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Finding structural anomalies in graphs by means of quantum walks
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We explore the possibility of using quantum walks on graphs to find structural anomalies, such as extra edges
or loops, on a graph. We focus our attention on star graphs, whose edges are like spokes coming out of a central
hub. If there are N spokes, we show that a quantum walk can find an extra edge connecting two of the spokes or
a spoke with a loop on it in O(

√
N ) steps. We initially find that if all except one of the spokes have loops, the

walk will not find the spoke without a loop, but this can be fixed if we choose the phase with which the particle
is reflected from the vertex without the loop. Consequently, quantum walks can, under some circumstances, be
used to find structural anomalies in graphs.

DOI: 10.1103/PhysRevA.82.040301 PACS number(s): 03.67.−a

A quantum walk is a quantum version of a random walk [1].
Both types of walks occur on a graph, which is a set of
vertices connected by edges. A particle making a quantum
walk behaves differently from one making a classical random
walk because the mathematical objects that govern its motion
are amplitudes rather than probabilities, which means that
interference effects play a role. There are two basic types
of quantum walk: one in which time progresses in discrete
steps [2] and the other in which time is continuous [3]. Here
we are concerned with a particular version of the discrete-time
walk known as the scattering quantum walk [4]. In this
type of quantum walk, the particle resides on the edges and
scatters at the vertices at each time step. Recently, considerable
experimental progress on implementing quantum walks has
been made [5–10], and a recent review of the entire subject
can be found in Ref. [11].

Quantum walks have been used to develop quantum algo-
rithms, and this had proven to be a fruitful approach [12–15].
They were first used to conduct searches on graphs [16–19].
In a quantum walk search, the properties of one of the vertices
differ from those of the others, often by doing what the other
vertices do but adding a sign flip, which marks that vertex. The
object of the search is to find the marked vertex. Quantum walk
searches have been explored on a number of types of graphs,
including hypercubes, grids, and complete graphs. Recently, it
has also been shown that quantum walks can find marked edges
and a marked complete subgraph of a complete graph [20].
Here we would like to explore a different question: whether
quantum walks can find structural anomalies in graphs. We
look in some detail at the problem of finding an extra edge in a
particular type of graph, and then we present results on finding
other types of anomalous elements.

We consider what we call a star graph (see Fig. 1). This
graph has a high degree of symmetry, which means that
analyzing walks on it becomes relatively simple because the
Hilbert space in which the walk occurs is of relatively small
dimension [19,21]. This graph has a central vertex, which we
label 0, and N additional vertices, which we label 1 through N .
The central vertex is connected to each of the other vertices by
an edge, and, for now, the vertices 1,2, . . . ,N are not connected

to each other by edges. In order to construct a quantum walk on
this graph we first need a Hilbert space for the particle making
the walk. We specify this by means of an orthonormal basis
consisting of the states {|0,j 〉, |j,0〉|j = 1,2, . . . ,N}. The state
|0,j 〉 corresponds to the particle being on the edge between
0 and j going from 0 to j , and the state |j,0〉 corresponds to
the particle again being on the edge between 0 and j , but
now going from j to 0. Next we need a unitary operator
that advances the walk by one time step. That is provided
by the collective action of unitaries at each vertex that tell how
the particle scatters as it passes through that vertex. If U is the
unitary that advances the walk one step, it acts on a particle
entering the vertex 0 as

U |j,0〉 = −r|0,j 〉 + t

N∑
k=1,k �=j

|0,k〉, (1)

where r = (N − 2)/N and t = 2/N . That is, the particle has
an amplitude of −r of being reflected and an amplitude t of
being transmitted to one of the other edges. We now need to
choose what happens at vertices 1 through N . If we make
the choice U |0,j 〉 = |j,0〉 for j > 1 and U |0,1〉 = −|1,0〉,
we obtain an implementation of the Grover search algorithm.
Starting with an equal superposition of all of the basis states,
after O(

√
N ) steps, the particle will be located on the edge

connecting vertices 0 and 1.
Here we wish to do something different. First, we add an

edge between vertices 1 and 2. The unitary operator now acts
as U |0,j 〉 = |j,0〉 for j > 2, and

U |0,1〉 = |1,2〉, U |0,2〉 = |2,1〉,
(2)

U |1,2〉 = |2,0〉, U |2,1〉 = |1,0〉.

Note that we have assumed that vertices 1 and 2 transmit
the particle, and there is no reflection. One can put in an
amplitude for reflection, but, if it is not too large, this does not
change our results appreciably. The walk resulting from this
choice of U can be analyzed easily, because it stays within a
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FIG. 1. Star graph with an extra edge between vertices 1 and 2.

five-dimensional subspace of the entire Hilbert space. Define
the states

|ψ1〉 = 1√
2

(|0,1〉 + |0,2〉),

|ψ2〉 = 1√
2

(|1,0〉 + |2,0〉),

|ψ3〉 = 1√
N − 2

N∑
j=3

|0,j 〉, (3)

|ψ4〉 = 1√
N − 2

N∑
j=3

|j,0〉,

|ψ5〉 = 1√
2

(|1,2〉 + |2,1〉).

