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Reinforcement learning addresses the problem of learning to select actions in order to 
maximize one's performance in unknown environments. To scale reinforcement learning 
to complex real-world tasks, such as typically studied in AI, one must ultimately be able 
to discover the structure in the world, in order to abstract away the myriad of details and 

to operate in more tractable problem spaces. 

This paper presents the SKILLS algorithm. SKILLS discovers skills, which are partially 
defined action policies that arise in the context of multiple, related tasks. Skills collapse 
whole action sequences into single operators. They are learned by minimizing the com
pactness of action policies, using a description length argument on their representation. 
Empirical results in simple grid navigation tasks illustrate the successful discovery of 

structure in reinforcement learning. 

1 Introduction 

Reinforcement learning comprises a family of incremental planning algorithms that construct 
reactive controllers through real-world experimentation. A key scaling problem of reinforce
ment learning, as is generally the case with unstructured planning algorithms, is that in large 
real-world domains there might be an enormous number of decisions to be made, and pay-off 
may be sparse and delayed. Hence, instead of learning all single fine-grain actions all at the 
same time, one could conceivably learn much faster if one abstracted away the myriad of 

micro-decisions, and focused instead on a small set of important decisions. But this imme
diately raises the problem of how to recognize the important, and how to distinguish it from 
the unimportant. 

This paper presents the SKILLS algorithm. SKILLS finds partially defined action policies, 
called skills, that occur in more than one task. Skills, once found, constitute parts of solutions 
to multiple reinforcement learning problems. In order to find maximally useful skills, a 
description length argument is employed. Skills reduce the number of bytes required to 
describe action policies. This is because instead of having to describe a complete action 
policy for each task separately, as is the case in plain reinforcement learning, skills constrain 
multiple task to pick the same actions, and thus reduce the total number of actions required 
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for representing action policies. However, using skills comes at a price. In general, one 
cannot constrain actions to be the same in multiple tasks without ultimately suffering a loss 
in performance. Hence, in order to find maximally useful skills that infer a minimum loss in 
performance, the SKILLS algorithm minimizes a function of the form 

E = PERFORMANCE LOSS + 1J' DESCRIPTION LENGTH. (1) 

This equation summarizes the rationale of the SKILLS approach. The reminder of this paper 

gives more precise definitions and learning rules for the terms" PERFORMANCE LOSS" and 
"DESCRIPTION LENGTH," using the vocabulary of reinforcement learning. In addition, 
experimental results empirically illustrate the successful discovery of skills in simple grid 
navigation domains. 

2 Reinforcement Learning 

Reinforcement learning addresses the problem of learning, through experimentation, to act 
so as to maximize one's pay-off in an unknown environment. Throughout this paper we will 
assume that the environment of the learner is a partially controllable Markov chain [1]. At 
any instant in time the learner can observe the state of the environment, denoted by s E S, 
and apply an action, a E A. Actions change the state of the environment, and also produce 
a scalar pay-off value, denoted by rs,a E ~. Reinforcement learning seeks to identify an 
action policy, 7f : S --+ A, i.e., a mapping from states s E S to actions a E A that, if actions 
are selected accordingly, maximizes the expected discounted sum offuture pay-off 

R = E [f ,t-til r t ]. (2) 

t=tu 

Here I (with 0 S,S 1) is a discount factor that favors pay-offs reaped sooner in time, and 
rt refers to the expected pay-off at time t. In general, pay-off might be delayed. Therefore, 
in order to learn an optimal 7f, one has to solve a temporal credit assignment problem [11]. 

