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A b s t r a c t .  Pairwise geometric histograms have been demonstrated as 
an effective descriptor of arbitrary 2-dimensional shape which enable ro- 

bus t  and efficient object recognition in complex scenes. In this paper we 

describe how the approach can be extended to allow the representation 
and classification of arbitrary 2�89 and 3-dimensional surface shape. This 

novel representation can be used in important vision tasks such as the re- 

cognition of objects with complex free-form surfaces and the registration 
of surfaces for building 3-dimensional models from multiple views. We 

apply this new representation to both of these tasks and present some 

promising results. 

1 Introduction 

Finding a correspondence between two or more surfaces is a frequently en- 

countered problem in many computer vision tasks. When surface based descrip- 

tions are used for object recognition, the hypothesis that  a particular object is 

in a scene is confirmed by finding a good correspondence between scene and 

model surfaces [6]. When constructing geometric models of objects by merging 

multiple range images taken from different viewpoints, the surfaces described 

by each range image require registration into a common coordinate frame [3, 1]. 

This can be done by finding the correspondence between portions of the object 's 

surface which is common to two or more views. 

In this paper we present a novel representation for arbi trary 2�89 and 3- 

dimensional surface data  which enables correspondences to be found reliably 

and efficiently. The representation is based on pairwise geometric histograms 

which have previously been demonstrated as a representation for 2-dimensional 

shape data  for object recognition applications [4]. 

The approach that  we are proposing determines whether two surfaces have 

a correspondence as follows: 
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1. Each of the surfaces is approximated by a triangular mesh. The details of this 

approximation and the algorithms we have employed for this are presented 

in Section 3.1. 
2. Each triangular mesh facet is represented by a pairwise geometric histogram 

which records the relationship between this facet and the surrounding facets 

within some specified neighbourhood. This representation is discussed in 

Section 3.2. 
3. Correspondences between individual facets are found by matching their re- 

spective geometric histograms. These local correspondences provide hypo- 

theses for the correspondence between the two surfaces. The metric employed 

for matching geometric histograms is described in Section 4. 
4. The global surface correspondence is found by finding consistent local hypo- 

theses using a probabilistic Hough transform. This is discussed in Section 

5. 

2 B a c k g r o u n d  

A number of approaches to the problem surface registration have been de- 

veloped from the "iterated closest point" (ICP) algorithm proposed by Besl and 

McKay [2]. These algorithms have been popular for registering multiple views 

of an object for model construction and for refining pose in object recognition 

tasks. The central idea behind this algorithm is that by forming correspond- 

ences between points on one surface and their nearest neighbours on another 

and then minimising the distances between them, the registration of the two 

surfaces is improved. If this process is iterated the registration of the surfaces 

often converges. The approach is computationally expensive because of its use 

of raw surface point data and because of the iterative nature of the algorithm. 

A more serious problem is that the algorithm is not guaranteed to converge, 

sometimes getting caught in local minima, and typically requires good initial 

alignment of the surfaces to get a reasonable solution. One of the advantages 

of the ICP approach is that, because it uses all of the surface data available, 

when it does converge the registration can be very accurate. The algorithm is 

also suitable for arbitrary classes of surface. 

Other researchers have used interest points on the surface instead of all of the 

surface data and formed correspondences by matching geometric descriptors of 

those points. Thirion [13] proposes the use of extremal points on 3-dimensional 

surfaces which can be characterised by a number of properties such as their 

curvature. Interest points with similar properties are treated as potential cor- 

respondents and the transformation that aligns the surfaces is determined from 

triplets of corresponding pairs. Recently, Johnson and Hebert [9] have proposed a 

novel interest point descriptor which allows point correspondences to be formed 

between surfaces. In their approach the interest points are defined by the ver- 

tices of a polygonal mesh fitted to the surface. At each vertex the geometric 

relationship with all of the other mesh vertices are recorded in a 2-dimensional 

spin-image which is invariant to rigid transformations of the surface. Interest 

point correspondences are found by identifying points with similar spin-images. 
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Local surface features such as edges and surface patches have also been used 

to determine the correspondence between two surfaces [5]. Initially all features 

on the first surface are considered as potential correspondents of features of the 

same class on the second surface. The number of potential correspondences is 

then quickly reduced using approaches based on geometric constraints such as the 

interpretation tree. Each pair of matched features provides a constraint on the 

transformation that aligns the surfaces and these are used to determine the best 

global alignment. The motivation for using features is to reduce the amount of 

data to be processed whilst maintaining valuable information needed to perform 

matching and constrain the alignment transformation. The disadvantage is that 

a particular choice of features can limit the scope of the algorithm to particular 

classes of surfaces. 

