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Abstract

Computing a (short) path between two vertices is one of the most fundamental prim-

itives in graph algorithmics. In recent years, the study of paths in temporal graphs, 

that is, graphs where the vertex set is fixed but the edge set changes over time, 

gained more and more attention. A path is time-respecting, or temporal, if it uses 

edges with non-decreasing time stamps. We investigate a basic constraint for tem-

poral paths, where the time spent at each vertex must not exceed a given duration � , 

referred to as �-restless temporal paths. This constraint arises naturally in the mod-

eling of real-world processes like packet routing in communication networks and 

infection transmission routes of diseases where recovery confers lasting resistance. 

While finding temporal paths without waiting time restrictions is known to be doa-

ble in polynomial time, we show that the “restless variant” of this problem becomes 

computationally hard even in very restrictive settings. For example, it is W[1]-hard 

when parameterized by the distance to disjoint path of the underlying graph, which 

implies W[1]-hardness for many other parameters like feedback vertex number 

and pathwidth. A natural question is thus whether the problem becomes tractable 

in some natural settings. We explore several natural parameterizations, presenting 

FPT algorithms for three kinds of parameters: (1) output-related parameters (here, 

the maximum length of the path), (2) classical parameters applied to the underlying 

graph (e.g., feedback edge number), and (3) a new parameter called timed feedback 

vertex number, which captures finer-grained temporal features of the input temporal 

graph, and which may be of interest beyond this work.
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1 Introduction

A highly successful strategy to control (or eliminate) outbreaks of infectious dis-

eases is contact tracing [25]—whenever an individual is diagnosed positively, every 

person who is possibly infected by this individual is put into quarantine. However, 

the viral spread can be too fast to be traced manually, e.g., if the disease is trans-

mittable in a pre-symptomatic (or asymptomatic) stage, then it seems likely that 

an individual already caused infection chains when diagnosed positively. Hence, 

large-scale digital systems are recommended which use physical proximity networks 

based on location and contact data [29]—this allows fast and precise contact trac-

ing while avoiding the harmful effect of mass quarantines to society [29]. Physical 

proximity networks can be understood as temporal graphs1 [18, 37, 39, 46, 51], that 

is, graphs where the vertex set (individuals) remains static but the edge set (physical 

contacts) may change over time. In this paper, we extend the literature on reachabil-

ity in temporal graphs [5, 7, 11, 14, 17, 44, 50, 61] by a computational complexity 

analysis of an important variation of one of the most fundamental combinational 

problems arising in the above mentioned scenario: given a temporal graph and two 

individuals s and z, is a chain of infection from s to z possible, that is, is there a tem-

poral path from s to z? In particular, we use a reachability concept that captures the 

standard 3-state SIR-model (Susceptible-Infected-Recovered), a canonical spreading 

model for diseases where recovery confers lasting resistance [8, 45, 54].

In temporal graphs, the basic concepts of paths and reachability are defined in a 

time-respecting way  [44]: a (strict) temporal path, also called “journey”, is a path 

that uses edges with non-decreasing (increasing) time steps. To represent infection 

chains in the SIR-model, we restrict the time of “waiting” or “pausing” at each inter-

mediate vertex to a prescribed duration. We call these paths restless temporal paths. 

They model infection transmission routes of diseases that grant immunity upon 

recovery [38]: An infected individual can transmit the disease until it is recovered 

(reflected by bounded waiting time) and it cannot be infected a second time after-

wards since then it is immune (reflected by considering path instead of walk: every 

vertex can only be visited at most once). Another natural example of restless tempo-

ral paths is delay-tolerant networking among mobile entities, where the routing of a 

packet is performed over time and space by storing the packet for a limited time at 

intermediate nodes.

In the following we give an example to informally describe our problem setting.2 

In Fig. 1 we are given the depicted temporal graph, vertices s and z, and the time 

bound � = 2 . We are asked to decide whether there is a restless temporal path from 

s to z, that is, a path which visits each vertex at most once and pauses at most � units 

of time between consecutive hops. Here, (s, d, b, z) is a feasible solution, but (s, b, z) 

is not because the waiting time at b exceeds � . The walk (s, b, c, d, b, z) is not a valid 

solution because it visits vertex b twice. Finally (s, a, c, d, b, z) is also a feasible 

solution.

1 Also known as time-varying graphs, evolving graphs, or link streams.
2 We refer to Sect. 2 for a formal definition.
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1.1  Related Work

Several types of waiting time constraints have been considered in the temporal 

graph literature. An empirical study by Pan and Saramäki  [56] based on phone 

calls datasets observed a threshold in the correlation between the duration of 

pauses between calls and the ratio of the network reached over a spreading process. 

Casteigts  et  al.  [19] showed a dramatic impact of waiting time constraints to the 

expressivity of a temporal graph, when considering such a graph as an automaton 

and temporal paths as words. In the context of temporal flows, Akrida  et  al.  [4] 

considered a concept of “vertex buffers”, which however pertains to the quantity of 

information that a vertex can store, rather than a duration. Enright et al. [26] consid-

ered deletion problems for reducing temporal connectivity. More closely related to 

our work, Himmel et al. [11] studied a variant of restless temporal paths where sev-

eral visits to the same vertex are allowed, i.e., restless temporal walks. They showed, 

among other things, that such walks can be computed in polynomial time.

Many path-related problems have been studied in the temporal setting and the 

nature of temporal paths significantly increases the computational complexity of 

many of them (compared to their static counterparts). In the temporal setting, reach-

ability is not an equivalence relation among vertices, which makes many problems 

more complicated. For example, finding a maximum temporally connected com-

ponent is NP-hard  [14]. We further have that in a temporal graph, spanning trees 

may not exist. In fact, even the existence of sparse spanners (i.e., subgraphs with 

o(n2)-many edges ensuring temporal connectivity) is not guaranteed [7], unless the 

underlying graph is complete [20], and computing a minimum-cardinality spanner is 

APX-hard [3, 50]. Yet another example is the problem of deciding whether there are 

k disjoint temporal paths between two given vertices. In a seminal article, Kempe 

et al. [44] showed that this problem, whose classical analogue is (again) polynomial-

time solvable, becomes NP-hard. They further investigated the related problem of 

finding temporal separators, which is also NP-hard [30, 44, 62]. Deciding whether 

there exists a separator of a given size that cuts all restless temporal paths is known 

to be ΣP

2
-complete  [52], that is, the problem is located in the second level of the 

polynomial time hierarchy.

Fig. 1  Example of a temporal 

graph whose edges are labeled 

with time stamps. Bold edges 

depict a 2-restless temporal 

(s, z)-path. (In general, multiple 

time stamps per edge are pos-

sible)
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1.2  Our Contributions

We introduce the problem RESTLESS TEMPORAL PATH. To get a finer understanding 

of the computational complexity of this problem, we turn our attention to its para-

metrized complexity. In stark contrast to both restless temporal walks and non-rest-

less temporal paths, we show that this problem is NP-hard even in very restricted 

settings—in particular, even when the lifetime is restricted to only three time 

steps—and W[1]-hard when parameterized by the (vertex deletion) distance to dis-

joint paths of the underlying graph, which implies W[1]-hardness with respect to 

many other parameters like feedback vertex number and pathwidth (Sect. 3). This is 

tight in the sense that the problem can be solved in polynomial time when the under-

lying graph is a forest. On the positive side, we explore parameters of three different 

natures. First, we show that the problem is fixed-parameter tractable (FPT) for the 

length (in number of hops) of the temporal path (Sect. 4). We further show that the 

problem is FPT when parameterized by the feedback edge number of the underlying 

graph (Sect. 5). Additionally, we show that the problem presumably does not admit 

a polynomial kernel under the previously mentioned parameterizations where the 

problem is in FPT. Our results provide a fine-grained characterization of the trac-

tability boundary of the computation of restless temporal paths for parameters of 

the underlying graph, as illustrated by the vicinity of the corresponding parameters 

in Fig. 2. Then, going beyond parameters related to the output and to the underly-

ing graph, we define a novel temporal version of the classic feedback vertex num-

ber called timed feedback vertex number. Intuitively, it counts the number of vertex 

appearances that have to be removed from the temporal graph such that its underly-

ing graph becomes cycle-free. We show that finding restless temporal paths is FPT 

when parameterized by this parameter (Sect. 6). We believe that the latter is an inter-

esting turn of events compared to our hardness results.

1.3  Strict Versus Non‑strict Temporal Paths

In this paper, we focus mainly on the case of non-strict temporal paths, i.e., the times 

along a path are required to be non-decreasing. We expect most of the algorithms 

Fig. 2  Relevant part of the hierarchy among classic parameters of the underlying graph 

(cf. Sorge et al. [57]) for our results for RESTLESS TEMPORAL PATH 
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and reductions to be extendable to a strict setting, albeit with some change in the 

results themselves. For instance, a similar NP-hardness reduction as for non-strict 

temporal paths may apply, but requires more than a constant lifetime to be adapted. 

In fact, the length of a strict temporal path is trivially bounded by the lifetime itself, 

thus an FPT algorithm for the length parameter implies one for the lifetime param-

eter as well.

2  Preliminaries

Here, we formally introduce the most important concepts related to temporal graphs 

and paths, and give the formal problem definition of (SHORT) RESTLESS TEMPORAL (s, z) 

-PATH.

An interval is an ordered set [a, b] ∶= {n ∣ n ∈ ℕ ∧ a ≤ n ≤ b}, where a, b ∈ ℕ . 

Further, let [a] ∶= [1, a].

2.1  Static Graphs

We use standard notation from (static) graph theory [24]. Unless stated otherwise, 

we assume graphs in this paper to be undirected and simple. To clearly distinguish 

them from temporal graphs, they are sometimes referred to as static graphs. Given a 

(static) graph G = (V , E) with E ⊆
(

V

2

)

 , we denote by V(G) ∶= V  and E(G) ∶= E the 

sets of its vertices and edges, respectively.

We call two vertices u, v ∈ V  adjacent if {u, v} ∈ E . Two edges e1, e2 ∈ E 

are adjacent if e
1
∩ e

2
≠ � . For a vertex v ∈ V  , we denote by deg

G
(v) the degree 

of the vertex, that is, deg
G
(v) = |{w ∈ V ∣ {v, w} ∈ E}| . For some vertex subset 

V
′ ⊆ V  , we denote by G[V �] the induced subgraph of G on the vertex set V ′ , that 

is, G[V �] = (V �
, E

�) where E� = {{v, w} ∣ {v, w} ∈ E ∧ v ∈ V
� ∧ w ∈ V

�} . For some 

vertex subset V ′ ⊆ V  , we denote by G − V
� the subgraph of G without the vertices in 

V
′ , that is, G − V

� = G[V ⧵ V
�] . For some edge subset E′ ⊆ E , we denote by G − E

� 

the subgraph of G without the edges E′ , that is, G − E
� = (V , E ⧵ E

�).

An (s,  z)-path of length k is a sequence  P = ({s = v0, v1}, {v1, v2},… , 

{vk−1, vk = z}) of edges such that for all i ∈ [k] we have that {v
i−1, v

i
} ∈ E and vi ≠ vj 

for all i, j ∈ [k] . We denote v
0
 and v

k
 as the endpoints of P. We further denote by E(P) 

the set of edges of path P, that is, E(P) = {{v0, v1}, {v1, v2},… , {v
k−1, v

k
}} and by 

V(P) the set of vertices visited by the path, that is, V(P) =
⋃

e∈E(P)
e . If v

0
= v

k
 and P 

is of length at least three, then P is a cycle.

2.2  Temporal Graphs

An (undirected, simple) temporal graph is a tuple  G = (V , E1,… , E
�
) (or 

G = (V , (E
i
)
i∈[�]) for short), with E

i
⊆
(

V

2

)

 for all i ∈ [�] . We call �(G) ∶= � the 

lifetime of G . As with static graphs, we assume all temporal graphs in this paper 

to be undirected and simple. We call the graph G
i
(G) = (V , E

i
(G)) the layer i of G 
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where E
i
(G) ∶= E

i
 . If E

i
= � , then G

i
 is a trivial layer. We call layers G

i
 and G

i+1
 

consecutive. We call i a time step. If an edge e is present at time i, that is, e ∈ E
i
 , 

we say that e has time stamp i. We further denote V(G) ∶= V  . The underlying 

graph G↓(G) of G is defined as G↓(G) ∶= (V ,
⋃�(G)

i=1
E

i
(G)) . To improve readability, 

we remove (G) from the introduced notations whenever it is clear from the con-

text. For every v ∈ V  and every time step t ∈ [�] , we denote the appearance of 

vertex v at time t by the pair (v, t). For every t ∈ [�] and every e ∈ E
t
 we call the 

pair (e,  t) a time edge. For a time edge ({v, w}, t) we call the vertex appearances 

(v,  t) and (w,  t) its endpoints. We assume that the size (for example when refer-

ring to input sizes in running time analyzes) of G is �G� ∶= �V� +
∑�

i=1
min{1, �E

i
�} , 

that is, we do not assume that we have compact representations of temporal 

graphs. Finally, we write n for |V|.

A temporal (s, z)-walk (or temporal walk) of length k from vertex s = v
0
 to ver-

tex z = vk in a temporal graph G = (V , (E
i
)
i∈[�]) is a sequence P =

((

v
i−1, v

i
, t

i

))k

i=1
 

of triples that we call transitions such that for all i ∈ [k] we have that 

{v
i−1, v

i
} ∈ E

t
i

 and for all i ∈ [k − 1] we have that t
i
≤ t

i+1
 . Moreover, we call P a 

temporal (s, z)-path (or temporal path) of length k if vi ≠ vj for all i, j ∈ {0,… , k} 

with i ≠ j . Given a temporal path P =

((

v
i−1, v

i
, t

i

))k

i=1
 , we denote the set of verti-

ces of P by V(P) = {v0, v1,… , v
k
} . Moreover, we say that P visits the vertex v

i
 at 

time t if t ∈ [t
i
, t

i+1] , where i ∈ [k − 1] . A restless temporal path is not allowed to 

wait an arbitrary amount of time in a vertex, but has to leave any vertex it visits 

within the next � time steps, for some given value of � . Analogously to the non-

restless case, a restless temporal walk may visit a vertex multiple times.

Definition 1 A temporal path (walk) P =

((

v
i−1, v

i
, t

i

))k

i=1
 is �-restless if 

t
i
≤ t

i+1
≤ t

i
+ � , for all i ∈ [k − 1] . We say that P respects the waiting time �.

Having this definition at hand, we are ready to define the main decision prob-

lem of this work. 

Note the waiting time at the source vertex s is ignored. This is without loss 

of generality, since one can add an auxiliary degree one source vertex which is 

only in the first layer adjacent to s. We also consider a variant, where we want to 

find �-restless paths of a certain maximum length. In the SHORT RESTLESS TEMPO-

RAL PATH problem, we are additionally given a integer k ∈ ℕ and the question is 

whether there is a �-restless temporal path of length at most k from s to z in G ? 

Note that RESTLESS TEMPORAL PATH is the special case of SHORT RESTLESS TEMPO-

RAL PATH for k = |V| − 1 and that both problems are in NP.



2760 Algorithmica (2021) 83:2754–2802

1 3

2.3  Parameterized Complexity

We use standard notation and terminology from parameterized complexity the-

ory [23] and give here a brief overview of the most important concepts that are used 

in this paper. A parameterized problem is a language L ⊆ Σ
∗
× ℕ , where Σ is a finite 

alphabet. We call the second component the parameter of the problem. A param-

eterized problem is fixed-parameter tractable (in the complexity class FPT) if there 

is an algorithm that solves each instance (I, r) in  f (r) ⋅ |I|O(1) time, for some comput-

able function f. A decidable parameterized problem L admits a polynomial kernel 

if there is a polynomial-time algorithm that transforms each instance (I, r) into an 

instance (I�, r
�) such that (I, r) ∈ L if and only if (I�, r

�) ∈ L and |(I�, r
�)| ∈ r

O(1) . If a 

parameterized problem is hard for the parameterized complexity class W[1], then it 

is (presumably) not in FPT. The complexity classes W[1] is closed under parameter-

ized reductions, which may run in FPT-time and additionally set the new parameter 

to a value that exclusively depends on the old parameter.

2.4  Basic Observations

If there is a �-restless temporal (s, z)-path 
((

v
i−1, v

i
, t

i

))k

i=1
 in a temporal graph G , 

then 
(

{v0, v1},… , {v
k−1, v

k
}
)

 is an (s, z)-path in the underlying graph G↓ . The other 

direction does not necessarily hold. However, we now show that for any (s, z)-path 

in G↓ we can decide in linear time whether this path is the support of a �-restless 

temporal  (s, z)-path in  G . As a consequence, we can decide RESTLESS TEMPORAL 

PATH  in linear time for any temporal graph where there exists a unique (s, z)-path in 

the underlying graph, in particular, if the underlying graph is a forest.

Lemma 1 Let G = (V , (E
i
)
i∈[�]) be a temporal graph where the underlying graph G↓ 

is an (s, z)-path with s, z ∈ V  . Then there is an algorithm which computes in O(|G|) 

time the set

Proof Let V(G↓) = {s = v0,… , vn = z} be the vertices and E(G↓) = {e1 = {v0, v1},

… , e
n
= {v

n−1, v
n
}} be the edges of the underlying path. We further define L

i
 as the 

set of layers of G in which the edge e
i
∈ E(G↓) exists, that is, L

i
∶= {t ∣ e

i
∈ E

t
}.

