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Abstract. A line intersecting all polyhedra in a set ~ is called a "stabber" for the 

set ~. This paper addresses some combinatorial and algorithmic questions about the 
set 6a(~) of all lines stabbing ~. We prove that the combinatorial complexity of 

~(~)  has an  0(n32 c ' f~)  upper bound, where n is the total number of facets in ~, 

and c is a suitable constant. This bound is almost tight. Within the same time bound 

it is possible to determine if a stabbing line exists and to find one. 

1. Introduction 

The first algorithm for finding line stabbers for a set ~ of polyhedra in R 3 with 

total complexity n, due to Avis and Wenger [AWl],  [AW2], has an O(n 4 log n)- 

time bound. McKenna and O 'Rourke  I-MO] improve the time complexity to 

O(n*~(n)), where ct(n) is a functional inverse of the Ackerman function. The 

algorithm in [MO]  finds all the isotopy classes 1 of lines generated by the polyhedra 

in ~ and it is within an 0t(n) factor from the optimal for that problem. The set 

ba(~) of stabbing lines coincides with the union of some of the isotopy classes and 

it was conjectured that the complexity of 6e(~) could be less than the complexity 

of all the isotopy classes. 

Jaromczyk and Kowaluk [JK] claimed an 0(n32 ~(")) upper bound to the 

complexity of the set of stabbing lines, but unfortunately there are cases in which 

the analysis used in [JK] is incorrect (see [P2]). 

* The research of M. Pellegrini was partially supported by Eni and Enidata within the AXL project, 

and by NSF Grant CCR-8901484. A preliminary version appeared in the Proceedings of the Second 

ACM-SIAM Symposium on Discrete Al#orithms, pp. 24-31. 

Two lines are in the same isotopy class if it is possible to move one into the other without crossing 

edges of ,~. 
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A line is characterized by four parameters, therefore a natural representation 

for a line in R 3 is a point m R 4. The locus of lines intersecting a given line is a 

quadric (hyperbolic) surface in R 4. Given a set of polyhedra ~ ,  consider the lines 

spanning edges of the polyhedra, and for each such line the corresponding surface 

in R 4. We obtain an arrangement d ( ~ )  of surfaces in R 4 that divide the space 

into cells (McKenna and O'Rourke [MO] implicitly construct this arrangement). 

Each cell of d ( ~ )  contains points whose stabbed set is invariant within the cell. 

The set 6e(~) of all stabbing lines is therefore the union of some cells in the 

arrangement. Our aim is to find a worst-case upper bound on the combinatorial 

complexity of 6P(~) which is significantly lower than the complexity of the whole 

arrangement d (~) .  We consider the lines spanning edges in ~ to be in general 
position when no four lines are on the same ruled surface (planes, one sheet 

hyperboloids, and hyperbolic paraboloids [B]). For simplicity, we deal mostly 

with edges in general position and we give additional arguments to cope with 

degeneracies. 

The complexity of 6~(~) is bounded by the number of zero-dimensional faces 

(vertices) of S~(M). Each vertex represents an extremal stabbin# line. An extremal 
stabbing line l is a stabbing line for ~ which falls into one of the following three 

categories: 

t. I intersects four edges in four distinct polyhedra in ~¢ and is tangent to the 

same four polyhedra. 

2. 1 intersects one vertex and two edges in three distinct polyhedra in ~ and is 

tangent to the same three polyhedra. 

3. l meets two vertices in two distinct polyhedra in ~ and is tangent to those 

two polyhedra. 

For subclasses 2 and 3 an O(n a) upper bound is trivially established. In this 

paper we concentrate our attention on subclass 1 of extremal stabbing lines. 

An f~(n 3) lower bound for the complexity of ~ ( ~ )  is shown in [P2] and [P1] 

and can also be derived by results in [CEGS]. We prove in this paper an almost 

matching O(n32 c ~ )  upper bound on the complexity of 6a(M) and on the time to 

answer the question of whether a stabbing line exists (stabbing problem). Initially 

(Section 3) we consider only triangles to show the analysis in a simplified setting. 

The main tools used are the Pliicker coordinates of lines, which are introduced 

in Section 2, and the random sampling technique of Clarkson [C]. All randomized 

algorithms in this paper can be turned into deterministic algorithms within the 

same time bounds using the methods of Matou~ek [Ma2]. The results for 

triangles are extended to the general case of convex polyhedra in Section 4. 

The query problem (given a line, is it a stabber?) is solved using O(n 2÷~) 

preprocessing and storage, and O(log n) query time (Section 5). The query 

algorithm is used as a subroutine of an algorithm to find a stabbing line which 

uses O(na2 c l'fi~-~) time (Section 5). The techniques used in [AWl, [MO] and [JK] 

are not suitable for solving stabbing queries efficiently nor for dealing with special 

cases. Section 6 is an overview of results about special cases of the stabbing 

problem. 
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2. Pliicker Coordinates of Lines 

Triangles in three-dimensional space are plane figures bounded by edges. Therefore 

we need to be able to represent and manipulate  segments and lines in R 3 efficiently. 