3 A N o v e l  S u r f a c e  Shape  R e p r e s e n t a t i o n  

3.1 Surface Reconstruction and Approximation 

Initially a given surface S, acquired using a range sensor, is described by a set 

of points samples P = {Pl,..-,PN}. The points may represent a single view of 

the surface or a number of different views, for example from different viewpoints 

around an object. The point set is then used to construct a triangular mesh 

approximation S to the original surface, where S = { t l , . . .  ,tM} and ti is a 

triangular facet of the mesh. 

It is important to clarify at this stage that the only requirement of the mesh 

is that it is a good approximation of the surface shape. No assumptions are 

made about the actual distribution of facets over the surface as this is unlikely 

to be repeatable. To minimise the amount of memory and computation needed 

to solve the correspondence problem, the mesh should also contain the smallest 

number of facets needed to give a good approximation of the surface. 

A number of algorithms have been proposed for reconstructing a triangular 

faceted mesh from a set of points. In the work presented here an initial, regu- 

lar mesh was constructed from the sampled point data using a reconstruction 

algorithm by Hoppe et al [8]. The resulting regular mesh was then refined to min- 

imise the number of facets whilst maintaining most of the surface shape using a 

surface simplification algorithm by Garland and Heckbert [7]. 

There are a number of advantages in using a triangular mesh to approx- 

imate the surface to be represented instead of more complex features such as 

quadric patches, the most obvious being efficiency. Constructing a mesh is also 

significantly more straightforward than segmenting a surface into more complex 

features. A second important issue is scope. Any surface can be approximated by 

a triangular mesh but selecting a fixed set of features can impose limitations on 

the types of surfaces that can be described. Another important issue is that of 

stability. If surface patches are assigned to different classes based on their shape 

then borderline cases can result in sudden changes in the representation because 

of slightly different viewing conditions or noise. 
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The disadvantage of using a triangular mesh is that it requires many fa- 

cets to describe surfaces with high curvature to a high degree of accuracy. By 

statistically modelling the shape error introduced by the triangular shape ap- 

proximation, it is still possible to obtain a good shape representation when only 

a relatively small number of facets are used. 

3.2 Histogram Construction 

A pairwise geometric histogram hi is constructed for each triangular facet ti in 

a given mesh which describes its pairwise relationship with each of the other 

surrounding facets within a predefined distance. This distance controls degree 

to which the representation is a local description of shape. The histogram is 

defined such that it encodes the surrounding shape geometry in a manner which 

is invariant to rigid transformations of the surface data and which is stable in 

the presence of surface clutter and missing surface data. 

Figure l(a) shows the measurements used to characterise the relationship 

between facet ti and one of its neighbouring facets tj. These measurements are 

the relative angle, a, between the facet normals and the range of perpendicu- 

lar distances, d, from the plane in which facet ti lies to all points on facet tj. 

These measurements are accumulated in a 2-dimensional frequency histogram, 

weighted by the product of the areas of the two facets as shown in Figure 1 (b). 

The weight of the entry is spread along the perpendicular distance axis in propor- 

tion to the area of the facet tj at each distance. To compensate for the difference 

between the measurements taken from the mesh and the true measurements for 

the original surface, the entry is blurred into the histogram. For the work presen- 

ted here a Ganssian blurring function has been used, but we intend to investigate 

more appropriate error models in the future. Certainly the scale of the blurring 

function relates to the coarseness of the mesh. The complete pairwise geometric 

histogram for facet t~ is constructed by accumulating these entries for each of 

the neighbouring facets. 

For clarity, an example of a pairwise geometric histogram is presented in Fig- 

ure 2(a). This has been constructed for the highlighted facet on the hemispherical 

mesh presented in Figure 2(b). Note that the representation only depends upon 

the surface shape and not on the placement of facets over the surface. This inde- 

pendence on the placement of the facets is important because recovering exactly 

the same mesh for the same surface under different viewing conditions is very 

unlikely, particularly if there is some surface occlusion. 

4 Generating Correspondence Hypotheses 

Given two surface meshes, ~A and ~B, the geometric histogram representation 

allows correspondences between all facets, t A and t B, from each of the meshes 

to be determined. A match for facet t A is determined by finding the best match 

between its respective pairwise geometric histogram and all of the histograms 
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Fig. 1. (a) The geometric measurements used to characterise the relationship between 
two facets ti and tj. (b) The entry made into the pairwise geometric histogram to 

represent this relationship. 

representing the facets in surface ~B. These local correspondences are treated as 

hypotheses for the correspondence between the two surfaces S A and S s .  