In the following, we construct a dynamic program on the path. We compute 

for every vertex v
i
 the table entry T[v

i
] which is defined as the set of all layers  t 

such that there exists a �-restless temporal (s, v
i
)-path with arrival time  t. It holds 

that T[v
1
] = L

1
 . Then, for all i ∈ [2,�] , we compute the table entry T[v

i
] by check-

ing for each layer t ∈ L
i
 whether there exists a �-restless temporal (s, v

i−1)-path that 

arrives in a layer t� ∈ T[v
i−1

] such that we can extend the path to the vertex v
i
 in 

layer t without exceeding the maximum waiting time � , that is, 0 ≤ t − t
� ≤ � . For-

mally, we have

A = {t ∣ there is a �-restless temporal(s, z)with arrival time t}.
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It is easy to verify that T[v
i
] contains all layers  t such that there exists a �-restless 

temporal (s, v
i
)-path with arrival time  t. After computing the last entry T[v

n
] , this 

entry contains the set A of all layers  t such that there exists a �-restless tempo-

ral (s, z)-path with arrival time t.

In order to compute a table entries T[v
i
] in linear time, we will need sorted lists 

of layers for L
i
 and T[v

i−1
] in ascending order. The sorted lists L

i
 of layers can be 

computed in O(|G|) : For every t ∈ [�] , we iterate over each e
i
∈ E

t
 and add t to L

i
 . 

Now assume that L
i
 and T[v

i−1
] are lists of layers both in ascending order, then we 

can compute the table entry T[v
i
] in O(|T[v

i−1
]| + |L

i
|) time as follows. Let T[v

i
] be 

initially empty. Let t be the first element in L
i
 and let t′ be the first element in T[v

i−1
] : 

1. If t′ > t , then replace t with the next layer in L
i
 and repeat.

2. If t − t
� ≤ � , then add t to T[v

i
] , replace t with the next layer in L

i
 and repeat.

3. Else, replace t′ with the next layer in T[v
i−1

] and repeat.

This is done until all elements in one of the lists are processed.

The resulting list T[v
i
] is again sorted. Due to this and T[v

1
](= L

1
) being sorted, 

we can assume that T[v
i−1

] is given as a sorted list of layers when computing T[v
i
] . 

Hence, we can compute each table entry T[v
i
] in O(|T[v

i−1
]| + |L

i
|) time. It further 

holds that |T[v
i
]| ≤ |L

i
| and 

∑n

i=1
�L

i
� =

∑�

i=1
�E

i
� . Hence, the dynamic program runs 

in O(|G|) time.  ◻

Furthermore, it is easy to observe that computational hardness of RESTLESS 

TEMPORAL PATH for some fixed value of � implies hardness for all larger finite val-

ues of � . This allows us to construct hardness reductions for small fixed values of 

� and still obtain general hardness results.

Observation 1 Given an instance I = (G, s, z, k,�) of SHORT RESTLESS TEMPO-

RAL PATH, we can construct in linear time an instance I� = (G�
, s, z, k,� + 1) of 

SHORT RESTLESS TEMPORAL PATH such that I is a yes-instance if and only if I
′ is a 

yes-instance.

Proof The result immediately follows from the observation that a temporal graph G 

contains a �-restless temporal (s, z)-path if and only if the temporal graph G′ contains 

a (� + 1)-restless temporal (s, z)-path, where G′ is obtained from G by inserting one 

trivial (edgeless) layer after every � consecutive layers.  ◻

However, for some special values of � we can solve RESTLESS TEMPORAL PATH 

in polynomial time.

T[v
i
] ∶= {t ∈ L

i
∣ there is a t

� ∈ T[v
i−1

] with 0 ≤ t − t
�
≤ �}.
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Observation 2 RESTLESS TEMPORAL PATH on instances (G, s, z,�) can be solved in 

polynomial time, if � = 0 or � ≥ �.

Proof Considering � = 0 implies that the entirety of a path between s and z must be 

realized in a single layer. Thus, the problem is equivalent to testing if at least one of 

the layers G
i
 contains a (static) path between s and z.  ◻

If � ≥ � , then �-restless temporal paths correspond to unrestricted temporal 

paths, whose computation can be made using any of the (polynomial time) algo-

rithms in Bui-Xuan et al. [17].

3  Hardness Results for Restless Temporal Paths

In this section we present a thorough analysis of the computational hardness of 

RESTLESS TEMPORAL PATH which also transfers to SHORT RESTLESS TEMPORAL PATH.

3.1  NP‑hardness for few layers

We start by showing that RESTLESS TEMPORAL PATH is NP-complete even if the life-

time of the input temporal graph is constant. The reduction is similar in spirit to the 

classic NP-hardness reduction for 2-DISJOINT PATHS in directed graphs by Fortune 

et al. [33].

Theorem 1 RESTLESS TEMPORAL PATH is NP-complete for all finite � ≥ 1 and � ≥ � + 2 

even if every edge has only one time stamp.

Proof We show this result by a reduction from the NP-complete EXACT (3, 4)-SAT 

problem [59]. The problem EXACT (3, 4)-SAT asks whether a formula � is satisfiable, 

assuming that it is given in conjunctive normal form, each clause having exactly 

three literals and each variable appearing in exactly four clauses.

Let � be an instance of EXACT (3, 4)-SAT with n variables and m clauses. We con-

struct a temporal graph G = (V , (E
i
)
i∈[�]) with � = 3 consisting of a series of variable 

gadgets followed by dedicated vertices s
n
 and s′ and then a series of clause gadg-

ets. It is constructed in such a way that for � = 1 , any �-restless temporal (s, z)-path 

has to visit a vertex s
n
 and each possible �-restless temporal (s, s

n
)-path represents 

exactly one variable assignment for the formula � . Further we show that for any �

-restless temporal (s, s
n
)-path it holds that it can be extended to a �-restless temporal 

(s, z)-path if and only if the �-restless temporal (s, s
n
)-path represents a satisfying 

assignment for the formula �.

Variable Gadget. We start by adding a vertex s to the vertex set V of G . For each 

variable x
i
 with i ∈ [n] of � , we add 9 fresh vertices to V: x

(1)

i
 , x

(2)

i
 , x

(3)

i
 , x

(4)

i
 , x̄

(1)

i
 , 
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x̄
(2)

i
 , x̄

(3)

i
 , x̄

(4)

i
 , and s

i
 . Each variable x

i
 is represented by a gadget consisting two dis-

joint path segments of four vertices each. One path segment is formed by x
(1)

i
 , x

(2)

i
 , 

x
(3)

i
 , and x

(4)

i
 in that order and the second path segment is formed by x̄

(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , 

and  x̄
(4)

i
 in that order. The connecting edges all appear exclusively at time step one, 

that is, {x
(1)

i
, x

(2)

i
} , {x

(2)

i
, x

(3)

i
} , and {x

(3)

i
, x

(4)

i
} are added to E

1
 . Analogously for the 

edges connecting x̄
(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , and x̄

(4)

i
 . Intuitively, if a �-restless temporal (s, z)-

path passes the first segment, then this corresponds to setting the variable x
i
 to false. 

If it passes the second segment, then the variable is set to true. For all i ∈ [n − 1] we 

add the edges {x
(4)

i
, s

i
} , {x̄

(4)

i
, s

i
} , {s

i
, x̄

(1)

i+1
} , and {s

i
, x̄

(1)

i+1
} to E

1
 and, additionally, we 

add {s, x
(1)

1
} , {s, x̄

(1)

1
} , {x

(4)
n

, s
n
} , and {x̄

(4)
n

, s
n
} to E

1
.

We can observe that there are exactly 2n different temporal (s, s
n
)-paths at time 

step  one. Intuitively, each path represents exactly one variable assignment for the 

formula �.

Clause Gadget. We add a vertex z to V. For each clause cj with j ∈ [m] we add a 

fresh vertex cj to V. We further add a vertex s′ to V and add the edge {s
n
, s

�} to E
2
 . 

Let x
i
 (or x̄

i
 ) be a literal that appears in clause cj and let this be the kth appearance of 

variable x
i
 in � . Then, we add the edges {cj, x

(k)

i
}, {x

(k)

i
, cj+1} (or {cj, x̄

(k)

i
}, {x̄

(k)

i
, cj+1} ) 

to E
3
 (where c

m+1
= z ). Finally, we add the edge {s

�, c1} to E
3
.

Hence, there are exactly 3m different temporal (s�, z)-paths at time step three. Each 

path must visit the clause vertices c1,… , c
m
 in the given order by construction.

Finally, we set � = 1 . This finishes the construction, for a visualization see Fig. 3. 

It is easy to check that every edge in the constructed temporal graph has only one 

time step and that the temporal graph can be computed in polynomial time.

Correctness. Now we can show that � is satisfiable if and only if G has a �-rest-

less temporal (s, z)-path.

(⇒) : Let us assume there is a satisfying assignment for formula � . Then we con-

struct a �-restless temporal path from vertex s to z as follows. Starting from s, for 

Fig. 3  Illustration of the temporal graph constructed by the reduction in the proof of Theorem  1. An 

excerpt is shown with variable gadgets for x
1
 , x

2
 , and x

3
 and the clause gadget for c

i
= (x

1
∨ x

2
∨ ¬x

3
) , 

where x
1
 appears for the fourth time, x

2
 appears for the third time, and x

3
 also appears for the third time. 

Black edges appear at time step one, the blue (dotted) edge {s
n
, s

�} appears at time step two, and the red 

(dashed) edges appear at time step three
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each variable x
i
 of � the �-restless temporal path passes through the variables x

(1)

i
 , 

x
(2)

i
 , x

(3)

i
 , and x

(4)

i
 , if x

i
 is set to false, and x̄

(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , and x̄

(4)

i
 , if x

i
 is set to true, at 

time step one. The �-restless temporal path arrives at time step one in the vertex s
n
 . 

In time step two it goes from s
n
 to s′.

At time step three, the �-restless temporal path can be extended to c
1
 . In each 

clause cj for j ∈ [m] there is at least one literal x
i
 (or x̄

i
 ) that is evaluated to true. 

Let cj be the kth clause in which x
i
 appears. We have that, depending on whether x

i
 is 

set to true (or false), the vertex x
(k)

i
 (or x̄

(k)

i
 ) has not been visited so far. Hence, the �

-restless temporal path can be extended from cj to cj+1
 (or to z for j = m ) at time step 

three via x
(k)

i
 (or x̄

(k)

i
 ). Thus, there exists a �-restless temporal (s, z)-path in G.

(⇐) : Let us assume that there exists a �-restless temporal (s, z)-path in the con-

structed temporal graph G . Note that any �-restless temporal (s, z)-path must reach 

s
n
 in time step one because the variable gadget has only edges at time step one and 

the waiting time � = 1 prevents the path to enter the clause gadget (which only has 

edges at time step three) before using the edge {s
n
, s

�} at time step two.

It is easy to see that for the first part of the �-restless temporal graph from s to s
n
 

it holds that for each i ∈ [n] , it visits either vertices x
(1)

i
 , x

(2)

i
 , x

(3)

i
 , and x

(4)

i
 , or vertices 

x̄
(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , and x̄

(4)

i
 . In the former case we set x

i
 to false and in the latter case we 

set x
i
 to true. We claim that this produces a satisfying assignment for �.

In time step three, the part of the �-restless temporal path from s′ to z has to pass 

vertices c1, c2,… , c
m
 to reach z. The �-restless temporal path passes exactly one var-

iable vertex x
(k)

i
 (or x̄

(k)

i
 ) when going from cj to cj+1

 (and finally from c
m
 to z) that has 

not been visited so far and that corresponds to a variable that appears in the clause cj 

for the kth time. The fact that the variable vertex was not visited implies that we set 

the corresponding variable to a truth value that makes it satisfy clause cj . This holds 

for all j ∈ [m] . Hence, each clause is satisfied by the constructed assignment and, 

consequently, � is satisfiable.  ◻

The reduction used in the proof of Theorem 1 also yields a running time lower 

bound assuming the Exponential Time Hypothesis (ETH) [40, 41].

Corollary 1 RESTLESS TEMPORAL PATH does not admit a f (�)o(|G|)-time algorithm for 

any computable function f unless the ETH fails.

Proof First, note that any 3-SAT formula with m clauses can be transformed into an 

equisatisfiable EXACT (3, 4)-SAT formula with O(m) clauses [59]. The reduction pre-

sented in the proof of Theorem 1 produces an instance of RESTLESS TEMPORAL PATH 

with a temporal graph of size |G| = O(m) and � = 3 . Hence an algorithm for REST-

LESS TEMPORAL PATH with running time f (�)o(|G|) for some computable function  f 

would imply the existence of an 2o(m)-time algorithm for 3-SAT. This is a contradic-

tion to the ETH [40, 41].  ◻
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Furthermore, the reduction behind Theorem  1 can be modified such that 

it also yields that RESTLESS TEMPORAL PATH is NP-hard, even if the underlying 

graph has constant maximum degree or the underlying graph is a clique where 

one edge ( {s, z}) is missing. Note that in the latter case the underlying graph con-

tains all edges except the one edge which would turn the instance into a trivial 

yes-instance.

Corollary 2 RESTLESS TEMPORAL PATH is NP-hard, even if the underlying graph has all 

but one edge or maximum degree six.

Proof That RESTLESS TEMPORAL PATH is NP-hard, even if the underlying graph has 

maximum degree six follows directly from the construction used in the proof of The-

orem 1. To show that that RESTLESS TEMPORAL PATH is NP-hard, even if the underly-

ing graph has all edges except {s, z} , we reduce from RESTLESS TEMPORAL PATH. Let 

I = (G = (V , (Ei)i∈[�]), s, z,�) be an instance of RESTLESS TEMPORAL PATH with � = 3 . 

We construct an instance I� ∶= (G� = (V , E�
1
, E�

2
, E�

3
, E�

4
, E�

5
), s, z,�) of RESTLESS TEM-

PORAL PATH, where E
�
1
=
(

V⧵{s}

2

)

 , E
�

2
∶= E

1
 , E

�

3
∶= E

2
 , E

�

4
∶= E

3
 , and E�

5
=
(

V⧵{z}

2

)

 . 

Observe that none of the edges in E
1
∪ E

5
 can be used in temporal (s, z)-path. Hence, 

I is a yes-instance if and only if I′ is a yes-instance. Furthermore, E
1
∪ E

5
 contain all 

possible edges except {s, z}.  ◻

3.2  W[1]‑Hardness for Distance to Disjoint Paths

In the following, we show that parameterizing RESTLESS TEMPORAL PATH with struc-

tural graph parameters of the underlying graph of the input temporal graph pre-

sumably does not yield fixed-parameter tractability for a large number of popular 

parameters. In particular, we show that RESTLESS TEMPORAL PATH parameterized by 

the distance to disjoint paths of the underlying graph is W[1]-hard. The distance to 

disjoint paths of a graph G is the minimum number of vertices we have to remove 

from G such that the reminder of G is a set of disjoint paths. Many well-known 

graph parameters can be upper-bounded in the distance to disjoint paths, e.g., path-

width, treewidth, and feedback vertex number [57]. Hence, the following theorem 

also implies that RESTLESS TEMPORAL PATH is W[1]-hard when parameterized by the 

pathwidth or the feedback vertex number of the underlying graph.

Theorem 2 RESTLESS TEMPORAL PATH parameterized by the distance to disjoint path of 

the underlying graph is W[1] -hard for all � ≥ 1 even if every edge has only one time 

stamp.

Proof We present a parameterized reduction from MULTICOLORED CLIQUE where, 

given a k-partite graph H = (U1 ⊎ U2 ⊎… ⊎ U
k
, F) , we are asked to decide whether 

H contains a clique of size k. MULTICOLORED CLIQUE is known to be W[1]-hard when 

parameterized by the clique size k [23, 28].
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Let (H = (U1 ⊎ U2 ⊎… ⊎ U
k
, F), k) be an instance of MULTICOLORED CLIQUE. For 

each i, j ∈ [k] with i < j let Fi,j = {{u, v} ∈ F ∣ u ∈ Ui ∧ v ∈ Uj} be the set of edges 

between vertices in U
i
 and Uj . We can assume that k ≥ 3 , otherwise we can solve 

the instance in polynomial time. Without loss of generality, we assume that for all 

i, j, i�, j� ∈ [k] with i < j and i′ < j′ we have that |Fi,j| = |Fi�,j� | = m for some m ∈ ℕ . 

Note that if this is not the case, we add new vertices and single edges to increase the 

cardinality of some set Fi,j and this does not introduce new cliques since k ≥ 3 . We 

further assume without loss of generality that |U
1
| = |U

2
| = ⋯ = |U

k
| = n for some 

n ∈ ℕ . If this is not the case, we can add additional isolated vertices to increase the 

cardinality of some set U
i
 . We construct a temporal graph G = (V , (E

i
)
i∈[�]) with two 

distinct vertices s, z ∈ V  such that there is a �-restless temporal (s, z)-path in G if 

and only if H contains a clique of size k. Furthermore, we show that the underlying 

graph G↓ of G has a distance to disjoint paths of O(k2).

