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ABSTRACT

We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random
region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles
of unique sequences) and to a plausible RNAWorld (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly,
activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such
as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleo-
tides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details
of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of
Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of
as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity
in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools
it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers.
Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules.
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INTRODUCTION

The ability of particular RNA sequences to bind targets and
catalyze reactions increases as the number of active sites
grows with few apparent limits. Selection amplification, or
SELEX (Ellington and Szostak 1990; Robertson and Joyce
1990; Tuerk and Gold 1990; Ellington et al. 2000), has re-
vealed many novel reactions—carbon–carbon bond forma-
tion (Tarasow 1997; Sengle et al. 2001), amide bond syn-
thesis (Lohse and Szostak 1996; Wiegand et al. 1997; Zhang
and Cech 1997), acetyl-CoA synthesis (Jadhav and Yarus
2002), anhydride activation of carbonyl groups (Kumar and
Yarus 2001), and aminoacyl-RNA synthesis both in cis (Il-
langasekare et al. 1995; Illangasekare and Yarus 1999a,
1999b) and in trans (Lee et al. 2000). This list could easily
be lengthened.
However, assuming on this basis that RNA can do any-

thing conceals a remarkable message from SELEX: Pico-
moles of random RNA molecules appear comprehensive. In

other words, the fact that it is not unusual to find a new,
arbitrarily chosen activity suggests that pools of the size
typical for SELEX (1012–1015 molecules; random regions of
30–200 nucleotides) could contain nearly all chemically
plausible RNA activities. Although infrequently empha-
sized, this is a profound result. If the number of random
sequences needed for comprehensive pools were orders of
magnitude greater, SELEX would be a far less successful
endeavor.
Having established 1015 random sequences as a versatile

RNA population, it becomes interesting to ask how few
random sequences a pool can contain while remaining simi-
larly comprehensive. More generally, how do the properties
of the randomized pool affect the probability of finding a
given RNA function? In particular, there has been a trend
towards longer random regions and larger pools that are
intuitively appealing, but not proven to be optimal.
One familiar aspect of SELEX is that only small pieces of

a selected sequence are important; these short invariant se-
quences form the active site while large regions (e.g., stem-
loops far from the active site) can be deleted with impunity.
Biologic ribozymes share this characteristic of modularity.
There are a few critical modules, which can often be iden-
tified from a multiple sequence alignment; between them,
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spacers may enforce certain structural requirements (such as
a certain relative position) but have highly variable se-
quences. We use as examples the minimal isoleucine
aptamer (Majerfeld and Yarus 1998) and the hammerhead
ribozyme (Salehi-Ashtiani and Szostak 2001; Fig. 1): Both of
these motifs have been isolated from SELEX, although the
hammerhead is also found in organisms. The isoleucine site
has two modules: a lower limit of 12 fixed nucleotides, and
an upper limit of 18 fixed nucleotides. The hammerhead
has three modules (including the paired region that con-
tains the cleavage site): a lower limit of 11 fixed nucleotides,
and an upper limit of 37 fixed nucleotides (the upper limit
is given by counting as fixed those positions that conceiv-
ably could pair). Unexpectedly, the precise configuration of
a motif (as well as the number of fixed nucleotides) is
critical for predicting the difficulty of finding it in a random
sequence.
In this article, we build on previous work estimating the

abundance of functional motifs in random pools (Ciesiolka
et al. 1996; Lorsch and Szostak 1996; Sabeti et al. 1997;
Yarus and Knight 2002). We estimate the systematic effects
of the length of the random region, the length of the motif,
and the division of the motif into modules with crucial fixed
sequences. We ask how frequently motifs should occur in
particular types of random pool, using the isoleucine
aptamer and the hammerhead as examples. In particular,

we assess the largest motifs that would be expected to occur
in the picomole-scale pools used in SELEX, and in the zep-
tomole-scale (1 zmole ≈ 602 sequences to 1000 zepto-
moles ≈ 602,000 sequences) pools that might be more plau-
sible during the origin of RNA-catalyzed metabolism.

RESULTS

The number of ways to find a short motif in a longer se-
quence grows dramatically as it is divided into an increasing
number of separate modules, and also as the length of the
randomized sequence to be searched increases (Fig. 2; Sa-
beti et al. 1997; Yarus and Knight 2002).
Our new calculation (see Materials and Methods) shows

quantitative agreement with simulations that directly count
all possible motifs in computer-generated random se-
quences; however, it has the advantages that it eliminates
sampling error and takes seconds rather than days to finish
on a desktop computer. Figure 3 shows the fit between the
model (lines) and the simulations (symbols). The compu-
tation (Materials and Methods) provides accurate predic-
tions for all sequence lengths, motif lengths, and divisions
into modules tested, although sampling error for individual
sequences can be high when the sequence length is short
(scatter in points towards the left of Fig. 3). These sampling
effects disappear when the random region is longer than

