
Vol:.(1234567890)

Algorithmica (2021) 83:2754–2802

https://doi.org/10.1007/s00453-021-00831-w

1 3

Finding Temporal Paths Under Waiting Time Constraints

Arnaud Casteigts1 · Anne‑Sophie Himmel2 · Hendrik Molter2 ·

Philipp Zschoche2

Received: 23 October 2020 / Accepted: 30 April 2021

© The Author(s) 2021

Abstract

Computing a (short) path between two vertices is one of the most fundamental prim-

itives in graph algorithmics. In recent years, the study of paths in temporal graphs,

that is, graphs where the vertex set is fixed but the edge set changes over time,

gained more and more attention. A path is time-respecting, or temporal, if it uses

edges with non-decreasing time stamps. We investigate a basic constraint for tem-

poral paths, where the time spent at each vertex must not exceed a given duration � ,

referred to as �-restless temporal paths. This constraint arises naturally in the mod-

eling of real-world processes like packet routing in communication networks and

infection transmission routes of diseases where recovery confers lasting resistance.

While finding temporal paths without waiting time restrictions is known to be doa-

ble in polynomial time, we show that the “restless variant” of this problem becomes

computationally hard even in very restrictive settings. For example, it is W[1]-hard

when parameterized by the distance to disjoint path of the underlying graph, which

implies W[1]-hardness for many other parameters like feedback vertex number

and pathwidth. A natural question is thus whether the problem becomes tractable

in some natural settings. We explore several natural parameterizations, presenting

FPT algorithms for three kinds of parameters: (1) output-related parameters (here,

the maximum length of the path), (2) classical parameters applied to the underlying

graph (e.g., feedback edge number), and (3) a new parameter called timed feedback

vertex number, which captures finer-grained temporal features of the input temporal

graph, and which may be of interest beyond this work.

Keywords Temporal graphs · Disease spreading · Waiting-time policies · Restless

temporal paths · Timed feedback vertex set · NP-hard problems · Parameterized

algorithms

Arnaud Casteigts was supported by the ANR, Project ESTATE (ANR-16-CE25-0009-03). Anne-

Sophie Himmel was supported by the DFG, Project FPTinP (NI 369/16). Hendrik Molter was

supported by the DFG, Project MATE (NI 369/17).

 * Philipp Zschoche

 zschoche@tu-berlin.de

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9846-0600
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00831-w&domain=pdf

2755

1 3

Algorithmica (2021) 83:2754–2802

1 Introduction

A highly successful strategy to control (or eliminate) outbreaks of infectious dis-

eases is contact tracing [25]—whenever an individual is diagnosed positively, every

person who is possibly infected by this individual is put into quarantine. However,

the viral spread can be too fast to be traced manually, e.g., if the disease is trans-

mittable in a pre-symptomatic (or asymptomatic) stage, then it seems likely that

an individual already caused infection chains when diagnosed positively. Hence,

large-scale digital systems are recommended which use physical proximity networks

based on location and contact data [29]—this allows fast and precise contact trac-

ing while avoiding the harmful effect of mass quarantines to society [29]. Physical

proximity networks can be understood as temporal graphs1 [18, 37, 39, 46, 51], that

is, graphs where the vertex set (individuals) remains static but the edge set (physical

contacts) may change over time. In this paper, we extend the literature on reachabil-

ity in temporal graphs [5, 7, 11, 14, 17, 44, 50, 61] by a computational complexity

analysis of an important variation of one of the most fundamental combinational

problems arising in the above mentioned scenario: given a temporal graph and two

individuals s and z, is a chain of infection from s to z possible, that is, is there a tem-

poral path from s to z? In particular, we use a reachability concept that captures the

standard 3-state SIR-model (Susceptible-Infected-Recovered), a canonical spreading

model for diseases where recovery confers lasting resistance [8, 45, 54].

In temporal graphs, the basic concepts of paths and reachability are defined in a

time-respecting way [44]: a (strict) temporal path, also called “journey”, is a path

that uses edges with non-decreasing (increasing) time steps. To represent infection

chains in the SIR-model, we restrict the time of “waiting” or “pausing” at each inter-

mediate vertex to a prescribed duration. We call these paths restless temporal paths.

They model infection transmission routes of diseases that grant immunity upon

recovery [38]: An infected individual can transmit the disease until it is recovered

(reflected by bounded waiting time) and it cannot be infected a second time after-

wards since then it is immune (reflected by considering path instead of walk: every

vertex can only be visited at most once). Another natural example of restless tempo-

ral paths is delay-tolerant networking among mobile entities, where the routing of a

packet is performed over time and space by storing the packet for a limited time at

intermediate nodes.

In the following we give an example to informally describe our problem setting.2

In Fig. 1 we are given the depicted temporal graph, vertices s and z, and the time

bound � = 2 . We are asked to decide whether there is a restless temporal path from

s to z, that is, a path which visits each vertex at most once and pauses at most � units

of time between consecutive hops. Here, (s, d, b, z) is a feasible solution, but (s, b, z)

is not because the waiting time at b exceeds � . The walk (s, b, c, d, b, z) is not a valid

solution because it visits vertex b twice. Finally (s, a, c, d, b, z) is also a feasible

solution.

1 Also known as time-varying graphs, evolving graphs, or link streams.
2 We refer to Sect. 2 for a formal definition.

2756 Algorithmica (2021) 83:2754–2802

1 3

1.1 Related Work

Several types of waiting time constraints have been considered in the temporal

graph literature. An empirical study by Pan and Saramäki [56] based on phone

calls datasets observed a threshold in the correlation between the duration of

pauses between calls and the ratio of the network reached over a spreading process.

Casteigts et al. [19] showed a dramatic impact of waiting time constraints to the

expressivity of a temporal graph, when considering such a graph as an automaton

and temporal paths as words. In the context of temporal flows, Akrida et al. [4]

considered a concept of “vertex buffers”, which however pertains to the quantity of

information that a vertex can store, rather than a duration. Enright et al. [26] consid-

ered deletion problems for reducing temporal connectivity. More closely related to

our work, Himmel et al. [11] studied a variant of restless temporal paths where sev-

eral visits to the same vertex are allowed, i.e., restless temporal walks. They showed,

among other things, that such walks can be computed in polynomial time.

Many path-related problems have been studied in the temporal setting and the

nature of temporal paths significantly increases the computational complexity of

many of them (compared to their static counterparts). In the temporal setting, reach-

ability is not an equivalence relation among vertices, which makes many problems

more complicated. For example, finding a maximum temporally connected com-

ponent is NP-hard [14]. We further have that in a temporal graph, spanning trees

may not exist. In fact, even the existence of sparse spanners (i.e., subgraphs with

o(n2)-many edges ensuring temporal connectivity) is not guaranteed [7], unless the

underlying graph is complete [20], and computing a minimum-cardinality spanner is

APX-hard [3, 50]. Yet another example is the problem of deciding whether there are

k disjoint temporal paths between two given vertices. In a seminal article, Kempe

et al. [44] showed that this problem, whose classical analogue is (again) polynomial-

time solvable, becomes NP-hard. They further investigated the related problem of

finding temporal separators, which is also NP-hard [30, 44, 62]. Deciding whether

there exists a separator of a given size that cuts all restless temporal paths is known

to be ΣP

2
-complete [52], that is, the problem is located in the second level of the

polynomial time hierarchy.

Fig. 1 Example of a temporal

graph whose edges are labeled

with time stamps. Bold edges

depict a 2-restless temporal

(s, z)-path. (In general, multiple

time stamps per edge are pos-

sible)

2757

1 3

Algorithmica (2021) 83:2754–2802

1.2 Our Contributions

We introduce the problem RESTLESS TEMPORAL PATH. To get a finer understanding

of the computational complexity of this problem, we turn our attention to its para-

metrized complexity. In stark contrast to both restless temporal walks and non-rest-

less temporal paths, we show that this problem is NP-hard even in very restricted

settings—in particular, even when the lifetime is restricted to only three time

steps—and W[1]-hard when parameterized by the (vertex deletion) distance to dis-

joint paths of the underlying graph, which implies W[1]-hardness with respect to

many other parameters like feedback vertex number and pathwidth (Sect. 3). This is

tight in the sense that the problem can be solved in polynomial time when the under-

lying graph is a forest. On the positive side, we explore parameters of three different

natures. First, we show that the problem is fixed-parameter tractable (FPT) for the

length (in number of hops) of the temporal path (Sect. 4). We further show that the

problem is FPT when parameterized by the feedback edge number of the underlying

graph (Sect. 5). Additionally, we show that the problem presumably does not admit

a polynomial kernel under the previously mentioned parameterizations where the

problem is in FPT. Our results provide a fine-grained characterization of the trac-

tability boundary of the computation of restless temporal paths for parameters of

the underlying graph, as illustrated by the vicinity of the corresponding parameters

in Fig. 2. Then, going beyond parameters related to the output and to the underly-

ing graph, we define a novel temporal version of the classic feedback vertex num-

ber called timed feedback vertex number. Intuitively, it counts the number of vertex

appearances that have to be removed from the temporal graph such that its underly-

ing graph becomes cycle-free. We show that finding restless temporal paths is FPT

when parameterized by this parameter (Sect. 6). We believe that the latter is an inter-

esting turn of events compared to our hardness results.

1.3 Strict Versus Non‑strict Temporal Paths

In this paper, we focus mainly on the case of non-strict temporal paths, i.e., the times

along a path are required to be non-decreasing. We expect most of the algorithms

Fig. 2 Relevant part of the hierarchy among classic parameters of the underlying graph

(cf. Sorge et al. [57]) for our results for RESTLESS TEMPORAL PATH

2758 Algorithmica (2021) 83:2754–2802

1 3

and reductions to be extendable to a strict setting, albeit with some change in the

results themselves. For instance, a similar NP-hardness reduction as for non-strict

temporal paths may apply, but requires more than a constant lifetime to be adapted.

In fact, the length of a strict temporal path is trivially bounded by the lifetime itself,

thus an FPT algorithm for the length parameter implies one for the lifetime param-

eter as well.

2 Preliminaries

Here, we formally introduce the most important concepts related to temporal graphs

and paths, and give the formal problem definition of (SHORT) RESTLESS TEMPORAL (s, z)

-PATH.

An interval is an ordered set [a, b] ∶= {n ∣ n ∈ ℕ ∧ a ≤ n ≤ b}, where a, b ∈ ℕ .

Further, let [a] ∶= [1, a].

2.1 Static Graphs

We use standard notation from (static) graph theory [24]. Unless stated otherwise,

we assume graphs in this paper to be undirected and simple. To clearly distinguish

them from temporal graphs, they are sometimes referred to as static graphs. Given a

(static) graph G = (V , E) with E ⊆
(

V

2

)

 , we denote by V(G) ∶= V and E(G) ∶= E the

sets of its vertices and edges, respectively.

We call two vertices u, v ∈ V adjacent if {u, v} ∈ E . Two edges e1, e2 ∈ E

are adjacent if e
1
∩ e

2
≠ � . For a vertex v ∈ V , we denote by deg

G
(v) the degree

of the vertex, that is, deg
G
(v) = |{w ∈ V ∣ {v, w} ∈ E}| . For some vertex subset

V
′ ⊆ V , we denote by G[V �] the induced subgraph of G on the vertex set V ′ , that

is, G[V �] = (V �
, E

�) where E� = {{v, w} ∣ {v, w} ∈ E ∧ v ∈ V
� ∧ w ∈ V

�} . For some

vertex subset V ′ ⊆ V , we denote by G − V
� the subgraph of G without the vertices in

V
′ , that is, G − V

� = G[V ⧵ V
�] . For some edge subset E′ ⊆ E , we denote by G − E

�

the subgraph of G without the edges E′ , that is, G − E
� = (V , E ⧵ E

�).

An (s, z)-path of length k is a sequence P = ({s = v0, v1}, {v1, v2},… ,

{vk−1, vk = z}) of edges such that for all i ∈ [k] we have that {v
i−1, v

i
} ∈ E and vi ≠ vj

for all i, j ∈ [k] . We denote v
0
 and v

k
 as the endpoints of P. We further denote by E(P)

the set of edges of path P, that is, E(P) = {{v0, v1}, {v1, v2},… , {v
k−1, v

k
}} and by

V(P) the set of vertices visited by the path, that is, V(P) =
⋃

e∈E(P)
e . If v

0
= v

k
 and P

is of length at least three, then P is a cycle.

2.2 Temporal Graphs

An (undirected, simple) temporal graph is a tuple G = (V , E1,… , E
�
) (or

G = (V , (E
i
)
i∈[�]) for short), with E

i
⊆
(

V

2

)

 for all i ∈ [�] . We call �(G) ∶= � the

lifetime of G . As with static graphs, we assume all temporal graphs in this paper

to be undirected and simple. We call the graph G
i
(G) = (V , E

i
(G)) the layer i of G

2759

1 3

Algorithmica (2021) 83:2754–2802

where E
i
(G) ∶= E

i
 . If E

i
= � , then G

i
 is a trivial layer. We call layers G

i
 and G

i+1

consecutive. We call i a time step. If an edge e is present at time i, that is, e ∈ E
i
 ,

we say that e has time stamp i. We further denote V(G) ∶= V . The underlying

graph G↓(G) of G is defined as G↓(G) ∶= (V ,
⋃�(G)

i=1
E

i
(G)) . To improve readability,

we remove (G) from the introduced notations whenever it is clear from the con-

text. For every v ∈ V and every time step t ∈ [�] , we denote the appearance of

vertex v at time t by the pair (v, t). For every t ∈ [�] and every e ∈ E
t
 we call the

pair (e, t) a time edge. For a time edge ({v, w}, t) we call the vertex appearances

(v, t) and (w, t) its endpoints. We assume that the size (for example when refer-

ring to input sizes in running time analyzes) of G is �G� ∶= �V� +
∑�

i=1
min{1, �E

i
�} ,

that is, we do not assume that we have compact representations of temporal

graphs. Finally, we write n for |V|.

A temporal (s, z)-walk (or temporal walk) of length k from vertex s = v
0
 to ver-

tex z = vk in a temporal graph G = (V , (E
i
)
i∈[�]) is a sequence P =

((

v
i−1, v

i
, t

i

))k

i=1

of triples that we call transitions such that for all i ∈ [k] we have that

{v
i−1, v

i
} ∈ E

t
i

 and for all i ∈ [k − 1] we have that t
i
≤ t

i+1
 . Moreover, we call P a

temporal (s, z)-path (or temporal path) of length k if vi ≠ vj for all i, j ∈ {0,… , k}

with i ≠ j . Given a temporal path P =

((

v
i−1, v

i
, t

i

))k

i=1
 , we denote the set of verti-

ces of P by V(P) = {v0, v1,… , v
k
} . Moreover, we say that P visits the vertex v

i
 at

time t if t ∈ [t
i
, t

i+1] , where i ∈ [k − 1] . A restless temporal path is not allowed to

wait an arbitrary amount of time in a vertex, but has to leave any vertex it visits

within the next � time steps, for some given value of � . Analogously to the non-

restless case, a restless temporal walk may visit a vertex multiple times.

Definition 1 A temporal path (walk) P =

((

v
i−1, v

i
, t

i

))k

i=1
 is �-restless if

t
i
≤ t

i+1
≤ t

i
+ � , for all i ∈ [k − 1] . We say that P respects the waiting time �.

Having this definition at hand, we are ready to define the main decision prob-

lem of this work.

Note the waiting time at the source vertex s is ignored. This is without loss

of generality, since one can add an auxiliary degree one source vertex which is

only in the first layer adjacent to s. We also consider a variant, where we want to

find �-restless paths of a certain maximum length. In the SHORT RESTLESS TEMPO-

RAL PATH problem, we are additionally given a integer k ∈ ℕ and the question is

whether there is a �-restless temporal path of length at most k from s to z in G ?

Note that RESTLESS TEMPORAL PATH is the special case of SHORT RESTLESS TEMPO-

RAL PATH for k = |V| − 1 and that both problems are in NP.

2760 Algorithmica (2021) 83:2754–2802

1 3

2.3 Parameterized Complexity

We use standard notation and terminology from parameterized complexity the-

ory [23] and give here a brief overview of the most important concepts that are used

in this paper. A parameterized problem is a language L ⊆ Σ
∗
× ℕ , where Σ is a finite

alphabet. We call the second component the parameter of the problem. A param-

eterized problem is fixed-parameter tractable (in the complexity class FPT) if there

is an algorithm that solves each instance (I, r) in f (r) ⋅ |I|O(1) time, for some comput-

able function f. A decidable parameterized problem L admits a polynomial kernel

if there is a polynomial-time algorithm that transforms each instance (I, r) into an

instance (I�, r
�) such that (I, r) ∈ L if and only if (I�, r

�) ∈ L and |(I�, r
�)| ∈ r

O(1) . If a

parameterized problem is hard for the parameterized complexity class W[1], then it

is (presumably) not in FPT. The complexity classes W[1] is closed under parameter-

ized reductions, which may run in FPT-time and additionally set the new parameter

to a value that exclusively depends on the old parameter.

2.4 Basic Observations

If there is a �-restless temporal (s, z)-path
((

v
i−1, v

i
, t

i

))k

i=1
 in a temporal graph G ,

then
(

{v0, v1},… , {v
k−1, v

k
}
)

 is an (s, z)-path in the underlying graph G↓ . The other

direction does not necessarily hold. However, we now show that for any (s, z)-path

in G↓ we can decide in linear time whether this path is the support of a �-restless

temporal (s, z)-path in G . As a consequence, we can decide RESTLESS TEMPORAL

PATH in linear time for any temporal graph where there exists a unique (s, z)-path in

the underlying graph, in particular, if the underlying graph is a forest.

Lemma 1 Let G = (V , (E
i
)
i∈[�]) be a temporal graph where the underlying graph G↓

is an (s, z)-path with s, z ∈ V . Then there is an algorithm which computes in O(|G|)

time the set

Proof Let V(G↓) = {s = v0,… , vn = z} be the vertices and E(G↓) = {e1 = {v0, v1},

… , e
n
= {v

n−1, v
n
}} be the edges of the underlying path. We further define L

i
 as the

set of layers of G in which the edge e
i
∈ E(G↓) exists, that is, L

i
∶= {t ∣ e

i
∈ E

t
}.

In the following, we construct a dynamic program on the path. We compute

for every vertex v
i
 the table entry T[v

i
] which is defined as the set of all layers t

such that there exists a �-restless temporal (s, v
i
)-path with arrival time t. It holds

that T[v
1
] = L

1
 . Then, for all i ∈ [2,�] , we compute the table entry T[v

i
] by check-

ing for each layer t ∈ L
i
 whether there exists a �-restless temporal (s, v

i−1)-path that

arrives in a layer t� ∈ T[v
i−1

] such that we can extend the path to the vertex v
i
 in

layer t without exceeding the maximum waiting time � , that is, 0 ≤ t − t
� ≤ � . For-

mally, we have

A = {t ∣ there is a �-restless temporal(s, z)with arrival time t}.

