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ABSTRACT

The volume of data that will be produced by new-generation surveys requires automatic

classification methods to select and analyse sources. Indeed, this is the case for the search for

strong gravitational lenses, where the population of the detectable lensed sources is only a

very small fraction of the full source population. We apply for the first time a morphological

classification method based on a Convolutional Neural Network (CNN) for recognizing strong

gravitational lenses in 255 deg2 of the Kilo Degree Survey (KiDS), one of the current-

generation optical wide surveys. The CNN is currently optimized to recognize lenses with

Einstein radii �1.4 arcsec, about twice the r-band seeing in KiDS. In a sample of 21 789

colour–magnitude selected luminous red galaxies (LRGs), of which three are known lenses,

the CNN retrieves 761 strong-lens candidates and correctly classifies two out of three of

the known lenses. The misclassified lens has an Einstein radius below the range on which

the algorithm is trained. We down-select the most reliable 56 candidates by a joint visual

inspection. This final sample is presented and discussed. A conservative estimate based on our

results shows that with our proposed method it should be possible to find ∼100 massive LRG-

galaxy lenses at z � 0.4 in KiDS when completed. In the most optimistic scenario, this number

can grow considerably (to maximally ∼2400 lenses), when widening the colour–magnitude

selection and training the CNN to recognize smaller image-separation lens systems.

Key words: gravitational lensing: strong – methods: data analysis – methods: statistical –

surveys – galaxies: elliptical and lenticular, cD.

1 IN T RO D U C T I O N

Strong gravitational lensing is a rare phenomenon that provides

very tight constraints on the projected mass of the foreground

lens galaxy. In fact, the total mass (dark plus baryonic) within the

Einstein radius depends almost solely on the space–time geometry

of the lensing system (the source and the lens redshift and the cos-

mological parameters). For this reason, strong lensing is a unique

tool, if combined with central velocity dispersion measurements

and stellar population analysis, to estimate the fraction of dark

matter in the central regions of galaxy-scale haloes (e.g. Gavazzi

et al. 2007; Jiang & Kochanek 2007; Cardone et al. 2009; Cardone &

Tortora 2010; Grillo et al. 2010; Tortora et al. 2010; More et al. 2011;

⋆E-mail: petrillo@astro.rug.nl

Ruff et al. 2011; Sonnenfeld et al. 2015), and to constrain the slope

of the inner mass density profile (e.g. Treu & Koopmans 2002a,b;

Koopmans & Treu 2003; Koopmans et al. 2006; More et al. 2008;

Barnabè et al. 2009; Koopmans et al. 2009; Cao et al. 2016).

Gravitational lenses can also be used to constrain the stellar

initial mass function (e.g. Ferreras et al. 2010; Treu et al. 2010;

Spiniello et al. 2011; Brewer et al. 2012; Posacki et al. 2015; Son-

nenfeld et al. 2015; Leier et al. 2016) and to independently measure

the Hubble constant through time delays (e.g. Suyu et al. 2010;

Bonvin et al. 2016). In addition, strong lensing gives magnified

views of background objects otherwise inaccessible to observa-

tions (e.g. Impellizzeri et al. 2008; Swinbank et al. 2009; Richard

et al. 2011; Deane et al. 2013; Treu et al. 2015; Mason et al. 2016).

A homogeneously selected large lens sample can improve dra-

matically the effectiveness of the methods and the reliability of the

results from gravitational lensing studies. The largest homogeneous

C© 2017 The Authors
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sample so far is provided by the Sloan Lens ACS Survey (SLACS;

Bolton et al. 2008) with almost 100 observed lenses. In the fu-

ture, deep high-resolution wide surveys have the potential to pro-

duce samples three orders of magnitude larger than the current

known lenses. These large numbers will allow to, e.g. greatly

improve the precision in the mass density slope measurements

(Barnabè et al. 2011), in better estimate the presence of substructure

(Vegetti & Koopmans 2009) and to put constraints on the nature of

dark matter (Li et al. 2016).

Upcoming telescopes, such as Euclid (Laureijs et al. 2011) and

the Large Synoptic Survey Telescope (LSST; LSST Science Collab-

oration et al. 2009), will increase the rate of discovery of new lenses,

reaching the number of ∼105 new strong-lensing systems (Oguri &

Marshall 2010; Pawase et al. 2012; Collett 2015). Also, the number

of lenses that will be observed by the Square Kilometre Array is ex-

pected to be of the same of order of magnitude (McKean et al. 2015).

The ongoing optical wide surveys, such as the Kilo Degree Survey

(KiDS; see Section 2), the Dark Energy Survey (The Dark Energy

Survey Collaboration 2005) and the Subaru Hyper Suprime-Cam

Survey (Miyazaki et al. 2012) are expected to find samples of lenses

of the order of ∼103 (see e.g. Collett 2015). Sub-mm observations

from Herschel (Negrello et al. 2010) and the South Pole Telescope

(Carlstrom et al. 2011), together with deeper, high-resolution obser-

vations from the Atacama Large Millimeter/sub-millimeter Array,

are expected to provide several hundred new lenses as well.

Traditionally, the search of extended lens features (i.e. arcs and

rings) relied heavily on the visual inspection of the targets. This is

still the best approach for small samples of objects, but is imprac-

tical for the ongoing and new-generation surveys given the large

number of targets that need to be inspected. Accordingly, numer-

ous automatic lens finders have been developed in recent years.

Most are based on the identification of arc-like shapes (e.g. Lenzen,

Schindler & Scherzer 2004; Horesh et al. 2005; Alard 2006; Estrada

et al. 2007; Seidel & Bartelmann 2007; Kubo & Dell’Antonio 2008;

More et al. 2012). The same approach, together with a colour se-

lection, is employed by Maturi, Mizera & Seidel (2014). Another

method consists of subtracting the light of the central galaxies using

multiband images and then analyse the image residuals (Gavazzi

et al. 2014). Joseph et al. (2014) follow a similar approach but

employing machine-learning techniques to analyse single-band im-

ages. Instead Brault & Gavazzi (2015) model the probability that

the targets are actual lenses. Very recently Bom et al. (2016) have

developed an artificial neural network for recognizing strong lenses

that uses as entries a set of morphological measurements of the

targets. A completely different approach based on crowdsourcing is

employed in the Space Warps project (Marshall et al. 2016; More

et al. 2016), with volunteers visually inspecting and classifying

galaxy cutouts through a web applet.1 All these automatic methods

have their advantages and disadvantages and perform at their best

with different typologies of lenses, quantity and kind of data avail-

able. A detailed comparison between these methods should be done

on a common data set, but is beyond the scope of this paper.

Convolutional Neural Networks (CNNs; Fukushima 1980;

LeCun et al. 1998) are a state of the art class of machine learn-

ing algorithm particularly suitable for image recognition tasks. The

ImageNet Large Scale Visual Recognition Competition (ILSVRC;

Russakovsky et al. 2015; the most important image classification

competition) of the last 4 yr has been won by groups utilizing CNNs.

The advantage of CNNs with respect to other pattern recognition

1 https://spacewarps.org/

algorithms is that they automatically define and extract represen-

tative features from the images during the learning process. Al-

though the theoretical basis of CNNs was built in the 1980s and the

1990s, only in the last years do CNNs generally outperform other

algorithms due to the advent of large labelled data sets, improved

algorithms and faster training times on e.g. Graphics Processing

Units. We refer the interested reader to the reviews by Schmidhuber

(2015), LeCun, Bengio & Hinton (2015) and Guo et al. (2016) for

a detailed introduction to CNNs.

The first application of CNNs to astronomical data was made by

Hála (2014) for classifying spectra in the Sloan Digital Sky Survey

(SDSS; Eisenstein et al. 2011). Then, Dieleman, Willett & Dambre

(2015)2 used CNNs to morphological classify SDSS galaxies. Sub-

sequently, Huertas-Company et al. (2015) used the same set-up of

Dieleman et al. (2015) for classifying the morphology of high-z

galaxies from the Cosmic Assembly Near-IR Deep Extragalactic

Legacy Survey (Grogin et al. 2011). More recently, Hoyle (2016)

adopted CNNs for estimating photometric redshifts of SDSS galax-

ies. CNNs have been employed also by Kim & Brunner (2017) for

star/galaxy classification.

