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FINDING SUITABLE CURVES FOR
THE ELLIPTIC CURVE METHOD OF FACTORIZATION

A. O. L. ATKIN AND F. MORAIN

Abstract. Using the parametrizations of Kubert, we show how to produce

infinite families of elliptic curves which have prescribed nontrivial torsion over

Q and rank at least one. These curves can be used to speed up the ECM

factorization algorithm of Lenstra. We also briefly discuss curves with complex

multiplication in this context.

1. Introduction

The ECM method of Lenstra [5] for finding a prime factor p of a number

TV uses a "random" elliptic curve

E : y2 = f(x) = x3 + ax + b.

If the number k of points on E modulo p is smooth, the method succeeds.

Suyama [9] and Montgomery [7] developed infinite classes of curves E for

which k has some prescribed small factors; on reasonable probabilistic as-

sumptions (borne out in practice) this should lead to a slight improvement in

the method. Specifically, Montgomery and Suyama each force a factor of 12 in

k, and Montgomery forces a factor of 16, but only on the assumption that p

is congruent to 1 modulo 4.

In this paper, we show how to force a factor of 16 without restriction on p ,

for an infinite class of curves E. More precisely, we exhibit an infinite family

of curves defined over Q, for each of which the group of rational points con-

tains a subgroup isomorphic to Z/2Z x Z/8Z, and a computable rational point

of infinite order. We also discuss the limited use of curves with complex mul-

tiplication in the special contexts of the Cunningham project [2] and primality

proving [1].

In order to construct curves with prescribed factors of k, we can look at

curves defined over Q which have large torsion groups. By a theorem of Mazur

[6], we know that the only possible torsion groups over Q are

(I) E   (0) = íZ/mZ, m = 1,2,..., 10 or 12,

U torl^J     \z/2ZxZ/2mZ,        m = l,2,3,4.
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Kubert [4] gave parametrizations for all these groups. In order to make ECM

effective with these curves, we need a further condition beyond Kubert's param-

etrization, namely that we can exhibit a point on E modulo N. This requires

that our parametrization must include a rational point of infinite order on E
defined over Q.

We shall use Kubert's curves to exhibit families of elliptic curves of rank at

least 1 defined over Q whose torsion group is among Z/8Z x Z/2Z, Z/5Z,

Z/7Z, Z/9Z, Z/10Z. The remaining groups in the list ( 1 ) can also be exhibited
by the methods of our paper, but are not included here since they are already

subsumed by the Montgomery-Suyama parametrizations. For completeness, we

include a brief description of Kubert's theory and of the classical reduction of
quartic curves to cubic curves.

2. Preliminaries

2.1. Kubert's curves. Throughout the paper, we follow Kubert's notation. Let

b and c be two rational numbers. Kubert used a special form of elliptic curve

for his purpose. A Kubert curve is given by

g(b,c): Y2 + (1 - c)XY - bY = X3 - bX2

for which P = (0, 0) is a point of maximal finite order and the tangent to E

at P is the straight line X = 0. The discriminant of % is given by

A = y4b3 - $y2b4 - y3b3 + 36yb4 + X6b5 - 21b4

(with y = X - c), and it will be assumed throughout the paper that A ^ 0.

Some small powers of P on E are tabulated by Reichert [8]. Among these, we

have

2P = (b,bc),

3P = (c,b-c),

4P = (r(r- X), r2(c-r+ 1)),    with r = b/c.

(Note that the expression for 4P has a misprint in Reichert's paper.) For our

purpose, it is desirable to have the equation of E in the form y2 = f(x), and

so we put y = Y + ((1 - c)X - b)/2 and x = X to get

™t    x    2       3     i(c-X)2-4b)  2    b(c-X)       b2
(2) E(b,c):y2 = xi + --L-Lx2 + -*——-x + — .