We use a representation for lines called Pliicker coordinates o f  the line [So],  

[CEGS].  Two points x = (Xo, x t ,  x2, X3) and y = (Yo, Yl, Y2, Y3) in three-dimen- 

sional homogeneous  coordinates define a line 1 in 3-space. The six quantities 2 

~ij = xiy~ - x~yi, (1) 

/j = 01, 02, 03, 12, 23, 31, (2) 

are called Pliicker coordinates of the line I (oriented from x to y). They correspond 

to the two-by- two minors of the two-by-four  matrix formed by the coordinates 

of the point  x (on the first row) and y (on the second row): 

( XO Xt X2 . (3) 

Yo Yx Y2 Y3 

The six parameters  are not independent;  they must  satisfy the following 

equation (whose solution constitutes the Plficker hypersurface or Klein quadric or 

Grassman  manifold ~ 4  z [St], [HP]) :  

1J: ~01~23 "q- ~02~31 "~- ~03~12 = 0. (4) 

The six Pliicker coordinates represent uniquely an oriented line modulo  

multiplication by positive scalars, therefore the six Pliicker coordinates are 

homogeneous coordinates of  a projective oriented five-dimensional space ~s .  

The incidence relation between two lines l and l' can be expressed using the 

Pliicker coordinates of I and 1'. Let a l ,  bt (resp. a2, b2) be two points on I 

(resp. l') oriented the same as l (resp. l'). The incidence between I and l' is expressed 

as the vanishing of the determinant  of  a four-by-four matrix whose rows are the 

coordinates of a l ,  bl ,  a2, b2 in this order from top to bot tom.  3 We use the notat ion 

D(a, b, c, d) for the determinant  formed by the coordinates of the points a, b, c, d 

placed on the rows in this order  from top to bot tom:  

alo a l l  a12 a13 ] 

O(at, bl, a2, b2) de~-~f ~12~ bl l  b12 b13[ 

a21 a22 a23 

b20 b21 b22 b23 

= 0.  (5)  

2 The indices of the six quantities are chosen so as to obtain only positive signs in the following 
formulas. 

3 The absolute value of this determinant represents the volum~ of the tetrahedron whose vertices 
are al, b:, az, and b 2, after normalizing the fourth homogeneous coordinate to 1. The sign of the 
determinant is positive if the quadrupole of points has the same orientation as the reference frame 
chosen in R 3. When the volume vanishes the four points are coplanar, therefore the two lines intersect 
(or are parallel). 
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I f  we expand the determinant  according to the two-by- two minors  of  the two 

submatr ices  formed by the first two rows and by the last two rows we obtain the 

following equat ion in which only Pliicker coordinates  are involved: 

~01~23 nt- ~02~;1 q" ~03~12 hi- ~()1~23 -~" ~)2~31 "{- ~)3~12 ---~ O. (6) 

Let us introduce two mappings:  n: l ~ rt~ maps  a line in R 3 to a hyperplane 

in projective oriented five-dimensional space ~5,  whose plane coordinates are the 

Pliicker coordinates  of l appropr ia te ly  reordered, p: l ~ Pt maps  a line in R a 

to a point in ~5  whose coordinates are the Pliicker coordinates  of the line. 

The incidence relation between the two lines I and l' (expressed by equat ion (6)) 

can be reformulated as an incidence relation between points and hyperplanes  in 

¢~5. Equat ion  (6) can be rewritten in the form nz(pv) = 0, which is equivalent to 

requiring point  Pr to belong to hyperplane nl. S tandard  geometric  computat ions  

can be performed in ori6nted projective spaces using techniques due to Stolfi 

[St].  

2.1. Characterization of Stabbing Lines Using Pliicker Coordinates 

Definition 1. Given the point  a and the triangle t in 3-space the cone c¢,, t is the 

set of  rays from a intersecting t (see Fig. 1), 

A set of  triangles T and a point  a define a family of  cones c~..r = {c~,.~lt e T}. 

We say that  the family of  cones ~ , . r  is based on T with apex a. In the following 

we restrict our  at tention to s tabbing lines intersectin9 a reference plane P and we 

assume without  loss of  generality that  the triangles in T are all above P. It is easy 

to prove the following lemma:  

C ,m,y b 

/ 
, /  

/ 

Fig. 1. Cone with apex a based on t. 
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Lemma 1. There exists a stabbiny line for T intersectino P i f  and only i f  there is 

a point q on P such that (-] ~q, r ~ ~ .  

Let cg~. t be the cone based on triangle t = (Pl, P2, P3) and with apex q e P. 

Consider the three planes spanned by two vertices of t and of the apex q; the 

half-space containing the third vertex of t is called positive. When q belongs to 

the plane spanned by t the cone degenerates in a two-dimensional object, but for 

simplicity of exposition we ignore degenerate cases. The set of points in the rays 

belonging to the cone cgq, t is the intersection of the three positive half-spaces 

determined by q and t (see Fig. 1). 

