) be a non-disconnecting path in G. For 0 ≤ i ≤ k′,
we let Pi = (vi, vi+1, . . . , vk). In the following, we prove, by induction on i, a slightly stronger
claim that there is a legitimate set F ∈ dp(i, vi) such that F∪E(Pi) forms a non-disconnecting
s-t path in G for all 0 ≤ i ≤ k′. As dp(0, s) = {∅} and P0 = P itself is a non-disconnecting
path, we are done for i = 0. Suppose that i > 0. By the induction hypothesis, there is a
legitimate F ∈ dp(i− 1, vi−1) such that F ∪E(Pi−1) forms a non-disconnecting s-t path in G.
Let F = leg(

⋃
u∈N(vi)(dp(i−1) on {u, vi})). Since F ∪E(Pi−1) is legitimate, F ∪{{vi−1, vi}}

is also legitimate, implying that F is nonempty. Let F̂ = repk−i(F) be (k− i)-representative
for F and let Y = {{vj , vj+1} : i ≤ j < k′}. As |Y | ≤ k − i, X ∩ Y = ∅, and X ∪ Y ∈ I, F̂
contains an edge set X̂ with X̂ ∩ Y and X̂ ∪ Y ∈ I, implying that there is X̂ ∈ dp(i, vi) such
that X̂ ∪ E(Pi) forms a non-disconnecting s-t path in G. Thus, the lemma follows. J

I Lemma 21. The recurrence can be evaluated in time 2ωknO(1) ⊂ 5.18knO(1), where
ω < 2.373 is the exponent of the matrix multiplication.

Proof. By Theorem 4, dp(i, v) contains at most 2kkn sets for 0 ≤ i ≤ k and v ∈ V (G) and
can be computed in time 2ωknO(1) by dynamic programming. J

Thus, Theorem 19 follows.

4.2 Kernel lower bound
It is well known that a parameterized problem is fixed-parameter tractable if and only if it ad-
mits a kernelization (see [6], for example). By Theorem 19, Shortest Non-Disconnecting
Path admits a kernelization. A natural step next to this is to explore the existence of poly-
nomial kernelizations for Shortest Non-Disconnecting Path. However, the following
theorem conditionally rules out the possibility of polynomial kernelization. To prove this, we
first show the following lemma.

I Lemma 22. Let H be a connected graph. Suppose that H has a cut vertex v. Let C be a
component in H − {v} and let F ⊆ E(H[C ∪ {v}]). Then, H − F is connected if and only if
H[C ∪ {v}]− F is connected.

Proof. If H −F is connected, then all the vertices in C ∪ {v} are reachable from v in H −F

without passing through any vertex in V (H) \ ({C}∪ {v}). Thus, such vertices are reachable
from v in H[C ∪ {v}]− F . Conversely, suppose H[C ∪ {v}]− F is connected. Then, every
vertex in C is reachable from v in H − F . Moreover, as F does not contain any edge outside
H[C ∪ {v}], every other vertex is reachable from v in H − F as well. J

I Theorem 23. Unless coNP ⊆ NP/poly, Shortest Non-Disconnecting Path does not
admit a polynomial kernelization (with respect to parameter k).

Proof. We give an OR-composition for Shortest Non-Disconnecting Path. Let
(G1, s1, t1, k), . . . , (Gp, sp, tp, k) be p instances of Shortest Non-Disconnecting Path.
We assume that for 1 ≤ i ≤ p, ti is not a cut vertex in Gi. To justify this assumption,
suppose that ti is a cut vertex in Gi. Let C be the component in Gi − {ti} that contains
si. By Lemma 22, for any si-ti path, it is non-disconnecting in Gi if and only if so is in
Gi[C ∪ {ti}]. Thus, by replacing Gi with Gi[C], we can assume that ti is not a cut vertex in
Gi.

From the disjoint union of G1, . . . , Gp, we construct a single instance (G, s, t, k′) as follows.
We first add a vertex s and an edge between s and si for each 1 ≤ i ≤ p. Then, we identify
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t

Figure 2 An illustration of the graph G obtained from q = 4 instances.

all ti’s into a single vertex t. See Figure 2 for an illustration. In the following, we may
not distinguish t from ti. Now, we claim that (G, s, t, k + 1) is a yes-instance if and only if
(Gi, si, ti, k) is a yes-instance for some i.

Consider an arbitrary s-t path in G. Observe that all edges in the path except for that
incident to s are contained in a single subgraph Gi for some 1 ≤ i ≤ p as {s, t} separates
V (Gi)\{ti} from V (Gj)\{tj} for j 6= i. Moreover, the path P forms P = (s, si, v1, . . . , vq, t),
meaning that the subpath P ′ = (s1, v1, . . . , vq, ti) is an si-ti path in Gi. This conversion is
reversible: for any si-ti path P ′ in Gi, the path obtained from P ′ by attaching s adjacent to
si is an s-t path in G. Thus, it suffices to show that for F ⊆ E(Gi), F ∪ {{s, si}} is a cut of
G if and only if F is a cut of Gi. Since t is a cut vertex in G− {{s, si}}, by Lemma 22, the
claim holds. J
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