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Abstract. This paper presents a failure diagnosis algorithm for sum-
marizing and generalizing patterns that lead to instances of anomalous
behavior in sensor networks. Often multiple seemingly different event
patterns lead to the same type of failure manifestation. A hidden rela-
tionship exists, in those patterns, among event attributes that is somehow
responsible for the failure. For example, in some system, a message might
always get corrupted if the sender is more than two hops away from the
receiver (which is a distance relationship) irrespective of the senderId
and receiverId. To uncover such failure-causing relationships, we present
a new symbolic pattern extraction technique that identifies and symbol-
ically expresses relationships correlated with anomalous behavior. Sym-
bolic pattern extraction is a new concept in sensor network debugging
that is unique in its ability to generalize over patterns that involve dif-
ferent combinations of nodes or message exchanges by extracting their
common relationship. As a proof of concept, we provide synthetic traffic
scenarios where we show that applying symbolic pattern extraction can
uncover more complex bug patterns that are crucial to the understand-
ing of real causes of problems. We also use symbolic pattern extraction
to diagnose a real bug and show that it generates much fewer and more
accurate patterns compared to previous approaches.

Keywords: symbolic pattern, interactive bugs, wireless sensor network.

1 Introduction

Wireless sensor network applications typically implement distributed protocols
where multiple nodes communicate with each other to collectively perform a
collaborative task. Nodes often assume roles such as cluster heads, sensors, or
forwarding nodes. Messages have types, usually defined by the respective ap-
plications. Such applications often fail due to some unexpected sequences of
(communication or other) events, which are not handled properly by the proto-
col design and/or due to some implementation oversight that leads to a “bad”
state which eventually leads to the failure. In this paper, we generalize from
actual observed message exchanges to the underlying relationships defined on
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nodes, roles, and message types, that lead to a failure. We call them symbolic
bug patterns .

Unfortunately, none of the existing debugging tools and techniques available
for sensor networks is capable of troubleshooting symbolic bugs. State of the
art debugging techniques for sensor network include passive diagnosis [10,16],
usage of declarative tracepoints to collect runtime logs for offline analysis [4],
discriminative sequence mining for offline analysis of runtime logs [8,9], real-
time failure diagnosis [18], traditional breakpoints and watchpoint primitives to
probe into hardware at runtime [24,23] and more traditional techniques such
as simulation [11,17,21], emulation [7], and testbeds [22,5]. Though source code
level debugging tools [24,23] help identify single node programming errors, these
are not very effective to diagnose interaction bugs. Dustminer [9] comes closest to
our work. It uses frequent sequence mining techniques for bug diagnosis. Though
it makes an effort towards using sequence mining for finding interaction bugs, in
this paper we show that analyzing sequences of events based on absolute event
attribute values to diagnose such bugs is not enough. To make things worse,
the resulting patterns can often be misleading and can confuse the application
developer.

In this paper, to diagnose complex bug patterns, we introduce the concept
of symbolic patterns that identify the “culprit” sequences of events responsible
for failure by capturing the relationships among different event attributes. In
the context of this paper, a symbolic pattern is a pattern where all or a subset
of the absolute values of event attributes within the pattern are replaced with
symbols to generalize the pattern. To perform offline analysis using symbolic
pattern extraction, different types of runtime events are logged during program
execution and offline analysis is done to identify the discriminative set of frequent
symbolic patterns that will contain the “culprit” symbolic patterns that are
highly correlated to failure.

The rest of the paper is organized as follows. In section 2 we introduce the
model for symbolic patterns. In Section 3, we describe the state of the art in
debugging tools and techniques specifically developed for sensor network appli-
cations and explain their limitations. In Section 4, we explain the mechanism
behind symbolic pattern extraction and the pattern ranking scheme. We com-
pare and evaluate the debugging capability of symbolic pattern extraction to
prior related schemes [8,9] in Section 5 using a synthetic bug and a real bug.
Finally, Section 6 concludes the paper.