We denote by aft(t) the plane spanning t. If aft(t) is parallel to the reference 

plane P, then a variable point Q in the cone cg~, t satisfies the following system of 

linear inequalities: 

D(q, Pl, P2, Q) > O, 

D(q, P2, P3, Q) >- O, 

D(q, P3, Pl, Q) >- O. 

(7) 

If necessary we relabel the vertices of t to ensure the inequalities all have the 

same sign. 

If aft(t) is not parallel to P, we consider the position of apex q with respect to 

the line I t = P c~ aft(0. The cone cg~,, is defined by the two systems of linear 

inequalities: system (7) and system (7) with the direction of the inequalities reversed, 

depending on the position of q relative to l,. 

We need two systems of inequalities because for apexes q on different sides of 

It the three positive half-spaces switch with the nonpositive ones (see Fig. 2). 

/ 

\ r l  f ra 

' , , ,"  i ,'" ,"" r4 

.,,'t..p Li," ,,-'" 

r2 1"" / '.,! /°'" 

/~/ ' i / "  "% / 
i / "  q' / "  

Fig, 2. Different cones based at q and q'. 



196 M. Pellegrini and P. W. Shor 

z 

'~ l *  

.:':2 ........... / /"" 

fo 
. . . . . . . . . . . . . . . . . . . . .  ; .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ 

Fig. 3. Stabbing line and triangle. 

Using the row exchan#e rule of determinants and changing the sign of the 

inequalities accordingly we can put all the determinants in system (7) in the form 

D(Pl, P2, q, Q), D(p2, P3,q, Q), and D(p 3, Pl, q, Q). Then we expand those determi- 

nants according to the two-by-two minors of the submatrices formed by the first 

two rows and by the last two rows. We obtain linear expressions in terms of 

Pliicker coordinates (see (5) and (6)). Note that the inequalities involve the 

Pliicker coordinates of lines supporting edges of triangles in T and the (variable) 

line passing through q and Q (see Fig. 3). 

The discussion above shows how to characterize stabbing lines intersecting a 

reference plane P using Pliicker coordinates. Let us consider three mutually 

orthogonal planes PI ,  P2, P3; every line in R 3 must intersect at least one of them. 

A bound on the number of extremal stabbing lines intersecting a given plane 

extends immediately to a bound on the number of extremal stabbing lines with 

no restrictions. 

We are now ready to state the main lemma of this section. Let ~<¢ be the set 

of lines on P induced by the set aft(T) of planes spanning triangles in T, and denote 

by ./¢ the arrangement generated by ~a on P. Clearly, all points of a region a of 

~¢ have the same relative position with respect to the lines in ~ ,  therefore the 

stabbing lines through a satisfy one system of linear inequalities. The solution set 

to such a system is the possible empty polytope 4 K, (T )  in ~5. The following lemma 

therefore holds: 

Lemma 2. Given a line l such that I c~ P ~ tr, I E 6~( T) =~ Pt~ K, (  T). 

4 More precisely, we have a polyhedron in 5-space. To avoid confusion between polyhedra in 
q-space and polyhedra in 5-space we use the word polytope in a nonstandard way. 
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3. A Combinatorial Bound for Triangles 

Relaxing the conditions of Lemma 2, we now consider a generic connected region 

on P. Let T~ be the subset of triangles in T whose spanning planes do not 

intersect a. We have the following lemma: 

Lemma 3. For a connected region a on P, let T~ be the set of  triangles whose 

spanning planes do not intersect a, 

l ~ S~(TJ) =~ p, e K~,(T~). 

Given the set of lines £P on P we use Agarwal's technique [Ag] (or Matou- 

~ek's technique [Mal] ,  [Ma2]) to partition the plane P into a set j[,(&o) of 

O(r 2) triangles so that no triangle meets more than O(n/r) lines of L~. Let o" be one 

of these triangles on P. We partition T into two sets of triangles in 3-space: T~, 

whose supporting planes do not cut tr, and T~, whose supporting planes cut ~r. 

Furthermore, by the properties of the partition, I T~I < n and IT21 < O(n/r). 

Definition 2. Given a set T, a region a, and sets T~ and T 2 as above, A~(i, j, B) 

is the set of lines that touch i edges in T~, j edges in T 2, intersect every triangle 

in the set B c T, and intersect P in the region ~. 

Let N(n) be the maximum number of extremal stabbing lines 5 for a set of n 

triangles in #eneralposition. We will show a uniform upper bound on N(n). Suppose 

without loss of generality that T, of size n, attains the maximum value N(n). Let 

No(n) be the number of extremal stabbing lines for T passing through the region 

a. Clearly, the following holds: 

N(n)= ~ N,~(n) (8) 
~ e.Ag'{.L~) 

and 

N~(n) = [A~(4, 0, T)[ + [Ao(3, 1, T)I + [Ao(2, 2, T)[ 

+ IAo(l, 3, T)I + [A,(0, 4, T)I. (9) 

The following lemma allows us to relax the stabbing conditions. 