Vertex Selection Gadgets. For each set U
i
 with i ∈ [k] of the vertex set of H we 

create the following gadget. Let U
i
= {u

(i)

1
, u

(i)

2
,… , u

(i)
n
} . We create a path of length 

k ⋅ n + n + 1 on fresh vertices w
(i)

1
, v

(i)

1,1
, v

(i)

1,2
,… , v

(i)

1,k
, w

(i)

2
, v

(i)

2,1
,… , v

(i)

n,k
, w

(i)

n+1
 . Intui-

tively, this path contains a segment of length k for each vertex in U
i
 which are sepa-

rated by the vertices w
(i)

j
 , and the construction will allow a �-restless temporal (s, z)-

path to skip exactly one of these segments, which is going to correspond to selecting 

this vertex for the clique.

Formally, for each vertex u
(i)

j
∈ Ui we create k vertices v

(i)

j,1
, v

(i)

j,2
,… , v

(i)

j,k
 , which we 

call the segment corresponding to u
(i)

j
 . We further create vertices w

(i)

1
, w

(i)

2
,… , w

(i)

n+1
 . 

For all j ∈ [n] and x ∈ [k − 1] we connect vertices v
(i)

j,x
 and v

(i)

j,x+1
 with an edge at time 

(i − 1) ⋅ n + j and we connect w
(i)

j
 with v

(i)

j,1
 and w

(i)

j+1
 with v

(i)

j,k
 at time (i − 1) ⋅ n + j each.

Lastly, we introduce a “skip vertex” s(i) that will allow a �-restless temporal (s, z)-

path to skip one path segment of length k that corresponds to one of the vertices 

in U
i
 . For each j ∈ [n + 1] , we connect vertices  s(i) and w

(i)

j
 with an edge at time 

(i − 1) ⋅ n + j.

Now we connect the gadgets for all U
i
 ’s in sequence, that is, a �-restless tempo-

ral (s, z)-path passes through the gadgets one after another, selecting one vertex of 

each part U
i
 . Formally, for all i ∈ [k − 1] , we connect vertices w

(i)

n+1
 and w

(i+1)

1
 with 

an edge at time i ⋅ n + 1 . It is easy to check that after the removal of the vertices 

{s
(1), s

(2),… , s
(k)} , the vertex selection gadget is a path. The vertex selection gadget 

is visualized in Fig. 4.

Validation Gadgets. A �-restless temporal (s, z)-path has to pass through the val-

idation gadgets after it passed through the vertex selection gadgets. Here, we are 

forced to choose a point in time where we visit two vertices of two different vertex 

selection gadgets. This choice corresponds to the selection of an edge. Intuitively, 
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this should only be possible if the selected vertices form a clique. We construct the 

gadget in the following way.

For each i, j ∈ [k] with i < j let the edges in Fi,j be ordered in an arbitrary way, 

that is, Fi,j = {e
(i,j)

1
, e

(i,j)

2
,… , e

(i,j)
m } . We create two paths of length 2m on fresh verti-

ces v
(i,j)

1,1
, v

(i,j)

1,2
, v

(i,j)

2,1
, v

(i,j)

2,2
,… , v

(i,j)

m,2
 and v

(i,j)

1,3
, v

(i,j)

1,4
, v

(i,j)

2,3
, v

(i,j)

2,4
,… , v

(i,j)

m,4
 , respectively. Intui-

tively, the first path selects an edge from U
i
 to Uj and the transition to the second 

path should only be possible if the two endpoints of the selected edge are selected in 

the corresponding vertex selection gadgets.

Formally, for each edge e
(i,j)

h
∈ Fi,j we create four vertices v

(i,j)

h,1
, v

(i,j)

h,2
, v

(i,j)

h,3
, v

(i,j)

h,4
 . Fur-

thermore, we introduce three extra vertices s
(i,j)

1
, s

(i,j)

2
, s

(i,j)

3
 . For all h ∈ [m] we connect 

vertices  v
(i,j)

h,1
 and  v

(i,j)

h,2
 with an edge at time yi,j + 2h − 1 , we connect vertices  v

(i,j)

h,1
 

and s
(i,j)

1
 with an edge at time yi,j + 2h − 1 , we connect vertices v

(i,j)

h,3
 and v

(i,j)

h,4
 with an 

edge at time yi,j + 2h − 1 , we connect vertices  v
(i,j)

h,3
 and  s

(i,j)

3
 with an edge at time 

yi,j + 2h − 1 , and if h < m , we connect vertices v
(i,j)

h,2
 and v

(i,j)

h+1,1
 with an edge at time 

yi,j + 2h and we connect vertices v
(i,j)

h,4
 and v

(i,j)

h+1,3
 with an edge at time yi,j + 2h , where 

yi,j = k ⋅ n + 2m ⋅ (i ⋅ j +
1

2
⋅ i ⋅ (i − 1) − 1) (the value of yi,j can be interpreted as a 

“time offset” for the validation gadget for Fi,j , the value is computed by adding all 

time steps needed in validation gadget for Fi′,j′ with i′ < j′ , i
′ ≤ i , j′ ≤ j , and 

(i�, j�) ≠ (i, j) ). Next, for each edge e
(i,j)

h
= {u(i)

a
, u

(j)

b
} ∈ Fi,j we connect vertices s

(i,j)

1
 

and v
(i)

a,j
 (from the vertex selection gadget for U

i
 ) with an edge at time yi,j + 2h − 1 , 

we connect vertices s
(i,j)

2
 and v

(i)

a,j
 with an edge at time yi,j + 2h − 1 , we connect verti-

ces  s
(i,j)

2
 and  v

(j)

b,i
 (from the vertex selection gadget for Uj ) with an edge at time 

yi,j + 2h − 1 , and we connect vertices s
(i,j)

3
 and v

(j)

b,i
 with an edge at time yi,j + 2h − 1.

Intuitively, the time labels on the edges and the waiting time restrictions enforce 

that when arriving at s
(i,j)

1
 there is only one way to continue to s

(i,j)

2
 for which is it nec-

essary to visit a vertex in the vertex selection gadget that corresponds to an endpoint 

Fig. 4  Visualization of the vertex selection gadget for U
1
 from the reduction of Theorem 2. Black edges 

appear at time step one, red edges (densely dashed) at time step two, blue edges (dashdotted) at time step 

three, green edges (dotted) at time step n − 1 , and orange edges (loosely dashed) at time step n. For the 

segment corresponding to u
(1)

1
∈ U

1
 all vertex names are presented, for the other segments the names are 

analogous but omitted. The auxiliary w
(1)

1
,… , w

(1)
n

,… vertices are colored gray. The “skip vertex” s(1) is 

depicted as a yellow square. Note that after the removal of s(1) the vertex selection gadget for U
1
 is a path
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of the selected edge. Similarly, from s
(i,j)

2
 there is only one way to continue to s

(i,j)

3
 for 

which it is necessary to visit a vertex in the vertex selection gadget that corresponds 

to the other endpoint of the selected edge. For a visualization of the validation 

gadget see Fig. 5, where the red dashed path corresponds to the selection of an edge.

Now we connect the gadgets for all Fi,j ’s in sequence, that is, a �-restless tempo-

ral (s, z)-path passes through the gadgets one after another, selecting one edge of each 

part Fi,j of the edge set F. Formally, for each i, j ∈ [k] with i < j , if i < j − 1 , we  

connect vertices v
(i,j)

m,4
 and v

(i+1,j)

1,1
 with an edge at time yi+1,j , and if i = j − 1 < k − 1 , we 

connect vertices v
(i,j)

m,4
 and v

(i,j+1)

1,1
 with an edge at time yi,j+1 . It is easy to check that after 

the removal of 3 ⋅

(

k

2

)

 many vertices {s
(1,2)

1
, s

(1,2)

2
, s

(1,2)

3
, s

(1,3)

1
,… , s

(1,k)

3
,… s

(k−1,k)

3
} , the 

validation gadgets are a set of disjoint paths, see Fig. 5.

Finally, we create two new vertices s and z, we connect vertices s and w
(1)

1
 (the 

“first” vertex of the vertex selection gadgets) with an edge at time one, we connect 

vertices s and s(1) (the “skip vertex” of the first vertex selection gadget) with an edge 

at time one, and we connect z and v
(k−1,k)

m,4
 (the “last” vertex of the validation gadgets) 

Fig. 5  Visualization of the validation gadget for Fi,j from the reduction of Theorem 2. The “first path” of 

the gadget is depicted vertically on the left, the “second path” on the right. The connections to the vertex 

selection gadgets for the edge e
(i,j)

h
= {u(i)

a
, u

(j)

b
} ∈ Fi,j are depicted. The edges in red (dashed) correspond 

to the path through the gadget if edge e
(i,j)

h
 is “selected” and all these edges have the same time stamp. 

The vertex selection gadgets corresponding to U
i
 and Uj are depicted as triangles in the upper center part. 

The three vertices s
(i,j)

1
 , s

(i,j)

2
 , and s

(i,j)

3
 are colored yellow (squared). Note that after the removal of s

(i,j)

1
 , s

(i,j)

2
 , 

and s
(i,j)

3
 , the validation gadget for Fi,j is a set of disjoint paths
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with an edge at time k ⋅ n + m ⋅ (3k
2 + 5k + 3) . We further connect vertices  w

(k)

n+1
 

and v
(1,2)

1,1
 (connecting the vertex selection gadgets and the validation gadgets) with  

an edge at time k ⋅ n . Finally, we set � = 1 . This completes the construction. It is easy 

to check that G can be constructed in polynomial time and that the distance to disjoint 

paths of G↓ is at most k + 3 ⋅

(

k

2

)

 and that every edge has only one time stamp.

Correctness. Now we show that H contains a clique of size k if and only if there 

is a �-restless temporal path from s to z in G.

(⇒) : Assume that H contains a clique of size k and let X ⊆ V(H) with |X| = k be 

the set of vertices that form the clique in H. Now we show how to construct a �-rest-

less temporal (s, z)-path in G . Note that since H is k-partite, we have that |U
i
∩ X| = 1 

for all i ∈ [k] . The temporal path starts at vertex s in G and then first passes 

through the vertex selection gadgets. If u
(i)

j
∈ X for some  i ∈ [k] and j ∈ [n] ,  

then the temporal path skips the segment corresponding to u
(i)

j
 in the vertex selection 

gadget for U
i
 . More formally, the temporal path follows the vertices 

w
(i)

1
, v

(i)

1,1
, v

(i)

1,2
,… , v

(i)

1,k
, w

(i)

2
,… , v

(i)

j−1,k
, w

(i)

j
, s(i), w

(i)

j+1
, v

(i)

j+1,1
,… , v

(i)

n,k
, w

(i)

n+1
 in that order, 

that is, the path skips vertices v
(i)

j,1
, v

(i)

j,2
,… , v

(i)

j,k
 . It is easy to check that the time labels 

of the edges in the vertex selection gadget allow for a restless temporal path as 

described that respects the waiting time �.

In the validation gadget for Fi,j with i < j , the path “selects” the edge 

(Ui ∩ X) ∪ (Uj ∩ X) ∈ Fi,j that connects the vertices from the parts U
i
 and Uj that are 

contained in the clique  X. Let (Ui ∩ X) ∪ (Uj ∩ X) = {u(i)
a

, u
(j)

b
} = e

(i,j)

h
∈ Fi,j . For-

mally, the path follows vertices v
(i,j)

1,1
, v

(i,j)

1,2
, v

(i,j)

2,1
, v

(i,j)

2,2
,… , v

(i,j)

h,1
, s

(i,j)

1
, v

(i)

a,j
, 

s
(i,j)

2
, v

(j)

b,i
, s

(i,j)

3
, v

(i,j)

h,4
, v

(i,j)

h+1,3
, v

(i,j)

h+1,4
,… , v

(i,j)

m,4
 in that order. Note that vertices v

(i)

a,j
 and v

(j)

b,i
 

have not been used by the path in the vertex selection gadgets, since they appear in 

the segments that were skipped by the temporal path in the corresponding vertex 

selection gadgets. Furthermore, since the clique in H only contains one edge that 

connects vertices from U
i
 and Uj , the vertices v

(i)

a,j
 and v

(j)

b,i
 have not been used by the 

temporal path in an earlier validation gadget. It is easy to check that the time labels 

of the edges in the validation gadget allow for a �-restless temporal path as 

described. After the last validation gadget the path arrives at vertex  z. Hence, we 

have found a �-restless temporal (s, z)-path in G.

(⇐) : Assume that we are given a �-restless temporal  (s, z)-path in G . We now 

show that H contains a clique of size k.

After starting at s, the �-restless temporal path first passes the vertex selection 

gadgets. Here, we need to make the important observation, that for each i ∈ [k] , any 

�-restless temporal (s, z)-path has to “skip” at least one segment corresponding to 

one vertex u
(i)

j
∈ Ui in the vertex selection gadget corresponding to U

i
 , otherwise the 

temporal path cannot traverse the validation gadgets. More formally, assume for 

contradiction that there is a �-restless temporal (s, z)-path and an i ∈ [k] such that the 
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temporal path visits all vertices in the vertex selection gadget corresponding to U
i
 . 

Let j ∈ [k] with j ≠ i . Assume that i < j (the other case works analogously). We 

claim that the temporal path cannot traverse the validation gadget for Fi,j . For the 

temporal path to go from s
(i,j)

1
 to s

(i,j)

2
 by construction it has to visit at least one vertex 

from the vertex selection gadget for U
i
 . If all vertices have already been visited, that 

would mean the �-restless temporal  (s, z)-path visits one vertex twice—a 

contradiction.

The waiting time � prevents the temporal path from “skipping” more than one 

segment. More formally, any �-restless temporal (s, z)-path arrives at the “skip ver-

tex”  s
(i) of the vertex selection gadget for U

i
 at time (i − 1) ⋅ n + j , for some 

j ∈ [k − 1] . By construction this means the path visits w
(i)

j
 , then s(i) , and then has to 

continue with w
(i)

j+1
 since there is only one time edge the path can use without violat-

ing the waiting time � . It follows that the temporal path skips exactly the segment 

corresponding to u
(i)

j
∈ Ui.

This implies that any �-restless temporal (s, z)-path that traverses the vertex selec-

tion gadgets leaves exactly one segment of every vertex selection gadget unvisited. 

Let the set X = {u
(i)

j
∈ Ui ∣ i ∈ [k] ∧ j ∈ [n] ∧ vj,1 is an unvisited vertex.} be the set 

of vertices corresponding to the segments that are “skipped” by the given �-restless 

temporal (s, z)-path. It is easy to check that |X| = k . We claim that X is a clique in H.

Assume for contradiction that it is not. Then there are two vertices u
(i)

i�
, u

(j)

j�
∈ X 

such that the edge {u
(i)

i�
, u

(j)

j�
} is not in F. Assume that i < j . We show that then the �

-restless temporal (s, z)-path is not able to pass through the validation gadget for Fi,j . 

By assumption we have that {u
(i)

i�
, u

(j)

j�
} ∉ Fi,j . Note that the validation gadget is 

designed in a way that the first path “selects” an edge from Fi,j and then the waiting 

time of one enforces that a �-restless temporal (s, z)-path can only move from the 

first path to the second path of a validation gadget if the two endpoints of the 

selected edge are vertices whose corresponding segments in the vertex selection 

gadget were skipped. We have seen that for every U
i
 with i ∈ [k] , the path segment 

corresponding to exactly one vertex of that set was skipped. Since {u
(i)

i�
, u

(j)

j�
} ∉ Fi,j , 

we have that for every edge in Fi,j that the segment corresponding to at least one of 

the two endpoints of the edge was not skipped. Hence, we have that the �-restless 

temporal path cannot pass through the validation gadget of Fi,j and cannot reach z—a 

contradiction.  ◻

4  An FPT-Algorithm for Short Restless Temporal Path

In this section, we discuss how to find short restless temporal paths. Recall that in 

SHORT RESTLESS TEMPORAL PATH, we are given an additional integer k as input and 

are asked whether there exists a �-restless temporal (s, z)-path that uses at most k 
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time edges. By Theorem 1 this problem is NP-hard. Note that in the contact tracing 

scenario from the beginning, we can expect to have a small k and a large temporal 

graph.

Theorem 3 SHORT RESTLESS TEMPORAL PATH is 

(i)  solvable in 2k
⋅ |G|O(1) time with a constant one-side error,3

(ii)  deterministically solvable in 2O(k)
⋅ |G|� time,

Note that we can solve SHORT RESTLESS TEMPORAL PATH such that the running 

time is independent from the lifetime � of the temporal graph. To show Theorem 3, 

we first reduce the problem to a specific path problem in directed graphs. Then, we 

apply known algebraic tools for multilinear monomials detection. Here, Theorem 3 

(i) is based on Williams [60]. To get a deterministic algorithm with a running time 

almost linear in |G| , we show a different approach based on representative sets [31] 

which results in Theorem 3 (ii).

Reduction to directed graphs. We introduce a so-called �-(s, z)-expansion for two 

vertices s and z of a temporal graph with waiting times. That is, a time-expanded 

version of the temporal graph which reduces reachability questions to directed 

graphs. While similar approaches have been applied several times [4, 12, 50, 61, 

62], to the best of our knowledge, this is the first time that waiting-times are con-

sidered. In a nutshell, the �-(s, z)-expansion has for each vertex v at most � many 

copies v1,… , v
� and if an (s, z)-dipath visits vi , it means that the corresponding �

-restless temporal (s, z)-walk visits v at time i.