2761

1 3

Algorithmica (2021) 83:2754–2802

It is easy to verify that T[v
i
] contains all layers t such that there exists a �-restless

temporal (s, v
i
)-path with arrival time t. After computing the last entry T[v

n
] , this

entry contains the set A of all layers t such that there exists a �-restless tempo-

ral (s, z)-path with arrival time t.

In order to compute a table entries T[v
i
] in linear time, we will need sorted lists

of layers for L
i
 and T[v

i−1
] in ascending order. The sorted lists L

i
 of layers can be

computed in O(|G|) : For every t ∈ [�] , we iterate over each e
i
∈ E

t
 and add t to L

i
 .

Now assume that L
i
 and T[v

i−1
] are lists of layers both in ascending order, then we

can compute the table entry T[v
i
] in O(|T[v

i−1
]| + |L

i
|) time as follows. Let T[v

i
] be

initially empty. Let t be the first element in L
i
 and let t′ be the first element in T[v

i−1
] :

1. If t′ > t , then replace t with the next layer in L
i
 and repeat.

2. If t − t
� ≤ � , then add t to T[v

i
] , replace t with the next layer in L

i
 and repeat.

3. Else, replace t′ with the next layer in T[v
i−1

] and repeat.

This is done until all elements in one of the lists are processed.

The resulting list T[v
i
] is again sorted. Due to this and T[v

1
](= L

1
) being sorted,

we can assume that T[v
i−1

] is given as a sorted list of layers when computing T[v
i
] .

Hence, we can compute each table entry T[v
i
] in O(|T[v

i−1
]| + |L

i
|) time. It further

holds that |T[v
i
]| ≤ |L

i
| and

∑n

i=1
�L

i
� =

∑�

i=1
�E

i
� . Hence, the dynamic program runs

in O(|G|) time. ◻

Furthermore, it is easy to observe that computational hardness of RESTLESS

TEMPORAL PATH for some fixed value of � implies hardness for all larger finite val-

ues of � . This allows us to construct hardness reductions for small fixed values of

� and still obtain general hardness results.

Observation 1 Given an instance I = (G, s, z, k,�) of SHORT RESTLESS TEMPO-

RAL PATH, we can construct in linear time an instance I� = (G�
, s, z, k,� + 1) of

SHORT RESTLESS TEMPORAL PATH such that I is a yes-instance if and only if I
′ is a

yes-instance.

Proof The result immediately follows from the observation that a temporal graph G

contains a �-restless temporal (s, z)-path if and only if the temporal graph G′ contains

a (� + 1)-restless temporal (s, z)-path, where G′ is obtained from G by inserting one

trivial (edgeless) layer after every � consecutive layers. ◻

However, for some special values of � we can solve RESTLESS TEMPORAL PATH

in polynomial time.

T[v
i
] ∶= {t ∈ L

i
∣ there is a t

� ∈ T[v
i−1

] with 0 ≤ t − t
�
≤ �}.

2762 Algorithmica (2021) 83:2754–2802

1 3

Observation 2 RESTLESS TEMPORAL PATH on instances (G, s, z,�) can be solved in

polynomial time, if � = 0 or � ≥ �.

Proof Considering � = 0 implies that the entirety of a path between s and z must be

realized in a single layer. Thus, the problem is equivalent to testing if at least one of

the layers G
i
 contains a (static) path between s and z. ◻

If � ≥ � , then �-restless temporal paths correspond to unrestricted temporal

paths, whose computation can be made using any of the (polynomial time) algo-

rithms in Bui-Xuan et al. [17].

3 Hardness Results for Restless Temporal Paths

In this section we present a thorough analysis of the computational hardness of

RESTLESS TEMPORAL PATH which also transfers to SHORT RESTLESS TEMPORAL PATH.

3.1 NP‑hardness for few layers

We start by showing that RESTLESS TEMPORAL PATH is NP-complete even if the life-

time of the input temporal graph is constant. The reduction is similar in spirit to the

classic NP-hardness reduction for 2-DISJOINT PATHS in directed graphs by Fortune

et al. [33].

Theorem 1 RESTLESS TEMPORAL PATH is NP-complete for all finite � ≥ 1 and � ≥ � + 2

even if every edge has only one time stamp.

Proof We show this result by a reduction from the NP-complete EXACT (3, 4)-SAT

problem [59]. The problem EXACT (3, 4)-SAT asks whether a formula � is satisfiable,

assuming that it is given in conjunctive normal form, each clause having exactly

three literals and each variable appearing in exactly four clauses.

Let � be an instance of EXACT (3, 4)-SAT with n variables and m clauses. We con-

struct a temporal graph G = (V , (E
i
)
i∈[�]) with � = 3 consisting of a series of variable

gadgets followed by dedicated vertices s
n
 and s′ and then a series of clause gadg-

ets. It is constructed in such a way that for � = 1 , any �-restless temporal (s, z)-path

has to visit a vertex s
n
 and each possible �-restless temporal (s, s

n
)-path represents

exactly one variable assignment for the formula � . Further we show that for any �

-restless temporal (s, s
n
)-path it holds that it can be extended to a �-restless temporal

(s, z)-path if and only if the �-restless temporal (s, s
n
)-path represents a satisfying

assignment for the formula �.

Variable Gadget. We start by adding a vertex s to the vertex set V of G . For each

variable x
i
 with i ∈ [n] of � , we add 9 fresh vertices to V: x

(1)

i
 , x

(2)

i
 , x

(3)

i
 , x

(4)

i
 , x̄

(1)

i
 ,

2763

1 3

Algorithmica (2021) 83:2754–2802

x̄
(2)

i
 , x̄

(3)

i
 , x̄

(4)

i
 , and s

i
 . Each variable x

i
 is represented by a gadget consisting two dis-

joint path segments of four vertices each. One path segment is formed by x
(1)

i
 , x

(2)

i
 ,

x
(3)

i
 , and x

(4)

i
 in that order and the second path segment is formed by x̄

(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 ,

and x̄
(4)

i
 in that order. The connecting edges all appear exclusively at time step one,

that is, {x
(1)

i
, x

(2)

i
} , {x

(2)

i
, x

(3)

i
} , and {x

(3)

i
, x

(4)

i
} are added to E

1
 . Analogously for the

edges connecting x̄
(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , and x̄

(4)

i
 . Intuitively, if a �-restless temporal (s, z)-

path passes the first segment, then this corresponds to setting the variable x
i
 to false.

If it passes the second segment, then the variable is set to true. For all i ∈ [n − 1] we

add the edges {x
(4)

i
, s

i
} , {x̄

(4)

i
, s

i
} , {s

i
, x̄

(1)

i+1
} , and {s

i
, x̄

(1)

i+1
} to E

1
 and, additionally, we

add {s, x
(1)

1
} , {s, x̄

(1)

1
} , {x

(4)
n

, s
n
} , and {x̄

(4)
n

, s
n
} to E

1
.

We can observe that there are exactly 2n different temporal (s, s
n
)-paths at time

step one. Intuitively, each path represents exactly one variable assignment for the

formula �.

Clause Gadget. We add a vertex z to V. For each clause cj with j ∈ [m] we add a

fresh vertex cj to V. We further add a vertex s′ to V and add the edge {s
n
, s

�} to E
2
 .

Let x
i
 (or x̄

i
) be a literal that appears in clause cj and let this be the kth appearance of

variable x
i
 in � . Then, we add the edges {cj, x

(k)

i
}, {x

(k)

i
, cj+1} (or {cj, x̄

(k)

i
}, {x̄

(k)

i
, cj+1})

to E
3
 (where c

m+1
= z). Finally, we add the edge {s

�, c1} to E
3
.

Hence, there are exactly 3m different temporal (s�, z)-paths at time step three. Each

path must visit the clause vertices c1,… , c
m
 in the given order by construction.

Finally, we set � = 1 . This finishes the construction, for a visualization see Fig. 3.

It is easy to check that every edge in the constructed temporal graph has only one

time step and that the temporal graph can be computed in polynomial time.

Correctness. Now we can show that � is satisfiable if and only if G has a �-rest-

less temporal (s, z)-path.

(⇒) : Let us assume there is a satisfying assignment for formula � . Then we con-

struct a �-restless temporal path from vertex s to z as follows. Starting from s, for

Fig. 3 Illustration of the temporal graph constructed by the reduction in the proof of Theorem 1. An

excerpt is shown with variable gadgets for x
1
 , x

2
 , and x

3
 and the clause gadget for c

i
= (x

1
∨ x

2
∨ ¬x

3
) ,

where x
1
 appears for the fourth time, x

2
 appears for the third time, and x

3
 also appears for the third time.

Black edges appear at time step one, the blue (dotted) edge {s
n
, s

�} appears at time step two, and the red

(dashed) edges appear at time step three

2764 Algorithmica (2021) 83:2754–2802

1 3

each variable x
i
 of � the �-restless temporal path passes through the variables x

(1)

i
 ,

x
(2)

i
 , x

(3)

i
 , and x

(4)

i
 , if x

i
 is set to false, and x̄

(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , and x̄

(4)

i
 , if x

i
 is set to true, at

time step one. The �-restless temporal path arrives at time step one in the vertex s
n
 .

In time step two it goes from s
n
 to s′.

At time step three, the �-restless temporal path can be extended to c
1
 . In each

clause cj for j ∈ [m] there is at least one literal x
i
 (or x̄

i
) that is evaluated to true.

Let cj be the kth clause in which x
i
 appears. We have that, depending on whether x

i
 is

set to true (or false), the vertex x
(k)

i
 (or x̄

(k)

i
) has not been visited so far. Hence, the �

-restless temporal path can be extended from cj to cj+1
 (or to z for j = m) at time step

three via x
(k)

i
 (or x̄

(k)

i
). Thus, there exists a �-restless temporal (s, z)-path in G.

(⇐) : Let us assume that there exists a �-restless temporal (s, z)-path in the con-

structed temporal graph G . Note that any �-restless temporal (s, z)-path must reach

s
n
 in time step one because the variable gadget has only edges at time step one and

the waiting time � = 1 prevents the path to enter the clause gadget (which only has

edges at time step three) before using the edge {s
n
, s

�} at time step two.

It is easy to see that for the first part of the �-restless temporal graph from s to s
n

it holds that for each i ∈ [n] , it visits either vertices x
(1)

i
 , x

(2)

i
 , x

(3)

i
 , and x

(4)

i
 , or vertices

x̄
(1)

i
 , x̄

(2)

i
 , x̄

(3)

i
 , and x̄

(4)

i
 . In the former case we set x

i
 to false and in the latter case we

set x
i
 to true. We claim that this produces a satisfying assignment for �.

In time step three, the part of the �-restless temporal path from s′ to z has to pass

vertices c1, c2,… , c
m
 to reach z. The �-restless temporal path passes exactly one var-

iable vertex x
(k)

i
 (or x̄

(k)

i
) when going from cj to cj+1

 (and finally from c
m
 to z) that has

not been visited so far and that corresponds to a variable that appears in the clause cj

for the kth time. The fact that the variable vertex was not visited implies that we set

the corresponding variable to a truth value that makes it satisfy clause cj . This holds

for all j ∈ [m] . Hence, each clause is satisfied by the constructed assignment and,

consequently, � is satisfiable. ◻

The reduction used in the proof of Theorem 1 also yields a running time lower

bound assuming the Exponential Time Hypothesis (ETH) [40, 41].

Corollary 1 RESTLESS TEMPORAL PATH does not admit a f (�)o(|G|)-time algorithm for

any computable function f unless the ETH fails.

Proof First, note that any 3-SAT formula with m clauses can be transformed into an

equisatisfiable EXACT (3, 4)-SAT formula with O(m) clauses [59]. The reduction pre-

sented in the proof of Theorem 1 produces an instance of RESTLESS TEMPORAL PATH

with a temporal graph of size |G| = O(m) and � = 3 . Hence an algorithm for REST-

LESS TEMPORAL PATH with running time f (�)o(|G|) for some computable function f

would imply the existence of an 2o(m)-time algorithm for 3-SAT. This is a contradic-

tion to the ETH [40, 41]. ◻

2765

1 3

Algorithmica (2021) 83:2754–2802

Furthermore, the reduction behind Theorem 1 can be modified such that

it also yields that RESTLESS TEMPORAL PATH is NP-hard, even if the underlying

graph has constant maximum degree or the underlying graph is a clique where

one edge ({s, z}) is missing. Note that in the latter case the underlying graph con-

tains all edges except the one edge which would turn the instance into a trivial

yes-instance.

Corollary 2 RESTLESS TEMPORAL PATH is NP-hard, even if the underlying graph has all

but one edge or maximum degree six.

Proof That RESTLESS TEMPORAL PATH is NP-hard, even if the underlying graph has

maximum degree six follows directly from the construction used in the proof of The-

orem 1. To show that that RESTLESS TEMPORAL PATH is NP-hard, even if the underly-

ing graph has all edges except {s, z} , we reduce from RESTLESS TEMPORAL PATH. Let

I = (G = (V , (Ei)i∈[�]), s, z,�) be an instance of RESTLESS TEMPORAL PATH with � = 3 .

We construct an instance I� ∶= (G� = (V , E�
1
, E�

2
, E�

3
, E�

4
, E�

5
), s, z,�) of RESTLESS TEM-

PORAL PATH, where E
�
1
=
(

V⧵{s}

2

)

 , E
�

2
∶= E

1
 , E

�

3
∶= E

2
 , E

�

4
∶= E

3
 , and E�

5
=
(

V⧵{z}

2

)

 .

Observe that none of the edges in E
1
∪ E

5
 can be used in temporal (s, z)-path. Hence,

I is a yes-instance if and only if I′ is a yes-instance. Furthermore, E
1
∪ E

5
 contain all

possible edges except {s, z}. ◻

3.2 W[1]‑Hardness for Distance to Disjoint Paths

In the following, we show that parameterizing RESTLESS TEMPORAL PATH with struc-

tural graph parameters of the underlying graph of the input temporal graph pre-

sumably does not yield fixed-parameter tractability for a large number of popular

parameters. In particular, we show that RESTLESS TEMPORAL PATH parameterized by

the distance to disjoint paths of the underlying graph is W[1]-hard. The distance to

disjoint paths of a graph G is the minimum number of vertices we have to remove

from G such that the reminder of G is a set of disjoint paths. Many well-known

graph parameters can be upper-bounded in the distance to disjoint paths, e.g., path-

width, treewidth, and feedback vertex number [57]. Hence, the following theorem

also implies that RESTLESS TEMPORAL PATH is W[1]-hard when parameterized by the

pathwidth or the feedback vertex number of the underlying graph.

Theorem 2 RESTLESS TEMPORAL PATH parameterized by the distance to disjoint path of

the underlying graph is W[1] -hard for all � ≥ 1 even if every edge has only one time

stamp.

Proof We present a parameterized reduction from MULTICOLORED CLIQUE where,

given a k-partite graph H = (U1 ⊎ U2 ⊎… ⊎ U
k
, F) , we are asked to decide whether

H contains a clique of size k. MULTICOLORED CLIQUE is known to be W[1]-hard when

parameterized by the clique size k [23, 28].

2766 Algorithmica (2021) 83:2754–2802

1 3

Let (H = (U1 ⊎ U2 ⊎… ⊎ U
k
, F), k) be an instance of MULTICOLORED CLIQUE. For

each i, j ∈ [k] with i < j let Fi,j = {{u, v} ∈ F ∣ u ∈ Ui ∧ v ∈ Uj} be the set of edges

between vertices in U
i
 and Uj . We can assume that k ≥ 3 , otherwise we can solve

the instance in polynomial time. Without loss of generality, we assume that for all

i, j, i�, j� ∈ [k] with i < j and i′ < j′ we have that |Fi,j| = |Fi�,j� | = m for some m ∈ ℕ .

Note that if this is not the case, we add new vertices and single edges to increase the

cardinality of some set Fi,j and this does not introduce new cliques since k ≥ 3 . We

further assume without loss of generality that |U
1
| = |U

2
| = ⋯ = |U

k
| = n for some

n ∈ ℕ . If this is not the case, we can add additional isolated vertices to increase the

cardinality of some set U
i
 . We construct a temporal graph G = (V , (E

i
)
i∈[�]) with two

distinct vertices s, z ∈ V such that there is a �-restless temporal (s, z)-path in G if

and only if H contains a clique of size k. Furthermore, we show that the underlying

graph G↓ of G has a distance to disjoint paths of O(k2).

Vertex Selection Gadgets. For each set U
i
 with i ∈ [k] of the vertex set of H we

create the following gadget. Let U
i
= {u

(i)

1
, u

(i)

2
,… , u

(i)
n
} . We create a path of length

k ⋅ n + n + 1 on fresh vertices w
(i)

1
, v

(i)

1,1
, v

(i)

1,2
,… , v

(i)

1,k
, w

(i)

2
, v

(i)

2,1
,… , v

(i)

n,k
, w

(i)

n+1
 . Intui-

tively, this path contains a segment of length k for each vertex in U
i
 which are sepa-

rated by the vertices w
(i)

j
 , and the construction will allow a �-restless temporal (s, z)-

path to skip exactly one of these segments, which is going to correspond to selecting

this vertex for the clique.

Formally, for each vertex u
(i)

j
∈ Ui we create k vertices v

(i)

j,1
, v

(i)

j,2
,… , v

(i)

j,k
 , which we

call the segment corresponding to u
(i)

j
 . We further create vertices w

(i)

1
, w

(i)

2
,… , w

(i)

n+1
 .

For all j ∈ [n] and x ∈ [k − 1] we connect vertices v
(i)

j,x
 and v

(i)

j,x+1
 with an edge at time

(i − 1) ⋅ n + j and we connect w
(i)

j
 with v

(i)

j,1
 and w

(i)

j+1
 with v

(i)

j,k
 at time (i − 1) ⋅ n + j each.

Lastly, we introduce a “skip vertex” s(i) that will allow a �-restless temporal (s, z)-

path to skip one path segment of length k that corresponds to one of the vertices

in U
i
 . For each j ∈ [n + 1] , we connect vertices s(i) and w

(i)

j
 with an edge at time

(i − 1) ⋅ n + j.