These states span a five-dimensional space we call S. The
unitary transformation U that advances the walk one step acts
on these states as follows:

U |ψ1〉 = |ψ5〉,
U |ψ2〉 = −(r − t)|ψ1〉 + 2

√
rt |ψ3〉,

U |ψ3〉 = |ψ4〉, (4)

U |ψ4〉 = (r − t)|ψ3〉 + 2
√

rt |ψ1〉,
U |ψ5〉 = |ψ2〉.

For our initial state we choose

|ψinit〉 = 1√
2N

N∑
j=1

(|0,j 〉 − |j,0〉) = 1√
N

(|ψ1〉 − |ψ2〉)

+
√

N − 2

2N
(|ψ3〉 − |ψ4〉), (5)

which is in S. Since the initial state is in S, and S is an
invariant subspace of U , the entire walk will remain in S,
and this reduces the complexity of our problem considerably.
We should mention that the minus sign in the first expression
for initial state is essential; if it is replaced by a plus sign, the
search will fail.

In order to find the evolution of the quantum state for the
walk, we find the eigenvalues and eigenstates of U restricted
to S. This gives us the spectral representation of U and makes
finding Un, the operator that advances the walk n steps,

straightforward. We then find that, to good approximation
assuming that N is large,

Un|ψinit〉 = (−1)n√
3

⎛
⎜⎜⎜⎜⎜⎝

sin(n�)

sin(n�)√
3/2 cos(n�)

−√
3/2 cos(n�)

− sin(n�)

⎞
⎟⎟⎟⎟⎟⎠

, (6)

where the first entry is the coefficient of |ψ1〉, the second is
the coefficient of |ψ2〉, and so on, and � = (2t/3)1/2. This
is the state of the walk after n steps. From this equation,
and the definitions of |ψ1〉 through |ψ5〉, we see that, when
n� = π/2, the particle is located on one of the edges leading
to the extra edge or on the extra edge itself. This happens when
n = O(

√
N ).

We now need to discuss how to interpret this result. It is
reasonable to assume that, if we are given a graph with an
extra edge in an unknown location, we only have access to the
edges connecting the central vertex to the outer ones and not
to the extra edge itself. (If we had access to the extra edge,
then we would have to know where it is.) That is, in making
a measurement, we can only determine which of the edges
connecting the central vertex to the outer ones the particle is
on. If it is on the extra edge, we do not detect it. So, after n

steps, where n� = π/2, we measure the edges to which we
have access to find out where the particle is. With probability
2/3 it will be on an edge connected to the extra edge, and with
probability 1/3 it will be on the extra edge itself, in which case
we do not detect it.

In comparing this procedure to a classical search for the
extra edge, we assume that classically the graph is specified by
an adjacency list, which is an efficient specification for sparse
graphs. For each vertex of the graph, one lists the vertices
that are connected to it by an edge. In our case, the central
vertex is connected to all of the other vertices, the vertices not
connected to the extra edge are connected only to the central
vertex, and two of the outer vertices are connected to the central
vertex and to each other. Searching this list classically would
require O(N ) steps to find the extra edge, while the quantum
procedure succeeds in O(

√
N ).

One can ask whether other structural anomalies can be
detected by means of a quantum walk. One possibility is to take
the basic star graph and add a loop to one of the outer vertices,
say vertex 1. If we call the state corresponding to the particle
being on the loop |l1〉, the unitary time-step operator would
act on the states going into the outer vertices as U |0,1〉 = |l1〉,
U |l1〉 = |1,0〉, and U |0,j 〉 = |j,0〉 for j > 1. The action of U

for states going into the central vertex is as before. The details
of the calculations for this walk will be presented elsewhere,
but the result is similar to what we found in the case of the
extra edge. Starting with the same initial state as before, if
n
√

t/3 = π/2, then with probability 2/3 the particle will be
on the edge connecting vertex 1 to the central vertex, and
with probability 1/3 it will be on the loop itself. Therefore,
a quantum walk can be used to find the vertex with the loop
attached in O(

√
N ) steps.

A second possibility is simply to extend one of the edges.
One adds an extra edge and an extra vertex, which we call
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A. One end of this edge is attached to vertex 1, and the
other to vertex A. Vertex A is connected only to vertex 1.
The unitary time-step operator now acts on the states going
into the outer vertices as U |0,1〉 = |1,A〉, U |1,A〉 = |A,1〉,
U |A,1〉 = |1,0〉, and U |0,j 〉 = |j,0〉 for j > 1. For an initial
state, one chooses an arbitrary superposition of all of the states
going out, |ψout〉 = (1/

√
N )

∑N
j=1 |0,j 〉, and all of the states

going in, |ψin〉 = (1/
√

N )
∑N

j=1 |j,0〉. For any initial state of
this type, if one then runs a quantum walk on this graph,
the particle does not become localized on the extra edge or
on the edge leading to it in O(

√
N ) steps. So, in this case,

the quantum walk fails to find the structural anomaly with a
quantum speedup.