FIGURE 1. Examples of modular RNA sequences isolated from SELEX. Capital letters indicate initially random regions, while lower-case letters
indicate fixed regions such as primer complements. Critical motifs are highlighted in bold. Diagrams at right show the motifs in their required
structural context for the active site. Numbers in brackets indicate the position where the displayed sequence begins; ellipsis indicates that the
sequence continues 3� from the displayed region. (A) The minimal isoleucine motif (Majerfeld and Yarus 1998); although the conserved CUAC
was originally found in the 5� primer, subsequent reselection recovered this module from random sequence (S. Changayil and M. Yarus, pers.
comm.), giving a total of 12 bases in two modules. If paired but otherwise unspecified regions are included, the site increases to 18 bases in two
modules. (B) The hammerhead ribozyme, reselected from random sequence (Salehi-Ashtiani and Szostak 2001). The single U that comprises
module 1 was supplied in a constant region; x marks the cleavage site. Thus, the hammerhead consists of 11 fixed nucleotides in three modules
(the GC pair shown in plan text is conserved in natural hammerhead sequences, but was not recovered in SELEX). If paired but otherwise
unspecified regions are included, this increases to 37 fixed nucleotides in three modules. Note that this upper limit is unrealistically large, because
there are many possible sequences compatible with the required paired regions.
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about 50 nucleotides; in any case, the deviations from pre-
dictions are insignificant when examining the means of re-
sults from 25 independently simulated sequences.
In the following discussion, we use the notation [x, y, . . .]

to denote the division of a motif into modules of different
sizes. For example, [10, 10] indicates a motif of total length
20 divided into two equal 10-nucleotide modules, while [1,
9, 3, 7] denotes the same motif divided into four unequal
modules of length 1, 9, 3, and 7, respectively. When all
modules are fairly large, nearly every combination of posi-
tions in the sequence should give a new motif. Conse-
quently, when the motif is evenly divided into modules that
are about the same size, the number of unique motifs found
in each sequence is about equal to the number of trials.
However, for unevenly divided motifs (e.g., dividing a motif
of length 20 into [17, 1, 1, 1] rather than [5, 5, 5, 5]), there
is a dramatic decrease in the number of distinct motifs
found. The reason for this is that the short modules are so
easily found. For example, dividing the motif into [19, 1],
each starting position along the sequence is likely to yield a
new 19 mer, but there are only four possibilities for the
monomer. Consequently, the total number of unique mo-
tifs cannot be more than four times the number of positions
for 19 mers. In contrast, dividing the same motif evenly into
[10, 10], nearly every starting position will yield a new state
for both modules. Thus the total number of unique motifs
can grow very rapidly.
Accordingly, the division into modules has a surprisingly

large effect on the number of random sequences that must
be searched to find a motif of a given size. Figure 4 shows
this effect for different ways of dividing a motif with 15
fixed nucleotides divided among three modules, ranging

from the most equal [5, 5, 5] to the most unequal [13, 1, 1]
divisions. For longer sequences, division can make several
orders of magnitude difference to the probability of finding
the motif in a single sequence, and hence, in the required
pool size. The effect is even greater for longer motifs and
higher modularities; we use this case as an illustration be-
cause the number of different ways of dividing the motif is
still (relatively) manageable at 91. Note also that many such
15 nucleotide motifs are expected in a pool containing only
zmoles of RNA.
We can now calculate the pool sizes that would be nec-

essary for finding new instances of the isoleucine aptamer
and the hammerhead ribozyme (Fig. 1). Although we will
address the problem of finding structure motifs (that is,
correct folds) in a future article, here we are concerned only
with the presence of the underlying sequence motifs. For the
two-module isoleucine site, the lower limit for the essential
nucleotides is [4, 8] counting only absolutely conserved
nucleotides, while the upper limit is [7, 11] when counting
nucleotides in the helices also—an average of [5, 10] or [6,
9] (because there is an odd number of pairs) might be most
reasonable. For the three-module hammerhead site, the
lower limit is [1, 6, 4] and the upper limit is [10, 14, 13]—
the average is [6, 10, 9] or [7, 10, 8] (because there is an odd
number of pairs between modules 1 and 3). Figure 5 shows
that the isoleucine aptamer is likely to be found in very
small pools of RNA (tens to hundreds of thousands of mol-
ecules), as also may the hammerhead, although this prob-
ability depends on assumptions about the paired regions.
Finally, we calculate the largest motifs accessible to mod-

ern SELEX and to a zeptomole world. Figure 6 shows the
relationship between motif size and number of sequences
required for 50% probability of finding the motif, for ran-
dom regions of length 40, 80, and 120. Although the length
of the random region has a significant effect, the largest
effect is from increase in the number of modules. Figure 7
shows the largest motifs accessible in zeptomole-scale
(600,000 sequences) and SELEX-scale (1015 sequences) ran-
dom pools as a function of sequence length. Zeptomole-
scale pools can probably access motifs of about 20 nucleo-
tides (random region of length 100) at modularity 4, and
about 18 nucleotides at modularity 3. SELEX-scale pools
should be able to access motifs of about 26 nucleotides
(random region of 40, modularity 1) to 34 nucleotides (ran-
dom region of 100; modularity 4). These results are com-
parable to the number of essential nucleotides and modu-
larities of many actual RNA activities. Further, the number
of accessible nucleotides agrees with our previous calcula-
tion by another method (Yarus and Knight 2002), although
those prior calculations count all configurations of a motif
and the present numbers are only the leading terms (for
evenly divided motifs; cf. Maxim 3 below). In addition,
because the present calculations agree with prior indepen-
dent results at both zmole and pmole levels, the rule of 1.66
nucleotides added to the motif/10-fold increase in RNA

FIGURE 2. Number of spacer divisions D as a function of spacer
length s and modularity m. Modularity ranges from 1 to 6; each label
refers to the line above it. Note logarithmic scale on the y-axis. The
number of divisions increases very rapidly at high modularity: for
example, there are more than 100,000 ways to divide 40 bases of spacer
among four modules.
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(Yarus and Knight 2002) is also confirmed by these new
calculations as the limiting case (see Fig. 6).