Now we connect the gadgets for all U
i
 ’s in sequence, that is, a �-restless tempo-

ral (s, z)-path passes through the gadgets one after another, selecting one vertex of

each part U
i
 . Formally, for all i ∈ [k − 1] , we connect vertices w

(i)

n+1
 and w

(i+1)

1
 with

an edge at time i ⋅ n + 1 . It is easy to check that after the removal of the vertices

{s
(1), s

(2),… , s
(k)} , the vertex selection gadget is a path. The vertex selection gadget

is visualized in Fig. 4.

Validation Gadgets. A �-restless temporal (s, z)-path has to pass through the val-

idation gadgets after it passed through the vertex selection gadgets. Here, we are

forced to choose a point in time where we visit two vertices of two different vertex

selection gadgets. This choice corresponds to the selection of an edge. Intuitively,

2767

1 3

Algorithmica (2021) 83:2754–2802

this should only be possible if the selected vertices form a clique. We construct the

gadget in the following way.

For each i, j ∈ [k] with i < j let the edges in Fi,j be ordered in an arbitrary way,

that is, Fi,j = {e
(i,j)

1
, e

(i,j)

2
,… , e

(i,j)
m } . We create two paths of length 2m on fresh verti-

ces v
(i,j)

1,1
, v

(i,j)

1,2
, v

(i,j)

2,1
, v

(i,j)

2,2
,… , v

(i,j)

m,2
 and v

(i,j)

1,3
, v

(i,j)

1,4
, v

(i,j)

2,3
, v

(i,j)

2,4
,… , v

(i,j)

m,4
 , respectively. Intui-

tively, the first path selects an edge from U
i
 to Uj and the transition to the second

path should only be possible if the two endpoints of the selected edge are selected in

the corresponding vertex selection gadgets.

Formally, for each edge e
(i,j)

h
∈ Fi,j we create four vertices v

(i,j)

h,1
, v

(i,j)

h,2
, v

(i,j)

h,3
, v

(i,j)

h,4
 . Fur-

thermore, we introduce three extra vertices s
(i,j)

1
, s

(i,j)

2
, s

(i,j)

3
 . For all h ∈ [m] we connect

vertices v
(i,j)

h,1
 and v

(i,j)

h,2
 with an edge at time yi,j + 2h − 1 , we connect vertices v

(i,j)

h,1

and s
(i,j)

1
 with an edge at time yi,j + 2h − 1 , we connect vertices v

(i,j)

h,3
 and v

(i,j)

h,4
 with an

edge at time yi,j + 2h − 1 , we connect vertices v
(i,j)

h,3
 and s

(i,j)

3
 with an edge at time

yi,j + 2h − 1 , and if h < m , we connect vertices v
(i,j)

h,2
 and v

(i,j)

h+1,1
 with an edge at time

yi,j + 2h and we connect vertices v
(i,j)

h,4
 and v

(i,j)

h+1,3
 with an edge at time yi,j + 2h , where

yi,j = k ⋅ n + 2m ⋅ (i ⋅ j +
1

2
⋅ i ⋅ (i − 1) − 1) (the value of yi,j can be interpreted as a

“time offset” for the validation gadget for Fi,j , the value is computed by adding all

time steps needed in validation gadget for Fi′,j′ with i′ < j′ , i
′ ≤ i , j′ ≤ j , and

(i�, j�) ≠ (i, j)). Next, for each edge e
(i,j)

h
= {u(i)

a
, u

(j)

b
} ∈ Fi,j we connect vertices s

(i,j)

1

and v
(i)

a,j
 (from the vertex selection gadget for U

i
) with an edge at time yi,j + 2h − 1 ,

we connect vertices s
(i,j)

2
 and v

(i)

a,j
 with an edge at time yi,j + 2h − 1 , we connect verti-

ces s
(i,j)

2
 and v

(j)

b,i
 (from the vertex selection gadget for Uj) with an edge at time

yi,j + 2h − 1 , and we connect vertices s
(i,j)

3
 and v

(j)

b,i
 with an edge at time yi,j + 2h − 1.

Intuitively, the time labels on the edges and the waiting time restrictions enforce

that when arriving at s
(i,j)

1
 there is only one way to continue to s

(i,j)

2
 for which is it nec-

essary to visit a vertex in the vertex selection gadget that corresponds to an endpoint

Fig. 4 Visualization of the vertex selection gadget for U
1
 from the reduction of Theorem 2. Black edges

appear at time step one, red edges (densely dashed) at time step two, blue edges (dashdotted) at time step

three, green edges (dotted) at time step n − 1 , and orange edges (loosely dashed) at time step n. For the

segment corresponding to u
(1)

1
∈ U

1
 all vertex names are presented, for the other segments the names are

analogous but omitted. The auxiliary w
(1)

1
,… , w

(1)
n

,… vertices are colored gray. The “skip vertex” s(1) is

depicted as a yellow square. Note that after the removal of s(1) the vertex selection gadget for U
1
 is a path

2768 Algorithmica (2021) 83:2754–2802

1 3

of the selected edge. Similarly, from s
(i,j)

2
 there is only one way to continue to s

(i,j)

3
 for

which it is necessary to visit a vertex in the vertex selection gadget that corresponds

to the other endpoint of the selected edge. For a visualization of the validation

gadget see Fig. 5, where the red dashed path corresponds to the selection of an edge.

Now we connect the gadgets for all Fi,j ’s in sequence, that is, a �-restless tempo-

ral (s, z)-path passes through the gadgets one after another, selecting one edge of each

part Fi,j of the edge set F. Formally, for each i, j ∈ [k] with i < j , if i < j − 1 , we

connect vertices v
(i,j)

m,4
 and v

(i+1,j)

1,1
 with an edge at time yi+1,j , and if i = j − 1 < k − 1 , we

connect vertices v
(i,j)

m,4
 and v

(i,j+1)

1,1
 with an edge at time yi,j+1 . It is easy to check that after

the removal of 3 ⋅

(

k

2

)

 many vertices {s
(1,2)

1
, s

(1,2)

2
, s

(1,2)

3
, s

(1,3)

1
,… , s

(1,k)

3
,… s

(k−1,k)

3
} , the

validation gadgets are a set of disjoint paths, see Fig. 5.

Finally, we create two new vertices s and z, we connect vertices s and w
(1)

1
 (the

“first” vertex of the vertex selection gadgets) with an edge at time one, we connect

vertices s and s(1) (the “skip vertex” of the first vertex selection gadget) with an edge

at time one, and we connect z and v
(k−1,k)

m,4
 (the “last” vertex of the validation gadgets)

Fig. 5 Visualization of the validation gadget for Fi,j from the reduction of Theorem 2. The “first path” of

the gadget is depicted vertically on the left, the “second path” on the right. The connections to the vertex

selection gadgets for the edge e
(i,j)

h
= {u(i)

a
, u

(j)

b
} ∈ Fi,j are depicted. The edges in red (dashed) correspond

to the path through the gadget if edge e
(i,j)

h
 is “selected” and all these edges have the same time stamp.

The vertex selection gadgets corresponding to U
i
 and Uj are depicted as triangles in the upper center part.

The three vertices s
(i,j)

1
 , s

(i,j)

2
 , and s

(i,j)

3
 are colored yellow (squared). Note that after the removal of s

(i,j)

1
 , s

(i,j)

2
 ,

and s
(i,j)

3
 , the validation gadget for Fi,j is a set of disjoint paths

2769

1 3

Algorithmica (2021) 83:2754–2802

with an edge at time k ⋅ n + m ⋅ (3k
2 + 5k + 3) . We further connect vertices w

(k)

n+1

and v
(1,2)

1,1
 (connecting the vertex selection gadgets and the validation gadgets) with

an edge at time k ⋅ n . Finally, we set � = 1 . This completes the construction. It is easy

to check that G can be constructed in polynomial time and that the distance to disjoint

paths of G↓ is at most k + 3 ⋅

(

k

2

)

 and that every edge has only one time stamp.

Correctness. Now we show that H contains a clique of size k if and only if there

is a �-restless temporal path from s to z in G.

(⇒) : Assume that H contains a clique of size k and let X ⊆ V(H) with |X| = k be

the set of vertices that form the clique in H. Now we show how to construct a �-rest-

less temporal (s, z)-path in G . Note that since H is k-partite, we have that |U
i
∩ X| = 1

for all i ∈ [k] . The temporal path starts at vertex s in G and then first passes

through the vertex selection gadgets. If u
(i)

j
∈ X for some i ∈ [k] and j ∈ [n] ,

then the temporal path skips the segment corresponding to u
(i)

j
 in the vertex selection

gadget for U
i
 . More formally, the temporal path follows the vertices

w
(i)

1
, v

(i)

1,1
, v

(i)

1,2
,… , v

(i)

1,k
, w

(i)

2
,… , v

(i)

j−1,k
, w

(i)

j
, s(i), w

(i)

j+1
, v

(i)

j+1,1
,… , v

(i)

n,k
, w

(i)

n+1
 in that order,

that is, the path skips vertices v
(i)

j,1
, v

(i)

j,2
,… , v

(i)

j,k
 . It is easy to check that the time labels

of the edges in the vertex selection gadget allow for a restless temporal path as

described that respects the waiting time �.

In the validation gadget for Fi,j with i < j , the path “selects” the edge

(Ui ∩ X) ∪ (Uj ∩ X) ∈ Fi,j that connects the vertices from the parts U
i
 and Uj that are

contained in the clique X. Let (Ui ∩ X) ∪ (Uj ∩ X) = {u(i)
a

, u
(j)

b
} = e

(i,j)

h
∈ Fi,j . For-

mally, the path follows vertices v
(i,j)

1,1
, v

(i,j)

1,2
, v

(i,j)

2,1
, v

(i,j)

2,2
,… , v

(i,j)

h,1
, s

(i,j)

1
, v

(i)

a,j
,

s
(i,j)

2
, v

(j)

b,i
, s

(i,j)

3
, v

(i,j)

h,4
, v

(i,j)

h+1,3
, v

(i,j)

h+1,4
,… , v

(i,j)

m,4
 in that order. Note that vertices v

(i)

a,j
 and v

(j)

b,i

have not been used by the path in the vertex selection gadgets, since they appear in

the segments that were skipped by the temporal path in the corresponding vertex

selection gadgets. Furthermore, since the clique in H only contains one edge that

connects vertices from U
i
 and Uj , the vertices v

(i)

a,j
 and v

(j)

b,i
 have not been used by the

temporal path in an earlier validation gadget. It is easy to check that the time labels

of the edges in the validation gadget allow for a �-restless temporal path as

described. After the last validation gadget the path arrives at vertex z. Hence, we

have found a �-restless temporal (s, z)-path in G.

(⇐) : Assume that we are given a �-restless temporal (s, z)-path in G . We now

show that H contains a clique of size k.

After starting at s, the �-restless temporal path first passes the vertex selection

gadgets. Here, we need to make the important observation, that for each i ∈ [k] , any

�-restless temporal (s, z)-path has to “skip” at least one segment corresponding to

one vertex u
(i)

j
∈ Ui in the vertex selection gadget corresponding to U

i
 , otherwise the

temporal path cannot traverse the validation gadgets. More formally, assume for

contradiction that there is a �-restless temporal (s, z)-path and an i ∈ [k] such that the

2770 Algorithmica (2021) 83:2754–2802

1 3

temporal path visits all vertices in the vertex selection gadget corresponding to U
i
 .

Let j ∈ [k] with j ≠ i . Assume that i < j (the other case works analogously). We

claim that the temporal path cannot traverse the validation gadget for Fi,j . For the

temporal path to go from s
(i,j)

1
 to s

(i,j)

2
 by construction it has to visit at least one vertex

from the vertex selection gadget for U
i
 . If all vertices have already been visited, that

would mean the �-restless temporal (s, z)-path visits one vertex twice—a

contradiction.

The waiting time � prevents the temporal path from “skipping” more than one

segment. More formally, any �-restless temporal (s, z)-path arrives at the “skip ver-

tex” s
(i) of the vertex selection gadget for U

i
 at time (i − 1) ⋅ n + j , for some

j ∈ [k − 1] . By construction this means the path visits w
(i)

j
 , then s(i) , and then has to

continue with w
(i)

j+1
 since there is only one time edge the path can use without violat-

ing the waiting time � . It follows that the temporal path skips exactly the segment

corresponding to u
(i)

j
∈ Ui.

This implies that any �-restless temporal (s, z)-path that traverses the vertex selec-

tion gadgets leaves exactly one segment of every vertex selection gadget unvisited.

Let the set X = {u
(i)

j
∈ Ui ∣ i ∈ [k] ∧ j ∈ [n] ∧ vj,1 is an unvisited vertex.} be the set

of vertices corresponding to the segments that are “skipped” by the given �-restless

temporal (s, z)-path. It is easy to check that |X| = k . We claim that X is a clique in H.

Assume for contradiction that it is not. Then there are two vertices u
(i)

i�
, u

(j)

j�
∈ X

such that the edge {u
(i)

i�
, u

(j)

j�
} is not in F. Assume that i < j . We show that then the �

-restless temporal (s, z)-path is not able to pass through the validation gadget for Fi,j .

By assumption we have that {u
(i)

i�
, u

(j)

j�
} ∉ Fi,j . Note that the validation gadget is

designed in a way that the first path “selects” an edge from Fi,j and then the waiting

time of one enforces that a �-restless temporal (s, z)-path can only move from the

first path to the second path of a validation gadget if the two endpoints of the

selected edge are vertices whose corresponding segments in the vertex selection

gadget were skipped. We have seen that for every U
i
 with i ∈ [k] , the path segment

corresponding to exactly one vertex of that set was skipped. Since {u
(i)

i�
, u

(j)

j�
} ∉ Fi,j ,

we have that for every edge in Fi,j that the segment corresponding to at least one of

the two endpoints of the edge was not skipped. Hence, we have that the �-restless

temporal path cannot pass through the validation gadget of Fi,j and cannot reach z—a

contradiction. ◻

4 An FPT-Algorithm for Short Restless Temporal Path

In this section, we discuss how to find short restless temporal paths. Recall that in

SHORT RESTLESS TEMPORAL PATH, we are given an additional integer k as input and

are asked whether there exists a �-restless temporal (s, z)-path that uses at most k

2771

1 3

Algorithmica (2021) 83:2754–2802

time edges. By Theorem 1 this problem is NP-hard. Note that in the contact tracing

scenario from the beginning, we can expect to have a small k and a large temporal

graph.

Theorem 3 SHORT RESTLESS TEMPORAL PATH is

(i) solvable in 2k
⋅ |G|O(1) time with a constant one-side error,3

(ii) deterministically solvable in 2O(k)
⋅ |G|� time,

Note that we can solve SHORT RESTLESS TEMPORAL PATH such that the running

time is independent from the lifetime � of the temporal graph. To show Theorem 3,

we first reduce the problem to a specific path problem in directed graphs. Then, we

apply known algebraic tools for multilinear monomials detection. Here, Theorem 3

(i) is based on Williams [60]. To get a deterministic algorithm with a running time

almost linear in |G| , we show a different approach based on representative sets [31]

which results in Theorem 3 (ii).

Reduction to directed graphs. We introduce a so-called �-(s, z)-expansion for two

vertices s and z of a temporal graph with waiting times. That is, a time-expanded

version of the temporal graph which reduces reachability questions to directed

graphs. While similar approaches have been applied several times [4, 12, 50, 61,

62], to the best of our knowledge, this is the first time that waiting-times are con-

sidered. In a nutshell, the �-(s, z)-expansion has for each vertex v at most � many

copies v1,… , v
� and if an (s, z)-dipath visits vi , it means that the corresponding �

-restless temporal (s, z)-walk visits v at time i.

Definition 2 (�-(s, z)-Expansion) Let G = (V , (E
i
)
i∈[�]) be a temporal graph with two

distinct vertices s, z ∈ V such that {s, z} ∉ Et , for all t ∈ [�] . Let � ≤ � . The �-(s, z)-

expansion of G is the directed graph D = (V �
, E

�) with

 (i) V � ∶= {s, z} ∪
{

vt | v ∈ e, e ∈ Et, v ∉ {s, z}
}
,

 (ii) E
s
∶=

{
(s, v

t) | {s, v} ∈ E
t

}
,

 (iii) Ez ∶=
{
(vi, z) | vi ∈ V �, {v, z} ∈ Et, 0 ≤ t − i ≤ �

}
 , and

 (iv) E� ∶= Es ∪ Ez ∪
{
(vi, wt) | vi ∈ V � ⧵ {s, z}, {v, w} ∈ Et, 0 ≤ t − i ≤ �

}
.

Furthermore, we define V �(s) ∶= {s} , V �(z) ∶= {z} , and V �(v) ∶= {v
t ∈ V

� ∣ t ∈ [�]} ,

for all v ∈ V ⧵ {s, z}.

Next, we show that a �-(s, z)-expansion of a temporal graph can be computed

efficiently.

3 The algorithm always outputs no if there is no �-restless temporal (s, z)-path and outputs otherwise yes

with constant probability.

2772 Algorithmica (2021) 83:2754–2802

1 3

Lemma 2 Given a temporal graph G = (V , (E
i
)
i∈[�]) , two distinct vertices s, z ∈ V ,

and � ≤ � , we can compute its �-(s, z)-expansion D with |V(D)| ∈ O(|G|) in

O(|G| ⋅ �) time.

Proof Let V � ∶= {s, z} and E
′ be empty in the beginning. We will fill up V ′ and

E
′ simultaneously. In order to do that efficiently, we will maintain for each ver-

tex v ∈ V a ordered list L
v
 such that t ∈ L

v
 if and only if vt

∈ V
� . We assume that

�V� ≤
∑�

i=1
�E

i
� , because vertices which are isolated in every layer are irrelevant for

the �-(s, z)-expansion and can be erased in linear time.

We proceed as follows. For each t ∈ {1,… ,�} (in ascending order), we iterate

over E
t
 . For each {v, w} ∈ E

t
 , we distinguish three cases.

(w = s): We add vt to V ′ , (s, v
t) to E′ , and add t to L

v
 . This can be done

in constant time.

(w = z): We add vt to V ′ , and add t to L
v
 . Now we iterate over all i ∈ L

v

(in descending order) and add (vi
, z) to E′ until t − i > � . This

can be done in O(�) time.

({s, z} ∩ {v, w} = �): We add vt
, w

t to V ′ , and add t to L
v
 and L

w
 . Now we iterate

over i ∈ L
v
 (in descending order) and add (vi

, w
t) to E′ until

t − i > � . Afterwards, we iterate over i ∈ L
w
 (in descending

order) and add (wi
, v

t) to E′ until t − i > � . This can be done

in O(�) time.