In this paper, we present our morphological lens finder that is

based on CNNs. We apply it to the third data release of KiDS

(de Jong et al. 2015, 2017), starting a systematic census of strong

lenses. This project, which consists of both visual and automatic

inspection of the KiDS images, is dubbed ‘Lenses in KiDS’. KiDS

is a particularly suitable survey for finding strong lenses, given its

excellent seeing and pixel scale, in addition to the large sky coverage

(see Section 2).

The paper is organized as follows. In Section 2, we provide a

brief description of the KiDS survey and the way in which we

select the LRG-galaxy sample used in this work. In Section 3, we

illustrate our lens-finding CNN-based algorithm and how we build

the training data set. In Section 4, we explain how we apply our

method to ∼255 deg2 of KiDS, present the list of our new lens

candidates, compare it with the literature and with a forecast of

the expected number of detectable strong gravitational lenses in the

survey and do a consistency check of the observed Einstein radii of

the candidates to select the most reliable ones. Finally, in Section 5,

we provide a summary, the main conclusion of this work and a

short outlook for future plans and improvements. In the following,

we adopt a cosmological model with (�m, ��, h) = (0.3, 0.7, 0.75),

where h = H0/100 km s−1 Mpc−1.

2 T H E K I D S S U RV E Y

The KiDS (de Jong et al. 2015) is one of the three ESO pub-

lic surveys carried out using the OmegaCAM wide-field imager

(Kuijken 2011) mounted at the Cassegrain focus of the VLT Survey

Telescope (VST; Capaccioli & Schipani 2011) at Paranal Observa-

tory in Chile. OmegaCAM is a 256 Megapixel camera containing

32 science CCD detectors which cover a 1 degree2 field of view at

a pixel-size of 0.21 arcsec. The VST is a 2.6m telescope with active

control of the primary and secondary mirror which is driven by

wave-front sensing via two auxiliary CCDs in OmegaCAM. In this

way, the camera–telescope combination is specifically designed to

obtain sharp and homogeneous image quality over the wide field

of view. KiDS is a 1500 deg2 extragalactic imaging survey in four

2 The method won a challenge against other techniques https://www.

kaggle.com/c/galaxy-zoo-the-galaxy-challenge/
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optical bands (u, g, r and i). The survey area is divided over an equa-

torial patch and a Southern patch around the South Galactic Pole.

Observations are queue scheduled, reserving the best seeing for the

r band which has a median full width at half-maximum (FWHM) of

the point spread function (PSF) of 0.65 arcsec with a maximum of

0.8 arcsec. Median PSF FWHM values in u, g and i are 1.0, 0.8 and

0.85 arcsec, respectively. KiDS reaches limiting magnitudes (5σ

AB in a 2 arcsec aperture) of 24.3, 25.1, 24.9 and 23.8 in u, g, r

and i band, respectively. The primary science driver for the survey

design is the study of the dark matter distribution over cosmolog-

ical volumes via weak-lensing tomography. Strong-lensing survey

studies are a particularly suitable science case as well, because they

exploit the combination of superb image quality and wide survey

area.

2.1 Data release three

In this paper we make use of the most recent public data release

(KiDS ESO-DR3, de Jong et al. 2017). It consists of the co-added

images, weight maps, masks, single-band and multiband catalogues

and photometric redshifts for 292 survey tiles. We use the multiband

photometry based on r-band detections, with a total of 33 million

unique sources. Our data handling and scientific data analysis is

performed using the Astro-WISE information system (Valentijn

et al. 2007). The source extraction and related photometry have

been obtained with SEXTRACTOR (Bertin & Arnouts 1996). We rely

on both aperture photometry and the Kron-like MAG_AUTO. A rel-

evant output parameter of SEXTRACTOR is the FLAGS parameter.

We set the r-band FLAGS to be <4, to only include de-blended

sources and remove from the catalogues those objects with incom-

plete or corrupted photometry, saturated pixels or any other kind

of problem encountered during de-blending or extraction. Critical

areas such as saturated pixels, star spikes and reflection haloes have

been masked using a dedicated automatic procedure (PULECENELLA).

The IMA_FLAGS flags store the result of this masking operation:

sources that are not in critical regions have this parameter set to

0. Photometric redshifts are determined using the program BPZ

(Benı́tez 2000), which is a Bayesian photo-z estimator based on

a template fitting method (see de Jong et al. 2017, for further de-

tails). The unmasked effective area adopted, considering the sources

with IMA_FLAGS =0 in all the KiDS-DR3 bands, is 255 deg2.

2.2 Luminous red galaxy sample

We select luminous red galaxies (LRGs; Eisenstein et al. 2001) from

the 255 deg2 of the KiDS-ESO DR3 for the purpose of both training

our CNN and searching for lens candidates among them. LRGs are

very massive and hence more likely to exhibit lensing features com-

pared to other classes of galaxies (∼80 per cent of the lensing pop-

ulation; see Turner, Ostriker & Gott III 1984; Fukugita et al. 1992;

Kochanek 1996; Chae 2003; Oguri 2006; Möller, Kitzbichler &

Natarajan 2007). We focus on this kind of galaxies in this work and

will consider other kind of galaxies in the future. The selection is

made with the following criteria where all the parameters are from

SEXTRACTOR and magnitudes are MAG_AUTO:

(i) The low-z (z < 0.4) LRG colour–magnitude selection of

Eisenstein et al. (2001), adapted to including more sources (fainter

Figure 1. Colour g–r versus photometric redshift. The g and r values

are MAG_AUTO magnitudes and the photometric redshift is obtained with

BPZ. The dots are sources from KiDS DR3. Shown are (i) extended objects

with MAG_AUTO in r band less than 20 (blue), (ii) objects that satisfy the

Eisenstein et al. (2001) colour-magnitude selection (red) and (iii) objects

selected with our expanded colour–magnitude selection (green). See Sec-

tion 2.2 for the details.

and bluer):

r < 20

|cperp| < 0.2

r < 14 + cpar/0.3,

where (1)

cpar = 0.7(g − r) + 1.2[(r − i) − 0.18)]

cperp = (r − i) − (g − r)/4.0 − 0.18

(ii) A source size in the r band larger than the average FWHM

of the PSF of the respective tiles, times a factor empirically chosen

to maximize the separation between stars and galaxies.

This final selection provides an average of 74 LRGs per tile and a

total of 21 789 LRGs. We refer to this sample as the ‘LRG sample’

in the remainder of the paper. Compared to the original colour–

magnitude selection for z < 0.4 (Eisenstein et al. 2001), we obtain

∼3 times more galaxies. A colour-photo-z diagram of the results of

the two different cuts is shown in Fig. 1 for illustration.

3 T R A I N I N G T H E C N N TO F I N D L E N S E S

Our lens finder is based on a CNN and is inspired by the work of

Dieleman et al. (2015). CNNs are supervised deep-learning algo-

rithms (see the recent reviews from LeCun et al. 2015; Schmidhu-

ber 2015; Guo et al. 2016) particularly effective for image recog-

nition tasks (see e.g. He et al. 2016, winner of the last ILSVRC

competition; Russakovsky et al. 2015) and regression tasks, such

as, in the astronomical domain, the determination of galaxy mor-

phologies (Dieleman et al. 2015; Huertas-Company et al. 2015).

The algorithm converts sequentially the input data through non-

linear transformations whose parameters are learned in the training

phase. A set of labelled images (the training set) is used as input

of the CNN in this phase. The network changes its parameters by

optimizing a loss function that expresses the difference between

its output and the labels of the images in the training set. This al-

lows the CNN to learn complex functions and to extract features

from the data that are not hand designed but are learned during the

MNRAS 472, 1129–1150 (2017)
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training stage. After the training procedure, the CNN can be used

for classifying new data by keeping its parameters fixed. For the

interested reader, in Appendix A, we shortly introduce the technical

background of CNNs that are relevant to some of the choices made

in this paper.

3.1 Input samples

Finding strong gravitational lenses can be reduced to a two-class

classification problem, where the two kinds of objects to recognize

are the lenses and the non-lenses. Training a CNN to solve this task

requires a data set representative of the two classes called train-

ing set. It has to be large enough because of the large number of

parameters of a CNN (usually of the order of 106). In the case of

strong gravitational lenses, we do not have a large enough repre-

sentative data set at our disposal. The largest sample available is

collected in The Masterlens Database.3 Unfortunately, this sample

cannot be used as a training set for our purpose, since it is small

and heterogeneous. It consists of 657 lens systems that are not all

spectroscopically confirmed, that have been discovered in various

surveys and programs, or that are observed at different wavelengths

according to the instrument used.