DISCUSSION

Our new model for predicting the abundance of motifs
gives quantitative agreement with simulations of actual se-
quences (Fig. 3), and is also in substantial agreement with
prior estimates. Hence, we feel confident in using it to pre-
dict the frequency of sequence motifs in random pools far
too large to simulate directly. Assuming that motifs will be
recovered from SELEX (or appear by natural selection) in
proportion to their initial abundance, we infer the following
maxims about RNA sequences likely to be selected.

Maxim of minimization

Selected motifs will be as short as possible. Each additional
fixed nucleotide makes the motif approximately a factor of
4 rarer (requiring fourfold more RNA to have an equal

chance of finding it; the 1.66 nucleotide
rule), and this applies exactly in the
limit of long, evenly divided modules
and large pools. For tiny possible pri-
mordial motifs, the cost of adding an
additional base can be considerably less.
In any case, small motifs will always be
markedly more abundant.

Maxim of multiplicity

Abundant motifs will be divided into as
many pieces as possible. This maxim
must observe the requirements for
structural stability. Although a motif
made up of 12 single nucleotides scat-
tered through the sequence would be
very easy to “find”, it is highly unlikely
to fold correctly. However, modules
containing only a single absolutely re-
quired base are often important (for in-
stance, the U next to the cleavage site in
the hammerhead ribozyme). We hope
to use computational folding methods
to assess the apparent relationship be-
tween stability and function in more de-
tail.

Maxim of the median

Most probable motifs will be divided as
evenly as possible. In other words, it
takes far more random sequences to
find a motif of 20 divided into [17, 3]
than when divided into [10, 10]. In fact,

the evenness need only be approximate to give almost the
same probability of occurrence (i.e., [12, 8] is not notably
worse than [10, 10]), but extreme inequality of division
would suggest selection for specific functional consequences
(because unequally divided motifs are fundamentally harder
to find than more evenly divided ones).
In addition, we can assess the effect of pool size and

random region length on the largest accessible motifs. In-
creasing the pool size has a relatively minor effect; when
modules are relatively large, each 10-fold increase in the
number of sequences provides only an additional 1.66
nucleotides to the length of the random region (Yarus and
Knight 2002). This region is that of parallel lines in Figure
6 (slope = 1.66 nucleotides/order). As can be seen in the
figure, evenly divided motifs in pools having more than 100
molecules (a few tenths of a zeptomole) obey the rule,
which is therefore quite general. Figure 7 shows that in-
creasing the number of sequences from 602,000 to 1015

roughly doubles the length of the accessible motif; thus, to
increase this length by another 50% would require another

FIGURE 3. Agreement between calculations and simulations. The number of unique motifs
(i.e., sequences that differ in at least one module, y-axis) grows dramatically as the sequence
length, x-axis, and modularity grow, although not as fast as does the number of trials (cf. Fig.
2). Lines are the results of the calculations as derived in Materials and Methods; dots are 25
runs of simulations in which randomly generated sequences were divided into modules in every
possible way for a given length and configuration. Dark lines denote evenly divided motifs (e.g.,
[5,5,5,5] represents a motif of 20 divided into four equal modules); light lines denote unevenly
divided motifs (e.g., [17,1,1,1] represents a motif of 20 divided into four modules in which the
difference between the largest and smallest modules is as great as possible). Note the dramatic
effect (orders of magnitude) of unequal division of the motif. The spread of the dots (each from
an individual random sequence) gives an idea of the sampling error: large for short sequences
and high modularity; very low once the sequence reaches 60 nucleotides. The model gives
excellent agreement with the simulations over a wide range of modularity, sequence length, and
size of individual modules. It is impractical to collect simulation data for longer sequences due
to the running time (approx. 6 h and 500 MB RAM for modularity 4 and sequence length 100
on a 1.8 GHz Pentium 4; more than 4 d and 4 GB RAM/swap space for sequence length 200).
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10 9-fold increase in the amount of RNA, or about 33 ki-
lograms of RNA in a volume of 100,000 liters. The converse
of this is that surprisingly large and complex RNA activities
may have been available very early in evolution (for further
discussion, see Yarus and Knight 2002).
A more efficient method of increasing the chance of find-

ing a motif is to increase the length of the random region:
For zeptomole pools, going from 30 to 200 increases the
accessible motif (of modularity 4) by eight nucleotides.
Thus, less than a sevenfold increase in the length of indi-
viduals yields the same effect as a 66,000-fold increase in the
number of sequences. The importance of the length of the
random region increases somewhat as the number of se-
quences increases: For SELEX-scale pools, the same 170-
nucleotide increase in length increases the accessible motif
by 10 nucleotides. However, although longer random re-
gions are more likely to contain the required sequences,
they are also more likely to find alternative stable folds that
do not bring the modules together into the correct structure
(Sabeti et al. 1997). We are investigating this latter effect

quantitatively, because it is likely to be crucial for the effi-
ciency of SELEX experiments.