2 A Model for Symbolic Patterns

The logged events in our system can include any operations performed at run-
time such as message transmission, message reception, and writing to flash stor-
age. Each recorded event can have multiple attributes. For example, a message
transmission event can have senderId, senderType, destinationId and msgType
as attributes. For the purposes of the discussion below, let us define an event to
be the basic element in the event log that is analyzed for failure diagnosis. The
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format of a logged event and the definition of sequences of events are similar to
those defined in [9]: < EventType, attribute1, attribute2, ...attributen >.

For example, attribute1 can be SenderId in case of a messageSent event. The
generated log can be thought of as a single sequence of events. For example,
consider the following logged events in a sample log:

< msgSent, senderId = 1, msgType = 0, destinationId = 3 >

< msgReceived, receiverId = 1, msgType = 1, senderId = 3 >

< flashWriteInitiated,nodeId = 1, dataSize = 100 >

The above log can be considered a single sequence of three events each with
multiple attributes. A frequent sequence mining algorithm [1] is used to extract
frequent subsequences of events. Events in the subsequence do not have to be
contiguous in the original sequence. We use the term “frequent (sub)sequence of
events” and “frequent pattern” interchangeably in this paper.

A discriminative pattern between two logs is an ordered subsequence of events
that occurs with a different support in the two logs, where support refers to the
number of times it occurs. The larger the difference in support, the better the
discriminative power. Before we formally define a symbolic pattern, let us consider
the following example to illustrate what it means. Say, we have two patterns S1
and S2 where each pattern has two events with multiple attributes as follows:

S1 =< msgSent, senderId = 1, msgType = 0 >

< msgReceived, receiverId = 2, msgType = 0 >

S2 =< msgSent, senderId = 3, msgType = 0 >

< msgReceived, receiverId = 5, msgType = 0 >

where node 1 is the neighbor of node 2 and node 3 is the neighbor of node 5.
On the surface, patterns S1 and S2 are different. Now, if we parameterize the
relationship that exists between senderId and receiverId and represent it using
symbol X for senderId, S1 and S2 can be represented as follows:

S1 =< msgSent, senderId = X, msgType = 0 >

< msgReceived, receiverId = neighbor(X), msgType = 0 >

S2 =< msgSent, senderId = X, msgType = 0 >

< msgReceived, receiverId = neighbor(X), msgType = 0 >

Interestingly, S1 and S2 now become the same pattern which expresses a more
general relationship. Note that, if S1 and S2 each has support 1, the symbolic
version has support 2 and hence symbolizing patterns increase the visibility of
the pattern in the event log.

More formally, in the context of this paper, symbolic pattern extraction is the
task of identifying frequent patterns that satisfy certain relationships, speci-
fied by the user or selected from a library of common relationships, defined
among event attributes of same or different types of events (e.g., neighborhood

relationship, identity relationship, and type relationships). These relationships are
then represented using symbols instead of absolute values where appropriate. In
this paper, we present an algorithm for symbolic pattern extraction which at first,
generates frequent patterns using the Apriori algorithm [1]. Next, it generalizes
frequent patterns generated in the first stage by mining for “relationships” in
those patterns. In this paper, we also present a hybrid scheme for counting the
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support for individual patterns which greatly enhances the chance of identifying
“infrequent” events that are correlated with failure. Finally, we propose a pat-
tern ranking scheme exploiting the characteristics of symbolic patterns which
increases the usability of the tool.

To analyze the performance of symbolic pattern extraction, we simulated sev-
eral bugs in TOSSIM to generate log files and analyzed them using our new
algorithm. We choose simulation to generate log files as it gives us the flexibil-
ity to experiment with bugs of arbitrary complexity. We compare discriminative
symbolic patterns generated by our symbolic pattern extraction algorithm with
the discriminative patterns generated by the algorithm we presented earlier [9]
and show that symbolic patterns greatly enhance the diagnostic capability and
the usability of the tool.