For these reasons, we build a set of mock lens systems, relying

on a hybrid approach: first we select real galaxies, with their fields,

obtained from KiDS (Section 3.1.1), in order to include seeing,

noise and especially the lens environment that is a feature hard to

simulate and its omission would limit the ability of the network

to recognize lenses in real survey data. Then we independently

simulate the lensed sources (Section 3.1.2) and combine them with

the real galaxies (Section 3.2).

We limit our training to r-band images, where KiDS provides the

best image quality (an average FWHM of 0.65 arcsec). Hence, the

network will learn selection criteria mostly based on the morphol-

ogy of the sources. We plan to ingest multiwavelength data into

the network in future improvements, allowing the training on the

differences in colours. Our training set consists of images of lens

and non-lens examples produced with r-band KiDS images of real

galaxies (see Section 3.1.1) and mock gravitational lensed sources

(see Section 3.1.2). In Section 3.2, we summarize how the actual

positive (lenses) and negative examples (non-lenses) employed in

the training of the network, are produced. We train our CNN on

a set of six millions images (three million lenses and three mil-

lion non-lenses with labels 1 and 0, respectively). Our trained CNN

gives as output a value p ranging between 0 and 1. The sources with

an output value of p larger than 0.5 are classified as lenses. The

technical details of our implementation and the training procedure

can be found in Appendix B, providing further background to our

procedures and choices. We further expand our training set using

data augmentation techniques (Section 3.3).

3.1.1 Real galaxy sample

We select a sub-sample of the KiDS LRGs (see Section 2.2) con-

sisting of 6554 galaxies (a third of the full sample), which we have

visually inspected finding 218 contaminants, mostly face-on spirals.

Additionally, we have collected a sample of 990 sources wrongly

classified as lenses in previous tests with CNNs. We use this sam-

ple in the training set to reject clear outliers. The 6326 LRGs, the

218 contaminants and the 990 false positives constitute together the

non-simulated part of the data used to build the training set. We will

refer to it as the real galaxy sample in the remaining of this paper.

3 http://masterlens.astro.utah.edu/

Table 1. The range of values adopted for the model parameters of the lens

and source. See Section 3.1.2 for further details.

Parameter Range Unit

Lens (SIE)

Einstein radius 1.4–5.0 arcsec

Axis ratio 0.3–1.0 –

Major-axis angle 0.0–180 degree

External shear 0.0–0.05 –

External-shear angle 0.0–180 degree

Source (Sérsic)

Effective radius 0.2–0.6 arcsec

Axis ratio 0.3–1.0 –

Major-axis angle 0.0–180 degree

Sérsic index 0.5–5.0 –

Figure 2. Several examples of simulated lensed sources produced as de-

scribed in Section 3.1.2. The image size is 101 by 101 pixels, corresponding

to 20 by 20 arcsec.

3.1.2 Mock lensed source sample

The mock lensed source sample is composed by 106 simulated

lensed images of 101 by 101 pixels, using the same spatial resolution

of KiDS (0.21 arcsec pixel−1), corresponding to a 20 by 20 arcsec

field of view. We produce the different lensed image configurations

by sampling uniformly the parameters of the lens and source models

listed in Table 1. A few examples are shown in Fig. 2. The choice

of uniformly sampling the parameter space does not reproduce the

distribution of the parameters for a real lens population, but allows

the classifier to learn the features for recognizing the different kinds

of lenses, no matter how likely they are to appear in a real sample

of lenses.

We model the sources with a Sersic (1968) profile and the lenses

with a Singular Isothermal Ellipsoid (SIE; Kormann, Schneider &

Bartelmann 1994) model. At source redshifts of z > 0.5, smaller

sizes and smaller Sérsic indices are found with respect to the local

universe, and the fraction of spiral galaxies (with n < 2–3) increases

(e.g. Trujillo et al. 2007; Chevance et al. 2012). We exclude spiral

galaxy sources or very elliptical ones considering only axis ratios

>0.3. The source positions are chosen uniformly within the ra-

dial distance of the tangential caustics plus one effective radius of

the source Sérsic profile. This leads our training set to be mostly

composed of high-magnification rings, arcs, quads, folds and cusps

rather than doubles (Schneider, Ehlers & Falco 1992) that are harder

to distinguish from companion galaxies and other environmental ef-

fects. In this paper, our first-order goal is to find the larger, brighter

and more magnified strong lenses, rather than aim for completeness

over the full parameter space of lenses.

MNRAS 472, 1129–1150 (2017)
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Figure 3. A schematic of the training-set creation. For the non-lens ex-

amples we use real KiDS image-cutouts of LRGs and other galaxies (see

Section 3.1.1). For producing the lens examples we mix KiDS LRGs and

simulated mock lensed sources (Section 3.1.2). In the process the images

are augmented and preprocessed as explained in Sections 3.3 and 3.2.

The upper limit of 5 arcsec for the Einstein radius aims to include

typical Einstein radii for strong galaxy–galaxy and group–galaxy

lenses (Koopmans et al. 2009; Foëx et al. 2013; Verdugo et al. 2014).

The lower limit is chosen to be 1.4 arcsec, about twice the average

FWHM of the r-band KiDS PSF. Because lenses are typically early-

type galaxies, which do not have high ellipticity, we choose 0.3 as

a lower limit of the axis ratio (Binney & Merrifield 1998). We set

the external shear to less than 0.05, higher than typically found for

SLACS lenses (Koopmans et al. 2006) with a random orientation

varying between 0 and 180 deg.

3.2 Building the training examples

Each training image passed to the network is built as described

below and as summarized schematically in Fig. 3.

Mock lenses (positive sample): To create the mock lenses, we

carry out the following procedure: (i) we randomly choose a mock

lensed source from the mock source sample and an LRG from the

real galaxy sample (Sections 3.1.2 and 3.1.1, respectively); (ii) we

randomly perturb both the mock source and the LRG as described

in Section 3.3; (iii) we rescale the peak brightness of the simulated

source between 2 per cent and 20 per cent of the peak brightness

of the LRG. In this way we take into account the typical lower

magnitudes of the lensing features with respect to the lens galax-

ies despite the magnification; (iv) we add the two resulting images;

(v) we clip the negative values of the pixels to zero and performing a

square-root stretch of the image to emphasize lower luminosity fea-

tures; and (vi) finally we normalize the resulting image by the peak

brightness. This procedure can yield a-typical lens configurations,

because the mock sources and the KiDS galaxies are combined ran-

domly, without taking into account the physical characteristics of

the galaxies. Nevertheless, we operate in this way with the intent

to train the network to classify a lens largely relying on the mor-

phology of the source. Moreover, we reduce the risk of overfitting,

because the probability that the network will see twice the same

(or a very similar) example is negligible. In addition, we cover the

parameter space as free from priors as possible, which could allow

to find less conventional lens configurations as well.

Non-lenses (negative sample): To create the mock non-lens sam-

ple, we carry out the following procedure: (i) we randomly choose

one galaxy from the real galaxy sample (see Section 3.1.1) with a

60 per cent probability of extracting an LRG and 40 per cent prob-

ability to extract a contaminant or false positive; (ii) we randomly

perturbing as in Section 3.3; (iii) we apply a square-root stretch of

the image; (iv) we normalize the image by the peak brightness.

The final inputs of the CNN are image-cutouts of 60 by 60 pixels

which correspond to ∼12 by 12 arcsec. These images are produced

in real-time during the training phase.

3.3 Data augmentation

A common practice in machine learning is data augmentation: a

procedure used to expand the training set in order to avoid over-

fitting the data and teaching the network rotational, translational

and scaling invariance (see e.g. Simard, Steinkraus & Platt 2003).

We augment our data set applying the following transformations to

the mock lensed images and the real galaxy sample: (i) a random

rotation between 0 and 2π ; (ii) a random shift in both x and y di-

rection between −4 and +4 pixels; (iii) a 50 per cent probability of

horizontally flipping the image; (iv) a rescaling with a scalefactor

sampled log-uniformly between 1/1.1 and 1.1. All transformations

are applied to the image-cutouts of 101 by 101 pixels of both the real

galaxy and mock lensed source sample. We extract a central region

of 60 by 60 pixels from the resulting images to avoid unnecessarily

information (i.e. noise and empty sky) around the image edges.