2.2. From quartics to cubics. We recall some well-known facts about quarries

(see, e.g., [3, Chapter 5]). Let W be the quartic curve whose equation is

y2 = a4xA + a^x3 + a2x2 + axx + a0 = f(x)

with a rational point (jtn, yd). Then, with

x = xo + yo(x-q^y,       y = fo(X-Xo)2,

W is birationally equivalent to

W : Y2 = Xa - 6A2X2 + 4AXX + A0 = F(X).
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In turn, his latter curve is birationally equivalent to

(3) *> ■ T2 = Si     14 + Ap s | A2- A2(A\ - Ap)
4 4

via the formulas

X=T-AxJ2, Y = -X2 + 2S + A2.
S - A2

3. The construction of the curves

3.1.   The case Et0T = Z/8Z x Z/2Z.   In this case, b and c are found succes-

sively from

(4)        d = 2a(4a+X)/($a2- X),     c = (2d - X)(d - X)/d,     b = cd.

We will write E(a) for E(b, c). We will prove the following.

Proposition 3.1. Suppose that (s, t) is a rational point on W": T2 = S3 -SS -

32. Then, with
't + 25     ,

the curve E(a) has a rational point whose abscissa is -(2d - l)/4.

Proof. Let us first look at the curve as parametrized by d and find the coefficient

of v. If we require that (xq = -(2d - l)/4, y0) is a point on E(a), we get

2

y2o = -(^j (4d2-2d-X).

Rewriting in terms of a, we find that

_     64a4 + 96a3 + 48a2 + 4a - 1

{> Z~ (8a2-l)2

must be a square. Substituting a = X/(a+ X) leads to

a4 -54a2 -200a -211

(6) Z =-(a2 + 2a- 7)2-•

Next consider the curve

W: Y2 = X4 - 54X2 - 200X - 2XX.

By inspection, we find that (-5,8) is a point on ^, and thus we can apply

the results of the preceding section. The curve W is birationally equivalent to

W" : T2 = S3 - &S - 32

with
T 4- 25

X = -^f,        Y = -X2 + 2S + 9.
This completes the proof of Proposition 3.1.   D

In order make Proposition 3.1 effective, we observe that P = (12, 40) is

a point of infinite order on W" . Each multiple of P gives a different curve

E(a), and it is easy to verify that none of the sixteen points of finite order on

E(a) have Xo = -(2d - X)/4, and thus the rational point on E(a) prescribed

by Proposition 3.1 will have infinite order as desired.

We describe the remaining cases more briefly.
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3.2.   The case Et0T = Z/5Z.   In this case, one has b = c, and the reduced

form is

(7) E(c, c): 4y2 = (c(x + X))2 - 2cx(3x + X) + x2(4x + 1).

We decide to cancel the last two terms of (7). This yields

x(4x+ 1)
(8) c =

6x + 2

In that case, the point (x, x(x + X)(4x + l)/(4 + X2x)) is on E(c, c) and by

inspection, it has infinite order, provided that x ^0, -1/2, -1/3, -1/4.

3.3. The case Exor = Z/7Z. We have c = d2 - d and b = cd. We decide to
look for a point with x = (w - X)d on the curve. We find that

w2d4 - 2(3w2 -4w + 2)d3 + (3w2 - 6w + 4)d2

+ 2(2w3 - 5w2 + 5w - 2)d + (w-X)2

must be a square. Specializing to w = - X, we obtain the quartic

(10) Y2 = X4-X8X3 + X3X2-28X + 4,

on which (-1,8) is a point. The cubic form equivalent to it is

nn T2-S3+l-^S-1-™(") l   -Ä   +   48 ¿      864 '

on which (2185/12, -2458) is a point of infinite order. In this case, we have

X'lf^ñv     r—^ + M+n-

3.4. The case EXox = Z/9Z. We have d = f(f - X) + X, c = f(d - 1), and
b = cd . We now suppose that jc = (2f- X)f2 is the abscissa of a rational point

on E. We find that

z = 4f4 - 24/3 + 48/2 - 32/ + 9

must be a square. We remark that (2,3) is a rational point on the curve

&;y2 = 4x4 - 24x3 + 48x2 - 32* + 9,

and so it is birationally equivalent to

W": T2 = S3-9S + 9

with

and

* = 2+A,        y=j(x-2)2

X = ?—^-, Y = -X2 + 2S.