Observe that after this procedure the digraph D = (V �
, E

�) is the �-(s, z)-expan-

sion of G and that we added at most 2 vertices for each time-edge in G . Hence,

V
′ ≤ |G| . This gives a overall running time of O(|G| ⋅ �). ◻

It is easy to see that there is a �-restless temporal (s, z)-walk in the temporal

graph if and only if there is an (s, z)-dipath in the �-(s, z)-expansion. Next, we

identify the necessary side constraint to identify �-restless temporal (s, z)-paths in

the �-(s, z)-expansion.

Lemma 3 Let G = (V , (E
i
)
i∈[�]) be a temporal graph, s, z ∈ V two distinct vertices,

� ≤ � , and D = (V �
, E

�) the �-(s, z)-expansion of G . There is a �-restless temporal

(s, z)-path in G of length k if and only if there is an (s, z)-dipath P′ in D of length k

such that for all v ∈ V it holds that |V �(v) ∩ V(P�)| ≤ 1.

Proof (⇒) : Let P =
(

((s, v1, t1), (v1, v2, t2),… , (vk�−1, z, tk�)
)

 be a �-restless temporal

(s, z)-path in G of length k. We can inductively construct an (s, z)-dipath P
′ in D.

Observe that P
�
1
∶= ((s, v

t1

1
)) is an (s, v

t1

1
)-dipath of length 1 in D, because the arc

2773

1 3

Algorithmica (2021) 83:2754–2802

(s, v
t1

1
) is in E

s
 of D. Now let i ∈ [k� − 2] and P′

i
 be an (s, v

t
i

i
)-dipath of length i such

that

 (i) for all j ∈ [i] , we have that |V �(vj) ∩ V(P�
i
)| = 1 , and

 (ii) for all v ∈ V ⧵ {s, v1,… , v
i
} , we have that |V �(v) ∩ V(P�

i
)| = 0.

In order to get an (s, v
t
i+1

i+1
)-dipath P

�

i+1
 of length i + 1 , we extend P

′

i
 by the arc

(v
t
i

i
, v

t
i+1

i+1
) . Observe, that v

t
i+1

i+1
∈ V

� because of the time-edge ({v
i
, v

i+1}, t
i+1) in G and

that the arc (v
t
i

i
, v

t
i+1

i+1
) ∈ E

� , because we have 0 ≤ t
i+1

− t
i
≤ � . Observe that

 (i) for all j ∈ [i + 1] , we have that |V �(vj) ∩ V(P�
i+1

)| = 1 , and

 (ii) for all v ∈ V ⧵ {s, v1,… , v
i+1} , we have that |V �(v) ∩ V(P�

i+1
)| = 0.

Hence, we have an (s, v
tk�−1

k�−1
)-dipath P�

k−1
 of length k − 1 satisfying (i) and (ii) which

can be extended (in a similar way) to an (s, z)-dipath of length k such that for all

v ∈ V it holds that |V �(v) ∩ V(P�)| ≤ 1.

(⇐) : Let P′ be a (s, z)-dipath in D of length k such that for all v ∈ V it holds that

|V �(v) ∩ V(P�)| ≤ 1 . Let V(P�) = {s, v
t1

1
,… , v

tk−1

k−1
, z} . Observe that an arc from s to v

t
1

1

in D implies that there is a time-edge ({s, v1}, t1) in G . Similarly, an arc from v
t
i

i
 to

v
t
i+1

i+1
 implies that there is a time-edge ({v

i
, v

i+1}, t
i+1) in G and that 0 ≤ t

i+1
− t

i
≤ � ,

for all i ∈ [k − 2] . Moreover, an arc from v
tk−1

k−1
 to z implies that there is some t

k

such that there is a time-edge ({vk, z}, tk) in G with 0 ≤ t
k
− t

k−1
≤ � . Hence,

P =
(

(s, v1, t1), (v1, v2, t2),… , (vk�−1, z, tk�)
)

 is a �-restless temporal (s, z)-walk of

length k in G . Finally, |V �(v) ∩ V(P�)| ≤ 1 , for all v ∈ V , implies that vi ≠ vj for all

i, j ∈ {0,… , k} with i ≠ j . Thus, P is a �-restless temporal (s, z)-path of length k. ◻

Obtaining Theorem 3 (i) We now adapt the algorithm of Williams [60] to our spe-

cific needs. To this end, we introduce some standard notation from algebraic theory.

An arithmetic circuit C over a commutative ring R is a simple labelled directed

acyclic graph with its internal nodes labeled by + (sum gates) or × (product gates)

and its nodes of in-degree zero (input gates) labeled with elements from R ∪ X ,

where X is a set of variables. There is one node of out-degree zero, called the output

gate. The size of C is the number of vertices in the graph. An arithmetic circuit C

over R computes a polynomial P(X) over R in the natural way: an input gate repre-

sents the polynomial it is labeled by. A sum (product) gate represents the sum (prod-

uct) of the polynomials represented by its in-degree neighbors. We say C represents

P(X) if the polynomial of the output gate of C is equivalent to P(X).

Lemma 4 Let k ∈ ℕ and D = (V , A) be a directed graph with partition V =

⨄n

i=0
V

i
 ,

where V
0
= {s} and Vn = {z} . Then, there is an arithmetic circuit C representing a

polynomial Q(X) of degree at most k + 1 such that Q(X) has a multilinear4 monomial

4 No variable occurs to a power of two or higher.

2774 Algorithmica (2021) 83:2754–2802

1 3

of degree at most k + 1 if and only if there is an (s, z)-path P of length at most k in D

where |V(P) ∩ V
i
| ≤ 1 for all i ∈ [n] . Moreover, |X| = n + 1 , C is of size O(k(n + |A|)) ,

has no scalar multiplication, and all product gates in have in-degree two.

The idea of the polynomial is similar to the one of Williams [60], but here instead

of having one variable for each vertex we just have one variable for all vertices in

one part of the partition of V.

Proof We define the polynomial recursively as Q(X) = x
⊥

Qk
z
 over variables

X = {x
⊥

, x0} ∪ {x
i
∣ i ∈ [n]} , where

Note that we can, by simply following (1), construct an arithmetic circuit C which

represents Q(X) in O(k(n + |A|)) time such that each product gate has an in-degree of

two. Furthermore, observe that Q(X) has no scalar multiplication and is of degree at

most k + 1.

The following induction completes the proof: We claim that for all v ∈ V and

j ∈ [k] ∪ {0} , Q(X) has a multilinear monomial M of degree at most j + 1 if and

only if there is an (s, v)-path P of length at most j in D where |V(P) ∩ V
i
| ≤ 1 for all

i ∈ [n] . Moreover, M contains the variable x
i
 if and only if |V(P) ∩ V

i
| = 1 , for all

i ∈ [n] . Is is easy to verify that the claim is true for j = 0.

Now assume as induction hypothesis that for all u ∈ V and all j� < j ∈ [k] , the

polynomial x
⊥

Q
j′

u has a multilinear monomial M of degree at most j� + 1 if and only

if there is an (s, u)-path P of length at most j′ in D where |V(P) ∩ V
i
| ≤ 1 , for all

i ∈ [n] . Moreover, M contains the variable x
i
 if and only if |V(P) ∩ V

i
| = 1 , for all

i ∈ [n] . Let v ∈ Vp.

(⇒) : Assume there is a multilinear monomial M of degree at most j + 1 in

x
⊥

Q
j
v . Since x

⊥
Q

j
v =

∑

(u,v)∈A xp(x⊥Q
j−1

u) , we know that M contains x
p
 and there is

a (u, v) ∈ A such that x
⊥

Q
j−1

u contains a multilinear monomial M
′ which does not

contain x
p
 . By induction hypothesis, there is an (s, u)-path P′ of length at most j − 1

such that |V(P�) ∩ V
i
| = 1 if and only if M′ contains x

i
 for all i ∈ [n] . Hence, there

is an (s, v)-path P (obtained by extending P′ with v) such that |V(P) ∩ V
i
| ≤ 1 for all

i ∈ [n] . Furthermore, we have that |V(P) ∩ V
i
| = 1 if and only if M contains x

i
 for all

i ∈ [n].

(⇐) : Assume there is an (s, v)-path P of length at most j in D where |V(P) ∩ V
i
| ≤ 1

for all i ∈ [n] . Let P′ be the (s, u)-path obtained by removing v from P. Hence, P′ is

(1)

Q0

s
∶= x0,

∀v ∈ V ⧵ {s} ∶ Q0

v
∶= x

⊥
, and

∀v ∈ V ,∀j ∈ [k] ∶ Qj
v
∶=

∑

(u,v)∈A

Qj−1

u
xi, where v ∈ Vi.

2775

1 3

Algorithmica (2021) 83:2754–2802

of length at most j − 1 , and |V(P) ∩ V
i
| ≤ 1 for all i ∈ [n] . By induction hypothesis

x
⊥

Q
j−1

u contains a multilinear monomial M of degree at most j which does not con-

tain x
p
 . Since x

⊥
Q

j
v =

∑

(u,v)∈A xp(x⊥Q
j−1

u) , we know that x
⊥

Q
j
v contains a M multi-

plied by x
p
 as monomial. Thus, x

⊥
Q

j
v has a multilinear monomial of degree at most

j + 1 which contains variable x
i
 if and only if |V(P�) ∩ V

i
| = 1 , for all i ∈ [n]. ◻

Now we can apply the following result of Williams [60].

Theorem 4 [60] Let Q(X) be a polynomial of degree at most k, represented by an

arithmetic circuit of size n with no scalar multiplications and where all product

gates have in-degree two. There is a randomized algorithm that runs in 2knO(1) time,

outputs yes with high probability (≥ 1∕5) if there is a multilinear term in the sum-

product expansion of Q, and always outputs no if there is no multilinear term.

Theorem 3 (i) follows from Lemmas 2 to 4 and Theorem 4. This can be derandomized

by Theorem 5.2 of Fomin et al. [32] resulting in O(3.841k
⋅ (|G|�)2|V| log |V|) time

algorithm. We now show how to improve the polynomial part of a deterministic

algorithm.

Obtaining Theorem 3 (ii) To show Theorem 3 (ii), we first note that in the (s, z)-

expansion of an (s, z)-path P in the directed graph describes a �-restless temporal

(s, z)-path exactly when V(P) is an independent set of some specific matroid. We then

show an algorithm to find such a path P (if there is one). To this end, we introduce

a problem, INDEPENDENT PATH, and some standard terminology from matroid the-

ory [55]. A pair (U, I) , where U is the ground set and I ⊆ 2
U is a family of independ-

ent sets, is a matroid if the following holds: � ∈ I ; if A′ ⊆ A and A ∈ I , then A�
∈ I ;

and if A, B ∈ I and |A| < |B| , then there is an x ∈ B ⧵ A such that A ∪ {x} ∈ I . An

inclusion-wise maximal independent set A ∈ I of a matroid M = (U, I) is a basis.

The cardinality of the bases of M is called the rank of M. The uniform matroid of

rank r on U is the matroid (U, I) with I = {S ⊆ U ∣ |S| ≤ r} . A matroid (U, I) is

linear or representable over a field � if there is a matrix A with entries in � and the

columns labeled by the elements of U such that S ∈ I if and only if the columns

of A with labels in S are linearly independent over � . Such a matrix A is called a

representation of (U, I) . Now we are ready to state the INDEPENDENT PATH problem.

2776 Algorithmica (2021) 83:2754–2802

1 3

For the remainder of this section, whenever we speak about independent sets,

these are independent sets of a matroid and not a set of vertices which induce an

edgeless graph.

Agrawal et al. [1] studied, independently from us, a similar problem where the

edges of the path shall be an independent set of a matroid. To show Theorem 3 (ii),

we need a single-exponential algorithm which has only a linear dependency on the

input size. To this end, we show the following, based on representative families.

Theorem 5 An instance (D, s, z, AM) of INDEPENDENT PATH can be solved in time of

O(2�r
m) operations over the field � , where � is the field of A

M
 , r is rank of M, m is

the number of edges in D, and 2 < � < 2.373 is an upper-bound for the matrix mul-

tiplication exponent.5

In this section, we provide a fixed-parameter algorithm for INDEPENDENT PATH

parameterized by rank r of the matroid. Since the rank r is at most |V(D)|, this algo-

rithm is asymptotically optimal, see Corollary 3. To show Theorem 5, we provide

an algorithm (Algorithm 4.1), show its correctness (Lemma 5), and prove the run-

ning time upper-bound (Lemma 6). The idea of our algorithm is based on the algo-

rithm of Fomin et al. [31] for k -PATH and independently from us Agrawal et al. [1]

showed an algorithm which runs in 2O(r)
n

O(1) time for INDEPENDENT PATH and Lok-

shtanov et al. [48] provided a dynamic program, running in 5.18r
n

O(1) time, for the

special case of INDEPENDENT PATH when the matroid given in the input is a transver-

sal matroid. However, in contrast to Agrawal et al. [1] and Lokshtanov et al. [48], we

pay attention to the detail that the algorithm behind Theorem 5 runs in linear time, if

we can perform one field operation in constant time.

5 Note that we require 2 < � even though this might be not true. We do this to upper-bound the polyno-

mial part in r. The bound � < 2.373 is known [6].

2777

1 3

Algorithmica (2021) 83:2754–2802

The main tool of our algorithm are representative families of independent sets.

Definition 3 (Representative family) Given a matroid (U, I) , and a family S ⊆ 2
U,

we say that a subfamily �S ⊆ S is a q-representative for S if, for each set Y ⊆ U of

size at most q, it holds that:

– if there is a set X ∈ S with X ⊎ Y ∈ I ,

– then there is a set X̂ ∈ Ŝ with �X ⊎ Y ∈ I .

A p-family is a family F such that each set S ∈ F is of size exactly p. For lin-

ear matroids, we can compute small representative families efficiently. Formally,

the following is known.

Theorem 6 (Fomin et al. [31, Theorem 1.1]) Let M = (U, I) be a linear matroid of

rank r = p + q given together with its representation A
M

 over field � . Let S be a

p-family of independents of M. Then a q-representative family �S ⊆ S of size at most
(

r

p

)

 can be found in O
(

(

r

p

)

tp�
+ t

(

r

q

)

�−1
)

 operations over � , where � < 2.373 is the

matrix multiplication exponent.

We are now ready to give the pseudo-code of the algorithm behind Theorem 5

(see Algorithm 4.1).

In Algorithm 4.1, A ∙
M

B is defined as

{A ∪ B ∣ A ∈ A, B ∈ B, A ∩ B = �, A ∪ B ∈ I} for families A, B ⊆ I and matroid

M = (U, I).

Lemma 5 Algorithm 4.1 is correct.

Proof Let P
w,i

∶= {X ∈ I ∣ there is an (s, w)-dipath P of length i such that V(P) = X} ,

for all w ∈ V and i ∈ [r − 1] . Observe that P
w,i

 is an (i + 1)-family of independent

sets. We show by induction that after iteration i of the for-loop in Line (3) the entry

T[w, i] is an (r − i)-representative of P
w,i

 , for all w ∈ V and i ∈ [r − 1] . Then the cor-

rectness follows, since we check after each of these iterations whether T[w, i] is non-

empty (Line (9)). Observe that P
s,0 = {s} and P

v,0 = � for all v ∈ V ⧵ {s} . Hence,

the entries of T computed in Lines (1) and (2) fulfill our induction hypothesis.

Now let i ∈ [r − 1] be the current iteration of the for-loop in Line (3) and assume

that for all j < i we have that T[w, j] is an (r − j)-representative of Pw,j , for all w ∈ V .

Fix a vertex w ∈ V . We first show that if there is an X ∈ T[i, w] , then there is an

(s, w)-dipath P
w
 of length i such that X = V(P

w
) ∈ I . Observe that in Lines (5)–(7)

we look at each possible predecessor v ∈ V of w in an (s, w)-dipath of length i, take

each set X� ∈ T[v, i − 1] and check whether X� ∪ {w} is an independent set of size

i + 1 . If this is the case, we add it to N
w,i

 . After Line (8), we have that T[w, i] ⊆ N
w,i

 .

Since X� ∈ T[v, i − 1] , we know that there is an (s, v)-dipath P
v
 of length i − 1 with

X
� = V(P) . Thus, if there is an X ∈ T[i, w] , then there is an (s, w)-dipath P

w
 of length

i such that X = V(P
w
) ∈ I

2778 Algorithmica (2021) 83:2754–2802

1 3

Now let X ∈ P
w,i

 and Y ⊆ V(D) be a set of vertices of size at most r − i − 1

such that X ∩ Y = � and X ⊎ Y ∈ I . Hence, there is an (s, w)-dipath P of length

i such that V(P) = X . Let v be the predecessor of w in P. Let P
v
 be the (s, v)

-dipath of length i − 1 induced by P without w. Hence, V(P
v
) ∈ P

v,i−1 . Moreover,

V(P
v
) ∩ (Y ∪ {v}) = � and V(P

v
) ⊎ (Y ∪ {w}) ∈ I . Since T[v, i − 1] is an (r − i + 1)

-representative family of P
v,i−1 , we know that there is an X̂ ∈ T[v, i − 1] such that

X̂ ∩ (Y ∪ {w}) = � and X̂ ∪ (Y ∪ {w}) ∈ I . In Lines (5)–(7) we add X̂ ∪ {w} to N
w,i

 .

Let X
� ∶= X̂ ∪ {w} and note that X

� ∩ Y = � and X
�
⊎ Y ∈ I . Since T[w, i] is an

(r − i)-representative family of N
w,i

 , we know that there is an X̂� ∈ T[w, i] such that

X̂� ∩ Y = � and X�
⊎ Y ∈ I . Thus, T[w, i] is an (r − i)-representative of P

w,i
. ◻

Next, we show that Algorithm 4.1 is actually a fixed-parameter algorithm param-

eterized by the length of a shortest �-restless temporal (s, z)-path.

Lemma 6 Algorithm 4.1 runs in time of O(2�r
⋅ m) operations over � , where � is the

field of A
M

 , r is the rank of the matroid, m is the number of edges, and 2 < � < 2.373

is an upper-bound for the matrix multiplication exponent.

Proof Without loss of generality we assume to have a total ordering on V. We repre-

sent a subset of V as a sorted string. Hence, union and intersection of two sets of size

at most r takes O(r) time. We can thus look up and store sets of size at most r in a

trie (or radix tree) in O(r) time [21]. Note that we do not have the time to completely

initialize the arrays of size |V| in each trie node. Instead, we will initialize each array

cell of a trie node at its first access. To keep track of the already initialized cells, we

use sparse sets over V which allows membership test, insertion, and deletion of ele-

ments in constant time [16].

We denote the in-neighborhood of a vertex w by N−(w) ∶= {v ∈ V ∣ (v, w) ∈ E} .