4 R ESULTS

Having trained the CNN as described in Section 3 (see also Ap-

pendix B for more details), in this section we present our results. In

Section 4.1 we report the procedure to select our final sample of lens

candidates and in Section 4.2 the sample is presented, discussed and

compared with the literature.

4.1 Candidate selection

First we ingest the full 21 789 LRG sample (see Section 2.2) into

the trained CNN. We obtain 761 galaxies (∼3 per cent of the full

LRG sample) classified as lens candidate with p > 0.5 and all

the remainder in the non-lens category with p < 0.5. The number

of LRGs classified by the network as lenses is too large when

compared to the expected number of strong lenses in the KiDS-

DR3 area (see Section 4.2.1). Among the selected sources, there

are contaminants such as spirals, galaxies with dust lanes, mergers,

etc. (see Fig. 4 for some examples). For this reason, we decide to

further visually classify the 761 targets selected by the network.

Seven of the authors of this paper – referred as ‘classifiers’ in

the following – are presented with a set of images for each lens

candidate: the cut-out images from KiDS (one image per each of

the u, g, r, and i filters) and an RGB reconstructed composite image

obtained with the software STIFF
4 from the g-, r- and i-band images.

The classifiers can classify the sources in three categories: Sure,

4 http://www.astromatic.net/software/stiff
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Figure 4. RGB images of 20 by 20 arcsec of some contaminants classified as lenses by the CNN.

Figure 5. Histogram of the ranking of 384 lens candidates, which have

been classified at least by one user in the Sure or Maybe categories. In blue

are the candidates with a score higher than 16 that are considered the most

reliable.

Maybe and No lens. The score for each candidate is based on the

following scheme:

Sure lens 10 points.

Maybe lens 4 points.

No lens 0 points.

The histogram of the accumulated grades of the visual classification

is shown in Fig. 5. There are 384 candidates classified in the Sure

and Maybe categories by at least one classifier. To further reduce

the sample, we decide to introduce a threshold at the score of 17,

below which all candidates are considered not reliable. This implies

that more than four classifiers would be required to classify a lens

candidate in the Maybe category to be regarded as reliable. For

lenses in the Sure category, we expect a large number of users to

agree in their classification due to more evident lensing features

in the images, giving a higher score to such candidates. Only two

candidates achieved the maximum score of 70. As seen in Fig. 5

(blue bars), the distribution of candidates rises rapidly below the

threshold score and remains flat for higher values. Changing the

points given to a candidate classified as Maybe lens from four to

six, and appropriately relocating the threshold, does not affect the

resulting ranking, and the distribution shown in Fig. 5 remains

largely the same.

Since the focus of this paper is to find new lens candidates, we are

interested in the first two categories, i.e. Sure and Maybe. However,

we plan for future applications to use the candidates classified in the

No category to retrain the CNN, aiming at considerably reducing

the number of candidates that need to be visually inspected.

Figure 6. g–r colour–redshift distribution of the LRG sample (green dots;

Section 2.2) and our 56 best candidates (blue diamonds; Section 4). The BPZ

photometric redshift is plotted, except for the candidates with an available

spectroscopic redshift.

4.2 Final sample of candidates

After both CNN and visual classification, the final sample of lens

candidates consists of 56 objects, down-selected from an initial

sample of 21 789 galaxies. In Fig. 6 we show how the candidates

are distributed in colour-photo-z space together with the full LRG

sample (Section 2.2). In Fig. 11, the RGB images of these best can-

didates are shown together with their scores from the visual inspec-

tion procedure. For completeness, in Appendix C, the r-band-only

images of the 56 ranked objects are also shown, since they are the

images on which the CNN has made its classification. Candidates

are listed in Table 2, where we show the final grade of our classi-

fication, the KiDS MAG_AUTO in the u, g, r, and i bands for each

candidate, together with the BPZ photometric redshift, stellar mass

and, if available, spectroscopic redshift and velocity dispersion.

J085446−012137 and J114330−014427 are successfully classi-

fied as lenses by our network and they pass our visual inspection

with a score of 70 and 60, respectively (KSL317 and KSL040 in

Table 2 and Fig. 11). Instead, J1403+0006 is classified as a non-

lens by the network, this could be due to the fact that this system

has an Einstein radius of 0.83 arcsec, well below the lower limit

of the interval of radii on which the CNN is trained. In Fig. 7 we

show the RGB images of these three known lenses as observed in

KiDS. The lensed images of the misclassified lens are also not as

prominent as in the other two.

We find that 34 of our candidates have spectra measured from

different sources (2dF, Colless et al. 2001; Limousin et al. 2010;

SDSS, Eisenstein et al. 2011; BOSS, Dawson et al. 2013; GAMA,

Liske et al. 2015). We visually inspected the spectra without clearly

identifying any emission line that could belong to a background

source. A more detailed data reduction of the spectra is needed to
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Table 2. The final sample of candidates. For each candidate, we report an internal ID; the spectroscopic redshift if available (see the notes), the BPZ

photometric redshift, the KiDS u, g, r and i MAG_AUTO (average uncertainties are 0.13, 0.02, 0.03 and 0.04, respectively), the velocity dispersion from

SDSS or BOSS if available, the stellar mass (the typical uncertainty is ∼0.2 dex). A double (single) check-mark indicates the candidates with (without)

a measured velocity dispersion that have a predicted Einstein radius comparable with their galaxy-image configuration (see Section 4.2).