CONCLUSIONS

We have devised a new method for calculating the prob-
ability of finding a set of short modules within a longer
sequence. We have used this method for assessing the ca-
pabilities of the picomole-scale pools used in SELEX as well
as the zeptomole-scale pools that might have been more
relevant to the origin of RNA metabolism. By bridging two
very different scales of selection we can ask which of the
findings of SELEX could also apply to the RNA World.
Surprisingly, we find that the number of fixed nucleo-

tides required for a motif is not the only factor that affects
its abundance: The number of modules, and also the even-
ness with which the motif is divided among them, are also
critical. Although the length of the random region and the
pool size do have a significant effect on the largest motifs
that can be selected, unexpectedly tiny pools of randomized
RNA appear likely to contain significant functionality. The
abundance of different motif configurations suggests that,
as much as possible, both natural and artificial selection

FIGURE 5. Pool sizes required to find the isoleucine aptamer (black)
and the hammerhead ribozyme (gray) (Fig. 1), making different as-
sumptions about sequence requirements. The horizontal gray line rep-
resents 1000 zeptomoles, the limit of the Zeptomole World. The iso-
leucine aptamer is almost certainly a Zeptomole World molecule; the
hammerhead may or may not be, depending on how much helix is
added to its required sequences. However, its essential sequence com-
ponents should certainly appear in zeptomole-scale pools. Thin lines
show the minimal sites (fixed sequence only); dark lines show the
maximal sites (counting paired bases as fixed in one state); and me-
dium lines show the average (counting half the paired bases as fixed;
details in how the paired bases are assigned are not visible on this
scale). The graph shows pools required for 50% probability of occur-
rence; for 99% occurrence, multiply all pool sizes by a factor of 6. The
maximal sequence for the hammerhead is clearly not a realistic case, or
it would not be possible to reproducibly recover this motif from
SELEX.

FIGURE 4. Importance of evenly divided modules. Individual lines
show different divisions of a 15-nucleotide motif into three modules.
For a random region of 100 nucleotides, only 51,000 molecules would
need to be searched to have a 99% chance of finding a motif divided
into three 5 mers (heavy line at bottom of graph), but nearly four
million molecules (a factor of almost 100) would need to be searched
to have the same chance of finding a motif divided into a 13 mer and
two monomers (heavy line at top of graph). The other lines show the
other 87 ways of dividing the motif. Out of 91 total ways, there is one
way to divide it into three 5 mers, there are three ways to divide it into
a 13 mer and two monomers: [13, 1, 1], [1, 13, 1], and [1, 1, 13].
Similarly, there are three ways to divide it into any other configuration
in which two of the pieces are equal. There are six ways to divide it into
any particular configuration where all three pieces are unequal: for
example, [9, 4, 2], [9, 2, 4], [4, 9, 2], [4, 2, 9], [2, 9, 4], and [2, 4, 9].
Only the size of the pieces, not their order, affects the probability, so
only 19 distinct lines are visible on the graph (some are very close
together). The top two lines on the graph (the [13, 1, 1] family and the
[12, 2, 1] family) are clear outliers; most divisions are closer to the best
case of [5, 5, 5] than to the worst case. This effect becomes more
extreme at higher modularity. The horizontal gray bar shows 1000
zeptomole (602,000 sequences).
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should favor sites with as many small, evenly divided mod-
ules as possible.
Here we have only focused on the probability of finding

the right sequence for activity; we hope also to address the
probability of finding the right structure. Because we can
now calculate the probability that a random region contains
the correct sequence, we can sample from these sequences
directly and use folding algorithms to obtain insight into
the distribution of RNA activities. In particular, we suspect
that longer sequences are decreasingly likely to fold cor-
rectly, which would decrease the benefits of longer random-
ized sequence length compared to the calculations pre-
sented here.
The mathematical framework we have developed should

be applicable to assessing the frequency of other types of
modular sequences. For instance, it could be used to calcu-
late the probability that a set of transcription factor binding
sites occurs in the correct order within a given distance
from a transcription start, or the probability that a set of

“signature” amino acid sequences occurs in a putative new
member of a protein superfamily. Such statistics may allow
more precise discrimination of real functional sites from
chance occurrences.
Finally, we predict that we will be able to isolate ribo-

zymes and aptamers from real pools containing 1–1000 zep-
tomoles of unique sequences. If the advantages of modular
folds indeed make functional RNA molecules so accessible,
the RNA World becomes almost inevitable (Yarus and
Knight 2002).