3 Related Work

State of the art debugging techniques for wireless sensor networks include passive
diagnosis [10,16], sequence mining for offline analysis of runtime logs [8,9], and
real-time failure diagnosis [18]. To increase the visibility inside the node a recent
effort [4] proposed the usage of declarative tracepoints to collect runtime logs
for offline analysis.

To facilitate debugging single-node programming bugs (e.g., bad pointer ref-
erence, stack overflow etc.), sophisticated tools such as Clairvoyant [24] and
Marionette [23] are developed that provide standard debugging primitives such
as breakpoints and watchpoints that enable stepping through execution on a
line-by-line basis. Though these tools are very useful to debug programming or
localized errors, these are not very useful if the cause of the failure is distributed
across multiple nodes. Moreover stepping through code execution can cause the
bug to disappear or to create new problems, if they are timing-related.

At the other extreme of the spectrum lie debugging tools such as SNTS [10]
which try to debug a deployed sensor network by analyzing passively recorded
radio communication messages in the network. Although passive diagnosis does
not interfere with the operation of the network, the diagnostic capability is
rather limited due to unavailability of “critical” run time information. Sympa-
thy [18] performs real-time diagnosis using a classification tree approach and uses
a minimal amount of run-time data collected at a central node to perform the
diagnosis. The diagnosis is done based on reduced throughput in the network.
Dustminer [9] uses flash on the chip to log runtime events and uses sequence
mining for offline analysis to diagnose the cause of the problem. As each node
records logs locally and does not upload data in real time, it does not compete
for the radio to communicate and hence minimizes the interference. In [9], the
authors identified several limitations of an existing sequence mining algorithm [1]
and extended it to address those issues. None of the above techniques can find
symbolic patterns automatically.

SNMS [20] presents a more traditional sensor network management service
that collects and summarizes different types of measurements such as packet
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loss and radio energy consumption. Although laboratory test-beds like Mote-
lab [22], Kansei [5], and Emstar [7] provide the convenience of testing in a con-
trolled environment, they do not provide hints to the developer if something
goes “wrong”(e.g., some random nodes stopped after 2 hours) during the test-
ing. Other work [19] shows that erroneous sensor readings such as temperature
and humidity can be used to predict network and node failures but it does not
provide the answer to the question “Why was the sensor reading bad in the first
place?”.

Usingmachine learning techniques to diagnose failure is not new [3,2,6,12,14,15].
Discriminative frequent pattern analysis [6], software behavior graph analysis [14],
a Bayesian analysis based approach [13], and control flow analysis to identify logic
error [15] are a few examples. These techniques do not focus on extracting symbolic
relationships, however.

4 Overview

To answer the question “Why do we need discriminative symbolic pattern extrac-
tion to debug interaction bugs?”, we provide an example in Section 4.1. We then
present the symbolic pattern extraction algorithm in Section 4.2. We conclude
the section by presenting a hybrid support count function and a pattern ranking
scheme that have significant impact on the quality of the patterns generated and
the scalability of the algorithm.

4.1 Motivation for Using Symbolic Pattern for Debugging

Let us assume that, in a particular application, each neighbor of node A peri-
odically communicates with node A and is always expected to send messages of
type 0, 1 and 2 in a fixed order, where msgType 0 is followed by msgType 1
and msgType 2, respectively. Also, assume that any violation of this message
order from a specific sender crashes the system. Now, let us log a few examples
of correct execution (Good Log) and execution that leads to a manifestation of
error (Bad Log). Consider the log file presented in Table 1, collected from node
1 and node 7, where node 1 did not crash and node 7 crashed. Note that, node
7 crashed as node 8 sent messages violating the required sequence of message
types.