The similarity, Dij, between two pairwise geometric histograms h~ and hj is 

defined using the Bhattacharyya metric. This is given by the expression: 

The Bhattacharyya metric is appropriate when the error on the data can be 

described using a Poisson distribution. This is a reasonable assumption for meas- 

ured frequency distributions such as a geometric histogram [12]. A derivation of 

this metric is presented in Appendix A. 

5 H y p o t h e s i s  V e r i f i c a t i o n  

Each pair of matched mesh facets provides evidence that the surfaces to which 

they belong have the same shape, at least locally, and can therefore be registered. 

The transformation that aligns the paired facets also provides a constraint on 

the transformation that aligns the complete surfaces. The problem then is to 

determine whether there is enough evidence to support these hypotheses and, if 

so, to determine the transformation that aligns the surface data. 

We have used an approach taken by other researchers in which N-tuples 

of matched features, in our case paired mesh facets, are used to estimate the 
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Fig. 2. (a) The geometric histogram that characterises the relationship between high- 
lighted facet and the other facets in the mesh in (b). 

alignment transformation. These estimates are then accumulated in a Hough 

transform resulting in a peak where there is consistency. As an improvement 

to this scheme we have adopted a probabilistic approach in which the error on 

the estimated transformation is integrated into the Hough accumulator [11]. This 

error is determined by statistically modelling the error between the facets and the 

true surface and propagating this error through the transformation estimator. 

Initially 2-tuples of paired facets are used to estimate the rotation component 

of the alignment transformation and votes are placed in a 3-dimensional Hough 

transform. The number of 2-tuples can be very large so only a proportion of 

the largest paired facets are used. If a significant peak is found in this space 

then 3-tuples of paired facets are used to estimate the translation component 

of the alignment transformation. Again, only a proportion of the largest facets 

are used to allow fast operation. If a significant peak is found in the translation 

space then the hypothesis that the surfaces can be registered is accepted. 

6 E x p e r i m e n t s  

Two applications of the proposed surface representation are presented here. The 

first application is the registration of two different views of an object with a 

complex surface. The second application is the identification and localisation 

of known objects in a scene. All of the data were acquired using a laser stripe 

range scanner with an accuracy of approximately 0.1mm. The pairwise geometric 

histogram parameters selected for both of these experiments are presented in 

Table 1. 
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Quantisation of Relative Angle Axis 20 bins 

Quantisation of Perpendicular Distance Axis 20 bins 

Maximum Perpendicular Distance =1= 100ram 

Maximum Relative Angle ~ radians 

Table 1. The pairwise geometric histogram parameters used in the experiments presen- 

ted here. 

6.1 Reg i s t r a t i on  of  F ree - fo rm Surfaces  

In this experiment the objective is to find the correspondence between two sur- 

faces constructed from different views of an object. The surface meshes, presen- 

ted in Figure 3, describe the surface of a farm animal model and consist of 1000 

facets each. It should be noted that the model has quite complex, free-form sur- 

faces which are difficult to describe using features such as quadric patches or 

edges. 

Fig. 3. The triangular meshes for two different views of the surface of a farm animal 

model. 

Figure 4(a) presents the two surfaces in their registered positions. Certainly, 

from a qualitative point of view, the registration seems to have been successful. 

This is emphasised by the inter-meshing of the two surfaces on the rear leg of 

the model shown in close-up in Figure 4(b). The fact that this inter-meshing is 

not visible over all of the surface suggests that there is some registration error, 

however. 

Only the largest 5% of the facets were matched and used to determine the 

alignment transformation. The entire registration process took approximately 

4 minutes 24 seconds on a 200MHz Sun Ultra. A breakdown of these times is 

presented in Table 2. 
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Fig. 4. (a) The two meshed surfaces in their registered positions. (b) A close-up of the 
rear leg of the model. The light and dark shades of grey represent the two different 

surfaces. 

Triangular Mesh Construction 110 seconds 

Geometric Histogram Construction 212 seconds 

Geometric Histogram Matching 6 seconds 

Resolving Hypotheses 126 seconds 

Table 2. A breakdown of the time to complete the registration for each of the main 

algorithm stages. 

6.2 Object Recognit ion and Pose Est imation 

The objective of this experiment is to identify known objects in a scene and 

estimate the pose of those objects. The object models, presented in Figure 5, 

have been constructed from multiple views to produce a complete 3-dimensional 

description of all of the surfaces. Each model is represented by 1000 facets. 

Figure 6 presents a scene containing two of the known models. The scene has 

been captured with a single range image and represented by 1000 facets. 