MATERIALS AND METHODS

Number of divisions of a sequence into modules

One critical question for determining the probability of a sequence
match is how many ways there are to find a short, modular mo-
tif in a longer sequence. Previous calculations of this quantity

FIGURE 6. Number of sequences required to find evenly divided motifs in random pools of (A) length 40, (B) length 80, and (C) length 120,
for modularities of 1 to 4. Results shown for 50% probability of occurrence; for 99%, multiply all pool sized by a factor of 6. Horizontal dark
line indicates 1000 zeptomoles. x-Axis shows total length of motif; y-axis shows number of molecules required.
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have either been approximate (Sabeti et al.
1997) or required estimated sampling cor-
rections (Yarus and Knight 2002). Here, we
provide a potentially more transparent
method (Fig. 8).
An RNA sequence is divided into func-

tional modules and intercalated nonfunc-
tional spacer elements. Let the total length of
the sequence be n nucleotides, the sum of the
lengths of the modules be l, and the number
of separated modules be m. Then the num-
ber of nucleotides in the spacer s is (n − l).
By definition, each module must be sepa-

rated from its neighbors by at least one
nucleotide of spacer. Consequently, the
problem is equivalent to finding the num-
ber of ways to cut the s nucleotides of the
spacer m times while leaving a gap of at
least one nucleotide between cuts. Because
modules are allowed to appear at the ends
of the sequence, there are s + 1 positions
at which a cut could occur—before each of
the s nucleotides of the spacer, and at the
end of the molecule (Fig. 8). Thus, there
are (s + 1) ways to make the first cut, that
is, to insert one module. If there is a second
module, it can be inserted anywhere except
at the same position as the first module
(or the modules would be adjacent): Thus,
there are s ways to make the second cut,
s − 1 ways to make the third cut, and, in
general, s − (m − 1) ways to make the mth

cut. Because the cuts are independent,
the number of possibilities is given by
(s + 1) × (s) × (s − 1) × . . . × (s − (m − 1)),
or (s + 1)!/(s − (m − 1))! However, the order

FIGURE 8. Calculations for D, the number of ways of dividing a sequence to look for a set of
shorter modules. First, partition the number of bases in the sequence n into the number of
bases in modules, l, and the number of bases in spacer, s = (n − l). Each possible position of the
modules within the longer sequence can be thought of as a particular way of choosing m places
to cut the spacer, with the provisions that two cuts cannot occur in the same place and that one
cut can occur after the last base of the spacer (i.e., the last module can be at the 3� end of the
sequence). However, the order in which the m cuts are chosen does not matter (even if the cut
for the last module was made first, the modules will still be looked for in order). Thus, D is
equal to the number of ways of choosing m items from s + 1.

FIGURE 7. Largest accessible evenly divided motifs in (A) zeptomole-scale pools, and (B) SELEX-scale pools (602,000 and 1015 sequences,
respectively). X-axis shows length of the sequence; y-axis shows largest motif accessible for each modularity at probability 0.5 (increasing the
probability to 0.99 decreases the length of the accessible motif by at most two nucleotides in this range).
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FIGURE 9. Dependence of the number of positions each module can take on the number of modules m and the size of the problem z. The top
line in each block shows all the positions that each module can occupy. Each subsequent line in the block shows a single valid position for each
module (dark dashes, numbered according to module), along with the possible alternative positions for the last module (light dashes). This
highlights the fact that the successive left-most positions of the last module correspond to successive sizes of the one-dimensional problem. Note
that to keep the size constant it is necessary to add another spacer position for each additional module. The Current column shows the number
of positions contributed by the current size of the (m − 1) dimensional case, while the Sum column shows the total number of positions for the
current size of the m-dimensional case. Horizontal arrows show the contribution of each new term (larger size) to the sum: adding a base of spacer
is the same as adding the case with the new number of bases of spacer in one lower dimension. Horizontal and vertical arrows show that each
successively larger term in a given dimension is the sum of the previous term in that dimension and the larger term in one fewer dimension.
Oblique arrows show the relationships between terms in successive dimensions.
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of the cuts is unimportant because the modules are always inserted
in the same relative positions; for example, choosing positions 1,
2, and 3 is the same as choosing positions 3, 1, and 2. Because there
are m cuts, we must divide by an additional factor of m! to reflect
the number of ways of making the same cuts. Thus, D, the number
of ways of dividing the spacer (and, hence, the number of possi-
bilities for finding a particular combination of modules within a
given molecule), is:

D�s, m� =
�s + 1�!

�s + 1 − m�!m!

D is the well-known binomial coefficient, giving the number of
ways of choosing m things from s + 1. D increases extremely rap-
idly both with the length of the spacer and the number of modules
(Fig. 2). For a single module, D = s + 1. Consider, for example, an
80-nucleotide random region with a 20-nucleotide motif (and,
consequently, 60 bases of spacer). If the motif consists of a single
20 mer, there are 61 chances for it to match. In contrast, if the
20-mer motif consists of four critical 5-mer modules, there are
nearly a million chances for it to match. Because the total number
of possible sequences in each case is the same (420 ≈ 1012), it is
clear that far fewer random 80 mers need to be searched to find a
given divided motif than an undivided one the same size (Yarus
and Knight 2002).
Two numbers determine D: the number of modules, and the

