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Abstract MicroRNAs (miRNAs) are a class of 22-nucleotide endogenous noncod-

ing RNAs, plays important role in regulating target gene expression via repress-

ing translation or promoting messenger RNAs (mRNA) degradation. Numerous re-

searchers have found that miRNAs have serious effects on cancer. Therefore, study

of mRNAs and miRNAs together through the integrated analysis of mRNA and

miRNA expression profiling could help us in getting a deeper insight into the can-

cer research. In this regards, High-Throughput Sequencing data of Kidney renal

cell carcinoma is used here. The proposed method focuses on identifying mRNA-

miRNA pair that has a signature in kidney tumor sample. For this analysis, Ran-

dom Forests, Particle Swarm Optimization and Support Vector Machine classifier

is used to have best sets of mRNAs-miRNA pairs. Additionally, the significance of

selected mRNA-miRNA pairs is tested using gene ontology and pathway analysis

tools. Moreover, the selected mRNA-miRNA pairs are searched based on changes

in expression values of the used mRNA and miRNA dataset.
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1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of approximately 19-22 nu-

cleotides act as post-transcriptional gene expression regulators, bind with comple-
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mentary messenger RNAs (mRNAs) for stimulating their degradation or repressing

translation. In this regards, innovation of Next-Generation Sequencing (NGS) [6]

technology provides improved solution to the understanding of an entire human

genome sequence than compared to the previously used technologies, i.e., Sanger

sequencing or Capillary sequencing. Next-Generation Sequencing technologies can

also be applied to the RNA sequencing (RNA-seq) to directly sequence complemen-

tary DNAs (cDNAs). RNA sequencing permits the quantitative analysis of gene ex-

pression and transcript variant discovery. The primary aim of RNA-sequencing is to

find out differentially expressed genes when applied to multiple samples at different

biological conditions.

Numerous statistical approaches have been proposed over the years to analyze

differentially expressed RNA-seq data, e.g., edgeR [15], DESeq [1], and sSeq [20].

In this connection, algorithms like [14,17] can be used to rank and select the differ-

entially expressed miRNAs. Apart from this, hypothesis test [10], classifier based

method [7] and information theory based measures [13] are used in gene ranking

as well as in miRNA ranking. Parametric method like [18] is developed by using

the expression overlapping between different classes. Nonparametric ReDiscovery

Curve (RDCurve) based method [12] study the stability of various ranking methods.

Reviewing all these methods, here we have proposed an integrated analysis of the

gene expression profiling of both mRNAs and miRNAs by using Kidney renal clear

cell carcinoma data that includes tumor and control samples. The proposed method

is a feature selection wrapper, consisting of Random Forests [5], Particle Swarm

Optimization (PSO) [8] and Support Vector Machine (SVM) [4] classifier. More-

over, emphasis is given here to identified the differentially expressed mRNAs and

miRNAs in-order to find out mRNA-miRNA pairs. In particular, this kind of obser-

vations might be significant in the cancer diagnosis. Moreover, we validate some of

our most interesting findings in different biological significance analysis.

The paper is organized as follows: Section 2 briefly describes the proposed

method. Section 3 shows the empirical results. Finally, Section 4 concludes this

paper with an additional note of future work.

2 Proposed Method

The proposed wrapper based feature selection method starts with 1135 number of

samples having 20,531 mRNAs. The mRNA sample includes 534 tumors and 601

control patients whereas miRNA include 254 tumor and 455 control sample. Since

this experiment is an integrated analysis of mRNA and miRNA data. Hence, com-

mon tumor and control samples among mRNA and miRNA data are considered here,

that consist of 186 tumor and 71 control samples. Steps of the proposed method are

described below:

The primary goal of feature selection is to avoid any kind of over fitting as well

as to improve the model performance. To gain a deeper insight into the underlying

processes of feature selection Random forest is used here. Several measures of vari-
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able importance can be identified by Random forest. Hence, by iteratively fitting

Random Forest at each iteration smallest set of informative mRNAs are identified.

In this regards, smallest OOB error rate is considered to be the underline criteria.

Because of the iterative approach, the OOB error is biased down and mRNAs with

smallest OOB error are selected as the reduced set of features. For this analysis,

normalized transcript reads of mRNAs are considered.

After feature selection using Random forest, in the next step of this work t-test

and fold change concepts are applied in order to segregate differentially expressed

mRNAs from normal and malignant samples. For this purpose, cut-off like p-value

< 0.05 and the fold change > 1 or < −1 are used as in [21]. In particular, change in

expression profile is considered to be the underline criteria to find out differentially

expressed mRNAs. Moreover, the differentially expressed mRNAs are mapped to

their normalized mRNA expression dataset of tumor and control samples.