Definition 2 (�-(s, z)-Expansion) Let G = (V , (E
i
)
i∈[�]) be a temporal graph with two 

distinct vertices s, z ∈ V  such that {s, z} ∉ Et , for all t ∈ [�] . Let � ≤ � . The �-(s, z)-

expansion of G is the directed graph D = (V �
, E

�) with 

 (i) V � ∶= {s, z} ∪
{

vt | v ∈ e, e ∈ Et, v ∉ {s, z}
}
,

 (ii) E
s
∶=

{
(s, v

t) | {s, v} ∈ E
t

}
,

 (iii) Ez ∶=
{
(vi, z) | vi ∈ V �, {v, z} ∈ Et, 0 ≤ t − i ≤ �

}
 , and

 (iv) E� ∶= Es ∪ Ez ∪
{
(vi, wt) | vi ∈ V � ⧵ {s, z}, {v, w} ∈ Et, 0 ≤ t − i ≤ �

}
.

Furthermore, we define V �(s) ∶= {s} , V �(z) ∶= {z} , and V �(v) ∶= {v
t ∈ V

� ∣ t ∈ [�]} , 

for all v ∈ V ⧵ {s, z}.

Next, we show that a �-(s, z)-expansion of a temporal graph can be computed 

efficiently.

3 The algorithm always outputs no if there is no �-restless temporal (s, z)-path and outputs otherwise yes 

with constant probability.
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Lemma 2 Given a temporal graph G = (V , (E
i
)
i∈[�]) , two distinct vertices s, z ∈ V  , 

and � ≤ � , we can compute its  �-(s,  z)-expansion D with |V(D)| ∈ O(|G|) in 

O(|G| ⋅ �) time.

Proof Let V � ∶= {s, z} and E
′ be empty in the beginning. We will fill up V ′ and 

E
′ simultaneously. In order to do that efficiently, we will maintain for each ver-

tex v ∈ V  a ordered list L
v
 such that t ∈ L

v
 if and only if vt

∈ V
� . We assume that 

�V� ≤
∑�

i=1
�E

i
� , because vertices which are isolated in every layer are irrelevant for 

the �-(s, z)-expansion and can be erased in linear time.

We proceed as follows. For each t ∈ {1,… ,�} (in ascending order), we iterate 

over E
t
 . For each {v, w} ∈ E

t
 , we distinguish three cases. 

(w = s):  We add vt to V ′ , (s, v
t) to E′ , and add t to L

v
 . This can be done 

in constant time.

(w = z):  We add vt to V ′ , and add t to L
v
 . Now we iterate over all i ∈ L

v
 

(in descending order) and add (vi
, z) to E′ until t − i > � . This 

can be done in O(�) time.

({s, z} ∩ {v, w} = �):  We add vt
, w

t to V ′ , and add t to L
v
 and L

w
 . Now we iterate 

over i ∈ L
v
 (in descending order) and add (vi

, w
t) to E′ until 

t − i > � . Afterwards, we iterate over i ∈ L
w
 (in descending 

order) and add (wi
, v

t) to E′ until t − i > � . This can be done 

in O(�) time.

Observe that after this procedure the digraph D = (V �
, E

�) is the �-(s, z)-expan-

sion of G and that we added at most 2 vertices for each time-edge in G . Hence, 

V
′ ≤ |G| . This gives a overall running time of O(|G| ⋅ �).  ◻

It is easy to see that there is a �-restless temporal (s, z)-walk in the temporal 

graph if and only if there is an (s, z)-dipath in the �-(s,  z)-expansion. Next, we 

identify the necessary side constraint to identify �-restless temporal (s, z)-paths in 

the �-(s, z)-expansion.

Lemma 3 Let G = (V , (E
i
)
i∈[�]) be a temporal graph, s, z ∈ V  two distinct vertices, 

� ≤ � , and D = (V �
, E

�) the �-(s, z)-expansion of G . There is a �-restless temporal 

(s, z)-path in G of length k if and only if there is an (s, z)-dipath P′ in D of length k 

such that for all v ∈ V  it holds that |V �(v) ∩ V(P�)| ≤ 1.

Proof (⇒) : Let P =
(

((s, v1, t1), (v1, v2, t2),… , (vk�−1, z, tk� )
)

 be a �-restless temporal 

(s, z)-path in G of length k. We can inductively construct an (s, z)-dipath P
′ in D. 

Observe that P
�
1
∶= ((s, v

t1

1
)) is an (s, v

t1

1
)-dipath of length 1 in D, because the arc 
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(s, v
t1

1
) is in E

s
 of D. Now let i ∈ [k� − 2] and P′

i
 be an (s, v

t
i

i
)-dipath of length i such 

that 

 (i) for all j ∈ [i] , we have that |V �(vj) ∩ V(P�
i
)| = 1 , and

 (ii) for all v ∈ V ⧵ {s, v1,… , v
i
} , we have that |V �(v) ∩ V(P�

i
)| = 0.

In order to get an (s, v
t
i+1

i+1
)-dipath P

�

i+1
 of length i + 1 , we extend P

′

i
 by the arc 

(v
t
i

i
, v

t
i+1

i+1
) . Observe, that v

t
i+1

i+1
∈ V

� because of the time-edge ({v
i
, v

i+1}, t
i+1) in G and 

that the arc (v
t
i

i
, v

t
i+1

i+1
) ∈ E

� , because we have 0 ≤ t
i+1

− t
i
≤ � . Observe that 

 (i) for all j ∈ [i + 1] , we have that |V �(vj) ∩ V(P�
i+1

)| = 1 , and

 (ii) for all v ∈ V ⧵ {s, v1,… , v
i+1} , we have that |V �(v) ∩ V(P�

i+1
)| = 0.

Hence, we have an (s, v
tk�−1

k�−1
)-dipath P�

k−1
 of length k − 1 satisfying (i) and (ii) which 

can be extended (in a similar way) to an (s, z)-dipath of length k such that for all 

v ∈ V  it holds that |V �(v) ∩ V(P�)| ≤ 1.

(⇐) : Let P′ be a (s, z)-dipath in D of length k such that for all v ∈ V  it holds that 

|V �(v) ∩ V(P�)| ≤ 1 . Let V(P�) = {s, v
t1

1
,… , v

tk−1

k−1
, z} . Observe that an arc from s to v

t
1

1
 

in D implies that there is a time-edge ({s, v1}, t1) in G . Similarly, an arc from v
t
i

i
 to 

v
t
i+1

i+1
 implies that there is a time-edge ({v

i
, v

i+1}, t
i+1) in G and that 0 ≤ t

i+1
− t

i
≤ � , 

for all i ∈ [k − 2] . Moreover, an arc from v
tk−1

k−1
 to z implies that there is some t

k
 

such that there is a time-edge ({vk, z}, tk) in  G with 0 ≤ t
k
− t

k−1
≤ � . Hence, 

P =
(

(s, v1, t1), (v1, v2, t2),… , (vk�−1, z, tk� )
)

 is a �-restless temporal (s, z)-walk of 

length k in G . Finally, |V �(v) ∩ V(P�)| ≤ 1 , for all v ∈ V  , implies that vi ≠ vj for all 

i, j ∈ {0,… , k} with i ≠ j . Thus, P is a �-restless temporal (s, z)-path of length k.  ◻

Obtaining Theorem 3 (i) We now adapt the algorithm of Williams [60] to our spe-

cific needs. To this end, we introduce some standard notation from algebraic theory.

An arithmetic circuit C over a commutative ring R is a simple labelled directed 

acyclic graph with its internal nodes labeled by + (sum gates) or × (product gates) 

and its nodes of in-degree zero (input gates) labeled with elements from R ∪ X , 

where X is a set of variables. There is one node of out-degree zero, called the output 

gate. The size of C is the number of vertices in the graph. An arithmetic circuit C 

over R computes a polynomial P(X) over R in the natural way: an input gate repre-

sents the polynomial it is labeled by. A sum (product) gate represents the sum (prod-

uct) of the polynomials represented by its in-degree neighbors. We say C represents 

P(X) if the polynomial of the output gate of C is equivalent to P(X).

Lemma 4 Let k ∈ ℕ and D = (V , A) be a directed graph with partition V =

⨄n

i=0
V

i
 , 

where V
0
= {s} and Vn = {z} . Then, there is an arithmetic circuit C representing a 

polynomial Q(X) of degree at most k + 1 such that Q(X) has a multilinear4 monomial 

4 No variable occurs to a power of two or higher.
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of degree at most k + 1 if and only if there is an (s, z)-path P of length at most k in D 

where |V(P) ∩ V
i
| ≤ 1 for all i ∈ [n] . Moreover, |X| = n + 1 , C is of size O(k(n + |A|)) , 

has no scalar multiplication, and all product gates in have in-degree two.

The idea of the polynomial is similar to the one of Williams [60], but here instead 

of having one variable for each vertex we just have one variable for all vertices in 

one part of the partition of V.

Proof We define the polynomial recursively as Q(X) = x
⊥

Qk
z
 over variables 

X = {x
⊥

, x0} ∪ {x
i
∣ i ∈ [n]} , where

Note that we can, by simply following (1), construct an arithmetic circuit C which 

represents Q(X) in O(k(n + |A|)) time such that each product gate has an in-degree of 

two. Furthermore, observe that Q(X) has no scalar multiplication and is of degree at 

most k + 1.

The following induction completes the proof: We claim that for all v ∈ V  and 

j ∈ [k] ∪ {0} , Q(X) has a multilinear monomial M of degree at most j + 1 if and 

only if there is an (s, v)-path P of length at most j in D where |V(P) ∩ V
i
| ≤ 1 for all 

i ∈ [n] . Moreover, M contains the variable x
i
 if and only if |V(P) ∩ V

i
| = 1 , for all 

i ∈ [n] . Is is easy to verify that the claim is true for j = 0.

Now assume as induction hypothesis that for all u ∈ V  and all j� < j ∈ [k] , the 

polynomial x
⊥

Q
j′

u has a multilinear monomial M of degree at most j� + 1 if and only 

if there is an (s, u)-path P of length at most j′ in D where |V(P) ∩ V
i
| ≤ 1 , for all 

i ∈ [n] . Moreover, M contains the variable x
i
 if and only if |V(P) ∩ V

i
| = 1 , for all 

i ∈ [n] . Let v ∈ Vp.

(⇒) : Assume there is a multilinear monomial M of degree at most j + 1 in 

x
⊥

Q
j
v . Since x

⊥
Q

j
v =

∑

(u,v)∈A xp(x⊥Q
j−1

u ) , we know that M contains x
p
 and there is 

a (u, v) ∈ A such that x
⊥

Q
j−1

u  contains a multilinear monomial M
′ which does not 

contain x
p
 . By induction hypothesis, there is an (s, u)-path P′ of length at most j − 1 

such that |V(P�) ∩ V
i
| = 1 if and only if M′ contains x

i
 for all i ∈ [n] . Hence, there 

is an (s, v)-path P (obtained by extending P′ with v) such that |V(P) ∩ V
i
| ≤ 1 for all 

i ∈ [n] . Furthermore, we have that |V(P) ∩ V
i
| = 1 if and only if M contains x

i
 for all 

i ∈ [n].

(⇐) : Assume there is an (s, v)-path P of length at most j in D where |V(P) ∩ V
i
| ≤ 1 

for all i ∈ [n] . Let P′ be the (s, u)-path obtained by removing v from P. Hence, P′ is 

(1)

Q0

s
∶= x0,

∀v ∈ V ⧵ {s} ∶ Q0

v
∶= x

⊥
, and

∀v ∈ V ,∀j ∈ [k] ∶ Qj
v
∶=

∑

(u,v)∈A

Qj−1

u
xi, where v ∈ Vi.
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of length at most j − 1 , and |V(P) ∩ V
i
| ≤ 1 for all i ∈ [n] . By induction hypothesis 

x
⊥

Q
j−1

u  contains a multilinear monomial M of degree at most j which does not con-

tain x
p
 . Since x

⊥
Q

j
v =

∑

(u,v)∈A xp(x⊥Q
j−1

u ) , we know that x
⊥

Q
j
v contains a M multi-

plied by x
p
 as monomial. Thus, x

⊥
Q

j
v has a multilinear monomial of degree at most 

j + 1 which contains variable x
i
 if and only if |V(P�) ∩ V

i
| = 1 , for all i ∈ [n].  ◻

Now we can apply the following result of Williams [60].

Theorem 4 [60] Let Q(X) be a polynomial of degree at most k, represented by an 

arithmetic circuit of size n with no scalar multiplications and where all product 

gates have in-degree two. There is a randomized algorithm that runs in 2knO(1) time, 

outputs yes with high probability ( ≥ 1∕5 ) if there is a multilinear term in the sum-

product expansion of Q, and always outputs no if there is no multilinear term.

Theorem 3 (i) follows from Lemmas 2 to 4 and Theorem 4. This can be derandomized 

by Theorem 5.2 of Fomin et al.  [32] resulting in O(3.841k
⋅ (|G|�)2|V| log |V|)  time 

algorithm. We now show how to improve the polynomial part of a deterministic 

algorithm.

Obtaining Theorem  3 (ii) To show Theorem  3 (ii), we first note that in the (s,  z)-

expansion of an (s, z)-path P in the directed graph describes a �-restless temporal 

(s, z)-path exactly when V(P) is an independent set of some specific matroid. We then 

show an algorithm to find such a path P (if there is one). To this end, we introduce 

a problem, INDEPENDENT PATH, and some standard terminology from matroid the-

ory [55]. A pair (U, I) , where U is the ground set and I ⊆ 2
U is a family of independ-

ent sets, is a matroid if the following holds: � ∈ I  ; if A′ ⊆ A and A ∈ I  , then A�
∈ I  ; 

and if A, B ∈ I  and |A| < |B| , then there is an x ∈ B ⧵ A such that A ∪ {x} ∈ I  . An 

inclusion-wise maximal independent set  A ∈ I  of a matroid M = (U, I) is a basis. 

The cardinality of the bases of M is called the rank of M. The uniform matroid of 

rank  r on U is the matroid (U, I) with I = {S ⊆ U ∣ |S| ≤ r} . A matroid (U, I) is 

linear or representable over a field �  if there is a matrix A with entries in �  and the 

columns labeled by the elements of U such that S ∈ I  if and only if the columns 

of A with labels in S are linearly independent over �  . Such a matrix A is called a 

representation of (U, I) . Now we are ready to state the INDEPENDENT PATH problem. 
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For the remainder of this section, whenever we speak about independent sets, 

these are independent sets of a matroid and not a set of vertices which induce an 

edgeless graph.

Agrawal et al.  [1] studied, independently from us, a similar problem where the 

edges of the path shall be an independent set of a matroid. To show Theorem 3 (ii), 

we need a single-exponential algorithm which has only a linear dependency on the 

input size. To this end, we show the following, based on representative families.

Theorem 5 An instance (D, s, z, AM) of INDEPENDENT PATH can be solved in time of 

O(2�r
m) operations over the field �  , where �  is the field of A

M
 , r is rank of M, m is 

the number of edges in D, and 2 < � < 2.373 is an upper-bound for the matrix mul-

tiplication exponent.5

In this section, we provide a fixed-parameter algorithm for INDEPENDENT PATH 

parameterized by rank r of the matroid. Since the rank r is at most |V(D)|, this algo-

rithm is asymptotically optimal, see Corollary 3. To show Theorem 5, we provide 

an algorithm (Algorithm 4.1), show its correctness (Lemma 5), and prove the run-

ning time upper-bound (Lemma 6). The idea of our algorithm is based on the algo-

rithm of Fomin et al. [31] for  k -PATH and independently from us Agrawal et al. [1] 

showed an algorithm which runs in 2O(r)
n

O(1) time for INDEPENDENT PATH and Lok-

shtanov et al. [48] provided a dynamic program, running in 5.18r
n

O(1) time, for the 

special case of INDEPENDENT PATH when the matroid given in the input is a transver-

sal matroid. However, in contrast to Agrawal et al. [1] and Lokshtanov et al. [48], we 

pay attention to the detail that the algorithm behind Theorem 5 runs in linear time, if 

we can perform one field operation in constant time.

5 Note that we require 2 < � even though this might be not true. We do this to upper-bound the polyno-

mial part in r. The bound � < 2.373 is known [6].
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The main tool of our algorithm are representative families of independent sets.

Definition 3 (Representative family) Given a matroid (U, I) , and a family S ⊆ 2
U,

we say that a subfamily �S ⊆ S is a q-representative for S if, for each set Y ⊆ U of 

size at most q, it holds that:

– if there is a set X ∈ S with X ⊎ Y ∈ I ,

– then there is a set X̂ ∈ Ŝ with �X ⊎ Y ∈ I .

A p-family is a family F  such that each set S ∈ F  is of size exactly p. For lin-

ear matroids, we can compute small representative families efficiently. Formally, 

the following is known.

Theorem 6 (Fomin et al. [31, Theorem 1.1]) Let M = (U, I) be a linear matroid of 

rank r = p + q given together with its representation A
M

 over field �  . Let S be a 

p-family of independents of M. Then a q-representative family �S ⊆ S of size at most 
(

r

p

)

 can be found in O
(

(

r

p

)

tp�
+ t

(

r

q

)

�−1
)

 operations over �  , where � < 2.373 is the 

matrix multiplication exponent.

We are now ready to give the pseudo-code of the algorithm behind Theorem 5 

(see Algorithm 4.1).