To date, the single most widely used algorithm for learning from delayed pay-off is Q
Learning [14]. Q-Learning solves the problem of learning 7f by learning a value function, 
denoted by Q : S x A --+~. Q maps states s E S and actions a E A to scalar values. 
After learning, Q(s, a) ranks actions according to their goodness: The larger the expected 
cumulative pay-offfor picking action a at state s, the larger the value Q(s, a). Hence Q, once 
learned, allows to maximize R by picking actions greedily with respect to Q: 

7f(s) = argmax Q(s, a) 
aEA 

The value function Q is learned on-line through experimentation. Initially, all values Q( s, a) 
are set to zero. Suppose during learning the learner executes action a at state s, which leads to 
a new state s' and the immediate pay-off rs ,a' Q-Learning uses this state transition to update 
Q(s, a): 

Q(s, a) ;- (1 - a) . Q(s, a) + a· (rs,a + I' V(s')) (3) 

with V(s') m~x Q(s', a) 
a 

The scalar a (O<aSl) is the learning rate, which is typically set to a small value that is 
decayed over time. Notice that if Q(s, a) is represented by a lookup-table, as will be the 

case throughout this paper, the Q-Learning rule (3) has been shown] to converge to a value 
function Qopt( s, a) which measures the future discounted pay-off one can expect to receive 

upon applying action a in state s, and acting optimally thereafter [5, 14]. The greedy policy 
7f(s) = argmaxa Qopt(s, a) maximizes R. 

I under certain conditions concerning the exploration scheme, the environment and the learning rate 
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3 Skills 

Suppose the learner faces a whole collection of related tasks, denoted by B, with identical 
states 5 and actions A. Suppose each task b E B is characterized by its individual pay
off function, denoted by rb(s, a). Different tasks may also face different state transition 
probabilities. Consequently, each task requires a task-specific value function, denoted by 
Qb(S, a), which induces a task-specific action policy, denoted by '!rb. Obviously, plain Q
Learning, as described in the previous section, can be employed to learn these individual 
action policies. Such an approach, however, cannot discover the structure which might 
inherently exist in the tasks. 

In order to identify commonalities between different tasks, the SKILLS algorithm allows a 
learner to acquire skills. A skill, denoted by k, represents an action policy, very much like 
'!rb. There are two crucial differences, however. Firstly, skills are only locally defined, on a 
subset Sk of all states S. Sk is called the domain of skill k. Secondly, skills are not specific 
to individual tasks. Instead, they apply to entire sets of tasks, in which they replace the 
task-specific, local action policies. 

Let f{ denote the set of all skills. In general, some skills may be appropriate for some tasks, 
but not for others. Hence, we define a vector of usage values Uk,b (with 0 ~ Uk,b ~ 1 for 
all kEf{ and all b E B). Policies in the SKILLS algorithm are stochastic, and usages Uk,b 
determine how frequently skill k is used in task b. At first glance, Uk,b might be interpreted 
as a probability for using skill k when performing task b, and one might always want to 
use skill k in task b if Uk ,b = 1, and never use skill k if Uk ,b = 0.2 However, skills might 
overlap, i.e., there might be states S which occurs in several skill domains, and the usages 
might add to a value greater than 1. Therefore, usages are normalized, and actions are drawn 
probabilistical1y according to the normalized distribution: 

U~,k . mk(s) 
(with 8 = 0) (4) 

k'EK 

Here Pb( kls) denotes the probability for using skill k at state s, if the learner faces task b. The 
indicator function mk (s) is the membership function for skill domains, which is 1 if s E Sk 
and 0 otherwise. The probabilistic action selection rule (4) makes it necessary to redefine 
the value Vb (s) of a state s. If no skill dictates the action to be taken, actions will be drawn 
according to the Qb-optimal policy 

'!r;(s) argmax Qb(S, a) , 
.lEA 

as is the case in plain Q-Learning. The probability for this to happen is 

Pb*(s) 1 - L Pb(kls) . 

kEK 

Hence, the value of a state is the weighted sum 

Vb(S) P;(s) . vt(s) + L Pb(kls) . Qb(S, '!rk(S)) (5) 

kEK 

with vt(s) Qb(S, '!rb(s)) = TEa; Qb(S, a) 

