
Finding Similar Documents in Document Collections

Thorsten Brants and Reinhard Stolle

PaloAlto ResearchCenter(PARC)
3333CoyoteHill Rd,PaloAlto, CA 94304, USA�

brants,stolle� @parc.com

Abstract
Findingsimilar documents in naturallanguagedocumentcollectionsis a difficult taskthat requiresgeneralanddomain-specificworld
knowledge, deepanalysisof thedocuments,andinference.However, a largeportionof thepairsof similar documents canbeidentified
by simpler, purelyword-basedmethods.We show theuseof ProbabilisticLatentSemanticAnalysisfor finding similar documents.We
evaluateour systemon a collectionof photocopier repairtips. Amongthe100top-rankedpairs,88 aretruepositives.A manualanalysis
of the12 falsepositivessuggeststheuseof moresemanticinformationin theretrieval model.

1. Introduction

Collectionsof naturallanguage documentsthatarefo-
cusedon a particularsubjectdomainarecommonly used
by communitiesof practice in order to captureandshare
knowledge. Examplesof such “focuseddocument col-
lections” are FAQs, bug-report repositories, and lessons-
learned systems.As suchsystemsbecomelargerandlarger,
theirauthors,usersandmaintainers increasinglyneedtools
to performtheir tasks,suchasbrowsing, searching, manip-
ulating, analyzing andmanaging the collection. In partic-
ular, the documentcollectionsbecome unwieldy andulti-
matelyunusable if obsolete and redundantcontent is not
continually identifiedandremoved.

We are working with such a knowledge-sharing sys-
tem,focusedontherepairof photocopiers.It now contains
about 40,000 technician-authored free text documents, in
the form of tips on issuesnot covered in the official man-
uals. Suchsystemsusuallysupport a number of tasksthat
helpmaintaintheutility andqualityof thedocumentcollec-
tion. Simple tools, suchaskeyword search,for example,
canbe extremelyuseful. Eventually, however, we would
like to provide a suite of tools that support a variety of
tasks,ranging from simplekeyword searchto moreelab-
oratetaskssuchastheidentificationof “duplicates.” Fig. 1
shows a pair of similar tips from our corpus. Thesetwo
tips areabout the sameproblem, and they give a similar
analysisasto why theproblem occurs. However, they sug-
gestdifferent solutions:Tip 118 is the “official” solution,
whereasTip 57suggestsa short-term“work-around” fix to
theproblem. This example illustratesthat“similarity” is a
complicatednotion that cannot alwaysbe measuredalong
a one-dimensional scale.Whethertwo or moredocuments
should beconsidered“redundant”critically dependsonthe
taskat hand.In theexample of Fig. 1, thework-around tip
mayseemredundantandobsoleteto a technicianwho has
theofficial new safetycableavailable.In theabsenceof this
official part,however, thework-aroundtip maybeacrucial
pieceof information.

Our goalis to develop techniquesthatanalyzethecon-
ceptual contentsof naturallanguagedocumentsat a granu-
larity thatis fineenoughto capturedistinctionslike theone
betweenTips 57 and118, describedin the previous para-
graph. In order to do that,we aredesigning formal repre-

sentationsof documentcontentsthatwill allow usto assess
not only whethertwo documentsareaboutthe samesub-
ject but alsowhethertwo documentsactuallysaythesame
thing. We arecurrently focusing on thetasksof computer-
assistedredundancy resolution. We hope that our tech-
niqueswill eventually extendto support evenmoreambi-
tious taskssuchas the identification andresolutionof in-
consistentknowledge,knowledgefusion,questionanswer-
ing, andtrendanalysis.

We believe that,in general, theautomatedor computer-
assistedmanagement of collections of natural language
documentsrequires a fine-grained analysisand represen-
tation of the documents’ contents. This fine granularity
in turn mandatesdeeplinguistic processingof thetext and
inferencecapabilitiesusingextensive linguistic andworld
knowledge. Following this approach,our larger research
group hasimplementeda prototype,which we will briefly
describe in the next section. This researchprototype sys-
temis far from complete. Meanwhile,we areinvestigating
towhatextent currentlyoperationaltechniquesareuseful to
support at leastsomeof thetasksthatarisefrom themain-
tenanceof focuseddocumentcollections. We have investi-
gated theutility of Probabilistic LatentSemanticAnalysis
(PLSA) (Hofmann,1999b) for the taskof finding similar
documents.Section3. describesourPLSAmodelandSec-
tion 4. reports onourexperimentalresultsin thecontext of
our corpusof repair tips. In that section,we alsoattempt
to characterize the typesof similarities that areeasilyde-
tectedandcontrastthemto thetypesthatareeasilymissed
by the PLSA technique. Finally, we speculatehow sym-
bolic knowledgerepresentationand inference techniques
thatrely onadeeplinguisticanalysisof thedocumentsmay
be coupled with statisticaltechniquesin orderto improve
theresults.