In Algorithm  4.1, A ∙
M

B is defined as 

{A ∪ B ∣ A ∈ A, B ∈ B, A ∩ B = �, A ∪ B ∈ I} for families A, B ⊆ I  and matroid 

M = (U, I).

Lemma 5 Algorithm 4.1 is correct.

Proof Let P
w,i

∶= {X ∈ I ∣ there is an (s, w)-dipath P of length i such that V(P) = X} , 

for all w ∈ V  and i ∈ [r − 1] . Observe that P
w,i

 is an (i + 1)-family of independent 

sets. We show by induction that after iteration i of the for-loop in Line (3) the entry 

T[w, i] is an (r − i)-representative of P
w,i

 , for all w ∈ V  and i ∈ [r − 1] . Then the cor-

rectness follows, since we check after each of these iterations whether T[w, i] is non-

empty (Line (9)). Observe that P
s,0 = {s} and P

v,0 = � for all v ∈ V ⧵ {s} . Hence, 

the entries of T computed in Lines (1) and (2) fulfill our induction hypothesis.

Now let i ∈ [r − 1] be the current iteration of the for-loop in Line (3) and assume 

that for all j < i we have that T[w, j] is an (r − j)-representative of Pw,j , for all w ∈ V  . 

Fix a vertex w ∈ V  . We first show that if there is an X ∈ T[i, w] , then there is an 

(s, w)-dipath P
w
 of length i such that X = V(P

w
) ∈ I  . Observe that in Lines (5)–(7) 

we look at each possible predecessor v ∈ V  of w in an (s, w)-dipath of length i, take 

each set X� ∈ T[v, i − 1] and check whether X� ∪ {w} is an independent set of size 

i + 1 . If this is the case, we add it to N
w,i

 . After Line (8), we have that T[w, i] ⊆ N
w,i

 . 

Since X� ∈ T[v, i − 1] , we know that there is an (s, v)-dipath P
v
 of length i − 1 with 

X
� = V(P) . Thus, if there is an X ∈ T[i, w] , then there is an (s, w)-dipath P

w
 of length 

i such that X = V(P
w
) ∈ I
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Now let X ∈ P
w,i

 and Y ⊆ V(D) be a set of vertices of size at most r − i − 1 

such that X ∩ Y = � and X ⊎ Y ∈ I  . Hence, there is an (s, w)-dipath P of length 

i such that V(P) = X . Let v be the predecessor of w in P. Let P
v
 be the (s, v)

-dipath of length i − 1 induced by P without w. Hence, V(P
v
) ∈ P

v,i−1 . Moreover, 

V(P
v
) ∩ (Y ∪ {v}) = � and V(P

v
) ⊎ (Y ∪ {w}) ∈ I  . Since T[v, i − 1] is an (r − i + 1)

-representative family of P
v,i−1 , we know that there is an X̂ ∈ T[v, i − 1] such that 

X̂ ∩ (Y ∪ {w}) = � and X̂ ∪ (Y ∪ {w}) ∈ I  . In Lines (5)–(7) we add X̂ ∪ {w} to N
w,i

 . 

Let X
� ∶= X̂ ∪ {w} and note that X

� ∩ Y = � and X
�
⊎ Y ∈ I  . Since T[w,  i] is an 

(r − i)-representative family of N
w,i

 , we know that there is an X̂� ∈ T[w, i] such that 

X̂� ∩ Y = � and X�
⊎ Y ∈ I  . Thus, T[w, i] is an (r − i)-representative of P

w,i
.  ◻

Next, we show that Algorithm 4.1 is actually a fixed-parameter algorithm param-

eterized by the length of a shortest �-restless temporal (s, z)-path.

Lemma 6 Algorithm 4.1 runs in time of O(2�r
⋅ m) operations over �  , where �  is the 

field of A
M

 , r is the rank of the matroid, m is the number of edges, and 2 < � < 2.373 

is an upper-bound for the matrix multiplication exponent.

Proof Without loss of generality we assume to have a total ordering on V. We repre-

sent a subset of V as a sorted string. Hence, union and intersection of two sets of size 

at most r takes O(r) time. We can thus look up and store sets of size at most r in a 

trie (or radix tree) in O(r) time [21]. Note that we do not have the time to completely 

initialize the arrays of size |V| in each trie node. Instead, we will initialize each array 

cell of a trie node at its first access. To keep track of the already initialized cells, we 

use sparse sets over V which allows membership test, insertion, and deletion of ele-

ments in constant time [16].

We denote the in-neighborhood of a vertex w by N−(w) ∶= {v ∈ V ∣ (v, w) ∈ E} . 

Furthermore, let H
i,w

 be the running time of Lines (5)–(7) in iteration i of the for-

loop in Line (3), and R
i,w

 be the number of operations over �  of Line (8) in iteration i 

of the for-loop in Line (3). Then we can run Algorithm  4.1 in time of 

O

�

∑r−1

i=1

∑

w∈V
H

i,w +
∑r−1

i=1

∑

w∈V
R

i,w

�

 operations over �—that is, the running time 

respecting the time needed for operations over �  . Let i ∈ [r − 1] and w ∈ V  . In the i-

th iteration of the for-loop in Line (3), |T[v, j]| ≤
(

r

j+1

)
 for all j < i and v ∈ V  , since 

we used Theorem 6 in prior iterations. Let 2 < � < 2.373 be an upper-bound for the 

matrix multiplication exponent. Hence, |N
w,i| ≤

(
r

i+1

)
|N−(w)| and 

H
i,w ∈ O(

(
r

i+1

)
|N−(w)| ⋅ r

�) , because the independence test can be done via matrix 

multiplication. Thus,
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Moreover, by Theorem 6, we have

where the last inclusion is true because we assume 2 < �.

Thus, we can run Algorithm 4.1 in time of O(2�r
m) operations over � .  ◻

Now Theorem 5 follows from Lemmas 6 and 5.

Observe that by Lemma 3, there is a �-restless temporal (s, z)-path in the tem-

poral graph G if and only if there is an (s,  z)-path P in the �-(s,  z)-expansion 

D = (V �
, E

�) of G such that V(P) is an independent set in the partition matroid6 

M = (V �, {X ⊆ V
� ∣ ∀v ∈ V ∶ |X ∩ V

�(v)| ≤ 1}) . Note that M is of rank |V| and hence 

too large to show Theorem 3 with Theorem 5.

A k-truncation of a matroid (U, I) is a matroid (U, {X ∈ I ∣ |X| ≤ k}) such that 

all independent sets are of size at most k. The k-truncation of a linear matroid 

is also a linear matroid [49]. In our reduction from SHORT RESTLESS TEMPORAL 

PATH to INDEPENDENT PATH we use a (k + 1)-truncation of matroid M. Two general 

approaches are known to compute a representation for a k-truncation of a linear 

matroid—one is randomized [49] and one is deterministic [47].7 Both approaches 

require a large field implying that one operation over that field is rather slow. 

However, for our specific matroid we employ the Vandermonde matrix to compute 

a representation over a small finite field. Note that we would not get a running 

time linear in the input size by applying the algorithm of Lokshtanov et al. [47] or 

Marx [49] on M.

Lemma 7 Given a universe U of size n, a partition P
1
⊎⋯ ⊎ Pq = U , and an integer 

k ∈ ℕ , we can compute in O(kn) time a representation A
M

 for the matroid 

M =

(
U,

{
X ⊆ U

||| |X| ≤ k and ∀i ∈ [q] ∶ |X ∩ Pi| ≤ 1

})
 , where A

M
 is defined 

over a finite field �  and one operation over �  takes constant time.

Proof For this running time analysis we assume the Word RAM model of computa-

tion, introduced by [34], which is similar to the RAM model of computation but one 

O

(
r−1∑

i=1

∑

w∈V

H
i,w

)
⊆ O

(
r−1∑

i=1

∑

w∈V

|N−(w)|
(

r

i + 1

)
⋅ r

�

)
⊆ O

(
2

r+o(r)
m
)
.

O

(

r−1
∑

i=1

∑

w∈V

R
i,w

)

⊆ O

(

r−1
∑

i=1

m

(

r

i

)(

r

i + 1

)

(i + 1)� +

r−1
∑

i=1

m

(

r

i

)(

r

r − i − 1

)�−1
)

⊆ O
(

2r
m(2r

r
� + 2r(�−1))

)

⊆ O
(

m(22r+log2(r)� + 2r�)
)

⊆ O(2�r
m),

6 Partition matroids are linear [49].
7 For both algorithms, a representation of the original matroid must be given.
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memory cell can store only O(log n) many bits, where n is the input size. This avoids 

abuse of the unit cost random access machine by for example multiplying very large 

numbers in constant time.

Without loss of generality we assume that q ≤ n . Let p be a prime number with 

q ≤ p ≤ 2q . Such a prime exists by the folklore Betrand-Chebyshev Theorem  [2] 

and can be computed in O(n) time using Lagarias-Odlyzko Method [58]. To perform 

one operation on the prime field �
p
 , one can first perform the primitive operation in 

ℤ and them take the result modulo p. Since p ≤ 2q ∈ O(n) , each element of �
p
 fits 

into one cell of the Word RAM model of computation. Thus, we can perform one 

operation over �
p
 in constant time.

Let x1,… , x
q
 be pair-wise distinct elements from �

p
 . To compute an (k × n)

-matrix A
M

 as representation for M over �
p
 , we compose (column-wise) for each ele-

ment u ∈ P
i
 the vector �

i
∶=

(

x
0

i
x

1

i
… x

k−1

i

)T
 , where i ∈ [q] . That gives a running 

time of O(k ⋅ n) operations over �
p
 , since we can compute �

i
 in O(k) operations over 

�
p
.

It remains to show that A
M

 is a representation of M. Let X ⊆ U . If there is an 

i ∈ [p] such that |X ∩ P
i
| > 1 , then the corresponding columns of A

M
 are linearly 

dependent, because we have the vector �
i
 twice. Now we assume that for all i ∈ [q] 

we have |X ∩ P
i
| ≤ 1 . Furthermore, if |X| > k , then we know that the correspond-

ing columns of A
M

 are linearly dependent, because A
M

 is an (k × n)-matrix. We can 

observe that if |X| = k , then the corresponding columns in A
M

 form a Vandermonde 

matrix, whose determinate is known to be non-zero. Hence, if |X| ≤ k , then the cor-

responding columns in A
M

 are linearly independent. Thus, A
M

 is a representation 

of M.  ◻

We now show a reduction from SHORT RESTLESS TEMPORAL PATH to INDEPENDENT 

PATH using Lemmas 2, 3 and 7

Lemma 8 Given an instance (G, s, z, k,�) of SHORT RESTLESS TEMPORAL PATH, we 

can compute in O(max{k,�} ⋅ |G|) time an instance (D, s, z, AM) of INDEPENDENT 

PATH such that M has rank k + 1 , and (G, s, z, k,�) is a yes-instance if and only if 

(D, s, z, AM) is a yes-instance, where one operation over the finite field of A
M

 takes 

constant time.

Proof Let (G = (V , (Ei)i∈[�]), s, z, k,�) be an instance of SHORT RESTLESS TEMPORAL 

PATH. We construct an instance (D, s, z, AM , k) of INDEPENDENT PATH in the following 

way. Let digraph D = (V �
, E

�) be the �-(s, z)-expansion of G which can be computed, 

by Lemma 2, in O(|G| ⋅ �) time such that V � ∈ O(|G|) . Observe that 
⋃

v∈V
V
�(v) is a 

partition of V ′ . Now, we construct a representation A
M

 (over a finite field where we 

can perform one operation in constant time) of the matroid



2781

1 3

Algorithmica (2021) 83:2754–2802 

in O(k ⋅ |G|) time by Lemma 7. Note that M is an (k + 1)-truncated partition matroid 

and hence has rank k + 1 . This completes the construction and gives us an overall 

running time of O(max{k,�} ⋅ |G|).

We now claim (G, s, z, k,�) is a yes-instance if and only if (D, s, z, AM) is a yes-

instance and contains an independent (s, z)-dipath of length at most k.

(⇐) : Let P be a �-restless temporal (s, z)-path of length k
′ ≤ k in G . Then, by 

Lemma  3 there is an (s, z)-dipath P
′ of length k

′ such that for all v ∈ V  it holds 

that |V �(v) ∩ V(P�)| ≤ 1 . Since |V(P�)| = k� + 1 ≤ k + 1 , we know that V(P�) is an 

independent set of M. Thus, P′ is a witness of length at most k for (D, s, z, AM) being 

a yes-instance.

(⇒) : Let P′ be an (s, z)-dipath of length k′ ≤ k in D such that V(P�) is an independ-

ent set of M. Clearly, for v ∈ V  it holds that |V �(v) ∩ V(P�)| ≤ 1 . Then, by Lemma 3, 

there is a �-restless temporal (s, z)-path of length k′ in G.  ◻

Proof of Theorem 3 (ii) Let I = (G = (V , (Ei)i∈[�]), s, z, k,�) be an instance of SHORT 

RESTLESS TEMPORAL PATH.

To decide whether there is a witness of length k of I being a yes-instance, we 

first use Lemma 8 to compute an instance I� = (D, s, z, AM) of INDEPENDENT PATH in 

O(|G| ⋅ max{�, k}) time, where we can compute one operation over the field �  of A
M

 

in constant time and the matroid M which is represented by A
M

 is of rank k + 1 . Note 

that I′ is a yes-instance if and only if there is witness of length k for I being a yes-

instance. Second, we solve I′ by Theorem 5 in O(2�(k+1)
⋅ |G| ⋅ �) time.

Thus, we have an overall running time of 2O(k)
⋅ |G| ⋅ �.  ◻

Moreover, from Lemma  8 it is intermediately clear that the lower-bounds of 

Corollary 1 and Theorem 1 translate to INDEPENDENT PATH.

Corollary 3 INDEPENDENT PATH is NP-hard and unless the ETH fails there is no 2o(n)

-time algorithm for it, where n is the number of vertices.

Note that from Theorem 1 we can further deduce that there is not much hope for 

fast or early restless temporal paths, that is, restless temporal path that have a small 

duration or an early arrival time. The instance constructed in the reduction has life-

time � = 3 and hence the duration as well as the arrival time of any restless temporal 

path in this instance is at most three. This implies that we presumably cannot find 

fast or early restless temporal paths efficiently.

M =

(
V
�,
{

X ⊆ V
� || |X| ≤ k + 1 and ∀v ∈ V ∶ |X ∩ V

�(v)| ≤ 1
})
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5  Computational Complexity Landscape for the Underlying Graph

In this section we investigate the parameterized computational complexity of REST-

LESS TEMPORAL PATH when parameterized by structural parameters of the underly-

ing graph. We start by observing that whenever a parametrization forbids path of 

unbounded length, then we can use Theorem 3 to show fixed-parameter tractability. 

For example, if we consider the vertex cover number vc↓ of the underlying graph, 

then we can deduce that any path in the underlying graph and hence any restless 

temporal path can have length at most 2vc↓ + 1 . Thus, by Theorem 3, we get fixed-

parameter tractability of RESTLESS TEMPORAL PATH when parameterized by the vertex 

cover number of the underlying graph.

Observation 3 RESTLESS TEMPORAL PATH parameterized by the vertex cover number 

vc↓ of the underlying graph is fixed-parameter tractable.

From a classification standpoint, we can improve this a little further by observ-

ing that the length of a path in the underlying graph can be bounded by 2O(td↓) [53], 

where td↓ is the treedepth of the underlying graph.

Observation 4 RESTLESS TEMPORAL PATH parameterized by the treedepth td↓ of the 

underlying graph is fixed-parameter tractable.

One of the few dark spots of the landscape is the feedback edge number8 of the 

underlying graph which is resolved in the following way.

Theorem 7 RESTLESS TEMPORAL PATH can be solved in 2O(−∫ )
⋅ |G| time, where −∫  is the 

feedback edge number of the underlying graph.

By Corollary 1 we know that Theorem 7 is asymptotically optimal, unless ETH 

fails. In a nutshell, our algorithm to prove Theorem 7 has the following five steps: 

1. Exhaustively remove all degree-1 vertices from G↓ (except for s and z).

2. Compute a minimum-cardinality feedback edge set F of the graph G↓.

3. Compute a set P of O(−∫ ) many paths in G↓ − F such that every path in G↓ − F is 

a concatenation of some paths in P.

4. “Guess” the feedback edges in F and paths in P of an (s, z)-path in G↓.

5. Verify whether the “guessed” (s, z)-path is a �-restless temporal (s, z)-path in G.

First, we show that we can safely remove all (except s and z) degree-one vertices 

from the underlying graphs G↓.

8 For a given graph G = (V , E) a set F ⊆ E is a feedback edge set if G − F does not contain a cycle. The 

feedback edge number of a graph G is the size of a minimum feedback edge set for G.
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Reduction Rule 1 (Low Degree Rule) Let I = (G = (V , (Ei)i∈[�]), s, z,�) be an 

instance of RESTLESS TEMPORAL PATH, G↓ be the underlying graph of G , v ∈ V ⧵ {s, z} , 

and deg
G↓
(v) ≤ 1 . Then, output (G − {v}, s, z,�).

Lemma 9 Reduction Rule 1 is safe and can be applied exhaustively in O(|G|) time.