The Particle Swarm Optimization (PSO) and Support Vector Machine (SVM)

provide a wrapper based approach for feature selection. It can effectively identify

significant mRNAs associated with Kidney renal cell carcinoma. For that, initial

particles of PSO are created using mRNA indices. Thereafter, the swarm is pre-

pared from a number of such particles. Moreover, encoded indices of these particles

are used to make a subset of data that are taken part during classification by SVM.

Here 5 Fold Cross Validation (FCV) is applied and accuracy is considered to be the

underline criteria for fitness evaluation. Block diagram of the proposed approach

is presented in Fig. 1. Moreover, the optimal signature refers to be the best set of

differentially expressed mRNA that provides highest classification accuracy. In this

regards, most appeared mRNAs concerning all runs of the proposed methods are

considered.

In this experiment, the expression datasets comprising the profiles of mRNAs and

miRNAs are considered. For this analysis, expression values of 1047 miRNA in 186

tumor and 71 control sample are used. The selected mRNAs by PSO+SVM are con-

sidered to find their corresponding miRNA targets. For this validation miRDB [19]

database is used. Shortlisted target miRNAs are used to find their expression profiles

from the normalized miRNA expression dataset of 186 tumor and 71 control sam-

ples. Any further analysis of miRNA is done using this reference expression vector

in-order to find out differentially expressed miRNAs.

Likewise, the mRNAs, based on p-value and fold change in expression levels, up

and down regulated miRNAs are identified. The miRNAs are known for suppressing

the expression level of mRNAs. Hence, our method selected up and down regulated

mRNAs and miRNAs are used to make mRNA-miRNA pairs. For that, combination

of up-regulated mRNAs with down-regulated miRNAs and vice versa are used.

257 Samples 

with 20,531 

mRNAs

Initial Feature 

Selection using 

Random Forest

Finding the 

list of target 

miRNAs 

Selection of 

Up and Down 

Regulated 

mRNAs 

Optimal 

Signature

PSO + 

SVM

mRNA-

miRNA pairs

Map the target 

miRNAs to the 

Normalized 

miRNA 

Expression 

Dataset

Selection of 

Up and Down 

Regulated 

miRNAs 

Fig. 1 A block diagram representation of the proposed workflow
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3 Experimental Results

3.1 Datasets

The dataset comes from The Cancer Genome Atlas (TCGA)1. It features mRNA

and miRNA expression levels for Kidney renal cell carcinoma (KIRC) of different

tumor, and control samples. For KIRC, normalized expression mRNA and miRNA

datasets consisting of 186 common tumors, and 71 common control samples are

considered.

3.2 Results

Here, the problem is to identify mRNA-miRNA pairs for the investigated dataset.

For this purpose, the expression profiles of 20,531 mRNAs over 186 kidney renal

cell tumor samples and 71 control samples are considered. In order to find reduced

set of features, Random forest is used here. Because of it’s iterative approach, the

OOB error is biased down and mRNAs with smallest OOB error are selected as the

reduced set of features. This has been shown in Fig. 2 (a). By this process, 511 infor-

mative mRNAs are selected. In order to identify the up and down regulated mRNAs,

significant changes in the expression profiles are measured. For this analysis, the

volcano plot in Fig. 2 (b), illustrate the differentially expressed mRNAs among the

511. By this process, 242 up and 191 down regulated mRNAs are identified. Now,

these shortlisted mRNAs are process, using PSO+SVM. For this process, the pa-

rameters used in the proposed method are summarized in Table 1. Here, PSO+SVM

executed 30 times (Nexe) on these differentially expressed mRNAs. According to the

experimental results, PSO+SVM achieved 92.60% average classification accuracy

for mRNA data. The average values of precision, sensitivity, specificity, F-measure

and MCC are 92.57%,92.58%,92.62%,92.58% and 0.920, respectively. For this

process, 10 mRNAs are considered by PSO+SVM during each run. Moreover, as

PSO+SVM was executed 30 times hence, in each run of the proposed method a new

set of differentially expressed mRNAs are identified. After the end of 30 executions,

one list is prepared that include all the appeared mRNAs. Thereafter, from that list

most appeared mRNAs covering all the runs of the proposed method are identified.

These mRNAs are considered to be optimal up and down regulated mRNAs associ-

ated with Kidney renal cell cancer subtypes.