ID zspec zphot u g r i σ ⋆ (km s−1) log M⋆/M⊙ (dex) Score

KSL427 0.24a 0.25 20.17 18.38 16.96 16.58 11.3 70
√

KSL317 0.35b 0.42 21.43 19.61 17.86 17.20 11.6 70

KSL103 0.24a 0.26 20.55 18.53 17.28 16.81 11.3 64

KSL040 0.11c 0.15 18.56 16.65 15.64 15.26 269 ± 5 11.1 60
√√

KSL627 0.21c 0.24 20.89 18.75 17.42 16.92 206 ± 13 11.3 60

KSL327 0.12a 0.17 18.96 16.80 15.75 15.33 11.4 58
√

KSL376 0.30c 0.36 21.88 20.03 18.46 17.91 242 ± 20 11.2 48

KSL086 0.33 22.30 20.23 18.54 18.03 11.1 48

KSL351 0.26c 0.30 21.12 18.89 17.42 16.91 278 ± 19 11.4 46
√√

KSL469 0.29c 0.33 21.23 19.52 18.08 17.51 228 ± 19 11.4 46

KSL228 0.18a 0.16 19.83 18.30 17.25 16.75 11.2 42

KSL713 0.23a 0.29 20.46 18.54 17.01 16.47 304 ± 17 11.5 42
√√

KSL328 0.23c 0.24 21.28 19.52 18.09 17.58 235 ± 13 11.0 42

KSL411 0.25c 0.27 18.62 17.59 16.66 16.22 11.5 40
√

KSL070 0.44c 0.45 21.55 20.37 19.05 18.37 206 ± 37 11.2 40

KSL543 0.25 20.73 19.03 17.78 17.29 11.3 38

KSL664 0.30 21.89 19.91 18.62 18.00 11.1 36
√

KSL106 0.27d 0.28 21.75 19.96 18.59 18.06 11.1 36

KSL337 0.35 22.06 20.55 18.93 18.41 10.8 32

KSL388 0.33c 0.37 22.83 19.81 18.14 17.58 228 ± 20 11.4 32

KSL415 0.21c 0.21 20.64 19.03 17.68 17.19 223 ± 17 11.3 32

KSL220 0.31 21.85 20.32 18.91 18.42 11.2 30
√

KSL601 0.46c 0.54 23.09 21.41 19.65 18.97 221 ± 22 11.1 28

KSL603 0.34c 0.41 21.96 20.04 18.46 17.86 220 ± 16 11.5 28

KSL436 0.27 21.44 19.57 17.90 17.74 10.8 26

KSL233 0.15a 0.17 19.96 18.17 17.16 16.67 10.8 26

KSL231 0.46 23.73 20.98 19.36 18.64 11.3 26

KSL101 0.32 22.92 20.36 18.89 18.33 11.2 26
√

KSL450 0.40c 0.46 23.24 20.83 18.97 18.44 270 ± 30 11.2 26
√√

KSL737 0.37c 0.45 22.27 20.39 18.74 18.14 222 ± 38 11.4 26
√√

KSL094 0.29c 0.42 20.77 19.36 17.94 17.37 219 ± 19 11.5 26
√√

KSL669 0.05c 0.16 19.46 17.58 16.63 16.17 212 ± 8 10.4 26

KSL707 0.25 21.77 19.66 18.28 17.72 11.0 24

KSL197 0.21 21.63 19.56 18.14 17.71 11.1 24

KSL335 0.22a 0.26 21.89 19.07 17.72 17.19 11.2 24

KSL565 0.29c 0.29 21.52 19.97 18.52 17.97 251 ± 18 11.1 24
√√

KSL134 0.27c 0.29 21.23 19.57 18.24 17.73 235 ± 14 11.3 24

KSL606 0.18a 0.17 19.79 18.32 17.25 16.85 11.2 22

KSL046 0.12 18.44 16.69 15.79 15.40 11.4 22
√

KSL620 0.28 21.53 19.78 18.47 17.91 11.1 22

KSL013 0.11a 0.14 19.73 18.19 17.26 16.74 10.7 22

KSL421 0.32 21.42 19.65 18.23 17.69 11.4 22
√

KSL434 0.39 21.74 20.06 18.47 17.99 11.0 22

KSL516 0.56 23.33 21.19 19.55 18.80 11.1 20

KSL278 0.42 21.85 20.34 18.84 18.32 11.2 20
√

KSL178 0.43 21.74 20.04 18.31 17.63 11.9 20

KSL159 0.44 22.08 20.32 18.68 18.08 11.7 20

KSL686 0.25d 0.30 21.77 19.24 17.72 17.20 11.2 20

KSL465 0.34 20.49 19.17 17.69 17.17 11.6 20
√

KSL463 0.23 21.24 19.61 18.31 17.85 10.8 20
√

KSL342 0.21 21.22 19.28 17.95 17.49 10.9 20
√

KSL322 0.33d 0.44 22.27 20.02 18.37 17.76 333 ± 25 11.5 20
√√

KSL674 0.28c 0.31 21.68 19.60 18.14 17.60 293 ± 21 11.2 20
√√

KSL564 0.29c 0.33 22.92 19.85 18.47 17.88 249 ± 22 11.2 20
√√

KSL670 0.44c 0.48 23.71 21.10 19.49 18.72 207 ± 25 11.4 20

KSL535 0.44 22.08 20.32 18.68 18.08 11.5 18

a Colless et al. (2001); b Limousin et al. (2010); c Eisenstein et al. (2011) and Dawson et al. (2013); d Liske et al. (2015).
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Figure 7. RGB images of the three known lenses present in the LRG sample. The network correctly classifies the first two as lenses, but classifies the third as

non-lens. Given that its Einstein radius is 0.83 arcsec, smaller than the Einstein radii of the simulated lenses on which the network has been trained, this might

be expected. The images are 20 by 20 arcsec.

confirm or discard any of these candidates. We also notice that the

photometric redshifts tend to overestimate the distance. This could

be due to the contamination of the colours of the main galaxy by

the supposed lensed sources. We will investigate this issue in a

forthcoming paper.

4.2.1 Expected number of lenses

To assess whether the amount of selected candidates is reliable,

we estimate the detectable lens population in KiDS, using the lens-

statistics code LENSPOP
5 (Collett 2015). Assuming an effective KiDS

survey area of ∼1275 deg2 we forecast ∼2400 potentially detectable

lenses with a total signal-to-noise ratio larger than 20 and having

lensed images resolved over least three seeing elements. The ex-

pected number of lenses reduces to ∼500 for the effective area of

the KiDS-DR3 of 255 deg2. If we consider only lenses that satisfy

our colour–magnitude cut of Section 2.2 and with an Einstein radius

>1.4 arcsec, i.e. our range of the parameter space, we forecast ∼50

lenses for 255 deg2, broadly comparable to the number of our final

sample of candidates, especially if we keep in mind that (i) we do

not expect the CNN plus human lens selection to be 100 per cent

efficient and (ii) our training was largely focused on arcs and rings

and not on quads and doubles. The redshift distribution of our final

sample of candidates and the simulated population from LENSPOP,

within the selection constraints specified above, are also consistent.

Our candidates are observed in the window 0.1 � z � 0.5, with

a median redshift of 0.28+0.12
−0.08, while the LENSPOP sample is in the

window 0.13 � z � 0.4 with a median redshift of 0.32+0.08
−0.09. The

scatter corresponds to the 16–84th quantiles of the distribution.

4.3 Sample characterization and comparison

To further characterize the sample of candidates, and allow a com-

parison with the literature, we estimate the stellar masses using the

software LE PHARE (Arnouts et al. 1999; Ilbert et al. 2006), which

performs a χ2 fitting between the stellar population synthesis the-

oretical models and the data. Single burst models from Bruzual &

Charlot (2003, BC03) and a Chabrier (2001) IMF are implemented

in the software. In the BC03 models, we leave the age free to vary

up to a maximum of 13 Gyr, and assume metallicities in the range

(0.005–2.5 L⊙). No internal extinction is adopted. The single burst

models provide us with a fair description of the stellar populations

5 https://github.com/tcollett/LensPop

in massive early-type galaxies. Models are redshifted using the pho-

tometric redshifts (or the spectroscopic estimates where available).

We adopt the observed ugri magnitudes (and related 1 σ uncer-

tainties) within a 5 arcsec diameter aperture, corrected for Galactic

extinction using the map in Schlafly & Finkbeiner (2011)6. The

r-band MAG_AUTO is used to correct the outcomes of LE PHARE for

missing flux. For 34 out of the 56 lens candidates (i.e. 60 per cent),

we have spectroscopic redshifts. As pointed out previously, photo-

metric redshifts tend to be larger than the spectroscopic estimate

by �z ∼ 0.04, on average. For the 22 galaxies with a photometric

redshift only, an overestimated redshift could imply both an over-

or underestimate of the stellar mass, leading to a less reliable stellar

mass. We have estimated the average impact of this systematics

using the derived masses for the 34 galaxies with both measures of

redshifts, finding that the photometric values bring to an average

overestimate of the mass of 0.04 dex, with a scatter of ∼0.2 dex.

In addition, the aperture photometry adopted for the derivation of

stellar masses is also affected. We have considered KiDS magni-

tudes within a radius of 5 arcsec; thus, the enclosed lensing features

make bluer colours and thus we underestimate the real stellar mass.

However, we expect that this effect is within the typical mass uncer-

tainty, since the arcs are very faint compared to the lens and hence

colour contamination is very small. A systematic study of this issue

is beyond the scope of this paper: we will discuss its impact on our

results in a forthcoming paper.

In terms of redshift distribution, our lens candidates are observed

in the window 0.1 � z � 0.5, with a median redshift of 0.28+0.12
−0.08.

This value is larger than the median redshift of SLACS lenses from

Auger et al. (2009), i.e. 0.20+0.09
−0.07, but consistent within the scat-

ter distribution. Instead, our median redshift is smaller than the

average for the SL2S sample from Sonnenfeld et al. (2013), i.e.

0.48+0.23
−0.16. This is not surprising given the z � 0.4 colour cut of

Section 2.2. In future analyses this limit will be loosened. The me-

dian stellar mass of our sample is log M⋆/M⊙ ∼ 11.2 dex with a

scatter of ∼0.2 dex. The typical uncertainty of the mass estimates

is ∼0.1–0.2 dex too. Within the scatter and mass uncertainties, this

value is consistent with the average stellar mass in SLACS (the me-

dian is log M⋆/M⊙ ∼ 11.3 dex and the scatter is ∼0.2 dex; Auger

et al. 2009) and SL2S lenses (the median is log M⋆/M⊙ ∼ 11.2 dex

and the scatter is ∼0.25). All the galaxies have M⋆ � 1011 M⊙, ex-

cept for KSL669 (see next subsection for further comments about

6 These updated extinctions are calculated by multiplying for 0.86 the

Schlegel, Finkbeiner & Davis (1998) values stored in the KiDS-DR3 cata-

logue.
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Figure 8. Stellar mass versus redshift for our 56 best candidates (black

dots), SLACS sample from Auger et al. (2009, red triangles) and SL2S

sample from Sonnenfeld et al. (2013, blue squares). The uncertainties on

the stellar masses are ∼0.1–0.2 dex.

this source). In Fig. 8, we plot the stellar mass as a function of

redshift for our sample and the SLACS and SL2S ones.