Proof Let I = (G = (V , (Ei)i∈[�]), s, z,�) be an instance of RESTLESS TEMPORAL PATH, 

For the safeness we can observe that a vertex v ∈ V ⧵ {s, z} with deg
G↓
(v) ≤ 1 cannot 

be visited by any �-restless temporal (s, z)-path. To apply Reduction Rule 1 exhaus-

tively, we iterate once over the set of time edges to store for each vertex v ∈ V ⧵ {s, z} 

its degree in a counter c
v
 . Afterwards, we collect all vertices of degree 0 in X and all 

vertices of degree 1 in V
1
 . Now we iterate over each vertex v ∈ V

1
 , remove v from V

1
 , 

add v to X, decrement the counter c
u
 of its neighbor u. If c

u
 becomes 1 we add u to 

V
1
 . Note that this procedure ends after O(|V|) time.

Finally, we iterate one last time over the temporal graph G to construct the tem-

poral graph G�
∶= G − X . The instance (G�

, s, z,�) of RESTLESS TEMPORAL PATH is the 

resulting instance when we apply Reduction Rule 1 exhaustively on I.  ◻

Next, we consider a static graph G with no degree-one or degree-zero vertices. 

Let F be an minimum feedback edge set of G and let V
F
 be the endpoints of the 

edges in  F, that is V
F
= {v ∈ e ∣ e ∈ F} . Let V≥3 be the set of all vertices with a 

degree greater than two in G − F . We can partition the graph G − F into a set P of 

V
F
∪ V

≥3-connecting paths, that are, all paths in G − F who start and end in V
F
∪ V

≥3 

and have no internal vertices in that set of vertices. Note that all degree-one vertices 

of G − F are in V
F
 . Hence, the graph G − F can be partitioned into V

F
∪ V

≥3-con-

necting paths. We can show that |P| ∈ O(−∫ ).

Lemma 10 Let G be a graph with no degree-one vertices and F be an minimum feed-

back edge set of G. The set P of V
F
∪ V

≥3-connecting paths of G − F has size O(|F|) 

and can be computed in O(|G|) time.

Proof We can compute the set P in O(|G|) time as follows. We start with P = � 

and pick any leaf v ∈ V(G − F) of degree one. Recall that v ∈ V
F
 and that G − F 

is cycle-free. There is at most one vertex w ∈ (V≥3 ∪ V
F
) ⧵ {v} such that there is 

a path P between v and w which does not contain internal vertices from V≥3
∪ V

F
 . 

Note that also P is unique. We add P to P and remove V(P) ⧵ {w} from the graph. 

Now we repeat this procedure with the next leaf of degree one until the graph has no 

edges.

It is easy to verify that the number of paths is bounded by the number of verti-

ces in V≥3
∪ V

F
 . We know that |V

F
| is upper-bounded by 2|F|. It remains to show 

that |V≥3| is in O(|F|).
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As shown by Bentert et  al.  [9, Lemma 2], the number of vertices with degree 

greater or equal to three is bounded by 3|F| in a graph with no degree-one vertices. 

Hence, the number of V
F
∪ V

≥3-connecting paths is bounded by 5|F|.  ◻

With Lemmas 9 and 10 we can prove Theorem 7.

Proof of Theorem  7 Let I = (G = (V , (Ei)i∈[�]), s, z,�) be an instance of RESTLESS 

TEMPORAL PATH and G↓ be the underlying graph of G . Without loss of generality, we 

can assume that all vertices in V(G↓) ⧵ {s, z} have a degree greater than one. If this is 

initially not the case, then we safely remove all degree-one vertices of the underly-

ing graph exhaustively in O(|G|) time by Lemma 9.

First we compute an minimum feedback edge set F of G↓ in O(|G↓|) time. Then, 

we compute the set P of VF ∪ V≥3 ∪ {s, z}-connecting paths of G↓ − F in O(|G↓|) 

time by Lemma 10. Note that the additional vertices s and z can increase the size of 

P by at most four. Now, for any subset of feedback edges F′ ⊆ F and P′
⊆ P , we 

check whether F� ∪ E(P�) form an (s, z)-path P in G↓ where E(P�) ∶=
⋃

P�∈P
� E(P�) . 

This can be decided in O(|G↓|) time by a simple breadth-first search on G↓ start-

ing at the vertex s and using only edges in F� ∪ E(P�) . Last, we verify whether P 

forms a �-restless temporal  (s, z)-path in G . Therefore, we consider the temporal 

graph G
P
= (V , (E

i
∩ E(P))

i∈[�]) which has P as underlying graph. Note that we can 

construct G
P
 in O(|G|) time, by iterating once over the set of time edges of G . By 

Lemma 1 we can decide in O(|G
P
|) time whether G

P
 has a �-restless temporal (s, z)

-path.

It is easy to check that the algorithm described above runs in 2O(|F|)|G| time.

Correctness. It remains to show the correctness of the algorithm.

(⇒) : If our algorithm outputs yes, then there is a �-restless temporal (s, z)-path 

in  G
P
 . The temporal graph G

P
 contains a subset of the time edges of G , hence 

the �-restless temporal (s, z)-path in G
P
 is also present in G . It follows that I is a 

yes-instance.

(⇐) : Assume I is a yes-instance. Then there exists a �-restless temporal  (s, z)-

path in the temporal graph G . Let P =
(

(v0, v1, t1),… , (v
k−1, v

k
, t

k
)
)

 be such a path. 

Hence, P
� =

(

{v0, v1},… , {v
n−1, v

n
}
)

 is an (s,  z)-path in the underlying graph G↓ . 

Let F� = F ∩ E(P�) . If we remove the edges in F′ from P′ then what remains is a col-

lection of paths where each path is a concatenation of paths in P . Hence, there exists 

a subset P′
⊆ P such that F� ∪ E(P�) = E(P) . Thus, we will find P′ in G↓ and, by 

Lemma 1, we will correctly verify that this P′ forms a �-restless temporal (s, z)-path 

in G.  ◻

The results from Sects.  3 to 5 provide a good picture of the parameterized 

complexity landscape for RESTLESS TEMPORAL PATH, meaning that for most of the 
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widely known (static) graph parameters we know whether the problem is in FPT 

or W[1]-hard or para-NP-hard, see Fig. 2.

Our understanding of the class of temporal graphs where we can solve REST-

LESS TEMPORAL PATH efficiently narrows down to the following points. We can 

check efficiently whether there is a �-restless temporal (s, z)-path P in temporal 

graph G if 

1. there is a bounded number of (s, z)-path in G↓ (cf. Theorem 7 and Lemma 1),

2. there is a bound on the length of P (cf. Theorem 3 and Observations 4 and 3).

Apart from that we established with Theorems  1, 2 and Corollary 2 hardness 

results for temporal graphs having restricted underlying graphs, see Fig. 2.

Finally, we show that we presumably cannot expect to obtain polynomial ker-

nels for all parameters considered so far and most structural parameters of the 

underlying graph.

Proposition 1 RESTLESS TEMPORAL PATH parameterized by the number n of vertices 

does not admit a polynomial kernel for all � ≥ 1 unless NP ⊆ coNP/poly.

We employ the OR-cross-composition framework by Bodlaender, Jansen, and 

Kratsch  [15] to refute the existence of a polynomial kernel for a parameterized 

problem under the assumption that NP ⊈ coNP/poly, the negation of which would 

cause a collapse of the polynomial-time hierarchy to the third level. In order to 

formally introduce the framework, we need some definitions.

An equivalence relation R on the instances of some problem L is a polynomial 

equivalence relation if 

1. one can decide for each two instances in time polynomial in their sizes whether 

they belong to the same equivalence class, and

2. for each finite set S of instances, R partitions the set into at most (max
x∈S

|x|)O(1) 

equivalence classes.

Using this, we can now define OR-cross-compositions.

Definition 4 An OR-cross-composition of a problem  L ⊆ Σ
∗ into a parameterized 

problem  P (with respect to a polynomial equivalence relation  R on the instances 

of  L ) is an algorithm that takes n R-equivalent instances  x1,… , x
n
 of  L and con-

structs in time polynomial in 
∑n

i=1
�x

i
� an instance (x, k) of P such that 

1. k is polynomially upper-bounded in max1≤i≤n
|x

i
| + log(n) and

2. (x, k) is a yes-instance of P if and only if there is an i ∈ [n] such that x
i
 is a yes-

instance of L.

If an NP-hard problem  L OR-cross-composes into a parameterized problem  P, 

then P does not admit a polynomial kernel, unless NP ⊆ coNP/poly  [15].
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Proof of Proposition 1 We provide an OR-cross-composition from RESTLESS TEMPO-

RAL PATH onto itself. We define an equivalence relation R as follows: Two instances 

(G = (V , (Ei)i∈[�]), s, z,�) and (G� = (V �
, (E�

i
)i∈[��]), s�, z�,��) are equivalent under R if 

and only if |V| = |V �| and � = �
� . Clearly, R is a polynomial equivalence relation.

Now let (G1 = (V1, (E1,i)i∈[�1]
), s1, z1,�),… , (Gn = (Vn, (En,i)i∈[�n]

), sn, zn,�) be 

R-equivalent instances of RESTLESS TEMPORAL PATH. We construct a temporal graph 

G
⋆ = (V⋆

, (E⋆

i
)
i∈[�⋆]) as follows. Let |V⋆| = |V

1
| and s⋆, z⋆ ∈ V⋆ . We identify all 

vertices s
i
 with i ∈ [n] with each other and with s⋆ , that is, s⋆ = s

1
= … = s

n
 . Anal-

ogously, we identify all vertices zi with i ∈ [n] with each other and with z⋆ , that is, 

z
⋆
= z

1
= … = z

n
 . We arbitrarily identify the remaining vertices of the instances 

with the remaining vertices from V
⋆ , that is, let 

V⋆ ⧵ {s⋆, z⋆} = V1 ⧵ {s1, z1} = … = Vn ⧵ {sn, zn} . Now let 

E
⋆

1
= E1,1, E

⋆

2
= E1,2,… , E

⋆

�1

= E1,�1
 . Intuitively, the first instance 

(G1 = (V1, (E1,i)i∈[�1]
) essentially forms the first �

1
 layers of G⋆ . Then we introduce 

� + 1 trivial layers, that is, E⋆

�
1
+1

= E
⋆

�
1
+2

= … = E
⋆

�
1
+�+1

= � . Then we continue in 

the same fashion with the second instance and so on. We have that 

�
⋆ =

∑

i∈[n] �i
+ (n − 1) ⋅ (� + 1).

This instance can be constructed in polynomial time and the number of vertices 

is the same as the vertices in the input instances, hence |V⋆| is polynomially upper-

bounded by the maximum size of an input instance. Furthermore, it is easy to check 

that G⋆ contains a �-restless temporal (s⋆, z
⋆)-path if and only if there is an i ∈ [n] 

such that G
i
 contains a �-restless temporal (si, zi)-path. This follows from the fact that 

all instances are separated in time by � + 1 trivial layers, hence no �-restless tempo-

ral (s⋆, z
⋆)-path can use time edges from different original instances. Since RESTLESS 

TEMPORAL PATH is NP-hard (Theorem 1) the result follows.  ◻

6  Timed Feedback Vertex Number

In this section we introduce a new temporal version of the well-studied “feed-

back vertex number”-parameter. Recall that by Theorem 2 we know that RESTLESS 

TEMPORAL PATH is W[1] -hard when parameterized by the feedback vertex num-

ber of the underlying graph. This motivates studying larger parameters with the 

goal to obtain tractability results. We propose a new parameter called timed feed-

back vertex number which, intuitively, quantifies the number of vertex appear-

ances that need to be removed from a temporal graph such that its underlying 

graph becomes cycle-free. Note that having vertex appearances in the deletion 

set allows us to “guess” when we want to enter and leave the deletion set with a 

�-restless temporal (s, z)-path in addition to guessing in which order the vertex 

appearances are visited.

We remark that there also have been studies of removing (time) edges from 

temporal graph to destroy temporal cycles  [36], that is, temporal paths from a 
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vertex back to itself. Similarly, one also could remove vertex appearances to 

destroy temporal cycles, resulting in a parameter that is smaller than the timed 

feedback vertex number and incomparable to the feedback vertex number of the 

underlying graph. Note that the mentioned parameters aiming at destroying tem-

poral cycles are unbounded in our reductions. We leave the parameterized com-

plexity of RESTLESS TEMPORAL PATH with respect to those parameters open for 

future research.

Before defining timed feedback vertex number formally, we introduce nota-

tion for removing vertex appearances from a temporal graph. Intuitively, when 

we remove a vertex appearance from a temporal graph, we do not change 

its vertex set, but remove all time edges that have the removed vertex appear-

ance as an endpoint. Let G = (V , (E
i
)
i∈[�]) be a temporal graph and X ⊆ V × [�] 

a set of vertex appearances. Then we write G − X ∶= (V , (E�
i
)
i∈[�]) , where 

E
�
i
= E

i
⧵ {e ∈ E

i
∣ ∃(v, i) ∈ X with v ∈ e} . Formally, the timed feedback vertex 

number is defined as follows.

Definition 5 (Timed Feedback Vertex Number) Let G = (V , (E
i
)
i∈[�]) be a temporal 

graph. A timed feedback vertex set of G is a set X ⊆ V × [�] of vertex appearances 

such that G↓(G − X) is cycle-free. The timed feedback vertex number of a temporal 

graph G is the minimum cardinality of a timed feedback vertex set of G.

We can observe that for any temporal graph the timed feedback vertex number 

is as least as large as the feedback vertex number of the underlying graph and 

upper-bounded by the product of the feedback vertex number of the underlying 

graph and the lifetime. We further remark that the timed feedback vertex number 

is invariant under reordering the layers. At the end of this section we show how a 

timed feedback vertex set can be computed efficiently.

The main result of this section is that RESTLESS TEMPORAL PATH is fixed-param-

eter tractable when parameterized by the timed feedback vertex number of the 

input temporal graph. To this end, we show the following.

Theorem  8 Given a timed feedback vertex set X of size x for a temporal 

graph G = (V , (E
i
)
i∈[�]) , we can decide in O(6x

x! ⋅ max{|G|3, |V|4x
2}) time, whether 

there is a �-restless temporal (s, z)-path in G , where s, z ∈ V  , � ∈ ℕ.

The algorithm we present to show Theorem  8 solves CHORDAL MULTICOLORED 

INDEPENDENT SET, where given a chordal graph9 G = (V , E) and a vertex coloring 

c ∶ V → [k] , we are asked to decide whether G contains an independent set of size 

k that contains exactly one vertex of each color. This problem is known to be NP-

complete [13, Lemma 2] and solvable in O(3k
⋅ |V|2) time [10, Proposition 5.6]. Our 

algorithm for RESTLESS TEMPORAL PATH roughly follows these computation steps: 

9 A graph is chordal if it does not contain induced cycles of length four or larger.
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1. “Guess” which of and in which order the vertex appearances from the timed 

feedback vertex set appear in the �-restless temporal (s, z)-path.

2. Compute the path segments between two timed feedback vertex set vertices by 

solving a CHORDAL MULTICOLORED INDEPENDENT SET instance.

We give a precise description of our algorithm in Algorithm 6.1. Here, a partition 

O ⊎ I ⊎ U of a set of vertex appearances X is valid if we have v ≠ v
′ , for all distinct 

(v, t), (v�, t
�) ∈ I and for all distinct (v, t), (v�, t

�) ∈ O . A vertex appearance (v, t) ∈ I 

signals that a �-restless temporal (s, z)-path arrives in v at time t and (v, t) ∈ O sig-

nals that it departs from  v at time  t. Let M ∶= O ∪ I ∪ ({s, z} × {⊥}) . We call a 

linear ordering  (v0, t0) ≤M
⋯ ≤

M
(v

x+1, t
x+1) of M a �-ordering if (v0, t0) = (s,⊥) , 

(v
x+1, t

x+1) = (t,⊥) , ti ≤ tj if and only if i < j ∈ [x] , and for all v ∈ V  with (v, t
i
) ∈ I 

and (v, tj) ∈ O it holds that i + 1 = j and ti ≤ tj ≤ ti + � . Moreover, observe that for 

a vertex appearance (v, t) ∈ I , the �-restless temporal (s, z)-path has to depart from 

v not later than t + � and for vertex appearance (v, t) ∈ O , it has to arrive in v not 

earlier than t − � . To this end, we define the notion of a valid path between two con-

secutive vertex appearances:

Definition 6 Let O ⊎ I ⊎ U be a valid partition of X, and let 

(vi, ti), (vi+1, ti+1) ∈ I ∪ O ∪ ({s, z} × {⊥}) with v
i
≠ v

i+1
 , and P a �-restless temporal 

(v
i
, v

i+1)-path with departure time t
d
 and arrival time t

a
 . Then P is (t

i
, t

i+1, I, O)-valid 

if the following holds true 
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 (i) (v
i
, t

i
) ∈ I ⟹ t

i
≤ t

d
≤ t

i
+ �,

 (ii) (v
i
, t

i
) ∈ O ⟹ t

d
= t

i
,

 (iii) (v
i+1, t

i+1) ∈ I ⟹ t
a
= t

i+1 , and

 (iv) (v
i+1, t

i+1) ∈ O ⟹ t
a
≤ t

i+1 ≤ t
a
+ �.

If it is clear from context, then we write (t
i
, t

i+1)-valid.