If we generate the patterns correlated with failure, a state of the art algorithm
would come up with the following: pattern seq1 with support 2 and pattern seq2

with support 1 along with other frequent patterns.
seq1 =< msgReceived, msgType = 0 >

< msgReceived, msgType = 1 >
< msgReceived, msgType = 2 >

seq2 =< msgReceived, msgType = 2 >
< msgReceived, msgType = 0 >
< msgReceived, msgType = 1 >
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Table 1. Sample Log File

1. < msgReceived, receiverId = 1, senderId = 3, msgType = 0 >
2. < msgReceived, receiverId = 1, senderId = 3, msgType = 1 >

Good Log 3. < msgReceived, receiverId = 1, senderId = 3, msgType = 2 >
(Node 1) 4. < msgReceived, receiverId = 1, senderId = 2, msgType = 0 >

5. < msgReceived, receiverId = 1, senderId = 2, msgType = 1 >
6. < msgReceived, receiverId = 1, senderId = 2, msgType = 2 >

1. < msgReceived, receiverId = 7, senderId = 6, msgType = 0 >
2. < msgReceived, receiverId = 7, senderId = 6, msgType = 1 >

Bad Log 3. < msgReceived, receiverId = 7, senderId = 8, msgType = 2 >
(Node 7) 4. < msgReceived, receiverId = 7, senderId = 8, msgType = 0 >

5. < msgReceived, receiverId = 7, senderId = 8, msgType = 1 >
6. < msgReceived, receiverId = 7, senderId = 6, msgType = 2 >

If we inspect the logged events presented in table 1 carefully, we can see that there
is also a pattern associated with the senderId, where senderId is the same for
seq1. For the first and second occurrence of seq1, senderId is 3 and 2 respectively.
This pattern is missed due to different support. For example, logged event <
msgReceived, receiverId = 1, senderId = 3, msgType = 0 > has support 1 and
< msgReceived, receiverId = 1, msgType = 0 > has support 3.

On the other hand, if we parameterize the values of receiverId and senderId
and replace the identical values with symbols where receiverId is replaced with
X and senderId with Y in Good Log, the following pattern will be identified
with support 2 where for the first occurrence X = 1 and Y = 3 and for the
second occurrence X = 1 and Y = 2.

< msgReceived, receiverId = X, senderId = Y, msgType = 0 >
< msgReceived, receiverId = X, senderId = Y, msgType = 1 >
< msgReceived, receiverId = X, senderId = Y, msgType = 2 >

Similarly, if we extract symbolic patterns, we would be able to identify that the
following pattern seq3 occurs only in Bad log but not in the Good log -

< msgReceived, receiverId = X, senderId = Y, msgType = 2 >
< msgReceived, receiverId = X, senderId = Y, msgType = 0 >
< msgReceived, receiverId = X, senderId = Y, msgType = 1 >

Without symbolic pattern extraction there is no way of identifying seq3. A more
detailed description of the Symbolic pattern extraction algorithm is presented in
section 4.2.

4.2 Symbolic Pattern Extraction Algorithm

Symbolic pattern extraction is a two step process.

– During the first stage, multiattribute events are converted into single at-
tribute events to reduce the computational complexity. Frequent patterns of
events with single attribute are generated using a current sequence mining
algorithm [1]. Let us call this set of frequent pattern the base frequent set.

– At the second stage, the candidate symbolic patterns are generated from
this base frequent set. If the symbolic pattern si has support supsi which is
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generated from the base pattern pi with support suppi and (supsi/suppi) > δ,
then pi is replaced by si. δ is the equivalence threshold which is set by the
user. If δ is set to 0, all the symbolic patterns are retained and if it is set to 1
then symbolic patterns with the exact same support as the base pattern are
retained. The generation of candidate symbolic patterns is described below.

Generation of Candidate Symbolic Patterns. To explain the generation of
candidate symbolic patterns, without loss of generality, let us assume that Seqa

is a frequent base pattern of three events where each event is of different type
and includes a single attribute from each event type.
Seqa = (< Ex, attr2 = vi >, < Ey , attr2 = vj >, < Ez , attr3 = vk >)

Say, event < Ex > originally has 3 attributes and Seqa includes only the
second attribute of < Ex >. Similarly, we assume < Ey > and < Ez > originally
have 2 and 3 attributes respectively.