2. Knowledge-Based Approach
Ourgoalis to build asystemthatsupports awiderange

of knowledgemanagementtasksfor focuseddocumentcol-
lections. We believe that powerful tools for taskslike re-
dundancy resolution,topic browsing, questionanswering,
knowledgefusion, andso on, needto analyze andrepre-
sentthe documents’ conceptual contents at a fine level of
granularity.

Concentratingonthetaskof redundancy resolution, our



Tip 57
Problem: Left cover damage

Cause: The left cover safetycableis breaking,al-
lowing theleft coverto pivot toofar, break-
ing thecover.

Solution: Remove theplasticsleeve from aroundthe
cable. Cutting the plasticoff of the cable
makesthe cablemoreflexible, which pre-
ventscablebreakage. Cablebreakage is a
majorsourceof damageto theleft cover.

Tip 118
Problem: Thecurrentsafetycableusedin the5100Doc-

ument Handler fails prematurely, causingthe
Left DocumentHandlerCover to break.

Cause: Theplasticjacket madethecabletoo stiff. This
causesstressto be concentrated on the cable
ends,whereit eventually snaps.

Solution: Whenthe old safetycablefails, replaceit with
thenew one,which hastheplasticjacket short-
ened.

Figure1: Example of Eureka tips

project group hasso far built a prototypewhosegoal is to
identify conceptuallysimilardocuments,regardlessof how
they arewritten. This task requires extensive knowledge
about languageandof theworld. Sincemostof thisknowl-
edgeengineering effort is performedby handat the mo-
ment,our system’s coverageis currently limited to fifteen
pairsof similar tips. We arein the processof scalingthe
systemup by oneto two orders of magnitude. Eventually,
wehopetoalsosupport moregeneraltasks,namelyidentify
thepartsof two documentsthatoverlap;andidentify parts
of thedocumentsthatstandin somerelationto eachother,
suchasexpandingon a particular topic or beingin mutual
contradiction. Sucha systemwill enablethemaintenance
of vastdocumentcollectionsby identifyingpotentialredun-
danciesor inconsistenciesfor humanattention.

State-of-the-artquestionansweringandinformationex-
tractiontechniques(e.g.,(Bearetal.,1997)) aresometimes
ableto identify entitiesandthe relationsbetweenthemat
a fine level of granularity. However, the functionality and
coverageof thesetechniquesis typically restrictedto alim-
itedsetof typesof entitiesandrelations thathavebeenfor-
malizedupfront usingstatictemplates.Like a smallnum-
ber of otherresearchprojects(e.g., the TACITUS project
(Hobbs et al., 1993)), our approachis basedon the belief
that the key to solving this problem is a principled tech-
nique for producing formal representationsof theconcep-
tualcontentsof thenatural languagedocuments.In ourap-
proach,adeepanalysisbasedonLexical Functional Gram-
mar theory (Kaplan and Bresnan,1982) combined with
Glue Semantics(Dalrymple, 1999) producesa compact
representationof the syntacticandsemanticstructuresfor
eachsentence.Fromthis language-drivenrepresentationof
the text, we mapto a knowledge-driven representation of
thecontentsthatabstractsaway from theparticular natural
languageexpression.This mapping includesseveral—not
necessarilysequential—steps.In one step,we rely on a
domain-specificontology to identify canonicalizedentities
andeventsthat are talked about in the text. In our case,
theseentitiesandevents includethingslikeparts,e.g., pho-
toreceptor belt,andrelevant activities suchascleaning, for
example. Anotherstepperformsthematicroleassignments
andassemblesfragmentsof conceptual structuresfrom the
normalizedentitiesandevents(e.g., cleaningaphotorecep-
tor belt). Furthermore,certainrelationsarenormalized;for
example, ”stif f” and”flexible” (in Fig. 1) bothrefer to the
rigidity of anobject,onebeingtheinverseof theother. Yet

anotherstepcomposesstructurefragmentsintohigher-level
structuresthat reflectcausalor temporal relations,suchas
actionsequencesor repairplans.All stepsinvolveambigu-
ity resolutionasacentralproblem,whichrequiresinference
basedon extensive linguistic andworld knowledge. For a
more detaileddescriptionof this approachandits scalabil-
ity, see(Crouchet al., 2002).