Finally, let us see whether a quantum walk can find a
missing element. Suppose we add loops to all of the outer
vertices of our star graph except for one, say, as usual, vertex 1.
We designate the loop state connected to vertex j by |lj 〉.
The action of the unitary time-step operator on the outer
vertices is now U |0,1〉 = |1,0〉, and for j > 1, U |0,j 〉 = |lj 〉
and U |lj 〉 = |j,0〉. As in the previous case, starting with a state
that is an arbitrary superposition of the ingoing and outgoing
states, we find that for no initial state of this type does the
particle become localized on the edge without the loop in
O(

√
N ) steps, so the quantum walk again fails to find the

anomaly with a quantum speedup.
These failures can be turned into successes, however, if we

make a small modification to the walks. In the case of the
extra edge, suppose that, instead of U |1,A〉 = |A,1〉, we have
U |1,A〉 = −|A,1〉, with the action of U on all of the other
states being the same as before. Then with an initial state that
is an arbitrary superposition of |ψout〉 and |ψin〉, the particle
will be localized on the extra edge and the edge leading to it in
O(

√
N ) steps. This situation is very much reminiscent of the

standard Grover search.
The case of the missing loop is more interesting. Suppose

that, instead of U |0,1〉 = |1,0〉, we have U |0,1〉 = eiφ|1,0〉.
We find that the particle will be localized on the edge with
the missing loop in O(

√
N ) steps if φ = π, ± (π/3), and if

the initial state is properly chosen. In order to explain this last
point, let us rephrase the problem slightly. We add a dummy
loop to the vertex 1, |l1〉 where U |l1〉 = |l1〉, that does not
participate in the dynamics (we still have U |0,1〉 = eiφ|1,0〉).
So our search problem becomes finding the vertex with the
dummy loop. Define the state |ψloop〉 = (1/

√
N )

∑N
j=1 |lj 〉.

Now, for the case φ = π , we will have a successful quantum
walk search; that is, the particle will become localized on the
edge connected to the dummy loop in O(

√
N ) steps, if we start

in the state

|ψinit〉 = 1√
3

(|ψout〉 + |ψin〉 + |ψloop〉), (7)

and in the case φ = π/3 the proper initial state is

|ψinit〉 = 1

1 − e2πi/3
(e−2πi/3|ψout〉 + |ψin〉 + e2πi/3|ψloop〉).

(8)

Therefore, by adjusting the phase on the edge with the dummy
loop and choosing the proper initial state, the quantum walk
can find the location of the dummy loop in O(

√
N ) steps.

We have found that a successful quantum walk search
on a modified star graph is associated with a degenerate
eigenvalue of the unperturbed problem. The unperturbed
evolution operator U0 is obtained by setting r = 1 and t = 0 in
matrix for U (this is the N → ∞ limit of U ). The perturbation,
�U = U − U0, is small if N is large. If an eigenvalue of U0

is simple, we have found that adding the perturbation adds a
correction to it of order 1/N , while if it is degenerate, adding
�U removes the degeneracy, and one obtains corrections of
order 1/

√
N . Note that Un can be expressed as

Un =
∑

j

λn
jPj , (9)

where λj is an eigenvalue of U and Pj is the projection
onto the corresponding eigenvector. Because U is unitary,
its eigenvalues have a magnitude of 1. Now suppose that
λj = exp[i(θj + �θj )], where exp(iθj ) is the corresponding
eigenvalue of U0 and exp(i�θj ) is the correction due to
�U . For the quantum search to succeed in O(

√
N ) steps

[i.e., n = O(
√

N )], the effect of �U on the state, which
is given by exp(in�θj ), must be significant. This is true if
�θj = O(1/

√
N ) but not if �θj = O(1/N).

In conclusion, we have shown that quantum walks can find
structural anomalies in graphs, and not just marked elements.
Here, only a few examples have been studied, so the question
of what kinds of anomalies on what kinds of graphs can be
efficiently found by means of a quantum walk is largely open.
For example, it has been found that if one removes an edge
from a complete graph, merely adjusting the reflection and
transmission amplitudes of the affected vertices to maintain
unitarity, a quantum walk will not efficiently find the missing
edge [22]. This leads one to ask whether there are structural
changes one can make in a complete graph that will be
efficiently found in a quantum walk search. Questions such
as this remain for the future. However, what we have found
here suggests that the types of objects that can be found by a
quantum walk search go beyond just marked vertices.
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