Lemma 4. I f  C c B ~_ T, then IA,(i,j, C)I > IA~(i,j, B)I. 

Proof The set A,(i, j, ~ )  of lines touching i edges in T~ and j edges in T~ is a 

given finite set of lines because of the general position assumption. A line in 

A~(i, j, ~ )  that stabs B stabs every subset of B. [] 

By considering edges as relatively closed sets, we treat uniformly stabbing lines of type 1, 2, and 3 
according to the classification of Section I. 
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Note that Lemma 4 is true also for C G B ~ T, but in the proof of Theorem 

1 we exploit the fact that B c T. t u T 2 = T, therefore we state the lemma in this 

weaker form. Using Lemma 4 we can bound from above each term in (9) using a 

suitable subset of T: 

N,, < IA,,(4, 0, T.~)I + IA,,(3, t, T~)! + IA.(2, 2. T~)I 

+ IA.(1, 3, T)I + IA.(0, 4, T.z)I. (10) 

N o w  

1. 

we bound separately every term in (10): 

IA.(4, 0, T~)I represents the number of lines touching four edges in T. t 

and stabbing T.  t. Since the Pliicker mappings preserve incidence, if 

l ~ A.(4, 0, T~), then the Pliicker point Pl must be on an edge of the boundary 

of K~,(T~), From the general position assumption, we know that every edge 

of K,,(T~) intersects the Pliicker surface II in no more than two points. 

Therefore each edge can contribute at most two lines to A.(4, 0, T~). The 

number of edges is O(n2), by the upper bound theorem for polytopes (see 

Theorem 6.12 of Chapter 6 of [El), 
2. tA.(3, 1, T~)I represents the number of lines touching one edge in T 2 and 

three edges in T] and stabbing T]. If I e A.(3, I, T~), then the Pliicker point Pt 
must be on the boundary 6 of K,,(T~) and on a Pliicker hyperplane whose 

corresponding line spans an edge in T.  2. From the general position assump- 

tion, a 2-face, a hyperplane, and II intersect in at most two points. 

The combinatorially different classes of extremal stabbing lines are de- 

termined by cutting the PRicker polytope K,~(T~) using the Plficker hyper- 

planes corresponding to lines spanning edges of T. 2. On each Pliicker 

hyperplane derived from a line spanning an edge in T~, we have the 

intersections of n half-spaces in a four-dimensional space. Each intersection 

of half-spaces has complexity O(n2), the total complexity is O(na/f). 
3. [A,(2, 2, T,I)[ represents the number of lines touching two edges in T, 2, two 

edges in T,  t and stabbing T~. Consider all pairs of lines spanning edges of 

triangles in T~ and take their corresponding Pliicker hyperplanes. Intersect- 

ing each pair of hyperplanes we obtain O((n/r) 2) linear spaces of dimension 

3. As in the previous case we must bound the complexity of their intersection 

with K~(T~). We have O((n/r) 2) subproblems; each one is the intersection of n 

half-spaces in a three-dimensional space. Each subproblem has complexity 

O(n). The total bound is O(n3/r2). 

4. IA,(I, 3, T)t represents the number of lines touching three edges in T, z, 

one edge in T~, and stabbing T. We partition T~ into r disjoint sets 

TI . . . . .  T, of size at most ['n/r']. We form r sets Qi = Ti w Tz, for i = 1 . . . . .  r. 

From the definition of A,(1, 3, T) and the observation that a stabbing line 

for T is a stabbing line for any set Q~, we have that every line in A,(1, 3, T) 

is an extremal stabbin9 line for exactly one of  the sets Qi. The maximum 

To be precise, on a two-dimensional face. 
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number of extremal stabbing lines for any set of 2n/r triangles is N(2n/r), 

Therefore rN(2n/r) is an upper bound for [A~(1, 3, T)[. 

5. [A,(0, 4, T~)I counts the number of extremal stabbing lines for the set T~ of 

size n/r. Therefore [A,(0, 4, T~)I is bounded from above by N(n/r). 

From the above discussion and (8) and (10), we obtain the following recursive 
inequality for N(n): 

N(n) <_ rZ(can 2 4- c4na/r 4- csn3/r 2 + rN(cln/r ) 4- N(c2n/r)) , (11) 

where Cl, c2, c 3, c 4,/25 are constants. Distributing r2: 

N(n) < raN(cln/r) + rZN(czn/r) + c3r2n 2 4- c4rn 3 4- csn 3. (12) 

Lemma 5. N(n) <_ clna2~21,/i~ for some constants cl and c2. 