Finally, weassessthesimilarityof two documentsusing
a variantof theStructure Mapping Engine (SME) (Forbus
et al., 1989). SME anchors its matching processin identi-
cal elementsthat occur in the samestructural positionsin
thebaseandtarget representations,andfrom this builds a
correspondence. The larger the structurethat can be re-
cursively constructed in this manner, while preserving a
systematicityconstraint of one-to-onecorrespondencebe-
tweenbaseandtarget elementsandthe identicalityof an-
chors, thegreaterthesimilarity score.

We expect that the fine-grainedconceptualrepresenta-
tions discussedin this sectionwill eventually enableour
systemto detectwhethertwo documentsarenotonly about
thesamesubjectbut alsosayingthesamething. Many in-
terestingcasesof similarity can,however, bedetectedwith
lighter-weighttechniques.This is thetopicof thenext sec-
tion.

3. The Word-Based Statistical Model

While in the general casedeepprocessing,knowledge
about the world, and inferenceare necessaryto identify
similar documents,theremaybea largenumber of similar
pair thatcanbediscoveredby ashallow approach.Wenow
view thetaskof findingsimilarpairsof documentsasanin-
formationretrieval problemwheredocumentsarematched
basedon the words that occur in the documents,i.e., we
usea vector spacemodelof thedocuments.Comparisonis
done usingProbabilistic LatentSemanticAnalysis(PLSA)
(Hofmann,1999b).

3.1. Document Preprocessing

Eachdocumentis first preprocessedby:

1. Separating the document fields. Each tip usually
comes with additional administrative informationlike
author, submissiondate,location,status,contactin-
formation,etc.We extracttheinformationthatis con-
tainedin theCHAINS, PROBLEM, CAUSE, andSO-



LUTION fields1.

2. Tokenizing the document. Words and numbers are
separatedat white space,punctuationis stripped, ab-
breviationsarerecognized.

3. Lemmatizing eachtoken, i.e., eachword is uniquely
mappedto abaseform. We usetheLinguistX lemma-
tizer2 to performthis task.

Steps1 to 3 identify thetermsin thevocabulary. We select
the subsetof thosetermsthat occur in at leasttwo docu-
ments. Given this vocabulary, eachdocument � is repre-
sentedby its term-frequency vector �������
	�� , where 	 are
thetermsof thedocument.

3.2. Probabilistic Latent Semantic Indexing

Probabilistic Latent SemanticAnalysis (PLSA) is a
statistical latent classmodel or aspectmodel (Hofmann,
1999a; Hofmann, 1999b). It can be seenas a statistical
view of LatentSemanticAnalysis(LSA) (Deerwesteretal.,
1990). Themodel is fitted to a trainingcorpusby theEx-
pectation Maximization (EM) algorithm (Dempsteret al.,
1977). It assignsprobability distributions over classesto
words anddocumentsandthereby allows themto belong
to more thanoneclass,andnot to only oneclassasis true
of mostotherclassificationmethods. PLSA representsthe
joint probability of a document � anda word 	 basedon a
latentclassvariable 
 :3� ������	���� � ��������� � ��	�� 
�� � ��
�� ��� (1)

The model makes an independenceassumptionbetween
word 	 anddocument � if the latentclass 
 is given, i.e.,� ��	�� 
��
����� � ��	�� 
�� . PLSAhasthefollowing view of how
a documentis generated: first a document �! #" (i.e., its
dummy label) is chosenwith probability

� ����� . For each
word in document � , a latent topic 
$ &% is chosenwith
probability

� ��
�� ��� , whichin turnisusedtochoosetheword	' )( with probability
� ��	�� 
�� .