Furthermore, let H
i,w

 be the running time of Lines (5)–(7) in iteration i of the for-

loop in Line (3), and R
i,w

 be the number of operations over � of Line (8) in iteration i

of the for-loop in Line (3). Then we can run Algorithm 4.1 in time of

O

�

∑r−1

i=1

∑

w∈V
H

i,w +
∑r−1

i=1

∑

w∈V
R

i,w

�

 operations over �—that is, the running time

respecting the time needed for operations over � . Let i ∈ [r − 1] and w ∈ V . In the i-

th iteration of the for-loop in Line (3), |T[v, j]| ≤
(

r

j+1

)
 for all j < i and v ∈ V , since

we used Theorem 6 in prior iterations. Let 2 < � < 2.373 be an upper-bound for the

matrix multiplication exponent. Hence, |N
w,i| ≤

(
r

i+1

)
|N−(w)| and

H
i,w ∈ O(

(
r

i+1

)
|N−(w)| ⋅ r

�) , because the independence test can be done via matrix

multiplication. Thus,

2779

1 3

Algorithmica (2021) 83:2754–2802

Moreover, by Theorem 6, we have

where the last inclusion is true because we assume 2 < �.

Thus, we can run Algorithm 4.1 in time of O(2�r
m) operations over � . ◻

Now Theorem 5 follows from Lemmas 6 and 5.

Observe that by Lemma 3, there is a �-restless temporal (s, z)-path in the tem-

poral graph G if and only if there is an (s, z)-path P in the �-(s, z)-expansion

D = (V �
, E

�) of G such that V(P) is an independent set in the partition matroid6

M = (V �, {X ⊆ V
� ∣ ∀v ∈ V ∶ |X ∩ V

�(v)| ≤ 1}) . Note that M is of rank |V| and hence

too large to show Theorem 3 with Theorem 5.

A k-truncation of a matroid (U, I) is a matroid (U, {X ∈ I ∣ |X| ≤ k}) such that

all independent sets are of size at most k. The k-truncation of a linear matroid

is also a linear matroid [49]. In our reduction from SHORT RESTLESS TEMPORAL

PATH to INDEPENDENT PATH we use a (k + 1)-truncation of matroid M. Two general

approaches are known to compute a representation for a k-truncation of a linear

matroid—one is randomized [49] and one is deterministic [47].7 Both approaches

require a large field implying that one operation over that field is rather slow.

However, for our specific matroid we employ the Vandermonde matrix to compute

a representation over a small finite field. Note that we would not get a running

time linear in the input size by applying the algorithm of Lokshtanov et al. [47] or

Marx [49] on M.

Lemma 7 Given a universe U of size n, a partition P
1
⊎⋯ ⊎ Pq = U , and an integer

k ∈ ℕ , we can compute in O(kn) time a representation A
M

 for the matroid

M =

(
U,

{
X ⊆ U

||| |X| ≤ k and ∀i ∈ [q] ∶ |X ∩ Pi| ≤ 1

})
 , where A

M
 is defined

over a finite field � and one operation over � takes constant time.

Proof For this running time analysis we assume the Word RAM model of computa-

tion, introduced by [34], which is similar to the RAM model of computation but one

O

(
r−1∑

i=1

∑

w∈V

H
i,w

)
⊆ O

(
r−1∑

i=1

∑

w∈V

|N−(w)|
(

r

i + 1

)
⋅ r

�

)
⊆ O

(
2

r+o(r)
m
)
.

O

(

r−1
∑

i=1

∑

w∈V

R
i,w

)

⊆ O

(

r−1
∑

i=1

m

(

r

i

)(

r

i + 1

)

(i + 1)� +

r−1
∑

i=1

m

(

r

i

)(

r

r − i − 1

)�−1
)

⊆ O
(

2r
m(2r

r
� + 2r(�−1))

)

⊆ O
(

m(22r+log2(r)� + 2r�)
)

⊆ O(2�r
m),

6 Partition matroids are linear [49].
7 For both algorithms, a representation of the original matroid must be given.

2780 Algorithmica (2021) 83:2754–2802

1 3

memory cell can store only O(log n) many bits, where n is the input size. This avoids

abuse of the unit cost random access machine by for example multiplying very large

numbers in constant time.

Without loss of generality we assume that q ≤ n . Let p be a prime number with

q ≤ p ≤ 2q . Such a prime exists by the folklore Betrand-Chebyshev Theorem [2]

and can be computed in O(n) time using Lagarias-Odlyzko Method [58]. To perform

one operation on the prime field �
p
 , one can first perform the primitive operation in

ℤ and them take the result modulo p. Since p ≤ 2q ∈ O(n) , each element of �
p
 fits

into one cell of the Word RAM model of computation. Thus, we can perform one

operation over �
p
 in constant time.

Let x1,… , x
q
 be pair-wise distinct elements from �

p
 . To compute an (k × n)

-matrix A
M

 as representation for M over �
p
 , we compose (column-wise) for each ele-

ment u ∈ P
i
 the vector �

i
∶=

(

x
0

i
x

1

i
… x

k−1

i

)T
 , where i ∈ [q] . That gives a running

time of O(k ⋅ n) operations over �
p
 , since we can compute �

i
 in O(k) operations over

�
p
.

It remains to show that A
M

 is a representation of M. Let X ⊆ U . If there is an

i ∈ [p] such that |X ∩ P
i
| > 1 , then the corresponding columns of A

M
 are linearly

dependent, because we have the vector �
i
 twice. Now we assume that for all i ∈ [q]

we have |X ∩ P
i
| ≤ 1 . Furthermore, if |X| > k , then we know that the correspond-

ing columns of A
M

 are linearly dependent, because A
M

 is an (k × n)-matrix. We can

observe that if |X| = k , then the corresponding columns in A
M

 form a Vandermonde

matrix, whose determinate is known to be non-zero. Hence, if |X| ≤ k , then the cor-

responding columns in A
M

 are linearly independent. Thus, A
M

 is a representation

of M. ◻

We now show a reduction from SHORT RESTLESS TEMPORAL PATH to INDEPENDENT

PATH using Lemmas 2, 3 and 7

Lemma 8 Given an instance (G, s, z, k,�) of SHORT RESTLESS TEMPORAL PATH, we

can compute in O(max{k,�} ⋅ |G|) time an instance (D, s, z, AM) of INDEPENDENT

PATH such that M has rank k + 1 , and (G, s, z, k,�) is a yes-instance if and only if

(D, s, z, AM) is a yes-instance, where one operation over the finite field of A
M

 takes

constant time.

Proof Let (G = (V , (Ei)i∈[�]), s, z, k,�) be an instance of SHORT RESTLESS TEMPORAL

PATH. We construct an instance (D, s, z, AM , k) of INDEPENDENT PATH in the following

way. Let digraph D = (V �
, E

�) be the �-(s, z)-expansion of G which can be computed,

by Lemma 2, in O(|G| ⋅ �) time such that V � ∈ O(|G|) . Observe that
⋃

v∈V
V
�(v) is a

partition of V ′ . Now, we construct a representation A
M

 (over a finite field where we

can perform one operation in constant time) of the matroid

2781

1 3

Algorithmica (2021) 83:2754–2802

in O(k ⋅ |G|) time by Lemma 7. Note that M is an (k + 1)-truncated partition matroid

and hence has rank k + 1 . This completes the construction and gives us an overall

running time of O(max{k,�} ⋅ |G|).

We now claim (G, s, z, k,�) is a yes-instance if and only if (D, s, z, AM) is a yes-

instance and contains an independent (s, z)-dipath of length at most k.

(⇐) : Let P be a �-restless temporal (s, z)-path of length k
′ ≤ k in G . Then, by

Lemma 3 there is an (s, z)-dipath P
′ of length k

′ such that for all v ∈ V it holds

that |V �(v) ∩ V(P�)| ≤ 1 . Since |V(P�)| = k� + 1 ≤ k + 1 , we know that V(P�) is an

independent set of M. Thus, P′ is a witness of length at most k for (D, s, z, AM) being

a yes-instance.

(⇒) : Let P′ be an (s, z)-dipath of length k′ ≤ k in D such that V(P�) is an independ-

ent set of M. Clearly, for v ∈ V it holds that |V �(v) ∩ V(P�)| ≤ 1 . Then, by Lemma 3,

there is a �-restless temporal (s, z)-path of length k′ in G. ◻

Proof of Theorem 3 (ii) Let I = (G = (V , (Ei)i∈[�]), s, z, k,�) be an instance of SHORT

RESTLESS TEMPORAL PATH.

To decide whether there is a witness of length k of I being a yes-instance, we

first use Lemma 8 to compute an instance I� = (D, s, z, AM) of INDEPENDENT PATH in

O(|G| ⋅ max{�, k}) time, where we can compute one operation over the field � of A
M

in constant time and the matroid M which is represented by A
M

 is of rank k + 1 . Note

that I′ is a yes-instance if and only if there is witness of length k for I being a yes-

instance. Second, we solve I′ by Theorem 5 in O(2�(k+1)
⋅ |G| ⋅ �) time.

Thus, we have an overall running time of 2O(k)
⋅ |G| ⋅ �. ◻

Moreover, from Lemma 8 it is intermediately clear that the lower-bounds of

Corollary 1 and Theorem 1 translate to INDEPENDENT PATH.

Corollary 3 INDEPENDENT PATH is NP-hard and unless the ETH fails there is no 2o(n)

-time algorithm for it, where n is the number of vertices.

Note that from Theorem 1 we can further deduce that there is not much hope for

fast or early restless temporal paths, that is, restless temporal path that have a small

duration or an early arrival time. The instance constructed in the reduction has life-

time � = 3 and hence the duration as well as the arrival time of any restless temporal

path in this instance is at most three. This implies that we presumably cannot find

fast or early restless temporal paths efficiently.

M =

(
V
�,
{

X ⊆ V
� || |X| ≤ k + 1 and ∀v ∈ V ∶ |X ∩ V

�(v)| ≤ 1
})

2782 Algorithmica (2021) 83:2754–2802

1 3

5 Computational Complexity Landscape for the Underlying Graph

In this section we investigate the parameterized computational complexity of REST-

LESS TEMPORAL PATH when parameterized by structural parameters of the underly-

ing graph. We start by observing that whenever a parametrization forbids path of

unbounded length, then we can use Theorem 3 to show fixed-parameter tractability.

For example, if we consider the vertex cover number vc↓ of the underlying graph,

then we can deduce that any path in the underlying graph and hence any restless

temporal path can have length at most 2vc↓ + 1 . Thus, by Theorem 3, we get fixed-

parameter tractability of RESTLESS TEMPORAL PATH when parameterized by the vertex

cover number of the underlying graph.

Observation 3 RESTLESS TEMPORAL PATH parameterized by the vertex cover number

vc↓ of the underlying graph is fixed-parameter tractable.

From a classification standpoint, we can improve this a little further by observ-

ing that the length of a path in the underlying graph can be bounded by 2O(td↓) [53],

where td↓ is the treedepth of the underlying graph.

Observation 4 RESTLESS TEMPORAL PATH parameterized by the treedepth td↓ of the

underlying graph is fixed-parameter tractable.

One of the few dark spots of the landscape is the feedback edge number8 of the

underlying graph which is resolved in the following way.

Theorem 7 RESTLESS TEMPORAL PATH can be solved in 2O(−∫)
⋅ |G| time, where −∫ is the

feedback edge number of the underlying graph.

By Corollary 1 we know that Theorem 7 is asymptotically optimal, unless ETH

fails. In a nutshell, our algorithm to prove Theorem 7 has the following five steps:

1. Exhaustively remove all degree-1 vertices from G↓ (except for s and z).

2. Compute a minimum-cardinality feedback edge set F of the graph G↓.

3. Compute a set P of O(−∫) many paths in G↓ − F such that every path in G↓ − F is

a concatenation of some paths in P.

4. “Guess” the feedback edges in F and paths in P of an (s, z)-path in G↓.

5. Verify whether the “guessed” (s, z)-path is a �-restless temporal (s, z)-path in G.

First, we show that we can safely remove all (except s and z) degree-one vertices

from the underlying graphs G↓.

8 For a given graph G = (V , E) a set F ⊆ E is a feedback edge set if G − F does not contain a cycle. The

feedback edge number of a graph G is the size of a minimum feedback edge set for G.

2783

1 3

Algorithmica (2021) 83:2754–2802

Reduction Rule 1 (Low Degree Rule) Let I = (G = (V , (Ei)i∈[�]), s, z,�) be an

instance of RESTLESS TEMPORAL PATH, G↓ be the underlying graph of G , v ∈ V ⧵ {s, z} ,

and deg
G↓
(v) ≤ 1 . Then, output (G − {v}, s, z,�).

Lemma 9 Reduction Rule 1 is safe and can be applied exhaustively in O(|G|) time.

Proof Let I = (G = (V , (Ei)i∈[�]), s, z,�) be an instance of RESTLESS TEMPORAL PATH,

For the safeness we can observe that a vertex v ∈ V ⧵ {s, z} with deg
G↓
(v) ≤ 1 cannot

be visited by any �-restless temporal (s, z)-path. To apply Reduction Rule 1 exhaus-

tively, we iterate once over the set of time edges to store for each vertex v ∈ V ⧵ {s, z}

its degree in a counter c
v
 . Afterwards, we collect all vertices of degree 0 in X and all

vertices of degree 1 in V
1
 . Now we iterate over each vertex v ∈ V

1
 , remove v from V

1
 ,

add v to X, decrement the counter c
u
 of its neighbor u. If c

u
 becomes 1 we add u to

V
1
 . Note that this procedure ends after O(|V|) time.

Finally, we iterate one last time over the temporal graph G to construct the tem-

poral graph G�
∶= G − X . The instance (G�

, s, z,�) of RESTLESS TEMPORAL PATH is the

resulting instance when we apply Reduction Rule 1 exhaustively on I. ◻

Next, we consider a static graph G with no degree-one or degree-zero vertices.

Let F be an minimum feedback edge set of G and let V
F
 be the endpoints of the

edges in F, that is V
F
= {v ∈ e ∣ e ∈ F} . Let V≥3 be the set of all vertices with a

degree greater than two in G − F . We can partition the graph G − F into a set P of

V
F
∪ V

≥3-connecting paths, that are, all paths in G − F who start and end in V
F
∪ V

≥3

and have no internal vertices in that set of vertices. Note that all degree-one vertices

of G − F are in V
F
 . Hence, the graph G − F can be partitioned into V

F
∪ V

≥3-con-

necting paths. We can show that |P| ∈ O(−∫).

Lemma 10 Let G be a graph with no degree-one vertices and F be an minimum feed-

back edge set of G. The set P of V
F
∪ V

≥3-connecting paths of G − F has size O(|F|)

and can be computed in O(|G|) time.

Proof We can compute the set P in O(|G|) time as follows. We start with P = �

and pick any leaf v ∈ V(G − F) of degree one. Recall that v ∈ V
F
 and that G − F

is cycle-free. There is at most one vertex w ∈ (V≥3 ∪ V
F
) ⧵ {v} such that there is

a path P between v and w which does not contain internal vertices from V≥3
∪ V

F
 .

Note that also P is unique. We add P to P and remove V(P) ⧵ {w} from the graph.

Now we repeat this procedure with the next leaf of degree one until the graph has no

edges.

It is easy to verify that the number of paths is bounded by the number of verti-

ces in V≥3
∪ V

F
 . We know that |V

F
| is upper-bounded by 2|F|. It remains to show

that |V≥3| is in O(|F|).

2784 Algorithmica (2021) 83:2754–2802

1 3

As shown by Bentert et al. [9, Lemma 2], the number of vertices with degree

greater or equal to three is bounded by 3|F| in a graph with no degree-one vertices.

Hence, the number of V
F
∪ V

≥3-connecting paths is bounded by 5|F|. ◻

With Lemmas 9 and 10 we can prove Theorem 7.

Proof of Theorem 7 Let I = (G = (V , (Ei)i∈[�]), s, z,�) be an instance of RESTLESS

TEMPORAL PATH and G↓ be the underlying graph of G . Without loss of generality, we

can assume that all vertices in V(G↓) ⧵ {s, z} have a degree greater than one. If this is

initially not the case, then we safely remove all degree-one vertices of the underly-

ing graph exhaustively in O(|G|) time by Lemma 9.

First we compute an minimum feedback edge set F of G↓ in O(|G↓|) time. Then,

we compute the set P of VF ∪ V≥3 ∪ {s, z}-connecting paths of G↓ − F in O(|G↓|)

time by Lemma 10. Note that the additional vertices s and z can increase the size of

P by at most four. Now, for any subset of feedback edges F′ ⊆ F and P′
⊆ P , we

check whether F� ∪ E(P�) form an (s, z)-path P in G↓ where E(P�) ∶=
⋃

P�∈P
� E(P�) .

This can be decided in O(|G↓|) time by a simple breadth-first search on G↓ start-

ing at the vertex s and using only edges in F� ∪ E(P�) . Last, we verify whether P

forms a �-restless temporal (s, z)-path in G . Therefore, we consider the temporal

graph G
P
= (V , (E

i
∩ E(P))

i∈[�]) which has P as underlying graph. Note that we can

construct G
P
 in O(|G|) time, by iterating once over the set of time edges of G . By

Lemma 1 we can decide in O(|G
P
|) time whether G

P
 has a �-restless temporal (s, z)

-path.

It is easy to check that the algorithm described above runs in 2O(|F|)|G| time.

Correctness. It remains to show the correctness of the algorithm.

(⇒) : If our algorithm outputs yes, then there is a �-restless temporal (s, z)-path

in G
P
 . The temporal graph G

P
 contains a subset of the time edges of G , hence

the �-restless temporal (s, z)-path in G
P
 is also present in G . It follows that I is a

yes-instance.

(⇐) : Assume I is a yes-instance. Then there exists a �-restless temporal (s, z)-

path in the temporal graph G . Let P =
(

(v0, v1, t1),… , (v
k−1, v

k
, t

k
)
)

 be such a path.

Hence, P
� =

(

{v0, v1},… , {v
n−1, v

n
}
)

 is an (s, z)-path in the underlying graph G↓ .

Let F� = F ∩ E(P�) . If we remove the edges in F′ from P′ then what remains is a col-

lection of paths where each path is a concatenation of paths in P . Hence, there exists

a subset P′
⊆ P such that F� ∪ E(P�) = E(P) . Thus, we will find P′ in G↓ and, by

Lemma 1, we will correctly verify that this P′ forms a �-restless temporal (s, z)-path

in G. ◻

The results from Sects. 3 to 5 provide a good picture of the parameterized

complexity landscape for RESTLESS TEMPORAL PATH, meaning that for most of the

2785

1 3

Algorithmica (2021) 83:2754–2802

widely known (static) graph parameters we know whether the problem is in FPT

or W[1]-hard or para-NP-hard, see Fig. 2.