Next, the algorithm reconstructs the equivalent, complete pattern where each
event has all the attributes. Now, the equivalent pattern generated from Seqa

would look like as follows:
(< Ex, attr1 = ∗ >, < Ex, attr2 = vi >, < Ex, attr3 = ∗ >)
(< Ey, attr1 = ∗ >, < Ey, attr2 = vj >)
(< Ez , attr1 = ∗ >, < Ez , attr2 = ∗ >, < Ez, attr3 = vk >)

Here “*” is used for the attributes that are not included in the original pattern
which basically says that the “*” attributes are “don’t care”. Next, the algorithm
replaces a subset of the “*” attributes with symbols and mine for relationship
among those symbolic attributes. The symbolic pattern replaces Seqa if the
support of the symbolic pattern in the original log is “similar” to the support of
Seqa.

4.3 Challenges

Meaningful Condition Identification. “Which subset of “*” attributes to
replace with symbols and what “relationship” to test for?” is one of the key
questions in finding meaningful symbolic bug patterns. We need to decide this
intelligently to avoid useless checking such as “checking if nodeId and timeStamp
are equal or not in a particular event”. Our goal is to automate the process as
much as possible. To reduce the user involvement, we provide a list of predefined
conditions that are especially applicable for wireless sensor network applications.
For example, the common attributes expected for wireless sensor network ap-
plications are nodeId, message types, sensor data types, timestamps, etc. We
tried to come up with the basic conditions that need to be checked. For exam-
ple, checking if the “neighbor” condition holds between senderId and receiverId
makes sense. The user needs to specify the type of the attribute in a header
file. For example, if the type of ith attribute of event Ex is “nodeId”, user may
specify that information as (< Ex, attri, type : nodeId) from which the tool au-
tomatically determines the set of applicable conditions for this attribute. From
that information, combinations of conditions of arbitrary complexity such as “Is
the senderId always same as the receiverId?”, or “Does the msgType has to be
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X and sender has to be the immediate neighbor to crash the receiver?” and so
on can be generated automatically.

We realize that there may be conditions which are not provided by us. If the
user wants to check for conditions that are not provided by a library function,
he/she may implement the desired condition and add it to our library. A user
may specify a condition that is not provided by the tool as follows:

(< Ex, attri >, < Ey , attrj >, Conditionq) where Conditionq is defined
and implemented by the user for his/her specific application. A pseudocode of
the algorithm is given in table 2.

Table 2. Symbolic Pattern Extraction Algorithm

Algorithm: Symbolic Pattern Extraction

Input: Set of Good Logs (GL), Set of Bad Logs(BL),similarity measure (δ)
Output: Set of discriminative symbolic pattern
1. PatternSetA=GenerateFrequentPatterns(GL)
2. SymbolicPatternSetA=ExtractSymbolicPattern(PatternSetA,GL,δ)
3. PatternSetB=GenerateFrequentPatterns(BL)
4. SymbolicPatternSetB=ExtractSymbolicPattern(PatternSetB,BL,δ)
5. DiscriminativePatternSet=DiffMine(SymbolicPatternSetA,SymbolicPatternSetB)
6. output DiscriminativePatternSet

Function: ExtractSymbolicPattern
Input: Set of Frequent Pattern(FP),Set of Logs(L),similarity measure (δ)
Output: Set of symbolic pattern(SP)
1. SP=Null;/ ∗ setofSymbolicpattern ∗ /
2. for each pattern p in FP

2.1 for each checkcondition c
2.1.1 CSP=GenerateCandidateSymbolicPattern(p,c)
2.1.2 if(support(CSP)/support(p)> δ then SP=SP U CSP

2. return SP

Scalability. One of the problems with symbolic pattern mining is that the num-
ber of combinations of conditions to check is exponential. For example, consider
the following symbolic candidate pattern -