Why should a learner use skills, and what are the consequences? Skills reduce the freedom 
to select actions, since mUltiple policies have to commit to identical actions. Obviously, such 

2This is exactly the action selection mechanism in the SKILLS algorithm if only one skill is 
applicable at any given state s. 
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a constraint will generally result in a loss in peiformance. This loss is obtained by comparing 
the actual value of each state s, Vb(S), and the value ifno skill is used, VtCs): 

LOSS = ~ ~ Vb*(s) - Vb(S) (6) 

sES bEB 
'''---v,----' 

= LOS S( s ) 

If actions prescribed by the skills are close to optimal, i.e., if Vb*(s) ~ Vb(S)('v'S E S), the 
loss will be small. If skill actions are poor, however, the loss can be large. 

Counter-balancing this loss is the fact that skills give a more compact representation of the 
learner's policies. More specifically, assume (without loss of generality) actions can be 
represented by a single byte, and consider the total number of bytes it takes to represent 
the policies of all tasks b E B. In the absence of skills, representing all individual policies 
requires IBI . lSI bytes, one byte for each state in S and each task in B. If skills are used 
across multiple tasks, the description length is reduced by the amount of overlap between 
different tasks. More specifically, the total description length required for the specification 
of all policies is expressed by the following term: 

DL ~ ~ P;(s) + ~ ISkl (7) 

sE S bEB kEK 

~~-----v~---------j 
= DL( s ) 

If all probabilities are binary, i.e. , Pb(kls) and P;(s) E {O, I}, DL measures precisely the 
number of bytes needed to represent all skill actions, plus the number of bytes needed to 

represent task-specific policy actions where no skill is used. Eq. (7) generalizes this measure 
smoothly to stochastic policies. Notice that the number of skills If{ I is assumed to be constant 
and thus plays no part in the description length DL. 

Obviously, minimizing LOSS maximizes the pay-off, and minimizing DL maximizes the 

compactness of the representation of the learner's policies. In the SKILLS approach, one 
seeks to minimize both (cf Eq. (1» 

E = LOSS + TJDL = ~ LOSS(s) + TJDL(s) . (8) 

sES 

11 > 0 is a gain parameter that trades off both target functions. E-optimal policies make 
heavily use of large skills, yet result in a minimum loss in performance. Notice that the state 
space may be partitioned completely by skills, and solutions to the individual tasks can be 
uniquely described by the skills and its usages. If such a complete partitioning does not exist, 
however, tasks may instead rely to some extent on task-specific, local pOlicies. 

4 Derivation of the Learning Algorithm 

Each skill k is characterized by three types of adjustable variables: skill actions 7rk (s), the 
skill domain Sk, and skill usages Ub,k. one for each task b E B. In this section we will give 
update rules that perform hill-cli:nbing in E for each of these variables. As in Q-Learning 
these rules apply only at the currently visited state (henceforth denoted by s). Both learning 
action policies (cf Eq. (3» and learning skills is fully interleaved. 

Actions. Determining skill actions is straightforward, since what action is prescribed by a 
skill exclusively affects the performance loss, but does not play any part in the description 
length. Hence, the action policy 7rk(S) minimizes LOSS(s) (cf Eqs. (5) and (6»: 

7rk(S) argmax ~ Pb(kls) . Qb(S. a) (9) 
.lEA bEB 
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Domains. Initially, each skill domain Sk contains only a single state that is chosen at 
random. Sk is changed incrementally by minimizing E(s) for states s which are visited 
during learning. More specifically, for each skill k, it is evaluated whether or not to include 
sin Sk by considering E(s) = LOSS(s) + TJDL(s). 

s E Sk, ifandonlyif E(s)lsESk < E(s)lsf'Sk (otherwises ~ Sk) (10) 

If the domain of a skill k vanishes completely, i.e., if Sk = 0, it is re-initialized by a randomly 
selected state. In addition all usage values {Ub ,klb E B} are initialized randomly. This 
mechanism ensures that skills, once overturned by other skills, will not get lost forever. 