Note that if there exists a (t
i
, t

i+1)-valid �-restless temporal (v
i
, v

i+1)-path P
i+1

 and 

(t
i+1, t

i+2)-valid �-restless temporal (v
i+1, v

i+2)-path P
i+2

 , then we can “glue” them 

together and get a (t
i
, t

i+2)-valid �-restless (v
i
, v

i+2)-walk (not necessarily a path). 

Thus if there exist a valid �-restless temporal path between all consecutive pairs in a 

�-ordering which are pairwise vertex disjoint (except for the endpoints), then there 

exist a �-restless temporal (s, z)-path.

The idea of Algorithm 6.1 is that a �-restless temporal (s, z)-path P induces a 

valid partition of the timed feedback vertex set X such that (v, t) ∈ I if P arrives v 

at time t, (v, t) ∈ O if P leaves v at time t, or otherwise (v, t) ∈ U . Furthermore, if 

we order M ∶= I ∪ O ∪ ({s, z} × {⊥}) according to the traversal of P (from s to z), 

then this is a �-ordering such that a subpath P′ of P corresponding to consecutive 

(v, t), (v�, t
�) ∈ M with v ≠ v

′ is (t, t
�
, I, O)-valid in some temporal graph T′ of Line 

(9), see Fig. 6.

The algorithm tries all possible partitions of X and all corresponding �-order-

ings. For each of these, we store the vertices V(P
i
) ∩ V(T) in the family P

i
 , for all 

valid �-restless temporal (v
i−1, v

i
)-path, where (v

i−1, t), (v
i
, t

�) are two consecutive 

vertex appearances in the �-ordering. Here, we assume without loss of general-

ity that no vertex appearance of s, z is in X. More specifically, for each two con-

secutive vertex appearances (v
i−1, t), (v

i
, t

�) in the �-ordering our algorithm iterates 

over all pairs of time edges leading from (v
i−1, t) into the “forest” and from the 

“forest” back to (v
i
, t

�) . Since this fixes the entry points into the forest in each 

iteration, any two (t
i
, t

i+1)-valid �-restless temporal (v
i
, v

i+1)-paths present in the 

iteration use the same vertices of the underlying graph. Hence it suffices to check 

whether one exists. Note that, if we have |P
i
| ≥ 0 for all i ∈ {1,… , x + 1} , then 

(a)

(b)

Fig. 6  Illustration of Algorithm 6.1, where (a) depicts the set ({s, z} × {⊥}) ∪ I ∪ O and (b) sketches the 

underlying graph of the temporal graph T  which is a forest. The back solid dots correspond to one or 

two vertex appearances. The �-restless temporal (s, z)-path is the red thick path which uses valid (Defini-

tion 6) �-restless temporal (s, v1) - and (v1, v2)-paths over T
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there is a �-restless (s,  z)-walk in G . Hence, to find a �-restless temporal (s, z)-

path, we have to find x + 1 pair-wise disjoint sets P
(1)

1
,… , P

(x+1)

x+1
 such that P

i
∈ P

i
 . 

Here, we observe that the intersection graph in Line (12) is chordal [35] and use 

an algorithm of Bentert et al. [10] for CHORDAL MULTICOLORED INDEPENDENT SET as 

a subroutine to find such pairwise-disjoint P
(1)

1
,… , P

(x+1)

x+1
.

Lemma 11 Algorithm 6.1 runs in O(6x
x!x2

⋅ max{|G|3, |V|4}) time, if x = |X| ≤ |V|.

Proof Let (G, s, z, X,�) be the input of Algorithm  6.1 and x ∶= |X| . There are 

at most  3
x many iterations of the loop in Line (1) and we can check in O(|G|) 

time whether a given partition O ⊎ I ⊎ U = X is valid. Since there are O(x!) 

are many �-orderings of I ⊎ O ⊎ ({s, z} × {⊥}) , the number of iterations of the 

loop in Line (4) is also bounded by O(x!). Furthermore, we can check in O(|G|) 

time whether a given permutation ((v
i
, t

i
))
|U⊎I|

i=1
 of U ⊎ I is a �-ordering where 

s = v0, z = v|U⊎I|+1, t0 = t|U⊎I|+1 = ⊥ . Note that during one iteration of the loop in 

Line (4) we consider an time edge of G at most two times as e
1
 and two times as e

2
 in 

Line (8). Hence, we have O(|G|2) many iteration of the loop in Line (8), during one 

iteration of the loop in Line (4). Observe that Lemma 1 implies that we can compute 

a �-restless temporal (s, z)-paths in linear time if the underlying graph is a forest. 

Moreover, each �-restless temporal (v
i−1, v

i
)-path in T′ departs at time t and arrives 

at t′ as e
1
 and e

2
 are in any temporal path from v

i−1
 and v

i
 . Hence, Line (11) can 

be computed in O(|G|) time. Thus, we can compute Lines (5)–(11) in O(|G|3) time. 

Observe that each set in P
i
 is either an empty set or contains the vertices of a path in 

the forest G↓(T) , for all i ∈ [x] . Hence, the intersection graph G has at most |V|2 ⋅ x 

vertices and is chordal. Thus, Line (14) can be computed in O(3x|V|4 ⋅ x
2) time with 

an algorithm of Bentert et at.  [10, Proposition 5.6]. This gives an overall running 

time of O(6x
x! ⋅ max{|G|3, |V|4x

2}).  ◻

Lemma 12 Algorithm 6.1 is correct.

Proof Let G = (V , (E
i
)
i∈[�]) be a temporal graph with s, z ∈ V  and let X be a timed 

feedback vertex set of G . We assume without loss of generality that s and z have no 

vertex appearance in X, that is, s, z ∉ {v ∣ (v, t) ∈ X} . If this is not the case, then we 

can add a new vertex ŝ to G and for each edge {s, v} ∈ E
i
 , we add {ŝ, s} to E

i
 . It is 

clear that there exists a �-restless temporal (s, z)-path P if and only if there exists a �

-restless temporal (ŝ, z)-path P̂ . The set X remains a time feedback vertex set because 

ŝ has degree one in the underlying graph G↓ . Hence, we can now ask for a �-restless 

temporal (ŝ, z)-path in G . The same holds for the vertex z by a symmetric argument.

We show now that Algorithm 6.1 outputs yes if and only if there is a �-restless 

temporal (s, z)-path in G.

(⇒) : We claim that if we find a multicolored independent set in (G, c), then there 

is a �-restless temporal (s, z)-path in G = (V , (E
i
)
i∈[�]) . Let D = {P

(1)

1
,… , P

(x+1)

x+1
} be 

such an multicolored independent set, let (v0, t0) ≤ ⋯ ≤ (v
x+1, t

x+1) be the respective 
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�-ordering when the set D was found, and let I ⊎ O ⊎ X be the valid partition of X. 

Hence, P
i
 represents a (t

i−1, t
i
, I, O)-valid �-restless temporal (v

i−1, v
i
)-path. Due to D 

being an independent set, it holds that P
(i)

i
∩ P

(j)

j
= � for all i ≠ j ∈ [x + 1] . For all 

i ∈ [x + 1] it further holds that if (v
i
, t

i
) ∈ I , then P

i−1
 arrives in v

i
 at time t

i
 and P

i
 

departs from v
i
 not later than t with t

i
≤ t ≤ t

i
+ � . If (v

i
, t

i
) ∈ O , then P

i−1
 arrives in 

v
i
 at time t with t ≤ t

i
≤ t + � and P

i
 departs from v

i
 at time t

i
 . Hence, P

i−1
⋅ P

i
 is a �

-restless temporal (v
i−1, v

i+1)-path in G . Consequently, P
1
⋯P

x+1
 is a �-restless tem-

poral (s, z)-path in G.

(⇐) : Assume G contains a �-restless temporal (s, z)-path P, then let I ⊎ O ⊎ U = X 

be the partition of X that is induced by P. That is, for all (v, t) ∈ I there exists a time 

edge (w, v, t) in P, for all (v, t) ∈ O there exists a time edge (v, w, t) in P, and for all 

(v, t) ∈ U there exist no time edge (v, w, t) or (w, v, t) in P. The partition I ⊎ O ⊎ U 

is a valid partition. Otherwise there exist two distinct vertex appearances 

(v, t), (v, t
�) ∈ O such that there exist two time edges (w, v, t), (u, v, t

�) in P indicating 

that P visits the vertex v twice. The same argument works for two vertex appear-

ances of the same vertex in I. Let (v1, t1) ≤ ⋯ ≤ (v
x
, t

x
) be the vertex appearances in 

the order in which they are visited by P. It holds that t
1
≤ … ≤ t

x
 and for i < j ∈ [x] 

if vi = vj , then there cannot exist a vertex appearance between v
i
 and vj (otherwise P 

would visit v
i
 twice). Thus j = i + 1 , (v

i
, t

i
) ∈ I , (vj, tj) ∈ O , and ti ≤ tj ≤ ti + � . It 

follows that (s,⊥) = (v0, t0) ≤ (v1, t1) ≤ ⋯ ≤ (v
x
, t

x
) ≤ (v

x+1, t
x+1) = (z,⊥) is a �

-ordering of I ⊎ O ⊎ ({s, z} × {⊥}) . Let P
i
 be the subpath of P starting in vertex v

i−1
 

and ending in v
i
 for i ∈ [x + 1] . If v

i−1
= v

i
 , then it holds that P

i
 is empty and 

P
i
= {�} (Line (7)). Otherwise, let Pi = (e

(1)

i
= (vi−1, v

(1)

i
, t
(1)

i
),… , e

(pi)

i
= (v

(pi)

i
, vi, t

(pi)

i
)) . Note 

that if (v
i−1, t

i−1) ∈ O , then t
(1)

i
= t

i−1
 ; if (v

i−1, t
i−1) ∈ I , then t

i−1
≤ t

(1)

i
≤ t

i−1
+ � ; if 

(v
i
, t

i
) ∈ I , then t

(pi)

i
= ti ; and if (v

i
, t

i
) ∈ O , then t

(pi)

i
≤ ti ≤ t

(pi)

i
+ � . Thus path P

i
 is a 

(t
i−1, t

i
, I, O)-valid path in T + {e

(1)

i
, e

(pi)

i
} , and hence V(P

i
) ⧵ {v

i−1, v
i
} ∈ P

i
 (Line (11)). 

Let Qi = V(Pi) ⧵ {vi−1, vi} . It holds that for i ≠ j ∈ [x + 1] the paths P
i
 and Pj can 

intersect only in their endpoints because P does not visit a vertex twice and 

thus Qi ∩ Qj = � . For each P
i
 there exists a vertex P

(i)

i
 in the intersection graph G 

representing with c(P
(i)

i
) = i . For i, j ∈ [x + 1] , there exist no edge {P

(i)

i
, P

(j)

j
} in G 

because Qi ∩ Qj = � . Hence, G has a multicolored independent set D = {P
(1)

1
,… , P

(x+1)

x+1
} 

of size x + 1 and Algorithm 6.1 outputs yes.  ◻

To conclude from Theorem 8 the fixed-parameter tractability of RESTLESS TEM-

PORAL PATH parameterized the timed feedback vertex number, we need to compute a 

timed feedback vertex set efficiently. This is clearly NP-hard, since it generalizes the 

NP-complete FEEDBACK VERTEX SET problem [43]. However, we establish the follow-

ing possibilities to compute a FEEDBACK VERTEX SET.

Theorem 9 A minimum timed feedback vertex set of temporal graph G can be com-

puted in 4x
⋅ |G|O(1) time, where x is the timed feedback vertex number of G . Further-

more, there is a polynomial-time 8-approximation for timed feedback vertex set.
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To prove Proposition 9, we first show that a timed feedback vertex set of a tempo-

ral graph can be computed via the following problem. 

Then the 8-approximation for timed feedback vertex set follows from the 

8-approximation of Even et al. [27] for WEIGHTED SUBSET FEEDBACK SET.10 Now we 

see two ways in the literature to deduce a FPT-algorithm for timed feedback ver-

tex set. One is via a reduction from SFVS-UV to the more general problem GROUP 

SUBSET FEEDBACK VERTEX SET. The other is through Cygan et al. [22] who claim that 

SFVS-UV is equivalent (under parameterized reductions for k) to SUBSET FEEDBACK 

VERTEX SET. The latter is SFVS-UV where V∞ = � . While the arguments of Cygan 

et al. [22] only work if V∞ ∩ T = � , we here provide the missing arguments to show 

that the statement itself is true and hence fill a gap in the literature.

We start with the reduction to SFVS-UV.

Lemma 13 Given a temporal graph G and an integer x ∈ ℕ, we can construct in 

O(|G| + |V|�2) time an instance I = (G, V
∞

, T , x) of SFVS-UV such that I is a yes-

instance if and only if G has a timed feedback vertex set of size at most x.

Construction 1 Given a temporal graph G = (V , (E
i
)
i∈[�]) with underlying graph 

G↓ = (V , E) , we construct the instance I = (G = (V �
, E

�), V
∞

, T , x) of SUBSET FEED-

BACK VERTEX SET WITH UNDELETABLE VERTICES, where V
�
∶=

⋃

v∈V
V

v
∪
⋃

e∈E
∪V

e
 

and E� ∶=
⋃

v∈V
E

v
∪
⋃

e∈E
E

e
∪
⋃

t∈[�]

⋃

e∈E
t

E(e,t) . Here,

Finally we set V∞
∶=

⋃

e∈E
∪V

e
 . Consider Fig. 7 for an example.  ⧫

∀v ∈ V ∶ Vv ∶= {vi ∣ i ∈ [�], v ∈ e, e ∈ Ei},

∀e = {u, w} ∈ E ∶ Ve ∶= {e(u), e(T), e(w)},

T ∶= {e(T) ∣ e = {u, w} ∈ E},

∀v ∈ V ∶ Ev ∶= {{vi, vj} ∣ vi, vj ∈ Vv, vi ≠ vj},

∀e = {u, w} ∈ E ∶ Ee ∶= {{e(u), e(T)}, {e(T), e(w)}}, and

∀t ∈ [�],∀e = {u, w} ∈ Et ∶ E(e,t) ∶= {{e(u), ut}, {wt, e(w)} ∣ ut ∈ Vu, wt ∈ Vw}.

10 There is a straightforward reduction from SFVS-UV to WEIGHTED SUBSET FEEDBACK SET using infinite 

weights.
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Proof of Lemma  13 Let G = (V , E1,… , E
�
) be a temporal graph, x ∈ ℕ , and 

I = (G, V
∞

, T , x) be the resulting instance from Construction 1. It is easy to check 

that Construction 1 can be computed in O(|G| + |V|�2) time.

We now claim that there is a timed feedback vertex set X of size at most x in G 

if and only if there is a subset feedback vertex X of size at most x in G such that 

X ∩ V
∞ = �.

(⇒) : Let X be a timed feed back vertex for G . Then, set Y ∶= {v
t
∈ V

v
∣ (v, t) ∈ X} . 

Hence, |Y| ≤ x and Y ∩ V
∞ = � . We claim that Y is a subset feedback vertex set for 

I. Assume towards a contradiction that there is a simple cycle C in G − Y  which 

contains a vertex of T. Furthermore, we assume without loss of generality that there 

is no shorter cycle in G − Y  which contains a vertex of T. Observe that this implies 

that C does not visit three distinct vertices v
a
, v

b
, v

c
∈ V

v
 , for any v ∈ V  , because 

otherwise there is a shorter cycle using one of the edges {v
a
, v

b
} , {v

a
, v

c
} or {v

c
, v

b
} 

in E
v
 . Moreover if C visits two distinct vertices v

a
, v

b
∈ V

v
 , then {v

a
, v

b
} ∈ E

v
 is part 

of C, for all v ∈ V  , because otherwise there is a shorter cycle using the edge {v
a
, v

b
} . 

Furthermore, for all edge e ∈ E we have that V
e
⊆ V(C) or V

e
∩ V(C) = � , because 

G[V
e
] induces a P

3
 and hence using only an endpoint of that P

3
 would imply that 

C visits two vertices v
a
, v

b
∈ V

v
 without the edge {v

a
, v

b
} , for some v ∈ V  . Since T 

only contains the middle vertex e(T) ∈ E
e
 of the P

3
 induced by G[V

e
] , we can observe 

that C is a subdivision of a cycle in G↓(G − X) which contradicts that X is a timed 

feedback vertex set for G.

(⇐) : Let Y ⊆ (V � ⧵ V
∞) be of size at most x such that no simple cycle in G�

− X 

which contains a vertex in T. We set X ∶= {(v, t) ∣ v
t
∈
⋃

u∈V
V

u
∩ Y} . Hence, X is 

of size at most x. We claim that X is a timed feedback vertex set for G . Assume 

towards a contradiction that this is not the case and there is a cycle C in G↓(G − X) . 