(< Ex, attr1 = ∗ >, < Ex, attr2 = vi >, < Ex, attr3 = ∗ >)
(< Ey, attr1 = ∗ >, < Ey, attr2 = vj >)
(< Ez , attr1 = ∗ >, < Ez , attr2 = ∗ >, < Ez, attr3 = vk >)

Now, assume that the applicable set of conditions that need to be checked for
this pattern are:

c1 : (< Ex, attr1 >, < Ey, attr1 >, IdentityCondition)
c2 : (< Ex, attr1 >, < Ez, attr1 >, IdentityCondition)
c3 : (< Ey, attr1 >, < Ez, attr1 >, IdentityCondition)
c4 : (< Ex, attr2 >, < Ez, attr3 >, LessThanCondition)

The possible combinations of conditions are 2NoOfApplicableConditions − 1 where
for the above example NoOfApplicableConditions = 4.
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To reduce the number of combinations to check we apply the following heuristic
which is based on the apriori property. Informally, apriori property states that for
a combination of n conditions to be satisfied, any subset of those n conditions must
also be satisfied. To exploit this property, at first, we check for single conditions
and try to reduce the number of applicable conditions. For example, if c1 is not
satisfied, we do not need to check any combination that includes c1.

Next, we check for conditions in increasing length. For example, assume condi-
tions c2, c3 and c4 are satisfied. We check which combinations of (c2, c3), (c2, c4),
and (c3, c4) are satisfied. If all of the length-2 combinations are satisfied, we check
if (c2, c3, c4) is satisfied or not.

Symbolic Pattern Ranking. The discriminative pattern extraction algorithm
often returns patterns with same or very similar support. In the case of non
symbolic patterns, there is no clear way to decide which patterns should be
ranked as the more important ones. Fortunately, in the case of symbolic patterns,
we have a convenient way to rank the patterns. We applied a simple scheme where
we give more importance to patterns that are more specific. To do that, we simply
count the number of “*” in a symbolic pattern. The higher the number of “*” in a
pattern, the lower the rank, as it is likely to be a self-evident generality that does
not carry much information. The rationale behind this is due to the fact that
“*” implies “don’t care” and hence patterns having more “*” are more likely to
have higher support but represent a weaker concept. In contrast, patterns with
fewer “*” give more information and should be ranked higher.

4.4 Hybrid Support Count Function

One of the inherent problems with any discriminative pattern extraction algo-
rithm is that the number of patterns generated as discriminant patterns is over-
whelmingly large, which can be in the order of thousands. It makes it “easy” to
miss the “culprit” pattern which may end up deep down the list of discriminative
patterns. As at each stage i, the candidate set is generated by concatenating the
frequent patterns generated at stage (i− 1) with each of the unique events in the
log file, for 100 unique events (e.g. the alphabet equivalent of English language)
in a log file, the number of candidate patterns of length 3 is 10,00,000 and so on.
To avoid losing crucial events, we have to set the minimum support threshold to 1
(e.g., a single node reboot event may cause a large number of message losses and
setting minimum support threshold larger than 1 will discard the “reboot” event).
To address this challenge, in [9] we proposed a two stage approach which first iden-
tifies symptoms (e.g., message loss) with setting high minimum support threshold
and later tries to identify the cause of failure(e.g., reboot) with lower support. Al-
though this addresses the scalability issue to some extent, the patterns returned
in this scheme still fail to return the “culprit” sequence at the top of the list if the
cause of failure is infrequent (e.g., large number of message lost due to single node
reboot).

The cause of the problem lies in the way support for an event is calculated in the
frequent sequence mining algorithm in the data mining domain, which is ill-suited
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for debugging purposes. The reason is that if we have N log files and an event X
exists in only one file 1000 times and does not happen in any of the other files,
X will still be considered a frequent event with support 1000. But for debugging
purpose, this is “wrong”. As the reasoning behind using discriminative pattern
extraction for debugging relies on the assumption that an event correlated with
failure should “exist” in at least a majority of the “Bad” log files. Event X in fact
violates this assumption and is not a frequent event from a debugging perspective.