A modelis fitted to a documentcollection " by maxi-
mizing thelog-likelihoodfunction * :

*+�,�-/.�0 �1 .2- ��������	���3�465 � ������	�� (2)

TheE-stepin theEM-algorithm is

� ��
7� ���
	���� � ��
�� � ���7� 
�� � ��	�� 
��8 �:9 � ��
�;<� � ����� 
2;<� � ��	�� 
�;=� (3)

andtheM-stepconsistsof

� ��	�� 
��>� 8 - �������
	�� � ��
7� ���
	��8 -/? 1 9 ��������	@;=� � ��
7� ����	@;=� (4)

1TheCHAINS field containsanumericalidentifierof theprod-
uct line.

2For information about the LinguistX tools, see
www.inxight.com/products/linguistx/

3Unlessotherwisenoted,we usethefollowing notationalcon-
ventions: training documents A�BCAEDGFIH , testdocuments J�BCJKDLFM

, words N@BCN D FPO , andclassesQRBSQ D F�T .

� ����� 
��U� 8 1 ��������	�� � ��
�� ����	��8 - 9 ? 1 ������;��
	�� � ��
7� ��;��
	�� (5)

� ��
��U� 8 -/? 1 �������
	�� � ��
7� ����	��8 -/? 1 ��������	�� (6)

The parameters are either randomly initialized or ac-
cording to someprior knowledge.

After having calculatedthereduceddimensional repre-
sentations of documentsin thecollection, we mapthevec-
torsbackto theoriginal termspaceto yield vectors

� ��	�� ���
by � ��	�� ����� � � � ��	�� 
�� � ��
�� ��� (7)

� ��	�� ��� canbeseenasasmoothedversionof theempirical
distribution VW��	�� ���X�Y�������
	��
ZR������� of wordsin thedocu-
ment.Theadvantageof thesmoothedversionis thatit cap-
turessemanticsimilarities through the lower-dimensional
representation.

Notethatthis processis intendedfor thepairwisecom-
parison of all documentsin thetrainingcollection. It canbe
extendedto new documents[ (query or testdocuments)by
usingthefolding-in process.Folding-in usesExpectation-
Maximizationasin thetrainingprocess;theE-stepis iden-
tical, the M-step keepsall the

� ��	�� 
�� constantand re-
calculates

�]\/^ ��
�� [�� . Usually, a very small number of it-
erations is sufficient for folding-in. Wegetasmoothedrep-
resentation of a folded-in documentby

�_\6^ ��	�� [����`� � � ��	�� 
�� �_\6^ ��
�� [�� (8)

This correspondsto the PLSI-U modeldescribedin (Hof-
mann, 1999b).

3.3. Document Comparison

A standardway of comparing vector spacerepresenta-
tionsof documents�7a and ��b is to calculatethecosinesim-
ilarity scoreof tf-idf weighteddocument vectors (Salton,
1988):

c
dfePgChji ��� a �j� b ���
8 1lk�_��� a �
	�� k�]��� b ��	��m 8 1 k�_���Wa���	�� b

m 8 1 k�_����b2��	�� b
(9)

k�_������	�� is theweighted frequency of word 	 in document� :
k�n�����
	��o�p��������	��Wqfr2s t�C����	�� (10)

where t is the total number of documents,and �C����	�� is
thenumberof documentscontainingword 	 .

We additionally perform the comparison on the PLSA
representationof

� ��	�� ��� . Pairwisecomparisonsaredone
by

c
due�vWw2xKygChji ��� a �
� b �o�
8 1 � ��	�� � a � � ��	�� � b �m 8 1 � ��	�� �WaE� b

m 8 1 � ��	�� ��bz� b
(11)



Table1: Precisionof the statisticalmodel for the { top-
rankedpairs. A pair of tips is considered a “true positive”
if their conceptualcontentsarecategorizedto bethesame,
similar, or in thesubsetrelationship.

| precision
10 100%
20 100%
30 100%
40 96%
50 92%
60 92%
70 90%
80 87%
90 88%

100 88%

Bothsimilaritiesarecombinedwith a weight } to yield the
final similarity score(see(Hofmann, 1999b)).

c
dfe ��� a �j� b ���~} c
dfePgChji ��� a �j� b ���p�S����}�� c�duePvWwRxKygCh
i ��� a �j� b �
(12)

Theoutput of thealgorithm is a list of pairsrankedac-
cording to their similarity.