A similar comparison can be performed for the velocity dis-

persion, if we consider the KiDS candidates with an available

measure of this quantity. The average value for KiDS is σ⋆ =
232+46

−20 km s−1.7 In SLACS, the average is σ⋆ = 243+47
−33 km s−1,

while in SL2S the velocity dispersion within a radius of one-half

effective radius is σe,2 = 258+42
−53 km s−1. The three estimates agree

within the scatter distribution and within the typical uncertainties

of velocity dispersion measurements of ∼15–20 km s−1.

4.3.1 A sanity check of the candidates

A sub-sample of candidates has stellar velocity dispersion, σ ⋆, mea-

sured in the SDSS (Eisenstein et al. 2011) or BOSS (Dawson

et al. 2013) surveys. For these candidates, the knowledge of σ ⋆

allows to put constraints on their Einstein radii RE. For a singular

isothermal sphere (SIS) model, the Einstein radius can be expressed,

in radians, as

θE = 4π
(σSIS

c

)2 Dls

Ds

, (2)

where Ds and Dls are, respectively, the angular diameter distances

between the observer and the source and between the lens and the

source. As a first approximation, in equation (2) the σ SIS strength

parameter can be substituted with the measured stellar velocity dis-

persion, since they have been found to be approximately equal for

lens galaxies (see e.g. Bolton et al. 2008). A more rigorous approach

consists of deriving the value of σ SIS by matching the theoretical ve-

locity dispersion derived from the Jeans equations with the observed

one. From the Jeans equations, the radial velocity dispersion can be

easily derived. This theoretical quantity is first integrated along the

line of sight and then within a circular aperture with SDSS or BOSS

fibre radius [i.e. Rap = 1.5 and 1 arcsec, respectively; see Tortora

7 The velocity dispersions are extracted from both SDSS and BOSS survey;

thus, this average value is mixing observations made within two different

fibre apertures.

et al. (2009) for equations and further details about the procedure].

We use an SIS for the total mass profile, and the light distribution

is set adopting a de Vaucouleurs (1948) profile, using the effec-

tive radii taken from the SDSS website8 which come from a de

Vaucoulers fit. Imposing that the theoretical aperture-averaged ve-

locity dispersion σ Jeans is equal to the observed one σ⋆, the only free

parameter, σSIS, can be derived. This estimated quantity is finally

inserted in equation (2).

For each lens with a measured σ ⋆, the predicted RE is plotted

as a function of the unknown zs and compared with the observed

Einstein radius (see Fig. 9). A precise determination of the Einstein

radius would require modelling of the lensing candidates, which

is beyond the scope of this paper, but is planned for a follow-up

paper. Here, we simply estimate the Einstein radius visually. We

take it to be between 1 and 0.5 times the distance between the arc

(or the brightest arc in case of multiple images) and the centre of

the lens. This choice is due to the fact that, given an SIS, the image

separation for an Einstein ring is exactly twice the Einstein radius,

whereas in the case of an arc or an image maximally away from the

centre of the lens, the distance from the centre is twice the Einstein

radius (Kormann et al. 1994).

In Fig. 9, we show the comparison and we find an overlap for

about half of the candidates with measured velocity dispersion.

The other half is more likely to be constituted by ring galaxies,

foreground sources or other contaminants. An excellent agreement

is found for the systems KSL713, KSL450, KSL737, KSL565,

KSL322, KSL674 and KSL564. For the other systems, the dynamics

predict too small Einstein radii. One interesting case is KSL669,

which is a z = 0.05 galaxy with a very small stellar mass of ∼2 ×
1010 M⊙. We expect the probability for it to act as a lens to be very

small. The comparison performed in Fig. 9 seems to confirm the

peculiarity of this lensing candidate. In fact, a larger view of the

source shows that it is actually a merger event.

Moreover, among the best ranked systems, KSL627 and KSL376

present a discrepancy that seems difficult to reconcile. These two

systems have almost circular blue rings, with ∼4.3 and ∼5.7 arcsec

radii, corresponding to 15 and 25 kpc, respectively. These sources

do not match typical Einstein radii observed in galaxy-scale gravi-

tational lenses; they are more likely to belong to the category of ring

galaxies (Hoag 1950; Theys & Spiegel 1976; Whitmore et al. 1990;

Bournaud & Combes 2003; Iodice et al. 2003; Madore, Nelson &

Petrillo 2009).

ETGs follow a tight relationship between velocity dispersion and

stellar mass. This can allow us to predict the velocity dispersion for

the remaining galaxies in our final sample. After collecting ETG

lenses from SLACS (Auger et al. 2009), we perform a median fit de-

termining the best-fitted relation log σ⋆ = −0.1 + 0.22 log M⋆/M⊙
between the velocity dispersion and the estimated stellar masses.

Thus, assuming that this relation holds for our sample and that it has

no scatter, we can determine an estimate for the velocity dispersion,

when our stellar masses are used. We use equation (2) to predict the

Einstein radius as a function of the source redshift. The results are

shown in Fig. 10, where the dashed line is calculated by inserting

the estimated velocity dispersion in equation (2), while the solid line

is calculated by assuming the average of the ratios σSIS/σ⋆ obtained

for the galaxies with available velocity dispersion, and inserting the

derived σ SIS in equation (2). Similar considerations as for the galax-

ies with measured velocity dispersion can be done for these objects,

8 http://skyserver.sdss.org/dr13/en/home.aspx
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Figure 9. Einstein radii estimated by the observed dynamics are plotted as a function of the unknown source redshift zs, and compared with the value estimated

visually from the images. The black lines are calculated using equation (2): the solid line assumes that σ SIS is determined from Jeans dynamical analysis, and

the dashed line by fixing σSIS = σ⋆ (see Section 4.3.1 for the details). The shaded cyan region corresponds to a conservative range of values for the Einstein

radii: it is calculated from the observed distance of the arc from the lens centre, and is set to the range between 0.5RE and RE.

even if the uncertainties on the estimated velocity dispersions are

higher.

The previous analysis can give us an indication on the nature

of the candidates. However a spectroscopic validation is needed,

because it cannot be excluded that the lens candidates are part of a

group of galaxies. In this case, the stellar velocity dispersion would

not trace the dynamics of the group. Indeed, this is the case of the

known lens J085446−012137 (KSL317), which is part of a group

(Limousin et al. 2010), resulting in a underestimation of the Einstein

radius.

We plan to follow up our most reliable candidates, mainly for an

estimate of the redshift of the arc, in order to confirm or discard

their lensing nature.

5 C O N C L U S I O N S

We have developed a new pipeline, based on a CNN, to automati-

cally identify strong gravitational lens candidates based mainly on

their morphology (Section 3). We have applied the method (see

Section 4) to the third data release of the KiDS, which is one of

the ESO public surveys carried out with the VST (see e.g. de Jong

et al. 2015, for a description). Thanks to its high-quality images,

KiDS is particularly suitable for a search of strong lenses. In the

complete survey, we expect to find at least 100 LRG lens systems

with lens galaxies at z < 0.4, possibly increasing to several thousand

when expanding the search to fainter and higher redshift galaxies

(see Section 4.2.1).

To train the CNN to find lenses, we generated a large sample of

simulated lensing features on top of observed colour–magnitude se-

lected galaxies from KiDS (Section 3.1.2). The trained network has

been applied to a sample of 21789 LRGs in KiDS DR3, retrieving

761 candidates (3.6 per cent of the initial sample). With a visual in-

spection performed by seven ‘human’ classifiers, we down-selected

the most promising 56 lens candidates (Fig. 11). In our starting

sample, there were three known lenses, two of which were classi-

fied correctly as lenses by the CNN and in the subsequent visual

inspection phase (Fig. 7). The misclassified lens has an Einstein

radius (0.83 arcsec), well below the range where the CNN is trained

(1.4–5.0 arcsec).

For the candidates with available measures of velocity disper-

sion or stellar mass estimates, we performed an additional sanity

check, suggesting that ∼22 are solid candidates (Section 4.2). Con-

sidering the colour–magnitude selection of the lens-galaxy sample,

the type of lenses simulated and the completeness, the number is

roughly consistent with the expected ∼50 lenses forecast for the

KiDS-DR3 survey area (Section 4.2.1). Extending this result to

the full KiDS survey, we expect to find ∼100 LRG lens candi-

dates as a lower limit, similar to the number of lenses in the SLACS
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Figure 10. Same as in Fig. 9, but for the candidates without measured velocity dispersion. In these cases, the velocity dispersion is inferred from the stellar

mass as described in Section 4.3.1.

sample. Because we limited our search to a very restricted portion of

the colour–magnitude and Einstein-radius and magnification space,

dominated by luminous lenses and highly magnified sources, the

natural next step is to enlarge the colour–magnitude pre-selection

of the simulated and observed lenses, which would allow in prin-

ciple to find up to ∼2400 lenses in the most optimistic scenario

(nearly all lenses with signal-to-noise larger than 20 and at least

three PSF resolution element for the arc-like images).