number of possible positions that each module can take. These
we call the dimension and the size of the problem, respectively. The
size of the problem, which we label z, represents the maximum
number of positions that a module could experience across all the
possible ways of arranging the remaining modules, and is the
same for every module. The reason for this is straightforward.
Consider two examples. First, for a module to be in its left-most
position, the first module must occur at the start of the sequence
and all modules between the first module and the module under
consideration must be separated by a single base of spacer. Thus,
the first position at which the module could start is the sum of
the lengths of all the modules to its left, plus one base of spacer
for each of these modules, plus 1 (if the first base is counted as
base 1 instead of base 0). Second, for a module to be in its right-
most position, the last module must occur at the end of the
sequence and all modules between the last module and the mod-
ule under consideration must be separated by a single base of
spacer. Thus, the last position at which the module could end is
the sum of the lengths of all the modules to its right, plus one base
of spacer for each of these modules, subtracted from the length
of the molecule. To get the last position at which the module could
start, subtract one less base than its length from the position at
which it ends (because the end position takes up a base). In fact,
no matter which module is under consideration, the total num-
ber of bases left over for it to slide along is the length of the
sequence, minus the sum of the lengths of all the modules (in-
cluding the current module), minus one base for all the mod-
ules except the last module (because no spacer is needed after the
last module), plus one base for the fact that the numbering be-
gins at 1. Thus, the size z is equal to (s + 1) − (m − 1), or
(s − m + 2).
This concept of the size of the problem (in terms of the number

of positions each module could occupy) is critical for understand-

ing the probability calculations that follow. For a problem of
a given size and dimension (i.e., amount of spacer and number
of modules), the number of possibilities is the sum of all the
problems up to the same size in one fewer dimension. This is
because the maximum number of positions for the second module
(and all subsequent modules) is the size of the original problem,
but, as the first module slides along to the right, there are pro-
gressively fewer bases of spacer left over for the remaining modules
to slide around in. Because the spacer is divided in all possible
ways among the remaining modules, this is equivalent to solving
successively smaller problems in one fewer dimension, from z
down to 1 (the case where there is no spacer left over). Figure 9
shows this relationship in problems of size 1 to 4 with dimensions
1 to 3. Each module can only occupy a certain number of positions
as it moves along the sequence, and many positions are mutually
exclusive. For example, in the case where m = 2, when the first
module is in its rightmost position, there is only one position (at
the very end of the sequence) where the second module could be
found, but when the first module is in its left-most position the
second module could be found in any of three additional posi-
tions.
It is possible to calculate explicitly the effect of incrementing the

size (adding one to the spacer length while keeping the number of
modules constant), and of incrementing the dimension (adding
another module while keeping the spacer length constant). Incre-
menting the size is equivalent to adding the next larger case in
(m − 1) dimensions. In other words, the number of possible com-
binations that are added by adding a base to the spacer is equiva-
lent to finding the number of ways to distribute the new, larger
spacer among all modules except the first (because for the remain-
ing modules to see the additional base, the first module can only
occupy its left-most position). Incrementing the dimension is
equivalent to adding the next smaller case in (m + 1) dimensions,
which is the same as the sum of all smaller cases in the current
dimension. That is, the number of combinations added by adding
a module and its required base of spacer to the sequence is equiva-
lent to finding all the ways that the current number of modules
could be arranged in smaller amounts of spacer (because the
amount of spacer to be distributed among these modules decreases
as the new module slides along to the right). These identities,
which are shown geometrically in Figure 10, can also be shown
algebraically as follows.

Incrementing the size

D�z + 1, m� − D�z, m� =
��z + 1� + m − 1�!

��z + 1� − 1�!m!
−

�z + m − 1�!

�z − 1�!m!

=
�z + m�!

z!m!
−

�z + m − 1�!

�z − 1�!m!

=
�z + m�!

z!m!
−

z

z

�z + m − 1�!

�z − 1�!m!

=
�z + m�!

z!m!
��z + m� − z�

=
�z + m − 1�!

z!m!

=
��z + 1� + �m − 1� − 1�!

��z + 1� − 1�!�m − 1�!
= D ( z � 1, m � 1)
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Incrementing the dimension

D�z,m + 1� − D�z,m� =
�z + �m + 1� − 1�!

�z − 1�!�m + 1�!
−

�z + m − 1�!

�z − 1�!m!

=
�z + m�!

�z − 1�!�m + 1�!
−

�z + m − 1�!

�z − 1�!m!

=
�z + m�!

�z − 1�!�m + 1�!
−

�m + 1��z + m − 1�!

�z − 1�!�m + 1�!

=
�z + m − 1�!

�z − 1�!�m + 1�!
��z + m� − �m − 1��

=
�z + m − 1�!

�z − 1�!�m + 1�!
�z − 1�

=
�z + m − 1�!

�z − 2�!�m + 1�!

=
��z − 1� + �m + 1� − 1�!

��z − 1� − 1�!�m + 1�!
= D( z � 1, m � 1)

The Poisson approximation

Having calculated the number of ways of searching for a motif in
a longer sequence, we now need to calculate the probability that a
sequence picked at random contains the motif. If the probability
that a module matches at a particular position is fixed (p = 4−l for
random sequences with unbiased base composition), the mean
number of times that the module matches in a given sequence is
simply D × p. Consider the case of a random region of length 80
and a motif length of 8, divided into two modules. The probability
of observing a match on any one trial is 4−8 or 1.53 × 10−5, the
number of chances to match in each molecule is D(72,2) or 2628.
Consequently, the mean number of matches in a single molecule
is 0.04. If we assume that matches follow a Poisson distribution,

the probability of not finding a match in a single molecule would
be e−0.04 or 0.96; consequently, it would be necessary to examine
about 115 molecules to have a 99% chance of finding a match
(0.96115 ≈ 0.01). This number would be the same no matter how
the motif was divided into two modules (i.e., [4, 4] would be the
same as [7, 1]).
However, the Poisson approximation is inaccurate because suc-