To address this problem, we have implemented a support count function that
counts the frequency of patterns not only within a single log file but also across
multiple log files and uses both estimates to generate support for single attribute
events. For example, according to our scheme, if an event X “exists” in only one
of the N log files, the across support for X is 1 irrespective of how many times it
happened in that single file.

For example, though “reboot” event has a lower support in a single file, it has a
higher support across the files (“reboot” exists in all the file for cases that crashed).
Using this observation, we discard events from the base set that have across sup-
port lower than a threshold θ which is set by the user (i.e., θ = 0.6 implies that
for an event to be frequent, it has to “exist” in at least 60% of the files). We have
two sets of frequent events (i.e., alphabet set), one for the set of good logs and one
for the set of bad logs which are subsequently used to generate longer patterns.
This reduces the execution time significantly and helps rank the patterns that are
more correlated with failure higher than the other “less” correlated patterns.

4.5 Collection of Logs

To use the tool, one must collect runtime logs from the application nodes. As long
as the runtime logs follow the format specification required by the data analysis
backend, the source of the logs does not matter. Logs can be collected from sim-
ulation, emulation or from real hardware. For example, if the user intends to use
TOSSIM, user can log any event inside the application using TOSSIM’s “dbg”
statement as in dbg(“Channel′′, “%d : %d : %d : %d....”,NodeId, EventId, attr1, attr2, ....)

as described in [8]. The user can also use the data collection front end designed
for real hardware described in [9] to collect runtime logs from real deployment
or choose to build his/her own data collection front end.

5 Evaluation

To evaluate the diagnostic capability using discriminative symbolic pattern anal-
ysis, we used TOSSIM in TinyOS 2.0 to simulate the nesC code where we used
a synthesized bug to create the sample log files. We simulated a network of 25
nodes placed on a grid topology with 5 rows and 5 columns. For the simulated
bug, we compare the generated symbolic patterns with the non symbolic pat-
terns generated by the algorithm presented in [9]. We choose to compare our
result with [9] as [9] is the most related to our work that uses discriminative
patterns to diagnose bugs.
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5.1 Synthesized Bug

In this section we give examples of a synthesized bug to illustrate the strength
of symbolic discriminative pattern extraction for debugging.

– Failure scenario-I: Out of order events, deterministic failure: Let us assume
that in a particular application, each neighbor of node A periodically commu-
nicates with node A and is always expected to send the messages of type 0, 1
and 2 in a fixed order where msgType 0 is followed by msgType 1 and msg-
Type 2 respectively. Also assume that message reception in reverse order from
a specific sender crashes the system. The discriminative pattern set returned
by both algorithms from simulated logs for this failure scenario are given in
table 3. The first discriminative symbolic pattern captured the bug perfectly
where it expressed the fact that if a particular receiver(X1) receives from a
particular sender(X2) messages in reverse order of msgType where msgType
2 is followed by msgType 1 and msgType 0 respectively, there is a problem.
Not surprisingly, the algorithm borrowed from [9] generated completely mis-
leading patterns with highest support. Though it returned the pattern “(<

msgReceived : (msgType : 2) >, < msgReceived : (msgType : 1) >, < msgReceived :

(msgType : 0) >)” at the very end of the list, it failed to identify the crucial con-
dition that this sequence causes a problem only if the messages are received
from the same sender.

Table 3. Top Patterns for Failure scenario - I

Patterns generated by [9]

1. < msgSent : (msgType : 2) >, < msgSent : (MsgType : 0) >, < msgSent : (SenderType : 0) >

2. < msgReceived : (msgType : 1) >, < msgReceived : (senderType : 0) >, < msgSent : (msgType : 2) >

Patterns generated by Symbolic Pattern Extraction

1. < msgReceived : (ReceiverId : X1), (SenderId : X2), (SenderType : ∗), (MsgType : 2) >

< msgReceived : (ReceiverId : X1), (SenderId : X2), (SenderType : ∗), (MsgType : 1) >