Our understanding of the class of temporal graphs where we can solve REST-

LESS TEMPORAL PATH efficiently narrows down to the following points. We can

check efficiently whether there is a �-restless temporal (s, z)-path P in temporal

graph G if

1. there is a bounded number of (s, z)-path in G↓ (cf. Theorem 7 and Lemma 1),

2. there is a bound on the length of P (cf. Theorem 3 and Observations 4 and 3).

Apart from that we established with Theorems 1, 2 and Corollary 2 hardness

results for temporal graphs having restricted underlying graphs, see Fig. 2.

Finally, we show that we presumably cannot expect to obtain polynomial ker-

nels for all parameters considered so far and most structural parameters of the

underlying graph.

Proposition 1 RESTLESS TEMPORAL PATH parameterized by the number n of vertices

does not admit a polynomial kernel for all � ≥ 1 unless NP ⊆ coNP/poly.

We employ the OR-cross-composition framework by Bodlaender, Jansen, and

Kratsch [15] to refute the existence of a polynomial kernel for a parameterized

problem under the assumption that NP ⊈ coNP/poly, the negation of which would

cause a collapse of the polynomial-time hierarchy to the third level. In order to

formally introduce the framework, we need some definitions.

An equivalence relation R on the instances of some problem L is a polynomial

equivalence relation if

1. one can decide for each two instances in time polynomial in their sizes whether

they belong to the same equivalence class, and

2. for each finite set S of instances, R partitions the set into at most (max
x∈S

|x|)O(1)

equivalence classes.

Using this, we can now define OR-cross-compositions.

Definition 4 An OR-cross-composition of a problem L ⊆ Σ
∗ into a parameterized

problem P (with respect to a polynomial equivalence relation R on the instances

of L) is an algorithm that takes n R-equivalent instances x1,… , x
n
 of L and con-

structs in time polynomial in
∑n

i=1
�x

i
� an instance (x, k) of P such that

1. k is polynomially upper-bounded in max1≤i≤n
|x

i
| + log(n) and

2. (x, k) is a yes-instance of P if and only if there is an i ∈ [n] such that x
i
 is a yes-

instance of L.

If an NP-hard problem L OR-cross-composes into a parameterized problem P,

then P does not admit a polynomial kernel, unless NP ⊆ coNP/poly [15].

2786 Algorithmica (2021) 83:2754–2802

1 3

Proof of Proposition 1 We provide an OR-cross-composition from RESTLESS TEMPO-

RAL PATH onto itself. We define an equivalence relation R as follows: Two instances

(G = (V , (Ei)i∈[�]), s, z,�) and (G� = (V �
, (E�

i
)i∈[��]), s�, z�,��) are equivalent under R if

and only if |V| = |V �| and � = �
� . Clearly, R is a polynomial equivalence relation.

Now let (G1 = (V1, (E1,i)i∈[�1]
), s1, z1,�),… , (Gn = (Vn, (En,i)i∈[�n]

), sn, zn,�) be

R-equivalent instances of RESTLESS TEMPORAL PATH. We construct a temporal graph

G
⋆ = (V⋆

, (E⋆

i
)
i∈[�⋆]) as follows. Let |V⋆| = |V

1
| and s⋆, z⋆ ∈ V⋆ . We identify all

vertices s
i
 with i ∈ [n] with each other and with s⋆ , that is, s⋆ = s

1
= … = s

n
 . Anal-

ogously, we identify all vertices zi with i ∈ [n] with each other and with z⋆ , that is,

z
⋆
= z

1
= … = z

n
 . We arbitrarily identify the remaining vertices of the instances

with the remaining vertices from V
⋆ , that is, let

V⋆ ⧵ {s⋆, z⋆} = V1 ⧵ {s1, z1} = … = Vn ⧵ {sn, zn} . Now let

E
⋆

1
= E1,1, E

⋆

2
= E1,2,… , E

⋆

�1

= E1,�1
 . Intuitively, the first instance

(G1 = (V1, (E1,i)i∈[�1]
) essentially forms the first �

1
 layers of G⋆ . Then we introduce

� + 1 trivial layers, that is, E⋆

�
1
+1

= E
⋆

�
1
+2

= … = E
⋆

�
1
+�+1

= � . Then we continue in

the same fashion with the second instance and so on. We have that

�
⋆ =

∑

i∈[n] �i
+ (n − 1) ⋅ (� + 1).

This instance can be constructed in polynomial time and the number of vertices

is the same as the vertices in the input instances, hence |V⋆| is polynomially upper-

bounded by the maximum size of an input instance. Furthermore, it is easy to check

that G⋆ contains a �-restless temporal (s⋆, z
⋆)-path if and only if there is an i ∈ [n]

such that G
i
 contains a �-restless temporal (si, zi)-path. This follows from the fact that

all instances are separated in time by � + 1 trivial layers, hence no �-restless tempo-

ral (s⋆, z
⋆)-path can use time edges from different original instances. Since RESTLESS

TEMPORAL PATH is NP-hard (Theorem 1) the result follows. ◻

6 Timed Feedback Vertex Number

In this section we introduce a new temporal version of the well-studied “feed-

back vertex number”-parameter. Recall that by Theorem 2 we know that RESTLESS

TEMPORAL PATH is W[1] -hard when parameterized by the feedback vertex num-

ber of the underlying graph. This motivates studying larger parameters with the

goal to obtain tractability results. We propose a new parameter called timed feed-

back vertex number which, intuitively, quantifies the number of vertex appear-

ances that need to be removed from a temporal graph such that its underlying

graph becomes cycle-free. Note that having vertex appearances in the deletion

set allows us to “guess” when we want to enter and leave the deletion set with a

�-restless temporal (s, z)-path in addition to guessing in which order the vertex

appearances are visited.

We remark that there also have been studies of removing (time) edges from

temporal graph to destroy temporal cycles [36], that is, temporal paths from a

2787

1 3

Algorithmica (2021) 83:2754–2802

vertex back to itself. Similarly, one also could remove vertex appearances to

destroy temporal cycles, resulting in a parameter that is smaller than the timed

feedback vertex number and incomparable to the feedback vertex number of the

underlying graph. Note that the mentioned parameters aiming at destroying tem-

poral cycles are unbounded in our reductions. We leave the parameterized com-

plexity of RESTLESS TEMPORAL PATH with respect to those parameters open for

future research.

Before defining timed feedback vertex number formally, we introduce nota-

tion for removing vertex appearances from a temporal graph. Intuitively, when

we remove a vertex appearance from a temporal graph, we do not change

its vertex set, but remove all time edges that have the removed vertex appear-

ance as an endpoint. Let G = (V , (E
i
)
i∈[�]) be a temporal graph and X ⊆ V × [�]

a set of vertex appearances. Then we write G − X ∶= (V , (E�
i
)
i∈[�]) , where

E
�
i
= E

i
⧵ {e ∈ E

i
∣ ∃(v, i) ∈ X with v ∈ e} . Formally, the timed feedback vertex

number is defined as follows.

Definition 5 (Timed Feedback Vertex Number) Let G = (V , (E
i
)
i∈[�]) be a temporal

graph. A timed feedback vertex set of G is a set X ⊆ V × [�] of vertex appearances

such that G↓(G − X) is cycle-free. The timed feedback vertex number of a temporal

graph G is the minimum cardinality of a timed feedback vertex set of G.

We can observe that for any temporal graph the timed feedback vertex number

is as least as large as the feedback vertex number of the underlying graph and

upper-bounded by the product of the feedback vertex number of the underlying

graph and the lifetime. We further remark that the timed feedback vertex number

is invariant under reordering the layers. At the end of this section we show how a

timed feedback vertex set can be computed efficiently.

The main result of this section is that RESTLESS TEMPORAL PATH is fixed-param-

eter tractable when parameterized by the timed feedback vertex number of the

input temporal graph. To this end, we show the following.

Theorem 8 Given a timed feedback vertex set X of size x for a temporal

graph G = (V , (E
i
)
i∈[�]) , we can decide in O(6x

x! ⋅ max{|G|3, |V|4x
2}) time, whether

there is a �-restless temporal (s, z)-path in G , where s, z ∈ V , � ∈ ℕ.

The algorithm we present to show Theorem 8 solves CHORDAL MULTICOLORED

INDEPENDENT SET, where given a chordal graph9 G = (V , E) and a vertex coloring

c ∶ V → [k] , we are asked to decide whether G contains an independent set of size

k that contains exactly one vertex of each color. This problem is known to be NP-

complete [13, Lemma 2] and solvable in O(3k
⋅ |V|2) time [10, Proposition 5.6]. Our

algorithm for RESTLESS TEMPORAL PATH roughly follows these computation steps:

9 A graph is chordal if it does not contain induced cycles of length four or larger.

2788 Algorithmica (2021) 83:2754–2802

1 3

1. “Guess” which of and in which order the vertex appearances from the timed

feedback vertex set appear in the �-restless temporal (s, z)-path.

2. Compute the path segments between two timed feedback vertex set vertices by

solving a CHORDAL MULTICOLORED INDEPENDENT SET instance.

We give a precise description of our algorithm in Algorithm 6.1. Here, a partition

O ⊎ I ⊎ U of a set of vertex appearances X is valid if we have v ≠ v
′ , for all distinct

(v, t), (v�, t
�) ∈ I and for all distinct (v, t), (v�, t

�) ∈ O . A vertex appearance (v, t) ∈ I

signals that a �-restless temporal (s, z)-path arrives in v at time t and (v, t) ∈ O sig-

nals that it departs from v at time t. Let M ∶= O ∪ I ∪ ({s, z} × {⊥}) . We call a

linear ordering (v0, t0) ≤M
⋯ ≤

M
(v

x+1, t
x+1) of M a �-ordering if (v0, t0) = (s,⊥) ,

(v
x+1, t

x+1) = (t,⊥) , ti ≤ tj if and only if i < j ∈ [x] , and for all v ∈ V with (v, t
i
) ∈ I

and (v, tj) ∈ O it holds that i + 1 = j and ti ≤ tj ≤ ti + � . Moreover, observe that for

a vertex appearance (v, t) ∈ I , the �-restless temporal (s, z)-path has to depart from

v not later than t + � and for vertex appearance (v, t) ∈ O , it has to arrive in v not

earlier than t − � . To this end, we define the notion of a valid path between two con-

secutive vertex appearances:

Definition 6 Let O ⊎ I ⊎ U be a valid partition of X, and let

(vi, ti), (vi+1, ti+1) ∈ I ∪ O ∪ ({s, z} × {⊥}) with v
i
≠ v

i+1
 , and P a �-restless temporal

(v
i
, v

i+1)-path with departure time t
d
 and arrival time t

a
 . Then P is (t

i
, t

i+1, I, O)-valid

if the following holds true

2789

1 3

Algorithmica (2021) 83:2754–2802

 (i) (v
i
, t

i
) ∈ I ⟹ t

i
≤ t

d
≤ t

i
+ �,

 (ii) (v
i
, t

i
) ∈ O ⟹ t

d
= t

i
,

 (iii) (v
i+1, t

i+1) ∈ I ⟹ t
a
= t

i+1 , and

 (iv) (v
i+1, t

i+1) ∈ O ⟹ t
a
≤ t

i+1 ≤ t
a
+ �.

If it is clear from context, then we write (t
i
, t

i+1)-valid.

Note that if there exists a (t
i
, t

i+1)-valid �-restless temporal (v
i
, v

i+1)-path P
i+1

 and

(t
i+1, t

i+2)-valid �-restless temporal (v
i+1, v

i+2)-path P
i+2

 , then we can “glue” them

together and get a (t
i
, t

i+2)-valid �-restless (v
i
, v

i+2)-walk (not necessarily a path).

Thus if there exist a valid �-restless temporal path between all consecutive pairs in a

�-ordering which are pairwise vertex disjoint (except for the endpoints), then there

exist a �-restless temporal (s, z)-path.

The idea of Algorithm 6.1 is that a �-restless temporal (s, z)-path P induces a

valid partition of the timed feedback vertex set X such that (v, t) ∈ I if P arrives v

at time t, (v, t) ∈ O if P leaves v at time t, or otherwise (v, t) ∈ U . Furthermore, if

we order M ∶= I ∪ O ∪ ({s, z} × {⊥}) according to the traversal of P (from s to z),

then this is a �-ordering such that a subpath P′ of P corresponding to consecutive

(v, t), (v�, t
�) ∈ M with v ≠ v

′ is (t, t
�
, I, O)-valid in some temporal graph T′ of Line

(9), see Fig. 6.

The algorithm tries all possible partitions of X and all corresponding �-order-

ings. For each of these, we store the vertices V(P
i
) ∩ V(T) in the family P

i
 , for all

valid �-restless temporal (v
i−1, v

i
)-path, where (v

i−1, t), (v
i
, t

�) are two consecutive

vertex appearances in the �-ordering. Here, we assume without loss of general-

ity that no vertex appearance of s, z is in X. More specifically, for each two con-

secutive vertex appearances (v
i−1, t), (v

i
, t

�) in the �-ordering our algorithm iterates

over all pairs of time edges leading from (v
i−1, t) into the “forest” and from the

“forest” back to (v
i
, t

�) . Since this fixes the entry points into the forest in each

iteration, any two (t
i
, t

i+1)-valid �-restless temporal (v
i
, v

i+1)-paths present in the

iteration use the same vertices of the underlying graph. Hence it suffices to check

whether one exists. Note that, if we have |P
i
| ≥ 0 for all i ∈ {1,… , x + 1} , then

(a)

(b)

Fig. 6 Illustration of Algorithm 6.1, where (a) depicts the set ({s, z} × {⊥}) ∪ I ∪ O and (b) sketches the

underlying graph of the temporal graph T which is a forest. The back solid dots correspond to one or

two vertex appearances. The �-restless temporal (s, z)-path is the red thick path which uses valid (Defini-

tion 6) �-restless temporal (s, v1) - and (v1, v2)-paths over T

2790 Algorithmica (2021) 83:2754–2802

1 3

there is a �-restless (s, z)-walk in G . Hence, to find a �-restless temporal (s, z)-

path, we have to find x + 1 pair-wise disjoint sets P
(1)

1
,… , P

(x+1)

x+1
 such that P

i
∈ P

i
 .

Here, we observe that the intersection graph in Line (12) is chordal [35] and use

an algorithm of Bentert et al. [10] for CHORDAL MULTICOLORED INDEPENDENT SET as

a subroutine to find such pairwise-disjoint P
(1)

1
,… , P

(x+1)

x+1
.

Lemma 11 Algorithm 6.1 runs in O(6x
x!x2

⋅ max{|G|3, |V|4}) time, if x = |X| ≤ |V|.

Proof Let (G, s, z, X,�) be the input of Algorithm 6.1 and x ∶= |X| . There are

at most 3
x many iterations of the loop in Line (1) and we can check in O(|G|)

time whether a given partition O ⊎ I ⊎ U = X is valid. Since there are O(x!)

are many �-orderings of I ⊎ O ⊎ ({s, z} × {⊥}) , the number of iterations of the

loop in Line (4) is also bounded by O(x!). Furthermore, we can check in O(|G|)

time whether a given permutation ((v
i
, t

i
))
|U⊎I|

i=1
 of U ⊎ I is a �-ordering where

s = v0, z = v|U⊎I|+1, t0 = t|U⊎I|+1 = ⊥ . Note that during one iteration of the loop in

Line (4) we consider an time edge of G at most two times as e
1
 and two times as e

2
 in

Line (8). Hence, we have O(|G|2) many iteration of the loop in Line (8), during one

iteration of the loop in Line (4). Observe that Lemma 1 implies that we can compute

a �-restless temporal (s, z)-paths in linear time if the underlying graph is a forest.

Moreover, each �-restless temporal (v
i−1, v

i
)-path in T′ departs at time t and arrives

at t′ as e
1
 and e

2
 are in any temporal path from v

i−1
 and v

i
 . Hence, Line (11) can

be computed in O(|G|) time. Thus, we can compute Lines (5)–(11) in O(|G|3) time.

Observe that each set in P
i
 is either an empty set or contains the vertices of a path in

the forest G↓(T) , for all i ∈ [x] . Hence, the intersection graph G has at most |V|2 ⋅ x

vertices and is chordal. Thus, Line (14) can be computed in O(3x|V|4 ⋅ x
2) time with

an algorithm of Bentert et at. [10, Proposition 5.6]. This gives an overall running

time of O(6x
x! ⋅ max{|G|3, |V|4x

2}). ◻

Lemma 12 Algorithm 6.1 is correct.

Proof Let G = (V , (E
i
)
i∈[�]) be a temporal graph with s, z ∈ V and let X be a timed

feedback vertex set of G . We assume without loss of generality that s and z have no

vertex appearance in X, that is, s, z ∉ {v ∣ (v, t) ∈ X} . If this is not the case, then we

can add a new vertex ŝ to G and for each edge {s, v} ∈ E
i
 , we add {ŝ, s} to E

i
 . It is

clear that there exists a �-restless temporal (s, z)-path P if and only if there exists a �

-restless temporal (ŝ, z)-path P̂ . The set X remains a time feedback vertex set because

ŝ has degree one in the underlying graph G↓ . Hence, we can now ask for a �-restless

temporal (ŝ, z)-path in G . The same holds for the vertex z by a symmetric argument.

We show now that Algorithm 6.1 outputs yes if and only if there is a �-restless

temporal (s, z)-path in G.

(⇒) : We claim that if we find a multicolored independent set in (G, c), then there

is a �-restless temporal (s, z)-path in G = (V , (E
i
)
i∈[�]) . Let D = {P

(1)

1
,… , P

(x+1)

x+1
} be

such an multicolored independent set, let (v0, t0) ≤ ⋯ ≤ (v
x+1, t

x+1) be the respective

2791

1 3

Algorithmica (2021) 83:2754–2802

�-ordering when the set D was found, and let I ⊎ O ⊎ X be the valid partition of X.

Hence, P
i
 represents a (t

i−1, t
i
, I, O)-valid �-restless temporal (v

i−1, v
i
)-path. Due to D

being an independent set, it holds that P
(i)

i
∩ P

(j)

j
= � for all i ≠ j ∈ [x + 1] . For all

i ∈ [x + 1] it further holds that if (v
i
, t

i
) ∈ I , then P

i−1
 arrives in v

i
 at time t

i
 and P

i

departs from v
i
 not later than t with t

i
≤ t ≤ t

i
+ � . If (v

i
, t

i
) ∈ O , then P

i−1
 arrives in

v
i
 at time t with t ≤ t

i
≤ t + � and P

i
 departs from v

i
 at time t

i
 . Hence, P

i−1
⋅ P

i
 is a �

-restless temporal (v
i−1, v

i+1)-path in G . Consequently, P
1
⋯P

x+1
 is a �-restless tem-

poral (s, z)-path in G.