We then find that ( 1, 1 ) is a point of infinite order on f"
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3.5. The case Et0I = Z/10Z. We have d = f2/(f - (f - l)2), c = f(d - X),
and b = cd. We now suppose that x = -fd is the abscissa of a point on

E(b, c). The quantity

z = 4f4 - 20f3 + 20f2 -Sf+X

must be a square. The quartic

W:y2 = 4x4- 20x3 + 20jc2 - 8jc + 1

has the rational point (0, 1), and so is birationally equivalent to

T2 - <?3 4- - 9 - —1   ~b  +3b     108'

on which (2/3, 1/2) is a point of infinite order. The transformation formulas

are
1 V    2

X = YT2'      y = Yx

and

3.6. Summary. For practical application, one may as well use the largest group

available, namely the group Z/8Z x Z/2Z of §3.1, giving a prescribed factor of

16 in k . It is possible a priori that the infinite family we use is too particularly

defined to be random, but in practice we have not found this to be so. An

unusual feature in one or two instances was that a small factor of N was found

during the preparation of the curve E, i.e., by virtue of the smoothness of the

number of points on the curve T2 = S3 - SS - 32 modulo p .

4. The use of curves with complex multiplication

If E is a curve defined over the field of p elements with complex multiplica-

tion by -D, then k = p + 1 for (-D/p) = -X, and k is a norm in Q(\/-D)
when (-D/p) = +1. In the latter case, k cannot be divisible by any odd power

of a prime q for which (-D/q) = -X, but there is no restriction for primes r
with (-Dir) = +1 .

Thus, in the implementation of ECM one should in the first stage use for the

large exponent a product of the form

f = Ur° n *2'.
r»<B      qV<B

and in the second stage only consider single primes r. For a given /i, this

cuts the time to approximately half as compared with a general elliptic curve.

On the other hand, the (unknown) factor p of a given composite TV for which

we hope to find a smooth k will with probability 1/2 have (-D/p) = -X,
in which case we are merely repeating the (P + 1 )-factorization method [11].

Presumably, that method has already been tried, and even if it has not, our

product F is quite unsuitable. So on balance it seems that we gain nothing in

the general case.

However, there are two cases where it can be guaranteed that all the prime

factors of our composite N will be norms in some quadratic field Q(\/-D).

First, in the slightly artificial environment of the Cunningham project [2], we
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may have many square roots and discriminants available. For example, if N

is the result of removing the algebraic factors from 7660 + 1, then all primes

p dividing N have p = 1320« + 1 with (1 /p) = (-1)" . Thus, we can use

Q(V^D) for 73 = 3,4,8, 11, 15,20,24,40,88, 120, 132, 660,and 1320.
The reason is that the singular values of the modular invariant j for all these

discriminants are expressible in terms of square roots which we can find modulo

N. But D = 55, for example, is not usable since it is not idoneal in the sense

of Euler [10]; its _/-invariant requires a further square root in Q(\/5).

We also face a limitation similar to that of the (P + 1)-method of factor-

ization; if we twist our curve by the character ( • /TV), we shall certainly also

twist it modulo p for at least one prime divisor p of N, but this may not be

the divisor p for which the twist modulo p has a smooth number of points.

Thus, for D > 4 it is not worth using a twist of a curve that has already been

used, rather than a wholly independent curve; the saving of half the time is

balanced by the probability 1/2 that we are merely repeating the curve modulo

p . However, for D = 3 it is worth using up to three curves (from a total of six

curves related by twists), and for D = 4 up to two curves (from a total of four

curves). Thus, in the present example we can use three curves for D = 3 , two

for D = 4, and one each for the others, giving a total of 16 specially favorable

curves.

The other case is in the elliptic curve primality proving method described in

the authors' paper [1], which can also be consulted for more theoretical details

of the above. There, at each stage of the "downrun" one attempts to factorize

norms in Q(V-D) ; however, the only square root available is V-D itself, so

that only the nine D of class number one can be used.

5. Conclusion

We have described the construction of families of elliptic curves over Q
which have simultaneously nontrivial torsion and nontrivial rank. These curves

are then used to speed up the ECM algorithm. We have also indicated a limited

use of elliptic curves with complex multiplication.
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