Proof. First, we observe that 

N(kn)<(: )N(4n)  

for any integer k > 4. This holds because we can break the kn triangles into 

subsets of size n, and then group these subsets into subsets of size 4n in every 

possible way. Each extremal stabbing line of the original set of triangles will 

be a stabbing line of at least one of these groups. Using r < n and the above 

observation, we obtain from (12) the simpler equation 

N(n) < cr3N(n/r) + cnZr (13) 

for some constant c. Now, let N(n) = n3f(n). Substituting in (13) and dividing 

by n 3 gives 

f(n) < cf(n/r) + cr. (14) 

Now, let r = 2 ~ .  We will show that we can choose cl and c 2 so that 

f(n) <_ c~2c~lV ~g~. Assume by induction that f(n/r) satisfies this equation. Then 

cf(n/r) + cr < CCl 2 ~ 2 ~  + cr 

= cc12 ~2"fiogn-~ + c 2 ~  

< cc12¢~,/i-~-c~/2 + c21,/i'~ 

= cc12-~/22~21,/i~ + c2C21v %~. 
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This last expression will be less than c12 c2",t°/i~gg" if c 2 > 1 and cc12 -~2/2 + c < 

Cl. This can be ensured with the appropriate choice of ca and c2. Now, if we 

choose c 1 and c2 so that the bounds hold for small n, then by induction they 

will hold for all n. [] 

In the case when the set of triangles is not in general position, a standard 

perturbation argument shows that the maximum of I~(T)I is attained by a set T 

in general position [CEG ÷, p. 5], I-E]. 

We summarize the result of this section with the following theorem: 

Theorem 1. Given a set T of n triangles in R 3 the complexity of  Sa(T) is bounded 

by cln32 c2",l°/i-~g', where cl and c 2 are constants. 

4. A Combinatorial Bound for Polyhedra 

Section 3 gives an almost cubic upper bound to the number of extremal stabbing 

lines of a set of triangles. The proof of a similar result for convex polygons in 

R 3 follows by simple modifications of the argument for triangles. The upper 

bound for polygons does not give immediately a similar result for polyhedra, 

because polygons are just a subclass of all polyhedra. Also, it is not convenient 

to reduce directly the problem of finding stabbing lines of polyhedra to the 

problem of finding stabbing lines for the faces of those polyhedra. A line 

intersecting a polyhedron must intersect one of its faces, therefore a stabbing 

line for a set of polyhedra is a stabbing line for a subset of faces, where each 

face is drawn from a distinct polyhedron. It is easy to check that there is a 

superpolynomial number of sets of faces to consider in the worst case. The 

approach we follow in this section is to reconsider the proof for triangles and 

adapt it for polyhedra. 

Definition 3. Given a convex polyhedron B and a point q disjoint from B, the 

cone c~. B is the set of rays from q intersecting B. 

A family ~ of polyhedra and a point q define a family of cones cgq,~ = 

{~gq, n l B e ~ } .  We assume that the reference plane P leaves all polyhedra in 

on one side and that q ~ P. It is easy to prove the following lemma: 

I.,emma 6. There exists a stabbin9 line for ~ intersectin9 P if and only i f  there 

is a point q on P such that ('] ¢gq,~ ~ ~ .  

From a point q external to the polyhedron B only a connected subset of the 

faces of B is visible. 

Definition 4. Given a polyhedron B and a point q external to B, the silhouette 

of B from q is the set of edges of B adjacent to a facet visible from q and to a 

facet not visible from q. This set is denoted as sil(q, B). 
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The set aff(:~) of planes spanning facets of :~ induce a planar arrangement 

J¢ on P. We have an equivalent of Lemma 2 for polyhedra: 

Lemma 7. Given a region a ~ Jg, a line l such that l n P e a, and a point q e ~, 

the following holds: l e 6e(~) =~ Pl E K~(sil(q, 8)). 

Proof For any B s ~ ,  and each region a E ~ /  the silhouette sil(q, B) is the 

same for any q e a, We can express the stabbing condition for all lines through 

a as the intersection of a set of cones based on the silhouettes as seen from 

a and a variable point q '~a .  We can express the intersection of this family 

of cones by a set of linear inequalities, which define a polytope K~(sil(q, :~)) 

in ~ 5  D 

Given any connected region ¢r on P, let E~ = U ~  ~ p ~ -  sil(p, B) be the set 

of edges of silhouettes that are common for all points q e ~. The equivalent of 

Lemma 3 is: 

Lemma 8. For a connected region ~ on P and a line l such that I n P ~ a, the 

followin9 holds: I t 5a(~) ~ pt e K,(E,).  

In order to use the recursive argument in the upper bound proof we need 

to be able to reconstruct a set of polyhedra from a set of edges. Given" a 

polyhedron B, we consider B as the intersection of positive half-spaces based 

on the planes spanning the facets and we pair the half-spaces to form wedges. 

Definition 5. Given a polyhedron B and an edge e of B, the wedge w(e, B) is 

the intersection of two positive half-spaces defined by planes spanning facets 

adjacet to e. 

Definition 6. Let B be a polyhedron, let E(B) be the set of edges of B, and let 

E' be any subset of E(B). Then 

W(E', B)do=f (.] w(e, B). 

e E E  ~ 

For the properties of the intersection we have the following lemma: 

Lemma 9. 