(⇐) : Assume G contains a �-restless temporal (s, z)-path P, then let I ⊎ O ⊎ U = X

be the partition of X that is induced by P. That is, for all (v, t) ∈ I there exists a time

edge (w, v, t) in P, for all (v, t) ∈ O there exists a time edge (v, w, t) in P, and for all

(v, t) ∈ U there exist no time edge (v, w, t) or (w, v, t) in P. The partition I ⊎ O ⊎ U

is a valid partition. Otherwise there exist two distinct vertex appearances

(v, t), (v, t
�) ∈ O such that there exist two time edges (w, v, t), (u, v, t

�) in P indicating

that P visits the vertex v twice. The same argument works for two vertex appear-

ances of the same vertex in I. Let (v1, t1) ≤ ⋯ ≤ (v
x
, t

x
) be the vertex appearances in

the order in which they are visited by P. It holds that t
1
≤ … ≤ t

x
 and for i < j ∈ [x]

if vi = vj , then there cannot exist a vertex appearance between v
i
 and vj (otherwise P

would visit v
i
 twice). Thus j = i + 1 , (v

i
, t

i
) ∈ I , (vj, tj) ∈ O , and ti ≤ tj ≤ ti + � . It

follows that (s,⊥) = (v0, t0) ≤ (v1, t1) ≤ ⋯ ≤ (v
x
, t

x
) ≤ (v

x+1, t
x+1) = (z,⊥) is a �

-ordering of I ⊎ O ⊎ ({s, z} × {⊥}) . Let P
i
 be the subpath of P starting in vertex v

i−1

and ending in v
i
 for i ∈ [x + 1] . If v

i−1
= v

i
 , then it holds that P

i
 is empty and

P
i
= {�} (Line (7)). Otherwise, let Pi = (e

(1)

i
= (vi−1, v

(1)

i
, t
(1)

i
),… , e

(pi)

i
= (v

(pi)

i
, vi, t

(pi)

i
)) . Note

that if (v
i−1, t

i−1) ∈ O , then t
(1)

i
= t

i−1
 ; if (v

i−1, t
i−1) ∈ I , then t

i−1
≤ t

(1)

i
≤ t

i−1
+ � ; if

(v
i
, t

i
) ∈ I , then t

(pi)

i
= ti ; and if (v

i
, t

i
) ∈ O , then t

(pi)

i
≤ ti ≤ t

(pi)

i
+ � . Thus path P

i
 is a

(t
i−1, t

i
, I, O)-valid path in T + {e

(1)

i
, e

(pi)

i
} , and hence V(P

i
) ⧵ {v

i−1, v
i
} ∈ P

i
 (Line (11)).

Let Qi = V(Pi) ⧵ {vi−1, vi} . It holds that for i ≠ j ∈ [x + 1] the paths P
i
 and Pj can

intersect only in their endpoints because P does not visit a vertex twice and

thus Qi ∩ Qj = � . For each P
i
 there exists a vertex P

(i)

i
 in the intersection graph G

representing with c(P
(i)

i
) = i . For i, j ∈ [x + 1] , there exist no edge {P

(i)

i
, P

(j)

j
} in G

because Qi ∩ Qj = � . Hence, G has a multicolored independent set D = {P
(1)

1
,… , P

(x+1)

x+1
}

of size x + 1 and Algorithm 6.1 outputs yes. ◻

To conclude from Theorem 8 the fixed-parameter tractability of RESTLESS TEM-

PORAL PATH parameterized the timed feedback vertex number, we need to compute a

timed feedback vertex set efficiently. This is clearly NP-hard, since it generalizes the

NP-complete FEEDBACK VERTEX SET problem [43]. However, we establish the follow-

ing possibilities to compute a FEEDBACK VERTEX SET.

Theorem 9 A minimum timed feedback vertex set of temporal graph G can be com-

puted in 4x
⋅ |G|O(1) time, where x is the timed feedback vertex number of G . Further-

more, there is a polynomial-time 8-approximation for timed feedback vertex set.

2792 Algorithmica (2021) 83:2754–2802

1 3

To prove Proposition 9, we first show that a timed feedback vertex set of a tempo-

ral graph can be computed via the following problem.

Then the 8-approximation for timed feedback vertex set follows from the

8-approximation of Even et al. [27] for WEIGHTED SUBSET FEEDBACK SET.10 Now we

see two ways in the literature to deduce a FPT-algorithm for timed feedback ver-

tex set. One is via a reduction from SFVS-UV to the more general problem GROUP

SUBSET FEEDBACK VERTEX SET. The other is through Cygan et al. [22] who claim that

SFVS-UV is equivalent (under parameterized reductions for k) to SUBSET FEEDBACK

VERTEX SET. The latter is SFVS-UV where V∞ = � . While the arguments of Cygan

et al. [22] only work if V∞ ∩ T = � , we here provide the missing arguments to show

that the statement itself is true and hence fill a gap in the literature.

We start with the reduction to SFVS-UV.

Lemma 13 Given a temporal graph G and an integer x ∈ ℕ, we can construct in

O(|G| + |V|�2) time an instance I = (G, V
∞

, T , x) of SFVS-UV such that I is a yes-

instance if and only if G has a timed feedback vertex set of size at most x.

Construction 1 Given a temporal graph G = (V , (E
i
)
i∈[�]) with underlying graph

G↓ = (V , E) , we construct the instance I = (G = (V �
, E

�), V
∞

, T , x) of SUBSET FEED-

BACK VERTEX SET WITH UNDELETABLE VERTICES, where V
�
∶=

⋃

v∈V
V

v
∪
⋃

e∈E
∪V

e

and E� ∶=
⋃

v∈V
E

v
∪
⋃

e∈E
E

e
∪
⋃

t∈[�]

⋃

e∈E
t

E(e,t) . Here,

Finally we set V∞
∶=

⋃

e∈E
∪V

e
 . Consider Fig. 7 for an example. ⧫

∀v ∈ V ∶ Vv ∶= {vi ∣ i ∈ [�], v ∈ e, e ∈ Ei},

∀e = {u, w} ∈ E ∶ Ve ∶= {e(u), e(T), e(w)},

T ∶= {e(T) ∣ e = {u, w} ∈ E},

∀v ∈ V ∶ Ev ∶= {{vi, vj} ∣ vi, vj ∈ Vv, vi ≠ vj},

∀e = {u, w} ∈ E ∶ Ee ∶= {{e(u), e(T)}, {e(T), e(w)}}, and

∀t ∈ [�],∀e = {u, w} ∈ Et ∶ E(e,t) ∶= {{e(u), ut}, {wt, e(w)} ∣ ut ∈ Vu, wt ∈ Vw}.

10 There is a straightforward reduction from SFVS-UV to WEIGHTED SUBSET FEEDBACK SET using infinite

weights.

2793

1 3

Algorithmica (2021) 83:2754–2802

Proof of Lemma 13 Let G = (V , E1,… , E
�
) be a temporal graph, x ∈ ℕ , and

I = (G, V
∞

, T , x) be the resulting instance from Construction 1. It is easy to check

that Construction 1 can be computed in O(|G| + |V|�2) time.

We now claim that there is a timed feedback vertex set X of size at most x in G

if and only if there is a subset feedback vertex X of size at most x in G such that

X ∩ V
∞ = �.

(⇒) : Let X be a timed feed back vertex for G . Then, set Y ∶= {v
t
∈ V

v
∣ (v, t) ∈ X} .

Hence, |Y| ≤ x and Y ∩ V
∞ = � . We claim that Y is a subset feedback vertex set for

I. Assume towards a contradiction that there is a simple cycle C in G − Y which

contains a vertex of T. Furthermore, we assume without loss of generality that there

is no shorter cycle in G − Y which contains a vertex of T. Observe that this implies

that C does not visit three distinct vertices v
a
, v

b
, v

c
∈ V

v
 , for any v ∈ V , because

otherwise there is a shorter cycle using one of the edges {v
a
, v

b
} , {v

a
, v

c
} or {v

c
, v

b
}

in E
v
 . Moreover if C visits two distinct vertices v

a
, v

b
∈ V

v
 , then {v

a
, v

b
} ∈ E

v
 is part

of C, for all v ∈ V , because otherwise there is a shorter cycle using the edge {v
a
, v

b
} .

Furthermore, for all edge e ∈ E we have that V
e
⊆ V(C) or V

e
∩ V(C) = � , because

G[V
e
] induces a P

3
 and hence using only an endpoint of that P

3
 would imply that

C visits two vertices v
a
, v

b
∈ V

v
 without the edge {v

a
, v

b
} , for some v ∈ V . Since T

only contains the middle vertex e(T) ∈ E
e
 of the P

3
 induced by G[V

e
] , we can observe

that C is a subdivision of a cycle in G↓(G − X) which contradicts that X is a timed

feedback vertex set for G.

(⇐) : Let Y ⊆ (V � ⧵ V
∞) be of size at most x such that no simple cycle in G�

− X

which contains a vertex in T. We set X ∶= {(v, t) ∣ v
t
∈
⋃

u∈V
V

u
∩ Y} . Hence, X is

of size at most x. We claim that X is a timed feedback vertex set for G . Assume

towards a contradiction that this is not the case and there is a cycle C in G↓(G − X) .

We now build a cycle in G − Y containing a vertex from T. Note that for each edge

e used in C none of the vertices in V
e
 are in Y, otherwise V∞ ∩ Y ≠ � . Hence, set

V
C
∶=

⋃

e∈E(C)
E

e
 , where E(C) is the edge set of C. Since any two incident edges

Fig. 7 An illustration of Construction 1 for a temporal graph G (left) to graph G (right). The set V
u
 in G

of a vertex u in G is depicted by a large circle. The vertices in V
e
 of an edge e in the underlying graph of G

are filled. The vertices in T are squared (red)

2794 Algorithmica (2021) 83:2754–2802

1 3

e1, e2 ∈ E(C) are in the underlying graph of G − X , we know that there are t1, t2 ∈ [�]

such that (e1, t1) and (e2, t2) are time edges of G − X . Hence, for two incident edges

e1, e2 ∈ E(C) with {v} = e
1
∩ e

2
 we pick t1, t2 ∈ [�] such that (e1, t1) and (e2, t2) are

time edges of G − X add v
t1

, v
t2
∈ V

v
 to V

C
 . Observe that G[V

C
] contains a cycle and

that V
C
∩ T ≠ � . Since we constructed V

C
 from a cycle in the underlying graph of

G − X we have V
C
∩ Y = � . This is a contradiction. ◻

Now we can use the polynomial-time 8-approximation of Even et al. [27] for

WEIGHTED SUBSET FEEDBACK VERTEX SET and Lemma 13 to conclude the following.11

Corollary 4 There is a polynomial-time 8-approximation for timed feedback vertex

set.

In the remainder of this section we prove the following.

Lemma 14 Given an instance I = (G, V∞
, T , k) of SUBSET FEEDBACK VERTEX SET

WITH UNDELETABLE VERTICES we can construct in O(k2(|V| + |E|)) time an instance

I� = (G, T �
, k�) of SUBSET FEEDBACK VERTEX SET with k

′ ≤ k such that I is a yes-

instance if and only if I′ is a yes-instance.

Note that the running time of the algorithm behind Lemma 14 depends only

linearly on the size of the graph. The proof of Lemma 14 is deferred to the end

of this section. First, we introduce two data reductions rules and then perform the

reduction behind Lemma 14 in two steps. We use these data reduction rules to get

an equivalent instance where G[T ∩ V
∞] is an independent set. We start by detect-

ing some no-instances.

Reduction Rule 2 Let I = (G, V∞
, T , k) be an instance of SUBSET FEEDBACK VER-

TEX SET WITH UNDELETABLE VERTICES such that there is a vertex u and a simple

cycle C intersecting T where V(C) ⧵ (T ∩ V
∞) ⊆ {u} ⊆ V

∞ . Then output a trivial

no-instance.

We now show that we can detect in linear-time whether Reduction Rule 2 is

applicable and that it is safe. The latter means that the application of Reduc-

tion Rule 2 does not turn a yes-instance into a no-instance or vice versa.

Lemma 15 Reduction Rule 2 is safe and can be applied in linear time.

Proof Since C is a witness that I is a no-instance, Reduction Rule 2 is safe. We check

whether there is cycle C such that V(C) ⧵ (T ∩ V
∞) = � by simply checking whether

G[T ∩ V
∞] is a forest. Assume that G[T ∩ V

∞] is a forest, otherwise we are done

and output a trivial no-instance. First, we partition V(G[T ∩ V∞]) = Q
1
⊎⋯ ⊎ Qc

11 Here, vertices get weight ∞ if there are undeletable, and one otherwise.

2795

1 3

Algorithmica (2021) 83:2754–2802

such that Qi is a maximal connected component of G[T ∩ V
∞] . Clearly, this can be

done in linear time. For each connected component Qi of G[T ∩ V
∞] we first unmark

all vertices in V ⧵ (T ∩ V
∞) . Then we iterate over all vertices v ∈ Qi and mark all

vertices in N
G
(v) ∩ (V∞ ⧵ T) . If we find a vertex w ∈ Qi such that there is a ver-

tex u ∈ N
G
(w) ∩ (V∞ ⧵ T) which is already marked, then the path from v to w in Qi

together with u is a cycle C where V(C) ⧵ (T ∩ V
∞) ⊆ {u} ⊆ V

∞ . Hence, we output

a trivial no-instance in this case. Moreover, if there is some simple cycle C where

V(C) ⧵ (T ∩ V
∞) ⊆ {u} ⊆ V

∞ , then all vertices V(C) ⧵ {u} belong to the same con-

nected component of G[T ∩ V
∞] . Thus, the above described procedure will find C.

A simple application of the Handshaking Lemma shows that this procedure ends

after linear time. ◻

The purpose of the next data reduction rule is to merge undeletable terminal

vertices which do share an edge.

Reduction Rule 3 Let I = (G, V∞
, T , k) be an instance of SUB-

SET FEEDBACK VERTEX SET WITH UNDELETABLE VERTICES such that there is

{v, w} ∈ E with {v, w} ⊆ T ∩ V
∞ and N

G
(v) ∩ N

G
(w) ∩ V

∞ = � . Then set

Ĝ = (V(G − w), E(G − w) ∪ {{v, u} ∣ {w, u} ∈ E}) and G� ∶= Ĝ − (N
G
(v) ∩ N

G
(w)) .

Output I� = (G�
, V∞ ∩ V(G�), T ∩ V(G�), k − |N

G
(v) ∩ N

G
(w)|).

Note that for each edge in G[T ∩ V
∞] , either Reduction Rule 2 or Reduc-

tion Rule 3 is applicable. While it is easy to apply Reduction Rule 3 exhaustively

in polynomial time, more effort is required to do the same in linear time. To this

end, we will construct in linear time an equivalent instance such that Reduc-

tion Rules 2 and 3 are not applicable.

Lemma 16 Given an instance I of SUBSET FEEDBACK VERTEX SET WITH UNDELETABLE

VERTICES, we can compute an equivalent instance I′ of SUBSET FEEDBACK VERTEX SET

WITH UNDELETABLE VERTICES in linear time such that Reduction Rules 2 and 3 are not

applicable to I′.

Proof We first check in linear time by Lemma 15 whether Reduction Rule 2 is

applicable. Assume that Reduction Rule 2 is not applicable, otherwise we are done.

Hence, G[T ∩ V
∞] is a forest.

We now aim to apply Reduction Rule 3 for all edges in G[T ∩ V
∞] at once. First,

we partition V(G[T ∩ V∞]) = Q
1
⊎⋯ ⊎ Qc such that Qi is a maximal connected

component of G[T ∩ V
∞] . Then we replace Qi with a fresh vertex qi . To this end, we

construct the graph G� ∶= (V �
, E

�) where

Note that G
′ and hence V �∞ = (V∞ ∩ V �) ∪ {qi ∣ i ∈ [c]} and

T � = (T ∩ V �) ∪ {qi ∣ i ∈ [c]} can be computed in linear time. To compute the

V � ∶=(V ⧵ (T ∩ V∞)) ∪ {qi ∣ i ∈ [c]} and

E� ∶={{a, b} ∈ E ∣ {a, b} ⊆ V �} ∪ {{qi, w} ∣ w ∈ V � and ∃v ∈ Qi ∶ {v, w} ∈ E}.

2796 Algorithmica (2021) 83:2754–2802

1 3

remaining budget k
′ , we set K = � . Then, for each connected component Qi of

G[T ∩ V
∞] , we first unmark all vertices. Second, we iterate over all vertices v ∈ Qi

and mark all vertices in N
G
(v) ⧵ (T ∩ V

∞) . If we find a vertex w ∈ Qi such that a

vertex u ∈ N
G
(w) ⧵ (T ∩ V

∞) which is already marked, then we add u to K, because

G[Qi ∪ {u}] contains a cycle intersecting T where u is the only deletable vertex.

Recall that u ∉ V
∞ , since Reduction Rule 2 was not applicable. A simple applica-

tion of the Handshaking Lemma show that this procedure ends after linear time. If

k < |K| , then we return a trivial no-instance, because for each vertex v ∈ K there is

a simple cycle intersecting T where v is the unique vertex not in V∞
∩ T . Otherwise,

we output I� = (G� − K, V �∞
, T � ⧵ K, k� = k − |K|) . It is easy to verify that Reduc-

tion Rule 3 is not applicable in I′ . We now claim that I is a yes-instance if and only if

I
′ is a yes-instance.

(⇒) : Assume that X is a solution for I. Note that for each vertex v ∈ K , there is

a simple cycle intersecting T where v is the unique vertex not in V∞
∩ T . Hence,

K ⊆ X . Set X
�
∶= X ⧵ K and observe that X

� ⊆ V(G�) . The set X
′ is a solution for

I
′ , because it is of size at most k′ and for each cycle in G�

− K which intersects to

T
′ ⧵ K , we can construct a cycle in G which intersects to T by replacing a vertex

qj ∈ {qi ∣ i ∈ [c]} with a path in G[Qj].

(⇐) : Assume that X′ is a solution for I′ . We set X ∶= X
�
∪ K and note that X is of

size at most k. We may assume towards a contradiction that X is not a solution for

I. Hence there is a simple cycle C in G − X which contains a vertex of T. We now

construct a closed walk of C′ in G�
− T from C by replacing a subpath on vertices in

Qi with qi , for all i ∈ [c] . Since we only replaced vertices from T ∩ V
∞ of I with ver-

tices in T �
∩ V

�∞ , the closed walk C′ contains a simple cycle in G�
− X

� containing a

vertex from T ′ —a contradiction. ◻

We now show an algorithm to dispose all vertices undeletable vertices in T

such that the running time dependence only linearly on the size of the graph.