4. Experiments

We applied the algorithm described in Section3. to
a subsetof the Eureka databaseconsistingof 1,321tips.
PLSArepresentationsof

� ��	�� ��� werecreatedfor eachtip,
and pairs of tips were ranked according to their similar-
ity. Following (Hofmann,1999b), we createdmodels with� ���2�W�
�2���
�����
�2���E����� latentclasses,calculatedtheaver-
age

� ��	�� ��� . The similarity scorewascombined with the
standard tf-idf cosinesimilarity with a weightof }�� a� .
4.1. Precision and Recall

We manually inspectedthe100top-rankedpairsof tips
andclassifiedtheirsimilaritybyhandaccording to thetypes
of similarity describedin Section4.2.. The resultsare
shown in Table1. Of the10 top-rankedpairs,all 10 were
actualduplicates,4 of the 40 top-ranked pairs, 96% were
truepositives,andsoon. Themanual inspection of the100
top-ranked pairs (of the potential 871,860 pairs) revealed
88truepositives.

Independent manualsamplingof the subsetof 1,321
tips, which is a very tedious andtime-consumingtask,re-
vealed17 similar pairs(14 pairsand1 triple). 3 of these
pairswereamongthe top 100 emittedby the word-based
statisticalmodel. This is a recall of 18% on the manu-
ally identifiedsimilarpairs.However, it is unclearhow this
numberrelatesto theoverall recallbecausethedistribution
of theothersimilar pairsis currentlyunclear.

4A pair of tips is considered“duplicates” if their conceptual
contentsarecategorizedto be thesame.A pair of tips is consid-
ereda “true positive” if their conceptualcontentsarecategorized
to be the same,similar, or in the subsetrelationship. SeeSec-
tion 4.2..

Table2: Number of pairs with structural andconceptual
matchin the 100 top-ranked pairsof documents. We are
interestedin finding the conceptually same/similar/subset
pairs.Falsepositivesareshown in italics.

conceptual
same sim subset diff sum

same 24 0 10 2 36
sim 17 24 13 8 62

su
rfa

ce

diff 0 0 0 2 2
sum 41 24 23 12 100

4.2. Types of Similarity

The word-basedstatisticalmodel of Section3. seems
to be goodat identifying pairswhosetexts aresimilar at
a surfacelevel. In order to seehow well the modeldoes
at identifying pairswhosecontents areconceptually sim-
ilar , we manually performeda qualitative evaluation and
classifiedeachof the100top-rankedpairsaccording to the
following criteria:

Surface similarity of texts: same, similar, different. Sur-
facesimilarity describesthe similarity of the set of
words and syntacticconstructions usedin the docu-
ments. Samemeansthat the documentsare(almost)
identical. Similar meansthatsomewords maybedif-
ferent or replacedby synonyms(e.g.,“f ault” vs.“f ail-
ure” vs. “problem”, “motor” vs. “drive”, “line” vs.
“wire”, etc.),constructionsaredifferent, order of sen-
tencesmaybedifferent.Differentmeansthatthetexts
aredifferent.

Conceptual similarity of contents: same, similar, sub-
set, different. Conceptual similarity refersto the se-
mantic/conceptual contentsof thedocument,indepen-
dent of how it isexpressedassurfacetext. Samemeans
that the documentshave (almost)the samecontents
(e.g., “cutting the plastic off of the cablemakes the
cablemoreflexible” vs. “the plastic jacket madethe
cabletoo stiff ”). Similar meansthat thereis a signif-
icantoverlap of conceptual contents betweenthe two
documents;for example, the tips describethe same
problem but suggestdifferent solutions(seeFig. 1),
or, thetipsdescribeananalogousproblemexhibitedat
differentmechanical parts(seeFig. 2).

Subsetdescribescaseswheretheconceptualcontents
of onedocument form a propersubsetof theconcep-
tual contents of the otherdocument—for example, if
onedocument elaborateson the other. Different de-
scribesconceptually differentdocuments.

Table2 shows how many of the pairsfall into the dif-
ferent categories. Sincethe PSLA model is word-based,
almostnoneof the pairshave different surfacesimilarity.
In the100top-rankedpairs,themajority of falsepositives
occur whenthesurfacetexts aresimilar but theconceptual
contentsaredifferent(8 outof 12).

The algorithm identifies surface similarity very well,
only2 outof 100pairsaredifferentat thesurfacetext level.