1. W(E(B), B) = B. 

2. I f  E' ~_ E" ~ E(B), then W(E", B) ~_ W(E', B). 

In order to preserve separation properties the polyhedra of the form W(E', B) 

are intersected with the region of R 3 above the plane P. For simplicity of 

exposition we omit this detail in the rest of the discussion. From Lemma 9 the 

following lemma is easily obtained. 

Lemma 10. I f  a line l stabs B, then, f o r  every E' ~_ E(B), l stabs W(E', B). 
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All definitions and lemmas of this section extend to sets of polyhedra. Given 

a connected region a of P and a set of polyhedra :~ of total complexity n we 

define the set E .  of edges of silhouettes common to all points in a: 

E.= U n sil(p,B) 
B e ~  p e a  

and the set Qo of edges of silhouettes that are not common to all points in a: 

Q.= U U sil(p, B ) -  E~. 
B e g t  pe~r 

Now we partition P in r 2 regions such that for each one the set Q. has small 

size. Consider the set L a of lines induced by aff(9~) on P; we associate to every 

line in Sa a weight equal to the number of edges incident to the corresponding 

facet of 9~. Clearly, the sum of the weights is equal to the number of facet/edge 

incidences, that is O(n), 
The partitioning technique I-Ag], I-Mat], [Ma2] allows us to subdivide P into 

a set J / ' ( ~ )  of r E triangular regions such that each region is cut by lines of LP 

whose total weight is O(n/r). 
Consider two points q' and q on P with the same relative position with respect 

to all lines in L~ except for one line I e S a. The silhouettes of a polyhedron from 

q and q' differ in the worst case on the edges incident to the facet corresponding 

to I. The number of these edges is the weight of l. Therefore the sum of the weights 

of lines cutting a is an upper bound to the cardinality of Q.. To summarize, for 

every region a of P, 

lEvi < O(N), 

I Q.I < O(n/r). 

A stabber l through a is extremal if it touches four edges of silhouettes in four 

different objects in ~,  at least two of which are distinct, and is tangent to them. 

We can distribute the four contacts on the sets E a and Q. and define all extremal 

stabbing lines through a. 

Definition 7. Given a set 9~ of polyhedra in general position, a region a, sets E.  

and Q. as above, and a subset E ~_ E(~), A.(i, j, E) is the set of lines that touch i 

edges in E.,  j edges in Q~, intersect every polyhedron in the set W(E,M), and 

intersect P in the region a. 

We denote by N(n) the maximum number of extremal stabbing lines of type 1, 

2, and 3 for a set of convex polybedra with n edges in generalposition. We assume 

without loss of generality that our set ~ attains the maximum. By No(n) we denote 

the number of extremal stabbing lines for ~ through a. Recalling that ~ = 

W(E(~), ~), the following holds: 

N(n)= ~ N~(n) 
a e .M' ( .~)  
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and 

N,,(n) = IA~(4, 0, E(~))I + IA,,(3, 1, E(~))I + IA,,(2, 2, E(~))I 

+ IA,~(1, 3, E(~))I + IA,,(0, 4, E(~))I. (15) 

The following lemma allows us to use subsets of the edges of ~ to relax the 

stabbing conditions: 

Lemma 11. l f  E' c E" ~_ E(~), then IA.(i,j,E')[ > IAo(i,j,E")l. 

Proof. From Lemma 9, W(E", B) c W(E', B) for every B ~ ~ and from Lemma 

10 every line stabbing W(E", B) also stabs W(E', B). [] 

Using Lemma 11 we bound from above every term in (15) using suitable subsets 

of E(~): 

No < IA~(4, 0, Eo) I + tA~(3, 1, Eo)l + [A,,(2, 2, E,,)I 

+ [A.(1, 3, E(~))I + I Ao(0, 4, Q.)t- (16) 

We bound separately every term in (16) using observations similar to those in 

the proof of Theorem 1: 

1. [Ao(4, 0, Eo)[ is bounded by the complexity of the Pliicker polytope Ko(E~), 
which is O(n2). 

2. [Ao(0, 4, Qo)[ is the number of external stabbing lines for Qo, bounded from 

above by N(O(n/r)). 
3. IA,(3, 1, E,)I counts the lines touching one edge in E, and three edges in Q, 

and stabbing W(E,, ~). These lines are determined by cutting the Plficker 

polytope K,(E,) using the hyperptanes corresponding to edges of Q,. The 

total complexity is O(n3/r). 
4. jAo(2, 2, E,)[ counts the lines touching two edges in Eo and two edges in Qo, 

Pairing the hyperplanes in Q, we obtain O((n/r) 2) linear spaces to intersect 

with Ko(Eo). The bound for this quantity is O(n3/r2). 

5. [A,(1, 3, E(~))[ counts the lines touching three lines in Qo and one edge in Eo 

and stabbing ~.  An argument similar to that used for Theorem 1 gives an 

upper bound rN(O(n/r)). 