Usages. Unlike skill domains, which are discrete quantities, usages are real-valued numbers. 
Initially, they are chosen at random in [0, 1]. Usages are optimized by stochastic gradient 

descent in E. According to Eq. (8), the derivative of E(s) is the sum of a L~SS(s ) and 
Ub,k 

a ~uL(s ) . The first term is governed by 
b,k 

8LOSS(s) _ 8Vb(S) _ _ 8P;(s) . Q ( *() ) _ " 8Pb(j!S) . Q ( .(» 
8 8 - 8 b 7rb s , s ~ 8 b S,7rJ S 

Ub ,k 'Ub ,k Ub,k jEK Ub ,k 

with 8Pb (j!s) 
8Ub ,k 

and 
8Pb*(s) 

Here Dkj denotes the Kronecker delta function, which is 1 if k = j and 0 otherwise. 
second term is given by 

8DL(s) 8Pb*(s) 

8Ubk 8Ukb ' , , 

(11 ) 

(12) 

The 

(13) 

which can be further transformed using Eqs. (12) and (11). In order to minimize E, usages 
are incrementally refined in the opposite direction of the gradients: 

Uk ,b ;....-.- Uk,b - {J. (8V(s) + TJ 8DL(S») 
8Ukb 8Ukb , , 

(14) 

Here {J > 0 is a small learning rate. This completes the derivation of the SKILLS algorithm. 
After each action execution, Q-Learning is employed to update the Q-function. SKILLS also 
re-calculates, for any applicable skill, the skill policy according to Eq. (9), and adjusts skill 
domains and usage values based upon Eqs. (10) and (14). 

5 Experimental Results 

The SKILLS algorithm was applied to discover skills in a simple, discrete grid-navigation 
domain, depicted in Fig. 1. At each state, the agent can move to one of at most eight adjacent 
grid cells. With a 10% chance the agent is carried to a random neighboring state, regardless 
of the commanded action. Each corner defines a starting state for one out of four task, with 
the corresponding goal state being in the opposite corner. The pay-off (costs) for executing 
actions is -1, except for the goal state, which is an absorbing state with zero pay-off. In a first 
experiment, we supplied the agent with two skills f{ = {kJ, k2 }. All four tasks were trained 
in a time-shared manner, with time slices being 2,000 steps long. We used the following 

parameter settings: TJ = 1.2, 'Y = 1, a = 0.1, and {J = 0.001. 

After 30000 training steps for each task, the SKILLS algorithm has successfully discovered 
the two ski11s shown in Figure 1. One of these skills leads the agent to the right door, and 
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Figure 1: Simple 3-room environment. Start and goal states are marked by circles. The 

diagrams also shows two skills (black states), which lead to the doors connecting the rooms. 

the second to the left. Each skill is employed by two tasks. By forcing two tasks to adopt a 
single policy in the region of the skill, they both have to sacrifice performance, but the loss 
in performance is considerably small. Beyond the door, however, optimal actions point into 
opposite directions. There, forcing both tasks to select actions according to the same policy 
would result in a significant performance loss, which would clearly outweigh the savings in 
description length. The solution shown in Fig. 1 is (approximately) the global minimum of 
E, given that only two skills are available. It is easy to be seen that these skills establish 
helpful building blocks for many navigation tasks. 

When using more than two skills, E can be minimized further. We repeated the experiment 
using six skills, which can partition the state space in a more efficient way. Two of the 
resulting skills were similar to the skills shown in Fig. 1, but they were defined only between 
the doors. The other four skills were policies for moving out of a corner, one for each corner. 
Each of the latter four skills can be used in three tasks (unlike two tasks for passing through 
the middle room), resulting in an improVed description length when compared to the two-skill 

solution shown in Fig. 1. 