A critical aspect to improve in the CNN approach is to reduce

the contamination by the false positives that dominate the number

of true positives currently by a factor of ∼40. This could facili-

tate, or even eliminate, the need for visual inspection. This factor

is consistent with the ∼4 per cent mis-classifications in the train-

ing (see Appendix B), which for the input sample size can lead

to ∼900 false positives, which is close to the actual number of

∼700. Given that the lens galaxies are outnumbered by normal

galaxies typically by a thousand to one, an important goal is to

bring the false-positive rate down to less than 0.1 per cent, without

decreasing the true-positive rate substantially. This is a hard task,

but human visual inspection suggests that at least 0.25 per cent can

be reached (i.e. 56 out of 22 thousand), possibly when including

additional colour (RGB) information. Our next goal is to create a

completely automated pipeline for lens classification without the

need of visual inspection. However, if visual inspection will be

needed to down-select lens candidates, it will be important to test

the efficiency of the human classifiers in order to be able to esti-

mate accurately the completeness and purity of the final selected

sample.
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Figure 11. RGB images of the 56 candidates down-selected through a visual inspection of the 761 CNN candidates (see Section 4.1). Each source is labelled

by an internal ID followed by, in parentheses, the visual classification score (70 points maximum). Each image is 20 by 20 arcsec.

Moreover, for evaluating purity and completeness in a realistic

lens search setting, we plan to build a validation-set that reproduces

the characteristics of a real survey (where the number of negatives

far outnumber the number of positives).

The CNN tends to mis-classify primarily galaxies resembling

lensing features (e.g. ring galaxies, mergers, star-forming rings).

Thus, training the network on an ensemble of this kind of false

positives would allow the algorithm to learn the subtle differences

between the false positives and the true lenses.

The network performance could also be improved with model

averaging, i.e. building a series of networks for the same task, but

with different structure and parameters, and by averaging their out-

put. Moreover, training the network on galaxy-subtracted images

could facilitate the algorithm to pick up more subtle lensing fea-

tures, especially in the regime of small Einstein radii and bright

galaxies. Another possibility is to produce and train the CNN on

multiband images. In this way, colour information would be used

to discriminate between lenses with sources and non-lenses.

The final sample of KiDS-DR3 lens candidates suggests that our

method is promising to down-selected lens candidates from an input

sample by two orders of magnitude. Moreover, it is easily applicable

to any ongoing and future survey, (e.g. Euclid, LSST) for classifying
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Figure 11 – continued
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Figure 11 – continued
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the enormous amount of data that will be produced. In the near

future we plan spectroscopic follow-up of our best candidates, to

model them and to better assess their selection biases. In addition,

we will apply the method to the full KiDS survey and work on the

above-mentioned improvements.
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Barnabè M., Czoske O., Koopmans L. V. E., Treu T., Bolton A. S., 2011,

MNRAS, 415, 2215

Benı́tez N., 2000, ApJ, 536, 571

Bertin E., Arnouts S., 1996, A&AS, 117, 393

Binney J., Merrifield M., 1998, Galactic Astronomy. Princeton Univ. Press,

Princeton, NJ

Bolton A. S., Burles S., Koopmans L. V. E., Treu T., Gavazzi R., Moustakas

L. A., Wayth R., Schlegel D. J., 2008, ApJ, 682, 964

Bom C. R., Makler M., Albuquerque M. P., Brandt C. H., 2017, A&A, 597,

A135

Bonvin V. et al., 2017, MNRAS, 465, 4914

Boureau Y.-L., Bach F., LeCun Y., Ponce J., 2010, in 2010 IEEE Conf.

Comput. Vis. Pattern Recognit. San Francisco, CA, p. 2559

Bournaud F., Combes F., 2003, A&A, 401, 817

Brault F., Gavazzi R., 2015, A&A, 577, A85

Brewer B. J. et al., 2012, MNRAS, 422, 3574

Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 (BC03)

Cao S., Biesiada M., Yao M., Zhu Z.-H., 2016, MNRAS, 461, 2192

Capaccioli M., Schipani P., 2011, The Messenger, 146, 2

Cardone V. F., Tortora C., 2010, MNRAS, 409, 1570

Cardone V. F., Tortora C., Molinaro R., Salzano V., 2009, A&A, 504, 769

Carlstrom J. E. et al., 2011, PASP, 123, 568

Chabrier G., 2001, ApJ, 554, 1274

Chae K.-H., 2003, MNRAS, 346, 746

Chevance M., Weijmans A.-M., Damjanov I., Abraham R. G., Simard L.,

van den Bergh S., Caris E., Glazebrook K., 2012, ApJ, 754, L24

Colless M. et al., 2001, MNRAS, 328, 1039

Collett T. E., 2015, ApJ, 811, 20

Dawson K. S. et al., 2013, AJ, 145, 10

de Jong J. T. A. et al., 2015, A&A, 582, A62

de Jong J. T. A. et al., 2017, preprint (arXiv:1703.02991)

de Vaucouleurs G., 1948, Annales d’Astrophysique, 11, 247

Deane R. P., Rawlings S., Garrett M. A., Heywood I., Jarvis M. J., Klöckner
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A P P E N D I X A : N E U R A L N E T WO R K S

In this appendix, we give a short introduction on the theory of

CNNs.

A1 Feed-forward neural network

A feed-forward neural network, as the one shown schematically

in Fig. A1, is a basic example of a deep-learning algorithm that

can be schematized as an ensemble of connected units. The in-

put layer is the representation of a single element of the training

set, where the units are the components of the data point vector

x = (x1, x2, ..., xn). Every unit in the hidden layer performs the

following transformation of its inputs:

y = σ (w · x + b), (A1)

where the vector w = (w1, w2, ..., wn) is called the weight vector

and the constant b is the bias. The non-linear activation function, σ

is often the rectified linear unit (ReLU; Nair & Hinton 2010)

σ (x) = max(0, x), (A2)

or the sigmoid function

σ (x) =
1

(1 + e−x)
. (A3)

Hidden layers are stacked sequentially until the topmost, i.e. the out-

put layer, is reached. We want the output layer y = (y1, y2, ..., yn)T

to approximate the desired output ŷ = (ŷ1, ŷ2, ..., ŷn)T. This is ob-

tained by finding the weights and biases that minimize a chosen

loss function L( y, ŷ). The minimization is most often done via the

iterative process of gradient descent. For each layer l, the weights

and biases are updated in the following way:

wl → w
′

l = wl − η
∂L

∂wl

bl → b′

l = bl − η
∂L

∂bl

, (A4)

where η is a constant called the learning rate. The gradients are com-

puted via the back-propagation algorithm (Rumelhart, Hinton &

Williams 1986).

A2 Convolutional Neural Network

In CNNs, the input data have a topological structure (e.g. an image)

and is not presented as a vector but as a set of matrices Xk with

k = 1, 2, ..., K (e.g. the R, G and B components of an image; in this

Figure A1. A schematic view of a feed-forward neural network.
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Figure A2. Schematic view of the architecture of our CNN.

Table A1. The table summarizes the characteristics of each layer of our CNN.

Type Filters/units Filter size Padding Non-linearity Initial weights Initial biases

Convolutional 32 7 × 7 3 ReLU HeNormal 0

Max-pooling – 2 × 2 – – – –

Convolutional 64 3 × 3 1 ReLU HeNormal 0

Max–pooling – 2 × 2 – – – –

Convolutional 128 3 × 3 1 ReLU HeNormal 0

Convolutional 128 3 × 3 1 ReLU HeNormal 0

Fully connected 1024 – – ReLU HeNormal 0

Fully connected 1024 – – ReLU HeNormal 0

Max-pooling – 1 – – – –

Fully connected 1 2 – sigmoid HeNormal 0

case K = 3). The main component of a CNN is the convolutional

layer, which takes the inputs and, through a set of filters, produces

a stack of feature maps Yn with n equal to the number of filters.