cessive trials are not independent: The same parts of the sequence
are resampled many times and combined with other modules.
Figure 11 shows the deviations from predictions for different way
of dividing a motif of length 8. When the motif is divided into [4,
4], simulation shows there is over a 99% chance of finding it in 150
sequences (the prediction of 115 sequences assuming indepen-
dence above is optimistic). If, on the other hand, the motif is
divided into [7, 1], even 500 sequences are insufficient to be 90%
confident of finding it, and it would take over 1100 sequences to
reach 99% probability. When all ways of dividing the spacer are
considered together (solid line), the probability of finding a motif
in N sequences cannot even be projected from the results for a
single sequence. This is because the sum of multiple exponential
decay curves is not itself exponential, and so the predictions are
very different in different parts of the curves (dashed line). In
particular, at the beginning the slope of the overall curve is the
same as the single-sequence extrapolation. However, as the num-
ber of sequences increases, the slope converges to that of the most
elusive motif (lowest slope). This curve is vertically offset by a
constant factor that represents the fraction of all configurations
contained within this most slowly found class.
The explanation for the decreasing slope is relatively straight-

forward: Although the number of different combinations is very
large, each module only occurs in a few different positions. This
number of positions is equivalent to z, the size of the problem,
defined above as (s − m + 2). For the case of a modularity of 2,
motif length of 8 in a sequence of 80, each module experiences
(80 − 8 − 2 + 2) or 72 different positions. If the motif is divided
into [4, 4], so that each module has 44 or 256 possible states, we
expect most of the 72 positions to represent different sequences. If,
on the other hand, the motif is divided into [7, 1], so that the first
module has 47 or 16,384 possible states while the second module
only has 41 or 4 possible states, even though all 72 of the positions
for the first module are likely to represent different sequences the
second module will sample each of the four bases many times.
Thus, the largest possible number of distinct motifs in the se-
quence is (72 × 4) = 288—much smaller than the 2628 motif com-
binations calculated above. Conversely, the motifs that do occur
are found an average of nearly 10 times each. Although the mean
number of occurrences per sequence is the same for both cases, the
variance is much higher with uneven divisions and far more se-
quences have to be searched before the motif is likely to be found.

Accounting for sampling

The Poisson approximation is inaccurate because combinatorial
attempts at matching the motif reuse the same few positions for
the individual modules (Yarus and Knight 2002). It is possible to
avoid this effect by explicitly calculating the probability that, given
the positions of the first (m − k) modules, there is a configuration
of the remaining k modules such that all of the modules match
their corresponding target sequence. The key here is to consider

FIGURE 10. Effect of increasing the size or dimension of the prob-
lem. Starting with the case where z = 3 and m = 2, incrementing z to
get D(4,2) is equivalent to adding D(4,1); In other words, the next
larger case in one less dimension (top). Conversely, incrementing m to
get D(3,3) is equivalent to adding D(2,2) and D(1,2) (side: left of
arrow). This is equivalent to adding D(2,3) (because a given term in d
dimensions is the same as the sum of all terms up to that size in d − 1
dimensions as shown in Fig. 9); in other words, this is the same as
adding the next smaller case in the same number of dimensions (side:
right of arrow).
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the position of each possible match, weighted by its probability of
occurrence.
A sequence contains a complete match if and only if the target

sequence for each module is present, and then only if the target
sequence for each module occurs to the right of the target se-
quences for each of the preceding modules. Thus, we are always
concerned with the left-most allowed match for each module,
where an allowed match is one that occurs to the right of the last
match in the previous module. Note especially that the position of
the left-most allowed match determines the number of bases of
spacer that can be distributed among all the subsequent modules,
and hence, the size of the subproblem that needs to be solved to
calculate the probability of the subsequent matches.
For a single module, the probability that the first position is the

left-most match is simply p, the probability of a match in a single
trial, defined above as 4−l where l is the length of the current
module. The probability that the second position is the left-most
match is somewhat lower: p × (1 − p), or the product of the
probability that the second position is a match (p) and the prob-
ability that the first position was not a match (1 − p). Each addi-
tional position to the right incurs an additional factor of (1 − p),
because, for a position to be the left-most match, all positions to

the left of that position must have failed to
match. Thus, the probability that each posi-
tion is the left-most match forms a geomet-
ric series, p, p(1 − p), p(1 − p)2, . . . ,
p(1 − p)z−1, where z is the size of the prob-
lem (i.e., the number of distinct positions
that the module could potentially occupy).
The probability that the single module

matched at least once is equivalent to the
probability that one of the z positions was
the left-most match. This is given by the sum
of the geometric series with starting term p,
and ratio (1 − p). Substituting into the stan-
dard formula for the sum of a geometric se-
ries (a(1 − r)n/(1 − r), where a is the starting
term, r is the ratio, and n is the number of
terms), we obtain:

P( match)= �
i= 0

z− 1

p�1 − p�i

=
p�1 − �1 − p�z�

1 − �1 − p�

=
p�1 − �1 − p�z�

p

= 1 − �1 − p�z

This can be checked by comparison with
the probability that there is no match in the
sequence, which is (1 − p)z (i.e., the prob-
ability that a particular position fails to
match raised to the power of the number of
possible positions). Because there must ei-
ther be no match or at least one match, these
two probabilities sum to 1; this count of
matches is exhaustive.
Having determined the probability for a

matching single module, we now extend cal-
culation to arbitrary numbers of modules

(Fig. 12). Again, the size of the problem is given by z = (s − m + 2),
and the dimension is given by the number of modules m. For the
left-most module, the probabilities that there is a match at the
first, second, third, etc., possible positions are given by the one-
dimensional case. The number of spacer positions left over deter-
mines the size of the (m − 1)-dimensional problem that needs to
be solved to determine the match probabilities for the remaining
modules. Consequently, the problem can be solved in m dimen-
sions by solving the problem for all possible sizes in (m − 1) di-
mensions and weighting the probability of each subproblem by the
corresponding probability that the position leading to it was the
left-most match.
This progression provides an efficient way of computing the

overall solution. Instead of calculating the probability of each pos-
sible module configuration directly (which would scale exponen-
tially with the number of modules), the following algorithm re-
duces the calculation to linear in the number of modules and
quadratic in the number of bases of spacer. The algorithm follows
the flow of Figure 12, in which all successively smaller subprob-
lems of a given dimension appear as terms in the calculation of the
next dimension (weighted by the probability that there are that
many bases of spacer left over for the remaining modules).

FIGURE 11. Violation of Poisson sampling assumptions. Dividing a motif of constant modu-
larity into pieces affects the number of sequences that need to be searched to minimize the
probability that a motif will be missed (logP, y-axis: logP[not found] of −2 is equivalent to a
99% chance that the motif is found). The vertical line at 115 sequences is the Poisson prediction
for a 99% chance of finding an 8 mer divided into two pieces in a random region of length 80.
Thin solid lines show the progression for the fastest-changing [4,4] and slowest-changing [7,1]
and [1,7] configurations: independent sequences have a constant probability of finding each
motif, and so the relationship is log-linear. The thick solid line shows the probability of missing
a sequence when all configurations of the motif (all divisions into two modules) are combined:
the nonlinearity shows that the results for a single sequence do not scale to multiple sequences,
because different configurations saturate at different rates. This line is derived from two runs
of the simulation (diamonds and crosses). Dashed lines show extrapolation for the combined
configurations either from the results for a single sequence (steeper slope) or from 500 se-
quences (shallower slope). Note the large discrepancy (two orders of magnitude) between the
projection from a single sequence and the actual results for a sample of 500 sequences.
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FIGURE 12. Probability of matching a set of modules. Example cases as for Figure 4, but note change in numbering (positions are now relative
to the first position that the module can occupy under any circumstance, rather than relative to the first position that it can occupy relative to
the positions of the other modules in the current case). The top line in each set shows the left-most position each module can take (given a
particular state of the first module), and hence, the left-most possible match for each module. The position of the left-most match for the first
module determines the size of the problem to solve for the remaining modules (in one fewer dimension). Pn is the probability of a match in the
nth module; Qn = (1 − Pn). For m = 1 (top), the probability of a match at the ith position is P1Q1

(i − 1). For m = 2 (middle), the probabilities for
the first module remain the same; however, depending on the position, a different size subproblem must be solved in one dimension to find the
probability that the second module also matched. Similarly, for m = 3 (bottom), the position of the left-most match of the first module determines
the size of the two-dimensional subproblem that needs to be solved to find the probability that all three modules matched. In general, to solve
for m modules, it is necessary to solve all smaller problems in (m − 1) dimensions, and to weight each of these solutions by the probability that
the first module matched in a position compatible with it. The diagrams to the right show the probabilities of each of the allowed combinations
of positions (order the same as the ordering of the lines to the left); to find the probability that a particular combination was the left-most set
of matches (e.g., first module at its second position, second module at its second position, third module at its fourth position), multiply the
individual terms together (here, P1Q1 × P2 × P3Q3

2, as can be seen either by examining the individual line corresponding to this case or by
examining the relevant cell in the table). Arrows show the correspondence of terms in lower dimensions as parts of higher dimensional problems.
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Initialization

Fill array current_dimension of size z with the one-dimensional
case representing first module:

p1, p1(1 − p1), p1(1 − p1)
2, . . .

Replace the terms of current_dimension with cumulative sums
to get the probabilities of having found the module:

p1, p1 + p1(1 − p1), p1 + p1(1 − p1) + p1(1 − p1)
2, . . .

current_dimension now holds solutions for all sizes of the one-
dimensional case for the first module.

Loop

Fill array last_dimension with the values of current_dimension

Empty current_dimension

Fill array coefficients of size z representing the one-dimensional
case for the current dimension

Reverse order of coefficients

While coefficients is not empty:

Set variable sum to zero

For each item in coefficients:

Find corresponding item in last_dimension

Multiply these two items and add to sum

Add sum as a new element at the start of current_dimension

Delete first element of coefficients

current_dimension now holds the first n terms in the current
dimension.

Return

Last element from current_dimension

Perl programs implementing this algorithm, and an algorithm that
tallies the number of unique motifs found when searching random
sequences for a particular motif configuration, are available on
request from the authors.
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