We also applied skill learning to a more complex grid world, using 25 skills for a total of 20 
tasks. The environment, along with one of the skills, is depicted in Fig. 2. Different tasks 
were defined by different starting positions, goal positions and door configurations which 
could be open or closed. The training time was typically an order of magnitude slower than 
in the previous task, and skills were less stable over time. However, Fig. 2 illustrates that 
modular skills could be discovered even in such complex a domain. 

6 Discussion 

This paper presents the SKILLS algorithm. SKILLS learns skills, which are partial policies 
that are defined on a subset of all states. Skills are used in as many tasks as possible, 
while affecting the performance in these tasks as little as possible. They are discovered by 
minimizing a combined measure, which takes a task performance and a description length 
argument into account. 

While our empirical findings in simple grid world domains are encouraging, there are several 
open questions that warrant future research. 

Learning speed. In our experiments we found that the time required for finding useful skills 
is up to an order of magnitude larger than the time it takes to find close-to-optimal policies. 
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Figure 2: SkiIl found in a 
more complex grid navi
gation task. 
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Similar findings are reported in [9]. This is because discovering skills is much harder than 
learning control. Initially, nothing is know about the structure of the state space, and unless 
reasonably accurate Q-tables are available, SKILLS cannot discover meaningful skills. Faster 
methods for learning skills, which might precede the development of optimal value functions, 
are clearly desirable. 

Transfer. We conjecture that skills can be helpful when one wants to learn new, related tasks. 
This is because if tasks are related, as is the case in many natural learning environments, 
skills allow to transfer knowledge from previously learned tasks to new tasks. In particular, if 
the learner faces tasks with increasing complexity, as proposed by Singh [10], learning skills 
could conceivable reduce the learning time in complex tasks, and hence scale reinforcement 
learning techniques to more complex tasks. 

Using function approximators. In this paper, performance loss and description length has 
been defined based on table look-up representations of Q. Recently, various researchers have 
applied reinforcement learning in combination with generalizing function approximators, 
such as nearest neighbor methods or artificial neural networks (e.g., [2, 4, 12, 13]). In 
order to apply the SKILLS algorithm together with generalizing function approximators, 
the notions of skill domains and description length have to be modified. For example, the 
membership function mk, which defines the domain of a skill, could be represented by a 
function approximator which allows to derive gradients in the description length. 

Generalization in state space. In the current form, SKILLS exclusively discovers skills that 
are used across mUltiple tasks. However, skills might be useful under multiple circumstances 
even in single tasks. For example, the (generalized) skill of climbing a staircase may be 
useful several times in one and the same task. SKILLS, in its current form, cannot represent 
such skills. 

The key to learning such generalized skills is generalization. Currently, skills generalize 
exclusively over tasks, since they can be applied to entire sets of tasks. However, they cannot 
generalize over states. One could imagine an extension to the SKILLS algorithm, in which 
skills are free to pick what to generalize over. For example, they could chose to ignore certain 
state information (like the color of the staircase). It remains to be seen if effective learning 
mechanisms can be designed for learning such generalized skills. 

Abstractions and action hierarchies. In recent years, several researchers have recognized 
the importance of structuring reinforcement learning in order to build abstractions and action 
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hierarchies. Different approaches differ in the origin of the abstraction, and the way it 
is incorporated into learning. For example, abstractions have been built upon previously 
learned, simpler tasks [9, 10], previously learned low-level behaviors [7], subgoals, which 
are either known in advance [15] or determined at random [6], or based on a pyramid of 
different levels of perceptual resolution, which produces a whole spectrum of problem solving 
capabilities [3]. For all these approaches, drastically improved problem solving capabilities 
have been reported, which are far beyond that of plain, unstructured reinforcement learning. 
This paper exclusively focuses on how to discover the structure inherent in a family of related 
tasks. Using skills to form abstractions and learning in the resulting abstract problem spaces 
is beyond the scope of this paper. The experimental findings indicate, however, that skills 
are powerful candidates for operators on a more abstract level, because they collapse whole 
action sequences into single entities. 
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