We now build a cycle in G − Y  containing a vertex from T. Note that for each edge 

e used in C none of the vertices in V
e
 are in Y, otherwise V∞ ∩ Y ≠ � . Hence, set 

V
C
∶=

⋃

e∈E(C)
E

e
 , where E(C) is the edge set of C. Since any two incident edges 

Fig. 7  An illustration of Construction 1 for a temporal graph G (left) to graph G (right). The set V
u
 in G 

of a vertex u in G is depicted by a large circle. The vertices in V
e
 of an edge e in the underlying graph of G 

are filled. The vertices in T are squared (red)
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e1, e2 ∈ E(C) are in the underlying graph of G − X , we know that there are t1, t2 ∈ [�] 

such that (e1, t1) and (e2, t2) are time edges of G − X . Hence, for two incident edges 

e1, e2 ∈ E(C) with {v} = e
1
∩ e

2
 we pick t1, t2 ∈ [�] such that (e1, t1) and (e2, t2) are 

time edges of G − X add v
t1

, v
t2
∈ V

v
 to V

C
 . Observe that G[V

C
] contains a cycle and 

that V
C
∩ T ≠ � . Since we constructed V

C
 from a cycle in the underlying graph of 

G − X we have V
C
∩ Y = � . This is a contradiction.  ◻

Now we can use the polynomial-time 8-approximation of Even et  al. [27] for 

WEIGHTED SUBSET FEEDBACK VERTEX SET and Lemma 13 to conclude the following.11

Corollary 4 There is a polynomial-time 8-approximation for timed feedback vertex 

set.

In the remainder of this section we prove the following.

Lemma 14 Given an instance I = (G, V∞
, T , k) of SUBSET FEEDBACK VERTEX SET 

WITH UNDELETABLE VERTICES we can construct in O(k2(|V| + |E|)) time an instance 

I� = (G, T �
, k�) of SUBSET FEEDBACK VERTEX SET with k

′ ≤ k such that I is a yes-

instance if and only if I′ is a yes-instance.

Note that the running time of the algorithm behind Lemma 14 depends only 

linearly on the size of the graph. The proof of Lemma 14 is deferred to the end 

of this section. First, we introduce two data reductions rules and then perform the 

reduction behind Lemma 14 in two steps. We use these data reduction rules to get 

an equivalent instance where G[T ∩ V
∞] is an independent set. We start by detect-

ing some no-instances.

Reduction Rule 2 Let I = (G, V∞
, T , k) be an instance of SUBSET FEEDBACK VER-

TEX SET WITH UNDELETABLE VERTICES such that there is a vertex u and a simple 

cycle C intersecting T where V(C) ⧵ (T ∩ V
∞) ⊆ {u} ⊆ V

∞ . Then output a trivial 

no-instance.

We now show that we can detect in linear-time whether Reduction Rule 2 is 

applicable and that it is safe. The latter means that the application of Reduc-

tion Rule 2 does not turn a yes-instance into a no-instance or vice versa.

Lemma 15 Reduction Rule 2 is safe and can be applied in linear time.

Proof Since C is a witness that I is a no-instance, Reduction Rule 2 is safe. We check 

whether there is cycle C such that V(C) ⧵ (T ∩ V
∞) = � by simply checking whether 

G[T ∩ V
∞] is a forest. Assume that G[T ∩ V

∞] is a forest, otherwise we are done 

and output a trivial no-instance. First, we partition V(G[T ∩ V∞]) = Q
1
⊎⋯ ⊎ Qc 

11 Here, vertices get weight ∞ if there are undeletable, and one otherwise.
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such that Qi is a maximal connected component of G[T ∩ V
∞] . Clearly, this can be 

done in linear time. For each connected component Qi of G[T ∩ V
∞] we first unmark 

all vertices in V ⧵ (T ∩ V
∞) . Then we iterate over all vertices v ∈ Qi and mark all 

vertices in N
G
(v) ∩ (V∞ ⧵ T) . If we find a vertex w ∈ Qi such that there is a ver-

tex u ∈ N
G
(w) ∩ (V∞ ⧵ T) which is already marked, then the path from v to w in Qi 

together with u is a cycle C where V(C) ⧵ (T ∩ V
∞) ⊆ {u} ⊆ V

∞ . Hence, we output 

a trivial no-instance in this case. Moreover, if there is some simple cycle C where 

V(C) ⧵ (T ∩ V
∞) ⊆ {u} ⊆ V

∞ , then all vertices V(C) ⧵ {u} belong to the same con-

nected component of G[T ∩ V
∞] . Thus, the above described procedure will find C. 

A simple application of the Handshaking Lemma shows that this procedure ends 

after linear time.  ◻

The purpose of the next data reduction rule is to merge undeletable terminal 

vertices which do share an edge.

Reduction Rule 3 Let I = (G, V∞
, T , k) be an instance of SUB-

SET FEEDBACK VERTEX SET WITH UNDELETABLE VERTICES such that there is 

{v, w} ∈ E with {v, w} ⊆ T ∩ V
∞ and N

G
(v) ∩ N

G
(w) ∩ V

∞ = � . Then set 

Ĝ = (V(G − w), E(G − w) ∪ {{v, u} ∣ {w, u} ∈ E}) and G� ∶= Ĝ − (N
G
(v) ∩ N

G
(w)) . 

Output I� = (G�
, V∞ ∩ V(G�), T ∩ V(G�), k − |N

G
(v) ∩ N

G
(w)|).

Note that for each edge in G[T ∩ V
∞] , either Reduction  Rule  2 or Reduc-

tion Rule 3 is applicable. While it is easy to apply Reduction Rule 3 exhaustively 

in polynomial time, more effort is required to do the same in linear time. To this 

end, we will construct in linear time an equivalent instance such that Reduc-

tion Rules 2 and 3 are not applicable.

Lemma 16 Given an instance I of SUBSET FEEDBACK VERTEX SET WITH UNDELETABLE 

VERTICES, we can compute an equivalent instance I′ of SUBSET FEEDBACK VERTEX SET 

WITH UNDELETABLE VERTICES in linear time such that Reduction Rules 2 and 3 are not 

applicable to I′.

Proof We first check in linear time by Lemma  15 whether Reduction  Rule  2 is 

applicable. Assume that Reduction Rule 2 is not applicable, otherwise we are done. 

Hence, G[T ∩ V
∞] is a forest.

We now aim to apply Reduction Rule 3 for all edges in G[T ∩ V
∞] at once. First, 

we partition V(G[T ∩ V∞]) = Q
1
⊎⋯ ⊎ Qc such that Qi is a maximal connected 

component of G[T ∩ V
∞] . Then we replace Qi with a fresh vertex qi . To this end, we 

construct the graph G� ∶= (V �
, E

�) where

Note that G
′ and hence V �∞ = (V∞ ∩ V �) ∪ {qi ∣ i ∈ [c]} and 

T � = (T ∩ V �) ∪ {qi ∣ i ∈ [c]} can be computed in linear time. To compute the 

V � ∶=(V ⧵ (T ∩ V∞)) ∪ {qi ∣ i ∈ [c]} and

E� ∶={{a, b} ∈ E ∣ {a, b} ⊆ V �} ∪ {{qi, w} ∣ w ∈ V � and ∃v ∈ Qi ∶ {v, w} ∈ E}.



2796 Algorithmica (2021) 83:2754–2802

1 3

remaining budget  k
′ , we set K = � . Then, for each connected component Qi of 

G[T ∩ V
∞] , we first unmark all vertices. Second, we iterate over all vertices v ∈ Qi 

and mark all vertices in N
G
(v) ⧵ (T ∩ V

∞) . If we find a vertex w ∈ Qi such that a 

vertex u ∈ N
G
(w) ⧵ (T ∩ V

∞) which is already marked, then we add u to K, because 

G[Qi ∪ {u}] contains a cycle intersecting T where u is the only deletable vertex. 

Recall that u ∉ V
∞ , since Reduction Rule 2 was not applicable. A simple applica-

tion of the Handshaking Lemma show that this procedure ends after linear time. If 

k < |K| , then we return a trivial no-instance, because for each vertex v ∈ K there is 

a simple cycle intersecting T where v is the unique vertex not in V∞
∩ T  . Otherwise, 

we output I� = (G� − K, V �∞
, T � ⧵ K, k� = k − |K|) . It is easy to verify that Reduc-

tion Rule 3 is not applicable in I′ . We now claim that I is a yes-instance if and only if 

I
′ is a yes-instance.

(⇒) : Assume that X is a solution for I. Note that for each vertex v ∈ K , there is 

a simple cycle intersecting T where v is the unique vertex not in V∞
∩ T  . Hence, 

K ⊆ X . Set X
�
∶= X ⧵ K and observe that X

� ⊆ V(G�) . The set X
′ is a solution for 

I
′ , because it is of size at most k′ and for each cycle in G�

− K which intersects to 

T
′ ⧵ K , we can construct a cycle in G which intersects to T by replacing a vertex 

qj ∈ {qi ∣ i ∈ [c]} with a path in G[Qj].

(⇐) : Assume that X′ is a solution for I′ . We set X ∶= X
�
∪ K and note that X is of 

size at most k. We may assume towards a contradiction that X is not a solution for 

I. Hence there is a simple cycle C in G − X which contains a vertex of T. We now 

construct a closed walk of C′ in G�
− T  from C by replacing a subpath on vertices in 

Qi with qi , for all i ∈ [c] . Since we only replaced vertices from T ∩ V
∞ of I with ver-

tices in T �
∩ V

�∞ , the closed walk C′ contains a simple cycle in G�
− X

� containing a 

vertex from T ′ —a contradiction.  ◻

We now show an algorithm to dispose all vertices undeletable vertices in T 

such that the running time dependence only linearly on the size of the graph.

Lemma 17 Let I = (G, V∞
, T , k) be an instance of SUBSET FEEDBACK VERTEX SET 

WITH UNDELETABLE VERTICES. We can construct in O(k(|V| + |E|)) time an instance 

I� = (G�
, V �∞

, T �
, k�) of SUBSET FEEDBACK VERTEX SET WITH UNDELETABLE VERTICES such 

that 

1. k
′ ≤ k,

2. V
�∞ ⧵ T

� = �,

3. I is a yes-instance if and only if I′ is a yes-instance.

Proof Let I = (G, V∞
, T , k) be an instance of SUBSET FEEDBACK VERTEX SET WITH 

UNDELETABLE VERTICES. Since we aim for a running time of O(k(|V| + |E|)) , we can 

assume that Reduction Rules 2 and 3 are not applicable on I, see Lemma 16.
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The goal now is to duplicate each vertex in V∞ ⧵ T  k + 1 times, such that we can-

not delete all of them even if there are not in V∞ . Note that we might create many 

copies of an edge doing this naïvely. To avoid this, we observe that it suffices to 

replace each maximal connected component in G[V∞ ⧵ T] with k + 1 vertices. We 

partition V(G[V∞ ⧵ T]) = Q
1
⊎⋯ ⊎ Qc such that Qi is a maximal connected compo-

nent of G[V∞ ⧵ T] and we construct G� ∶= (V �
, E

�) , where

Since |{q
j

i
∣ i ∈ [c], j ∈ [k + 1]}| ≤ |V|(k + 1) and we copy each edge at most k + 1 

times, G′ is constructed after O(k(|V| + |E|)) time.

We now claim that I is a yes-instance if and only if 

I� ∶= (G�
, T � ∶= V∞ ∩ V(G�), T , k) is a yes-instance of SUBSET FEEDBACK VERTEX SET 

WITH UNDELETABLE VERTICES.

(⇒) : Let X be a solution for I. Then X is also a solution for I′ , because X ∩ V
∞ = � 

and for each cycle C′ in G′ containing a vertex from T, we can construct a closed 

walk in G by replacing a vertex q
j

i
 by a path in G[Qi] . This closed walk induces a 

simple cycle C in G containing a vertex in T. Hence, C′ also contains a vertex from 

X.

(⇐) : Let X be a solution for I
′ . We assume without loss of generality that 

X ∩ {q
j

i
∣ i ∈ [c], j ∈ [k + 1]} = � . Suppose towards a contradiction that X is not a 

solution for I. Let C be an cycle in G satisfying V(C) ∩ X = � ≠ V(C) ∩ T .

We construct a closed walk C′ in G′ from C by replacing each maximal consecu-

tive subpath in C containing only vertices from Qi with q1

i
 , for all i ∈ [c] . Note that C 

contains a simple cycle which intersects T ′ but not X—a contradiction.  ◻

Now we are finally ready to prove Lemma 14.

Proof of Lemma  14 First, we apply Lemma  17 on I and hence assume that 

V
∞ ⧵ T = � . Furthermore, by Lemma 16 we assume that Reduction Rules 3 and 2 

are not applicable. Thus, G[V∞ ∩ T] is an independent set. We now create k + 1 cop-

ies of each vertex in V∞
∩ T  such that we cannot remove all of them, even if there 

are deletable. However, we have to be careful what kind of new cycles this creates. 

We do the following. Let V∞ ∩ T = {v1, v2,… , vp} and take a fresh set of vertices 

Qi ∶= {q
j

i
∣ j ∈ [k + 1]} for each i ∈ [p] . We construct G� ∶= (V �

, E
�) , where

V � ∶= (V ⧵ (V∞ ⧵ T)) ∪ {q
j

i
∣ i ∈ [c], j ∈ [k + 1]} and

E� ∶= E(G[V ⧵ (V∞ ⧵ T)]) ∪ {{q
j

i
, w} ∣ ∃v ∈ Qi ∶ {v, w} ∈ E}.
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Output I� = (G�
, T �

, k) , where T
� ∶= (T ⧵ V

∞) ∪ {w
i
∣ {v

i
, w} ∈ E} . Since 

|{q
j

i
∣ i ∈ [c], j ∈ [k + 1]}| ≤ |V|(k + 1) and we create for each edge at most k + 2 

new edges, G′ is constructed after O(k(|V| + |E|)) time. Together with the preproc-

essing of Lemma 17 this gives an overall running time of O(k2(|V| + |E|)).

We now claim that I is a yes-instance if and only if I′ is a yes-instance of SUBSET 

FEEDBACK VERTEX SET.

(⇒) : Let X be a solution for I. Observe that X ⊆ V
′ , because V ⧵ V

� ⊆ V
∞ . 

Assume towards a contradiction that there is a cycle C′ in G′ such that V(C�) ∩ X = � . 

Assume without loss of generality that C′ is a shortest of the set of cycles satisfy-

ing V(C�) ∩ X = � . Hence, for each i ∈ [p] we have that |V(C�) ∩ Qi| ≤ 1 , and since 

G[V∞ ∩ T] is an independent set, a vertex q
j

i
∈ V(C�) ∩ Qi has two neighbors w′

i
, u

′

i
 , 

where w, u ∈ V  . Thus, we can construct a cycle C in G by replacing each subpath 

w′

i
, q

j

i
, u′

i
 with the vertex v

i
∈ T ∩ V

∞ , where q
j

i
∈ V(C�) ∩ Qi and i ∈ [p], j ∈ [k + 1] . 

This contradicts X being a solution for I.

(⇐) : Let X′ be a solution for I′ . For all i ∈ [p] , we assume without loss of general-

ity that 

X� ∩ Qi = �:  This can be assumed, because |Qi| > k ≥ |X′| and all 

vertices in Qi have the same neighborhood.

X
� ∩ {w

i
∣ {v

i
, w} ∈ E} = �:  This can be assumed, because these vertices are of 

degree two and thus a vertex w
i
 can be replaced by its 

origin w.

X
� ∩ {w

�
i
∣ {v

i
, w} ∈ E} = �:  Such a vertex w′

i
 can be replaced by its origin w as 

well, because for each cycle C′ in G′ passing through 

T
′ which does not include w, we know that v′

i
q

j

i
w′

i
q

j′

i
u′

i
 

is a subpath of C′ for some v, u ∈ V  , q
j

i
, q

j�

i
∈ Qi , and 

j, j� ∈ [k + 1] . Hence C� − {q
j

i
, wi} is also a cycle 

in G′ that contains a vertex from T ′ . Thus, there is 

V(C�) ∩ (X ⧵ {w
�
i
}) ≠ �.

 Hence X� ⊆ V ⧵ V
∞ . Now assume towards a contradiction that there is a cycle C in 

G which does not contain a vertex in X′ . Hence there v
i
∈ V(C) ∩ (T ∩ V

∞) , other-

wise C is also a cycle in G′ . We construct a cycle C′ in G′ from C by replacing each 

subpath u, v
i
, w in C with u, u

i
, u

′

i
, v

i
, w

′

i
, w

i
, w , for all v

i
∈ V(C) ∩ (T ∩ V

∞) . This 

contradicts X′ being a solution because u
i
∈ T

�.  ◻

V � ∶=(V ⧵ (V∞ ∩ T)) ∪

p
⋃

i=1

Qi ∪ {w�
i
, wi ∣ {vi, w} ∈ E}, and

E� ∶={{v, w} ∈ E ∣ v, w ∈ V �}∪

{{wi, w}, {wi, w�
i
}, {w�

i
, q

j

i
} ∣ {vi, w} ∈ E, i ∈ [p]}, j ∈ [k + 1]}.
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By using Lemmas 13 and 14 we now can compute a minimum timed feedback 

vertex set by any known SUBSET FEEDBACK VERTEX SET algorithms. Thus, Lem-

mas 13 and 14 and Corollary 4 together with the algorithm of Iwata et al. [42] imply 

Proposition 9.

7  Conclusion

We have analyzed the (parameterized) computational complexity of RESTLESS TEM-

PORAL PATH, a canonical variant of the problem of finding temporal paths, where 

the waiting time at every vertex is restricted. Unlike its non-restless counterpart or 

the “walk-version”, this problem turns out to be computationally hard, even in quite 

restricted cases. On the positive side, we give an efficient algorithm to find short 

restless temporal paths and we could identify structural parameters of the underlying 

graph and of the temporal graph itself that allow for fixed-parameter algorithms.
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