Tip 690
Problem: 08-110, Tray 3 misfeed

Cause: J201 Pin 1 loose. Drive coupling set screw
loose,Blower hosecameoff, Fangplateout of
adjustment,Stackheightoutof adjustment,De-
fective DRCC1.

Solution: ReseatJ201Pin 1. Tightendrive coupling, Re-
connect blower hose, Adjust fangplate,Adjust
stackheight.ReplaceDRCC1.

Tip 714
Problem: 08-100, Tray 1 misfeed

Cause: Set screw on feedclutch loose. Stack
height sensorout of bracket. Feeder
drive couplingloose.Blower hoseoff.

Solution: Adjust clutch. Repairstackheightsen-
sor. Tightenfeederdriv ecoupling. Re-
pair blower hose.

Figure2: True positive: thispairat rank68hassimilar surfacetext andis similarat theconceptual level.

Tip 1280
Problem: Xerox Binder 120. The “READY FOR

AUTO FEED” messagedoesnot change
whensetclampassyis pulledin

Cause: Set Clamp extended sensor(Q23) is “H”
all thetime

Solution: check the set clamp sensorwires for an
opencircuit, if ok, Replacethe setclamp
extendedsensor(Q23)

Tip 1281
Problem: XeroxBinder120.TheBinder120doesnot

display“Readyfor autofeed” message.
Cause: Set Clamp extendedsensor(Q23) is “Lo”

all thetime
Solution: Checkthesetclampextendedsensorwires

for Shortcircuit to frame,Setclampoutflag
is in the sensorcorrectly, if ok, replacethe
sensor.

Figure 3: Falsepositive: thispairat rank37hasalmostthesamesurfacetext but is differentat theconceptual level.

Thesetwo pairs involve very long documents(averageof
1030 tokensperdocumentcomparedto 132tokensperdoc-
ument overall average). Thedocumentshave anoverlap in
vocabulary, but the sentencesandsequencesof sentences
areverydifferent.

Correlation with conceptual similarity can also be
found, but it is smaller. 10 out of 100 pairswerecatego-
rizedasthesameor similar at thesurfacebut areconcep-
tually different; from theviewpoint of a userin thecontext
of a conceptualtask,thesepairsshould notbeidentifiedas
similar tips. We believe thata deeperanalysisof thedocu-
mentcontentsasoutlinedin Section2.will helpdistinguish
betweenconceptually different documentsand, therefore,
reducethenumberof suchfalsepositives.

Oneof thetwo pairsthatarealmostthesameat thesur-
facelevel but have different conceptual contents is shown
in Fig. 3.

They use the sameor very similar words, but make
oppositestatementsat the conceptual level. Tip 1280 de-
scribesa sensorsignal that is erroneously“high” because
of anopencircuit. Tip 1281describesa sensorsignalthat
is erroneously“low” becauseof ashortcircuit. Thisdiffer-
encecannot be found by theword-basedstatisticalmodel.
The topicsof thesetwo documentsarevery similar; how-
ever, acorrect analysisof thecontents requirestherecogni-
tion of thedifferencebetween“doesnotdisplay”and“does
notchange”, thedifferencebetween“Lo” and“H”, andthe
differencebetween“opencircuit” and“shortcircut” despite
thefactthatthesephrasesoftenoccurin similar contexts.

Fig. 4 showsa pairwith similar surfacetextsbut differ-
entconceptual contents. Tip 227explainshow to repairor
preventa particular failurethat is causedby a ring’s wear-
ing out. Tip 173saysthatanimprovedrepairkit canbeor-
dered; it alsoprovidesa work-aroundfor thecasein which
thatimprovedkit is notavailable.

Thetwo examplesin Figures3 and4 show thatin many
casesit is necessaryto processthetext more deeply thanat
theword level in order to beableto recognizefine-grained
distinctions in thedocuments’contents. On theotherhand,
a largenumber of truepositivesareactuallydiscoveredby
theword-basedmodel (88outof the100top-rankedpairs).
Theword-basedstatisticalmodel evenfindscasesin which
the conceptual contents aresimilar, but wherethis fact is
notimmediatelyobviousfromthesurface-level texts.Fig.2
showsanexampleof thiscase.Thetwo tipsdescribealmost
thesamefault situation,except thatoneof themoccursin
connectionwith Tray 1 while theotheroneoccurs in con-
nection with Tray 3. Even for a human—at least for an
untrainedhuman—,this pair is difficult to detect.