The classification of each of the scene facets is presented in Figure 7. In each 

of the three images the scene facets which best match a facet from the respective 

model have been drawn. It can be seen that  most of the facets have been classi- 

fied as belonging to the correct models. Most of the incorrectly classified facets 

lie very close to surface discontinuities where the recovery of the surface nor- 

mal is very poor. This is largely due to the mesh construction algorithm which 

has problems preserving discontinuities in the range data. There are also some 

problems with the classification of the underside of the cylinder model. This is 

likely to be because this surface is almost parallel to the viewing direction which 

makes recovery of the surface normal prone to error. 
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Fig. 5. The three model objects used in the recognition experiment. 

Figure 8 presents the results of the recognition of pose estimation process. 

The original scene data is shown in the darker shade and the recognised mod- 

els are shown in their estimated positions in the lighter shade. The algorithm 

has both determined the objects present in the scene and formed a reasonable 

estimation of their positions. 

All of the facets were matched and then the largest 5% from each class were 

used to determine the model poses. The entire object recognition process took 

approximately 14 minutes 3 seconds on a 200MHz Sun Ultra. A breakdown of 

these times is presented in Table 3. 

Triangular Mesh Construction 54 seconds 

Geometric Histogram Construction 96 seconds 

Geometric Histogram Matching 329 seconds 

Resolving Hypotheses 364 seconds 

Table 3. A breakdown of the time to complete the recognition process for each of the 

main algorithm stages. 

7 Conclusions 

The problem of finding a correspondence between two or more surfaces has 

been investigated by a number of researchers and several solutions have been 

proposed. The most reliable approaches are based on finding point-feature or 
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Fig. 6. The scene data used in the recognition experiment. 

surface-feature correspondences between the surfaces being registered and using 

these to estimate the transformation that aligns the complete surfaces. 

In this paper we have proposed a novel representation for surface data which 

enables local surface correspondences to be determined. This representation is 

invariant to rigid transformations of the surface data and, because of its stat- 

istical nature, allows errors in the approximation of the surfaces by triangular 

meshes to be modelled. 

Having established local correspondences we have shown that the transform- 

ation that aligns complete surfaces can be determined using a Hough voting 

scheme. The advantage of using Hough voting is that it is possible to model 

transformation errors present in the local correspondences by adopting a prob- 

abilistic Hough transform. 

To demonstrate the effectiveness of the new representation and the algorithm 

that determines the alignment transformation, we have presented two experi- 

ments. In the first experiment two surfaces of a complex curved surfaced object 

taken from different viewpoints are successfully registered. In the second exper- 

iment, known objects are successfully identified and located in a scene. 
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Fig. 7. (a),(b) & (c) present the scene facets which best match facets in Models 1, 2 

& 3 respectively. 

A D e r i v a t i o n  o f  t h e  S i m i l a r i t y  M e t r i c  

In this section the derivation of a statistical metric for comparing binned meas- 

urements  is presented. Given a random variable X ,  a statistical measure of the 

distance D between the endpoints X -- x and X = x + ~x of a short line is 

obtained by normalising by the s tandard deviation a. 

~x 
D = - -  (2) 

f f  

In general then, the statistical distance between any two points X -- s and 

X -- m can be determined by the definite integral: 

f m dx 
D = - -  (3) 

{T 

For N independent measurements  the statistical distance is given by a sum of 

squared components: 

exi)2 
D2 = Z (  ai (4) 

i s l  

I t  is well known tha t  binned da ta  conforms to a Poisson distribution and tha t  

the variance of a Poisson variable is equal to its mean. A statistical distance 

metric for binned da ta  is then obtained by substitution of ai = v / ~ .  

(5) 
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Fig. 8. The identification and localisation of the two objects in the scene. The scene 

data is presented in the darker shade and the models in the lighter shade. The second 

image presents the scene from a different view-point. 

= 4 E ( v ~ - ~  ~ (6) 

Removing the constant factor in this expression gives the statistical metric pro- 

posed by Matusita [10] which is known as the Matusita distance. 

Dmatuslta = E ( v / ~ -  v / ~ 2  

Expanding this expression gives: 

(7) 

~ ~  - E s, + E m, - E r 1 6 2  
i i i 

(s) 

If both m and s are normalised, or when using this metric to compare a single 

scene histogram with a set of normalised model histograms, this is simply: 

Omatusita = const - E V~sV/-~z (9) 

i 

Removing the constant results in the Bhat tacharyya distance. 

Dbhattacharyya -~ E X ~  X ~  (10 ) 
i 
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