Every filter (also called kernel) in the convolutional layer produces

a feature map through a convolution

Y = σ

⎛

⎝

K
∑

k=1

Wk ∗ Xk + B

⎞

⎠, (A5)

where ∗ is the convolution operator, σ is a non-linear function

as in equation (A1), Wk are the K weight matrices with k = 1,

2, ..., K, representing a filter with its bias given by the constant

matrix B. There are far fewer parameters to be determined in a

convolutional layer as compared to a fully connected layer because,

practically, we are replacing the dot product of equation (A1) with a

convolution, and, in all the practical cases, the weight matrices have

spatial dimensions much smaller than the input dimension (usually

3 by 3).

Convolutional layers are sequentially stacked such that the input

of the deeper layers are the feature maps. In between them there

are non-linear and other transformations (e.g. pooling). After the

training is complete, in each layer we have a representation of the

input data of increasing complexity (i.e. the different feature maps)

each produced by a different filter which represents a particular

feature learned during the training phase. The output layer of a

CNN is the same as in a feed-forward neural network and can be

preceded by one or more hidden fully connected layers. Its function

is to classify the last layer of feature maps created by the CNN,

giving as output one or more numbers which represent the outcome

of the classification.

Figure B1. The distribution of the network output for the validation set.

The blue bars are the lens examples, while the green ones are the non-lens

examples.

A P P E N D I X B : C N N I M P L E M E N TAT I O N

Our CNN is implemented in PYTHON 2.7 using the open-source

libraries LASAGNE
9 and THEANO

10 (Theano Development Team 2016).

The training of the CNN is executed on a GeForce GTX 760 in

parallel with the data augmentation performed on the CPU using

the SCIKIT-IMAGE
11 package (Van der Walt et al. 2014). The training

time with this configuration takes about 2 h. While the CNN takes

9 http://github.com/Lasagne/Lasagne/
10 http://deeplearning.net/software/theano/
11 http://scikit-image.org/
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Figure B2. The distribution of the network output for the full LRG sample

(blue bars) and for the 56 candidates selected via visual inspection (green

bars).

about 20 min to classify the LRG sample. In this appendix, we

provide the technical details of the implementation and training of

our CNN (Sections B1 and B2).

B1 Network architecture

In Fig. A2 and in Table A1, we show the architecture of our CNN.

ReLU [see equation (A3)] is applied after each convolutional and

fully connected layer. The 60 by 60 input layer is followed by four

convolutional layers with 32, 64, 128 and 128 filters, respectively.

All the filters have 3 by 3 sizes except for the first convolutional

layer that has a filter size of 7 by 7. In the convolutional ker-

nels, we use untied bias. To preserve the input volume through the

convolution and not to degrade the information at the borders of

the input, we zero-pad the input of the convolutional layers with 3,

1, 1 and 1 pixels, respectively. Max-pooling (Boureau et al. 2010)

with a kernel size of 2 by 2 is used after the first and the second

convolutional layer and after the second fully connected layer with

a 1D kernel size of 2. Max-pooling takes the maximum value in a

connected set of elements of the feature maps. There are two main

consequences of using Max-pooling: (a) reducing the dimension-

ality of the data and the parameters to be estimated, (b) teaching

translational invariance to the network, because slightly shifted in-

puts will produce the same feature maps. Two fully connected layers

of 1024 units follow the set of convolutional and max-pooling lay-

ers. Finally, we use a sigmoid non-linear output unit that gives

a real number between 0 and 1 that represents the probability of

being a strong gravitational lensing system. We use batch normal-

ization (Ioffe & Szegedy 2015) before the non-linearity of each

layer. A batch normalization layer operates on the inputs of the

non-linearities normalizing the data in order to have zero mean and

unit variance among the mini-batch. Then, the data is fed to a linear

function with two learnable parameters that has the property to re-

vert or modify the normalization. The chosen architecture implies

that our network has about 30 million of trainable parameters.

B2 Training

The network is trained by minimizing a loss function of the targets t

(1 for lenses and 0 for non-lenses) and the predictions p (the output

of the sigmoid unit of network). We use the binary cross-entropy, a

common choice in two-class classification problems:

L = −t log p − (1 − t) log(1 − p). (B1)

The minimization is done via mini-batch stochastic gradient de-

scent with Adam updates (Kingma & Ba 2014). The advantage of

Figure B3. Distributions of the output of the CNN for different bins (shown in the parenthesis) of some parameters of the mock lensed sources (ratio between

the maximum brightness of the lensed source and the lens in green, Einstein radius in blue, magnification in red).
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using ADAM updates is the introduction of a friction term that miti-

gates the gradient momentum in order to reach a faster convergence.

In addition, the updates have a per-parameter adaptation, i.e. they

have a different effective learning rate for the different parameters

depending on the gradient values. We used a batch size of 600

images and perform 10 000 gradient updates, which corresponds to

six million examples. Each mini-batch is composed by 300 lens and

300 non-lens examples. After an initial exploration, we start with

a learning rate of 0.004, decrease it to 0.0004 after three million

training examples and to 0.000 04 after 5.5 million training ex-

amples (the choice of the values for the learning rate has been

fundamental for training successfully the network). The weights of

each filter are initialized, as discussed in He et al. (2015), from a

random normal distribution with variance 2/n, where n is the num-

ber of inputs of the unit. The initial values of the biases are set to

zero. We use dropout (Hinton et al. 2012) in the fully connected

layers. Dropout consists of switching off units randomly during

each update of the training phase. This has two main consequences:

(a) a speed-up of the training phase, because of the reduced number

of parameters to be computed in the fully connected-layers of the

CNN, (b) reducing the possibility of overfitting, since the network

tends to learn features that better generalize the data. We also use

L2-norm regularization (see e.g. Ng 2004) with λ = 10−4. The reg-

ularization adds to the loss function equation (B1) another factor

given by the squared sum of all the weights times the factor λ. It has

the property to let the network prefer to learn small diffuse weights

penalizing the creation of peaky ones. In this way a classification,

based on all the data coming from the input, tends to be promoted

over one where the weights tend to consider only a subset of the

input.

B3 Analysis

For monitoring the network during the training we build a fixed val-

idation set composed of 5000 images (half lenses, half non-lenses)

with the same prescriptions as summarized in Section 3.2. At the

end of the training the network reaches a 96 per cent accuracy for

both the lens and non-lens examples. Fig. B1 shows the distribution

of the network output p for the validation set. For values of p greater

than 0.5 the lens examples start to be dominant in the distribution. In

Fig. B2 we show the distribution of the network output of p-values

for the full LRG sample and the 56 lens candidates (a sub-sample

of the 761 candidates with p > 0.5). We do not retrieve a significant

peaked distribution in the far end as for the validation set. This could

be due to the intrinsic difference between real and simulated data.

In addition, we have far fewer lenses in the LRG sample compared

to the non-lenses. Moreover, the lenses in the validation set are uni-

formly distributed in the range of the parameters of Table 1. Thus,

for a proper comparison, a validation set that reproduces the num-

bers and the distribution of the parameters for real lenses should

be created. To check if there is any correlation between p and the

characteristics of the simulated mock sources, we investigate the p

distribution of the lens examples for different ranges of three pa-

rameters: Einstein radii, magnification and ratio between the peak

brightness of the source and the lens. From Fig. B3 one can see

that the p distributions are skewed to higher values for the higher

ranges of the parameters considered (larger, brighter and more mag-

nified lens systems). This implies that the classification is more ac-

curate for the training examples with higher magnification, higher

Einstein radius and more luminous sources with respect to the KiDS

galaxy.

APPENDI X C : r- BA N D I M AG E S O F T H E

C A N D I DAT E S

In Fig. C1, we show the r-band images of the 56 candidates selected

through the visual inspection of Section 4.1. r-band KiDS images

have been used as the actual input of the CNN with the purpose of

finding lens candidates.
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Figure C1. Square-root stretched KiDS r-band images of the 56 candidates selected through a visual inspection of the 761 CNN candidates (see Section 4.1).

Each source is labelled by an internal ID followed by, in parenthesis, the visual classification score (70 points maximum). Each image is 20 by 20 arcsec.
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Figure C1 – continued

MNRAS 472, 1129–1150 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/472/1/1129/4082220
by University of Groningen user
on 16 January 2018



1150 C. E. Petrillo et al.

Figure C1 – continued
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