< msgReceived : (ReceiverId : X1), (SenderId : X2), (SenderType : ∗), (MsgType : 0) >

5.2 A Real Bug: Directed Diffusion Protocol Bug

We used the bug reported in [8] where a node experiences a large number of mes-
sage losses after a node is rebooted in the directed diffusion protocol. For a detailed
description of the bug, interested readers are encouraged to read [8]. Briefly, in the
directed diffusion protocol, each node maintains an interest cache entry to keep
track of which way to forward a data packet. There can be multiple paths from a
single data source to the destination node. If there is no interest cache entry that
matches a received packet’s interest description, the receiver node silently discards
the packet assuming it is not on the forwarding path. The problem is if a node gets
rebooted for some reason, it wipes out the interest cache completely and causes a
large number of consecutive message losses. The problem manifests only if there
is a single path from the source node to the destination node. This bug is partic-
ularly interesting because in [8] the reported discriminative patterns showed the
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manifestation of the problem rather than showing that the “Reboot” event is the
one that is actually causing the problem. For the log generated for this bug, the
discriminative pattern set returned by the symbolic pattern extraction algorithm
is given in table 4. Symbolic patterns identified the real cause of the problem and
correctly correlated the cause of failure and the manifestation. It clearly shows
that the “Boot” event is followed by the interest cache empty event and message
is dropped due to no matching interest cache entry.

Table 4. Top Patterns for Directed Diffusion Protocol Bug

Patterns reported in [8]

1. < interestCacheEmpty : NodeId : 3 >,

< dataCacheEmpty : NodeId : 3 >,

< dataMsgSent : TimeStamp : 20 >

2. < interestCacheEmpty : NodeId : 3 >,

< dataCacheEmpty : NodeId : 3 >,

< dataMsgSent : NodeId : 4 >

3. < interestCacheEmpty : NodeId : 3 >,

< dataCacheEmpty : NodeId : 3 >,

< dataMsgSent : msgType : 5

Patterns generated by Symbolic Pattern Extraction

1. < BOOT EV ENT : (NodeId : X1) >,

< interestCacheEmpty : (NodeId : X1) >,

< dataCacheEmpty : (NodeId : X1) >

2. < BOOT EV ENT : (NodeId : X1) >,

< msgDropped : (NodeId : X1), (ReasonToDrop : dataWithNoMatchingInterest), (TimeStamp : ∗) >,

< interestCacheEmpty : (NodeId : X1) >

3. < BOOT EV ENT : (NodeId : X1) >,

< msgDropped : (NodeId : X1), (ReasonToDrop : dataWithNoMatchingInterest), (TimeStamp : ∗) >,

< dataCacheEmpty : (NodeId : X1) >

5.3 Performance Comparison

For the log files collected for the directed diffusion protocol bug, we used three good
logs and three bad logs and analyzed using symbolic pattern extraction algorithm
to generate patterns. Using symbolic pattern extraction, it took less than 1 hour
and returned 188 symbolic patterns of length 3. In comparison, when we applied
algorithm from [8], it took more than 3 hours and returned over several thousand
patterns. This is due to the fact that in our approach, we were able to discard many
unimportant events that had low support acrossmultiple log files and thus reduced
the number of the base events that were used to generate longer patterns.

6 Conclusion

The concept of discriminative symbolic pattern extraction is introduced in this
paper which is a new concept both in wireless sensor networks and data mining
domains. We demonstrated the power of symbolic patterns using several bug
scenarios. From a comparison of patterns reported by [8] and [9] with patterns
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generated using discriminative symbolic pattern extraction, the strength of the
symbolic approach for debugging purposes is clear. The new algorithm is better in
terms of pattern expressiveness, concept generalization and discovery of hidden
patterns, some of which are much harder to notice using traditional pattern
mining algorithms which mine based on absolute attribute values rather than
abstract symbols. Discriminative symbolic pattern extraction for debugging adds
an invaluable technique to the arsenal of debugging techniques available in the
wireless sensor networks domain.
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