From the above discussion we obtain the following recursive equation for N(n): 

N(n) < r2(n 2 + N(O(n/r)) + n3/r +na/r 2 + rN(O(n/r))), (17) 

which is the same recursion as in Lemma 5. We summarize the main result of 

this section with the following theorem: 

Theorem 2. Given a set ~ of  polyhedra with total complexity n, the complexity 

of  6"~(~) is bounded by cln32 "~l°/i~g~, where c I and c2 are constants. 
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5. Finding a Stabbing Line 

Lemma 12. Given a set o f  n half-spaces in R d, there exists a data structure 

which uses O(n Ld/2j+~') storage and can be built in O(n Ld/2J+~') expected time that in 

O(log n) time determines whether any point p e r  d belongs to the intersection 

of  the half-spaces. 

Proof Given n half-spaces, draw a random sample of size r. Compute the 

intersection of the sample and triangulate it. Carry on the construction recursively 

in each of the simplices over the O(n/r log r) half-spaces intersecting each simplex 

[C]. The time and storage needed to compute the set of simplices is proportional 

to the number of vertices of the intersection of the sampled half-spaces, which is 

O(r La/2j) by the upper bound theorem. The function Y-(n) which is the maximum 

storage and preprocessing time of the recursive data structure satisfies the 

following inequality: 

J ( n )  <_% O(rLa/ZJ)~--((n log r)/r) + O(r La/zj tog r). (18) 

The solution is O(nLd/2J+O. For r constant, the query time is O(log 2 n). To 

improve the query time we set r = n v, and we choose v depending on e in the range 

(Ld/2J + e)/(Ld/2J(d + e)) > v > 0. We set up fast point-location data structures 

for locating in O(log r) time the simplex containing the query Pliicker point. The 

additional data structure is a standard point-location data structure in a set of 

hyperplanes which uses O(r Ld/2~d÷`)) storage. The additional O(n Ld/2j+`) term in (18) 

does not change the asymptotic bound on ~"(n). The new search tree has constant 

depth, therefore a total query time O(log n). Using the techniques in [St] this 

results hold also in oriented projective d-space ~ .  []  

Theorem 3. There exists an algorithm for  answering line stabbing queries on a set 

o f  polyhedra in three dimensions with total complexity n, that requires O(n 2+~) 

expected randomized preprocessing time and space, with O(log n) worst-case query 

time. 

Proof Consider facets of polyhedra in :~ and give to each of them a weight equal 

to the number of edges incident to the facet. We draw a random sample R of the 

set of weighted facets, obtaining an induced arrangement AR on the plane P. Each 

simplex of the triangulated arrangement a t  A(Ag) is intersected by planes 

spanning facets whose total weight is O(n/r log r), by results in [C]. 

For  each edge e not incident to planes cutting tr, we can decide whether e is 

part of the silhouette for all points in tr, by comparing e with a point q e a. The 

overhead for silhouettes computation is O(rZn). Let Eo be the set of silhouette 

edges common to all points in a. If I is a stabber for ~ and l intersects a, then 

Pt ~ Ko(Eo). Therefore, we set up a point-location-in-a-polytope data structure of 

Lemma 12 for each region a and each set Eo. We continue recursively the 

construction within each simplex in A(AR) for the lines defined by planes in aff(:~) 

passing through the simplex. Denoting by ~'(n) the total storage (and preprocess- 
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ing time) for the stabbing query data structure, we obtain the following recurrence 

equation: 

9-(n) = r2~-((n/r) log r) + O(r2n 2+~) + O(r2n), (19) 

whose solution is ~'-(n) = O(r2n2+e), for a different, slightly greater, e. 

The query algorithm is the following: given the line l, consider the point 

q = l r~ P and locate it in a simplex tre z~(AR); then locate the Pliicker point 

Pt in the associated Pli.icker polytope K,.  If the point Pt is external to K~ the 

line l is not a stabber; otherwise, we recurse the query on the data structure 

associated with a. The depth of the recursion is at most log, n. We set r = n", and 

we choose v depending on e. We add fast planar point-location data structures to 

locate the simplex a such that tr c~ l # ~ .  The size of the planar point-location data 

structure is O(r2). The additional term in (19) does not change the asymptotic 

solution. The depth of the tree is constant and we obtain a total O(log n) query 

time. We can make sure that the depth of the search tree is constant in the worst 

case by requiring that, if a random sample does not have the required property 

(which holds with high probability), it is discarded and a new sample is drawn. 

With high probability we will not have to resampte often and the asymptotic 

expected complexity is increased only by a multiplicative constant (see p. 216 of 

[c]). [] 

Theorem 4. Given a set ~ of  polyhedra in general position with total complexity 

n, the set of  all extremal stabbing lines can be found in time 0(n32 " l'/i~) for a 

suitable constant c. 