The examples suggests that symbolic and statistical
techniques may be good at different tasks that comple-
menteachothernicely. Statisticaltechniquesseemto be
good at identifiying that the two tips are about the same
topic. Knowledge-basedtechniques—specifically, a do-
main ontology—may help distinguish“Fuser Couplings”
from the “FuserCouplingsandShaftRepairKit” (cf. Fig.
4), which in turn may trigger further distinctionsbetween
the two tips basedon domain-specificknowledge. Simi-
larly, theexample in Fig. 3 suggeststhata statisticalanal-
ysiscoupledwith a limited normalizationof relations that
occur frequently in thedomainmaybea promising direc-
tion to pursue.

Fig.5showstherankof apairvs.its similarity. Ourdata
setcontains1,321 documents,i.e., thereare871,860 pairs.
Word-basedsimilarity does not decreaselinearly. Thereis
a large drop at the beginning, then the curve is relatively
flat, andit suddenly dropsagainat thevery end. All of the
manually found similarpairs(the17pairsdescribedin Sec-
tion 4.1.) aremarkedwith a � in thegraph; they areamong
thefirst 7%(thelowestrankis 57,014).Wedocurrentlynot



Tip 173
Problem: Improved FuserCouplings600K31031 Tag P-184. Broken calls

whenservicingfailedFuserDrive Couplings.
Cause: The partsneededto repaira FuserDrive failure arepresentlycon-

tainedin two separateKits. If the servicerepresentative doesnot
have bothKits in inventorytheservicecall is interrupted.

Solution: 1. To repairFuserDrive failures,order the new FuserCouplings
an d ShaftRepairKit 600K31031, TAG P-184. This kit contains
all the parts in FuserCouplingsand Shaft RepairKit 605K3950
except that the improved Drive Coupling, issuedseparatelyin Kit
600K31030,hasbeensubstituted.2. If you have 600K31030 as
well as605K3950 in inventory, theseKits canbe salvagedto pro-
vide the samepartsasthe new Kit. Open605K3950 anddiscard
only theFuserDrive Coupling,thenusetheCouplingcontainedin
Kit number600K31030in its place.

Tip 227
Problem: Fuser Couplings and Shaft Re-

pair Kit, 605K3950, Tag P-129.
The retainingring that holds the
FuserAssemblyDrive Coupling
in place wearsout and falls off
theshaft.

Cause: The FuserAssemblyDrive Cou-
pling rubs againstthe retaining
ring asit turns.

Solution: On thenext servicecall checkto
seeif P-129is installed. If Tag
P-129is not installed,orderand
install the FuserCouplingsand
ShaftRepairKit, 605K3950.

Figure4: Falsepositive: this pair at rank 86 hassimilar surfacetext and is about similar parts,but is different at the
conceptuallevel.
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Figure5: Rankvs.PLSAsimilarity. Manually foundpairsaremarkedwith � .
know whetherthereareany similar pairsbelow this rank,
but it is probably safeto assumethatalmostall of thesim-
ilar pairsarewithin the initial portion of the graph. Even
if thepresentedstatisticalmethod doesnot rankall similar
pairsat thevery top, it seemsto efficiently placethemin a
smallinitial segment at thetop.

Onefocusof ourcurrent researcheffort is to understand
thecapabilitiesandlimitationsof thecurrentPLSA model
in orderto designanimprovedsystemby, for example, (1)
supplying the PLSA model with better-suitedinformation
for any givenparticular task,or (2)usingthecurrent version
of thePLSA model asa prefilter for theknowledge-based
approach.

5. Conclusions
We address the problem of matchingthe conceptual

contents of documents. The domainof the documentsin
our experimentsis the repairof photocopiers. In general,
the problem requires world knowledge anddeepprocess-
ing of the documents. But in a large number of cases,
similardocumentscanbefound by shallow processingand
a word-basedstatisticalmodel. A quantitative evaluation
showsthat88of the100statisticallytop-rankeddocuments
aretruepositives. An analysisof theerroneouscasesindi-
cateswherethestatisticalmodel couldbenefitfrom deeper
processing. Two important typesof information that are
currentlyabsentfrom ourstatisticalmodel arenegation and

relations betweenentities. We expect that providing the
model with more semanticinformation along theselines
will improveoursystem’sperformanceandallow it tomake
finerdistinctionsamongthedocuments’contents.
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