Lemma 17 Let I = (G, V∞
, T , k) be an instance of SUBSET FEEDBACK VERTEX SET

WITH UNDELETABLE VERTICES. We can construct in O(k(|V| + |E|)) time an instance

I� = (G�
, V �∞

, T �
, k�) of SUBSET FEEDBACK VERTEX SET WITH UNDELETABLE VERTICES such

that

1. k
′ ≤ k,

2. V
�∞ ⧵ T

� = �,

3. I is a yes-instance if and only if I′ is a yes-instance.

Proof Let I = (G, V∞
, T , k) be an instance of SUBSET FEEDBACK VERTEX SET WITH

UNDELETABLE VERTICES. Since we aim for a running time of O(k(|V| + |E|)) , we can

assume that Reduction Rules 2 and 3 are not applicable on I, see Lemma 16.

2797

1 3

Algorithmica (2021) 83:2754–2802

The goal now is to duplicate each vertex in V∞ ⧵ T k + 1 times, such that we can-

not delete all of them even if there are not in V∞ . Note that we might create many

copies of an edge doing this naïvely. To avoid this, we observe that it suffices to

replace each maximal connected component in G[V∞ ⧵ T] with k + 1 vertices. We

partition V(G[V∞ ⧵ T]) = Q
1
⊎⋯ ⊎ Qc such that Qi is a maximal connected compo-

nent of G[V∞ ⧵ T] and we construct G� ∶= (V �
, E

�) , where

Since |{q
j

i
∣ i ∈ [c], j ∈ [k + 1]}| ≤ |V|(k + 1) and we copy each edge at most k + 1

times, G′ is constructed after O(k(|V| + |E|)) time.

We now claim that I is a yes-instance if and only if

I� ∶= (G�
, T � ∶= V∞ ∩ V(G�), T , k) is a yes-instance of SUBSET FEEDBACK VERTEX SET

WITH UNDELETABLE VERTICES.

(⇒) : Let X be a solution for I. Then X is also a solution for I′ , because X ∩ V
∞ = �

and for each cycle C′ in G′ containing a vertex from T, we can construct a closed

walk in G by replacing a vertex q
j

i
 by a path in G[Qi] . This closed walk induces a

simple cycle C in G containing a vertex in T. Hence, C′ also contains a vertex from

X.

(⇐) : Let X be a solution for I
′ . We assume without loss of generality that

X ∩ {q
j

i
∣ i ∈ [c], j ∈ [k + 1]} = � . Suppose towards a contradiction that X is not a

solution for I. Let C be an cycle in G satisfying V(C) ∩ X = � ≠ V(C) ∩ T .

We construct a closed walk C′ in G′ from C by replacing each maximal consecu-

tive subpath in C containing only vertices from Qi with q1

i
 , for all i ∈ [c] . Note that C

contains a simple cycle which intersects T ′ but not X—a contradiction. ◻

Now we are finally ready to prove Lemma 14.

Proof of Lemma 14 First, we apply Lemma 17 on I and hence assume that

V
∞ ⧵ T = � . Furthermore, by Lemma 16 we assume that Reduction Rules 3 and 2

are not applicable. Thus, G[V∞ ∩ T] is an independent set. We now create k + 1 cop-

ies of each vertex in V∞
∩ T such that we cannot remove all of them, even if there

are deletable. However, we have to be careful what kind of new cycles this creates.

We do the following. Let V∞ ∩ T = {v1, v2,… , vp} and take a fresh set of vertices

Qi ∶= {q
j

i
∣ j ∈ [k + 1]} for each i ∈ [p] . We construct G� ∶= (V �

, E
�) , where

V � ∶= (V ⧵ (V∞ ⧵ T)) ∪ {q
j

i
∣ i ∈ [c], j ∈ [k + 1]} and

E� ∶= E(G[V ⧵ (V∞ ⧵ T)]) ∪ {{q
j

i
, w} ∣ ∃v ∈ Qi ∶ {v, w} ∈ E}.

2798 Algorithmica (2021) 83:2754–2802

1 3

Output I� = (G�
, T �

, k) , where T
� ∶= (T ⧵ V

∞) ∪ {w
i
∣ {v

i
, w} ∈ E} . Since

|{q
j

i
∣ i ∈ [c], j ∈ [k + 1]}| ≤ |V|(k + 1) and we create for each edge at most k + 2

new edges, G′ is constructed after O(k(|V| + |E|)) time. Together with the preproc-

essing of Lemma 17 this gives an overall running time of O(k2(|V| + |E|)).

We now claim that I is a yes-instance if and only if I′ is a yes-instance of SUBSET

FEEDBACK VERTEX SET.

(⇒) : Let X be a solution for I. Observe that X ⊆ V
′ , because V ⧵ V

� ⊆ V
∞ .

Assume towards a contradiction that there is a cycle C′ in G′ such that V(C�) ∩ X = � .

Assume without loss of generality that C′ is a shortest of the set of cycles satisfy-

ing V(C�) ∩ X = � . Hence, for each i ∈ [p] we have that |V(C�) ∩ Qi| ≤ 1 , and since

G[V∞ ∩ T] is an independent set, a vertex q
j

i
∈ V(C�) ∩ Qi has two neighbors w′

i
, u

′

i
 ,

where w, u ∈ V . Thus, we can construct a cycle C in G by replacing each subpath

w′

i
, q

j

i
, u′

i
 with the vertex v

i
∈ T ∩ V

∞ , where q
j

i
∈ V(C�) ∩ Qi and i ∈ [p], j ∈ [k + 1] .

This contradicts X being a solution for I.

(⇐) : Let X′ be a solution for I′ . For all i ∈ [p] , we assume without loss of general-

ity that

X� ∩ Qi = �: This can be assumed, because |Qi| > k ≥ |X′| and all

vertices in Qi have the same neighborhood.

X
� ∩ {w

i
∣ {v

i
, w} ∈ E} = �: This can be assumed, because these vertices are of

degree two and thus a vertex w
i
 can be replaced by its

origin w.

X
� ∩ {w

�
i
∣ {v

i
, w} ∈ E} = �: Such a vertex w′

i
 can be replaced by its origin w as

well, because for each cycle C′ in G′ passing through

T
′ which does not include w, we know that v′

i
q

j

i
w′

i
q

j′

i
u′

i

is a subpath of C′ for some v, u ∈ V , q
j

i
, q

j�

i
∈ Qi , and

j, j� ∈ [k + 1] . Hence C� − {q
j

i
, wi} is also a cycle

in G′ that contains a vertex from T ′ . Thus, there is

V(C�) ∩ (X ⧵ {w
�
i
}) ≠ �.

 Hence X� ⊆ V ⧵ V
∞ . Now assume towards a contradiction that there is a cycle C in

G which does not contain a vertex in X′ . Hence there v
i
∈ V(C) ∩ (T ∩ V

∞) , other-

wise C is also a cycle in G′ . We construct a cycle C′ in G′ from C by replacing each

subpath u, v
i
, w in C with u, u

i
, u

′

i
, v

i
, w

′

i
, w

i
, w , for all v

i
∈ V(C) ∩ (T ∩ V

∞) . This

contradicts X′ being a solution because u
i
∈ T

�. ◻

V � ∶=(V ⧵ (V∞ ∩ T)) ∪

p
⋃

i=1

Qi ∪ {w�
i
, wi ∣ {vi, w} ∈ E}, and

E� ∶={{v, w} ∈ E ∣ v, w ∈ V �}∪

{{wi, w}, {wi, w�
i
}, {w�

i
, q

j

i
} ∣ {vi, w} ∈ E, i ∈ [p]}, j ∈ [k + 1]}.

2799

1 3

Algorithmica (2021) 83:2754–2802

By using Lemmas 13 and 14 we now can compute a minimum timed feedback

vertex set by any known SUBSET FEEDBACK VERTEX SET algorithms. Thus, Lem-

mas 13 and 14 and Corollary 4 together with the algorithm of Iwata et al. [42] imply

Proposition 9.

7 Conclusion

We have analyzed the (parameterized) computational complexity of RESTLESS TEM-

PORAL PATH, a canonical variant of the problem of finding temporal paths, where

the waiting time at every vertex is restricted. Unlike its non-restless counterpart or

the “walk-version”, this problem turns out to be computationally hard, even in quite

restricted cases. On the positive side, we give an efficient algorithm to find short

restless temporal paths and we could identify structural parameters of the underlying

graph and of the temporal graph itself that allow for fixed-parameter algorithms.

Acknowledgements We thank the referees for their careful reading and constructive comments which

significantly improved the presentation of these results.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen

ses/ by/4. 0/.

References

 1. Akanksha, A., Pallavi, J., Lawqueen, K., Saket, S.: Parameterized complexity of conflict-free match-

ings and paths. Algorithmica 82, 1939–1965 (2020)

 2. Aigner, M., Ziegler, G.M., Hofmann, K.H., Paul ErdosPaul ErdosErdos, P.: Proofs from the Book.

Springer, Berlin (2010)

 3. Akrida, E.C., Gąsieniec, L., Mertzios, G.B., Spirakis, P.G.: The complexity of optimal design of

temporally connected graphs. Theory Comput. Syst. 61(3), 907–944 (2017)

 4. Akrida, E.C., Czyzowicz, J., Gąsieniec, L., Kuszner, Ł., Spirakis, P.G.: Temporal flows in temporal

networks. J. Comput. Syst. Sci. 103, 46–60 (2019)

 5. Akrida, E.C., Mertzios, G.B., Nikoletseas, S., Raptopoulos, C., Spirakis, P.G., Zamaraev, V.: How

fast can we reach a target vertex in stochastic temporal graphs? J. Comput. Syst. Sci. 114, 65–83

(2020)

 6. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: Proceedings

of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA ’21), pp. 522–539. SIAM

(2021)

 7. Axiotis, K., Fotakis, D.: On the size and the approximability of minimum temporally connected

subgraphs. In: Proceedings of the 43rd International Colloquium on Automata, Languages, and Pro-

gramming (ICALP ’16), pp. 149:1–149:14 (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2800 Algorithmica (2021) 83:2754–2802

1 3

 8. Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)

 9. Bentert, M., Dittmann, A., Kellerhals, L., Nichterlein, A., Niedermeier, R.: An adaptive version of

Brandes’ algorithm for betweenness centrality. In: 29th International Symposium on Algorithms and

Computation, ISAAC 2018, December 16–19, 2018, Jiaoxi, Yilan, Taiwan, pp. 36:1–36:13 (2018)

 10. Bentert, M., van Bevern, R., Niedermeier, R.: Inductive k-independent graphs and c-colorable sub-

graphs in scheduling: a review. J. Sched. 22(1), 3–20 (2019)

 11. Bentert, M., Himmel, A.-S., Nichterlein, A., Niedermeier, R.: Efficient computation of optimal tem-

poral walks under waiting-time constraints. Appl. Netw. Sci. 5(1), 1–26 (2020)

 12. Berman, K.A.: Vulnerability of scheduled networks and a generalization of Menger’s theorem.

Netw. An Int. J. 28(3), 125–134 (1996)

 13. van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and colorful independ-

ent sets. J. Sched. 18(5), 449–469 (2015)

 14. Bhadra, S., Ferreira, F.: Complexity of connected components in evolving graphs and the computa-

tion of multicast trees in dynamic networks. In: International Conference on Ad-Hoc Networks and

Wireless, pp. 259–270. Springer (2003)

 15. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.

SIAM J. Discrete Math. 28(1), 277–305 (2014)

 16. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett. Program. Lang. Syst.

(LOPLAS) 2(1–4), 59–69 (1993)

 17. Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in

dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

 18. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic net-

works. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)

 19. Casteigts, A., Flocchini, P., Godard, E., Santoro, N., Yamashita, M.: On the expressivity of time-

varying graphs. Theor. Comput. Sci. 590, 27–37 (2015)

 20. Casteigts, A., Peters, J., Schoeters, J.: Temporal cliques admit sparse spanners. In: Proceedings of

the 46th International Colloquium on Automata, Languages, and Programming (ICALP ’19), vol-

ume 132 of LIPIcs, pp. 134:1–134:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2019)

 21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Lon-

don (2009)

 22. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-

parameter tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013)

 23. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Pilipczuk, M., Saurabh, S., Marx, D., Pilipc-

zuk, M.: Parameterized Algorithms. Springer, Berlin (2015)

 24. Diestel, R.: Graph Theory, 5th edn, volume 173 of Graduate Texts in Mathematics. Springer, Berlin

(2016)

 25. Eames, K.T.D., Keeling, M.J. (2003) Contact tracing and disease control. Proc. R. Soc. Lond. Ser. B

Biol. Sci. 270(1533):2565–2571

 26. Enright, J., Meeks, K., Mertzios, G., Zamaraev, V.: Deleting edges to restrict the size of an epi-

demic in temporal networks. In: Proceedings of the 44th International Symposium on Mathe-

matical Foundations of Computer Science (MFCS ’19), volume 138 of LIPIcs, pp. 57:1–57:15.

Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2019)

 27. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback vertex set

problem. SIAM J. Comput. 30(4), 1231–1252 (2000)

 28. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of

multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

 29. Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., Bon-

sall, D., Fraser, C.: Quantifying SARS-CoV-2 transmission suggests epidemic control with digi-

tal contact tracing. Science (2020)

 30. Fluschnik, T., Molter, H., Niedermeier, R., Renken, M., Zschoche, P.: Temporal graph classes: a

view through temporal separators. Theor. Comput. Sci. 806, 197–218 (2020)

 31. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.. Efficient computation of representative

families with applications in parameterized and exact algorithms. J. ACM 63(4):29:1–29:60

(2016)

 32. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative families of product fami-

lies. ACM Trans. Algorithms 13(3), 36:1–36:29 (2017)

 33. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism problem. Theor.

Comput. Sci. 10, 111–121 (1980)

2801

1 3

Algorithmica (2021) 83:2754–2802

 34. Fredman, M.L., Willard, D.E.: Blasting through the information theoretic barrier with

fusion trees. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing

(STOC ’90), pp. 1–7 (1990)

 35. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin.

Theory Ser. B 16(1), 47–56 (1974)

 36. Haag, R., Molter, H., Niedermeier, R., Renken, M.: Feedback edge sets in temporal graphs. In:

Proceedings of the 46th International Workshop on Graph-Theoretic Concepts in Computer Sci-

ence (WG ’20), volume 12301 of Lecture Notes in Computer Science, pp. 200–2012. Springer

(2020)

 37. Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234 (2015)

 38. Holme, P.: Temporal network structures controlling disease spreading. Phys. Rev. E 94(2), 022305

(2016)

 39. Holme, P., Saramäki, J. (eds.): Temporal Network Theory. Springer, Berlin (2019)

 40. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375

(2001)

 41. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.

Comput. Syst. Sci. 63(4), 512–530 (2001)

 42. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM

J. Comput. 45(4), 1377–1411 (2016)

 43. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computa-

tions, pp. 85–103. Springer, Berlin (1972)

 44. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J.

Comput. Syst. Sci. 64(4), 820–842 (2002)

 45. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc.

R. Soc. Lond. Ser. A 115(772), 700–721 (1927)

 46. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the modeling of interactions

over time. Soc. Netw. Anal. Min. 8(1), 61 (2018)

 47. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.:. Deterministic truncation of linear matroids.

ACM Trans. Algorithms 14(2), 14:1–14:20 (2018a)

 48. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S., Zehavi, M.: Quasipolynomial representation of

transversal matroids with applications in parameterized complexity. In: Proceedings of the 9th Inno-

vations in Theoretical Computer Science Conference (ITCS ’18), pp. 32:1–32:13 (2018b)

 49. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44),

4471–4479 (2009)

 50. Mertzios, G.B., Michail, O., Spirakis, P.G.: Temporal network optimization subject to connectivity

constraints. Algorithmica 81(4), 1416–1449 (2019)

 51. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4),

239–280 (2016)

 52. Molter, H.: Classic graph problems made temporal—a parameterized complexity analysis.

Ph.D. thesis, Technische Universität Berlin, December 2020. http:// dx. doi. org/ 10. 14279/ depos

itonce- 10551

 53. Nešetřil, J., Mendez, P.O. De.: Sparsity: Graphs, Structures, and Algorithms. Springer, Berlin

(2012)

 54. Newman, M.E.J.: Networks. Oxford University Press, Oxford (2018)

 55. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)

 56. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E

84(1), 016105 (2011)

 57. Sorge, M., Weller, M. et al.: The graph parameter hierarchy, 2018. https:// manyu. pro/ assets/ param

eter- hiera rchy. pdf (2020)

 58. Tao, T., Croot III, E., Helfgott, H.: Deterministic methods to find primes. Math. Comput. 81(278),

1233–1246 (2012)

 59. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discret. Appl. Math. 8(1), 85–89

(1984)

 60. Williams, R.: Finding paths of length k in O∗(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

 61. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for temporal path

computation. IEEE Trans. Knowl. Data Eng. 28(11), 2927–2942 (2016)

 62. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding separators in

temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020)

http://dx.doi.org/10.14279/depositonce-10551
http://dx.doi.org/10.14279/depositonce-10551
https://manyu.pro/assets/parameter-hierarchy.pdf
https://manyu.pro/assets/parameter-hierarchy.pdf

2802 Algorithmica (2021) 83:2754–2802

1 3

Authors and A�liations

Arnaud Casteigts1 · Anne‑Sophie Himmel2 · Hendrik Molter2 ·

Philipp Zschoche2

 Arnaud Casteigts

 arnaud.casteigts@labri.fr

 Anne-Sophie Himmel

 anne-sophie.himmel@tu-berlin.de

 Hendrik Molter

 h.molter@tu-berlin.de

1 LaBRI, CNRS, Bordeaux INP, Université de Bordeaux, Bordeaux, France

2 Algorithmics and Computational Complexity, Technische Universität Berlin, Berlin, Germany

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://orcid.org/0000-0001-9846-0600

	Finding Temporal Paths Under Waiting Time Constraints
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Strict Versus Non-strict Temporal Paths

	2 Preliminaries
	2.1 Static Graphs
	2.2 Temporal Graphs
	2.3 Parameterized Complexity
	2.4 Basic Observations

	3 Hardness Results for Restless Temporal Paths
	3.1 NP-hardness for few layers
	3.2 W[1]-Hardness for Distance to Disjoint Paths

	4 An FPT-Algorithm for Short Restless Temporal Path
	5 Computational Complexity Landscape for the Underlying Graph
	6 Timed Feedback Vertex Number
	7 Conclusion
	Acknowledgements
	References