Proof Suppose the set ~ is in general position. The counting argument used in 

Sections 3 and 4 to bound the number of extremal stabbing lines can be easily 

modified to give an algorithm whose output is a set of lines L that is a superset 

of the set of all extremal stabbing lines. All counting arguments in the proof are 

based either on recursive steps or on the worst-case complexity of the intersection 

of half-spaces. We find actual lines by intersecting the edges of the resulting 

polytopes with the Pliicker hypersurface II. 

Rewriting (12) for the time needed to compute L it is easy to see that the critical 

term is c j n  3, which corresponds to solving convex-hull problems in four-dimen- 

sional space. The optimal convex-hull algorithm of Seidel [El  for even dimension 

constructs the intersection without any extra factor over the worst-case combina- 

torial complexity of the output. The final bound, resulting from solving a recursive 

inequality similar to (12), is the same as in Lemma 5. 

The superset L of lines computed in the first phase has size O(n32 c2 I,/i'g~) and can 

be found in time 0(n32C2~).  Using the stabbing query algorithm of Theorem 3 

after O(n 2 +~) preprocessing we can determine in O(log n) time whether a line in L 

is a stabber for ~.  The total complexity is O(n 2÷~ + cln32 "21"/i~ log n) which is 

O(n32 c ~'/i~) for a constant c > C 2 .  [ ]  
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The combinatorial bound on I ow(~)l for a set of triangles (polyhedra) in general 

position is extended to a set of triangles (polyhedra) not in general position by 

using a standard perturbation argument. In order to obtain an algorithm, however, 

we have to deal with degeneracies explicitly. The algorithm of Theorem 4 has three 

phases. In the first phase a set of Pliicker polytopes is generated. In the second 

phase we intersect the Pliicker polytopes with the Pliicker surface II. In the general 

case, the intersection of an edge e with II is a finite set of Pliicker points, which 

are tested, in the third phase, using the procedure of Theorem 3. 

1. A degenerate situation arises when the edge e is fully contained in II. The edge 

e is (a portion of) a one-dimensional set F of lines in 3-space. If all the lines in 

F are stabbing lines for ~,  then we just include one point of e in the test set 

of lines. If not all the lines in F are stabbing lines, but there is at least one 

stabber in F, then there exists an extremal stabbing line in F defined by three 

of the lines whose Pliicker hyperplanes contain e and a fourth line whose 

Pliicker hyperplane does not contain e. This extremal stabbing line is either 

an endpoint of e or it is a test line for some of the Pliicker polytopes 

produced in the first phase of the algorithm. To account for this case, we 

include the endpoints of e in the test set. 

2. We have a second degenerate case when a two-dimensional face f of a 

Pliicker polytope is completely contained in II. Then f is (a portion of) a 

two-dimensional family of lines A. If all the lines in A are stabbing lines for ~,  

we include one line of A in our test set. If not all the lines of A are stabbing 

lines for ~,  but there is at least one stabber in A, then two of the lines whose 

Pliicker hyperplanes contain f and a line whose Plficker hyperplane does 

not contain f must define a one-dimensional family of lines F which contains 

a stabbing line. F contains some edge e of some Pliicker polytope. This case 

is covered by the analysis at 1. 

3. A three-dimensional face of a Pliicker polytope cannot be completely 

contained in II [So], therefore, there are no other degeneracies to consider. 

The above discussion proves the following corollary: 

Corollary 1. In time 0(n32 c ~Cig~) we can determine whether a set o f  polyhedra with 

n facets has a stabbing line andfind one. 

6. Other Results on Line Stabbing and Open Problems 

• If we have a set of parallel triangles the number of extremal stabbing lines is 

®(n 2) and the set of all stabbing lines ~ (T )  is connected. A stabber can be found 

in time O(n) [P2]. For a set of polyhedra of total complexity n whose facets lay 

on c different plane directions there exists an algorithm to find a stabbing line in 

time O(c2n 2 log n) [P2], [P1]. 

• Hohmeyer and Teller [HT] give an O(n log n) algorithm for finding a 

stabbing line of a set of axis-oriented boxes. Recently, Megiddo ~ [Me] and Amenta 

7 Actually, Megiddo's algorithm finds a stabber in linear time for axis-oriented boxes in any fixed 
dimension. 
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[Am] have found linear-time algorithms, based on linear programming techniques, 

for this problem. The problem of finding an algorithm close to linear for c-oriented 

polyhedra is still open. 

• Theorem 2 gives the best-known upper bound on the number of compo- 

nents of ,~(~). The best-known lower bound for the number of components is 

D,(n 2) (see [P2]). The challenge here is to narrow the gap between the two bounds. 

• There is an f2(n log n) lower bound on the time needed to find a stabbing 

line of a set of polyhedra in 3-space. This bound is obtained by extending a lower 

bound tbr finding a stabbing line in a set of segments in R 2 [ARW]. We are still 

far from a provably optimal algorithm for the general stabbing problem. 

• For a set of disjoint polyhedra, it is easy to show an f~(n 2) lower bound for 

I~(~)l, by exploiting a planar construction in [ES]. It would be interesting to 

narrow the gap between the upper and the lower bound for disjoint polyhedra. 
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