Thereafter, these selected mRNAs are used to find their corresponding miRNA

targets and for this validation miRDB [19] database is used. Moreover, these short-

listed target miRNAs find their expression profiles from the normalized miRNA

expression dataset of 186 tumor and 71 control samples. A total of 450 miRNAs tar-

gets are identified from the miRGate database. Out of which, 417 miRNAs matches

their expression profile in the normalized miRNA expression dataset. Hence, the

1 https://tcga-data.nci.nih.gov/tcga/
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miRNAs for which expression profile information is known are only taken at this

stage. Therefore, out of the 450 miRNAs in the list, 33 have been excluded because

they did not have the expression profile information in our used normalized miRNA

expression dataset. Thereafter, p-value and fold change analysis of the shortlisted

417 differentially expressed miRNAs, identified the up and down regulated one.

By this process 14 informative miRNAs are identified, that includes 12 down reg-

ulated and 2 up regulated miRNAs. Method selected down regulated miRNAs are

hsa-mir-200c, hsa-mir-181a-2, hsa-mir-196a-1, hsa-mir-183, hsa-mir-194-2, hsa-

mir-196a-2, hsa-mir-10b, hsa-mir-138-1, hsa-mir-182, hsa-mir-192, hsa-mir-135b,

hsa-mir-199b whereas hsa-mir-141, hsa-mir-196b are up regulated miRNAs.

Studies on miRNAs found that it can suppress the expression level of mRNAs.

As miRNAs and mRNAs belonging to same sample (Tumor and Control) of KIRC

dataset is used in this experiment. Hence, differentially expressed miRNAs and mR-

NAs of the same sample (Tumor and Control), can be paired. Moreover, up regulated

miRNAs can be mapped with down-regulated mRNAs and vice versa. In the pro-

cess, many of the selected mRNAs have been excluded from the list while miRNAs

remain same. Final list of mRNA-miRNA pair include 98 up-regulated mRNA and

12 down-regulated miRNA pair and 62 down-regulated mRNA and 2 up-regulated

miRNA pair. Details of which are given in Table2.
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Fig. 2 (a) Variation of OOB errors with the number of grown trees in Random forest, (b) Volcano

plot depicts 242 up and 191 down regulated mRNAs

Table 1 Parameters used in the experiment

Symbol Value Description Symbol Value Description

Npar 50 Number of Particles ϕ2 2 Social Constant

Nitr 50 Number of Iterations ω 0.9 Inertia Weight

L 10 Length of a Particle C 0.01 SVM C Constant

ϕ1 2 Cognitive Constant Nexe 30 Number of Executions
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Table 2 Method selected up and down regulated miRNA and mRNAs

Down Regulated Up Regulated Up Regulated mRNA Down Regulated mRNA

miRNA miRNA

hsa-mir-200c hsa-mir-141 ABCB7 BCL2L12 C9orf117 CHTF8 DUSP23 FGF2 HIST1H3E B3GALT5 CHURC1 DNAH17 GEMIN7 ID4

hsa-mir-181a-2 hsa-mir-196b ABCD4 BCL7C CA11 COL4A6 DUT FSTL5 HSPA12A BSND CIITA DPYSL5 GIN1 IDH1

hsa-mir-196a-1 ACAD11 BICC1 CACNA2D2 CPD EDEM1 FTL IGSF3 CCNT2 CKAP2L E2F3 GIPC1

hsa-mir-183 ADCY2 BMPR1B CALB2 CREG2 ENGASE FZD3 IL17REL CDC42 CLNK ELL GIT2

hsa-mir-194-2 ADRA2C BPGM CCDC141 CRNKL1 EPB41L1 GABRE IMMP2L CDH10 CLUL1 ENOSF1 GLUD1

hsa-mir-196a-2 AHCYL1 BRI3BP CCDC152 CRTAM EPPK1 GALNT6 IMPA1 CLNK CNOT6L FAM172A GNAS

hsa-mir-10b ALCAM BST1 CCDC85C CRTAP EXT1 GATM INCENP DNAH17 CNR1 FAM19A5 GNPTAB

hsa-mir-138-1 ANKRD13A BTBD2 CCDC88A CSF2RB FAIM2 GDF2 IQSEC1 DPYSL5 CPEB2 FBXO48 GPR37

hsa-mir-182 ANKRD34B BVES CCND2 CYBRD1 FAM120C GLT8D2 E2F3 CPEB3 FCGR3A GRM5

hsa-mir-192 ARGFX C17orf107 CCNT1 CYLD FAM126B GPKOW ELL CWF19L1 FLRT2 GSTM2

hsa-mir-135b ARHGAP20 C19orf70 CDK10 CYP8B1 FAM189A1 GPR161 ENOSF1 CYP1A2 GAB2 HAGHL

hsa-mir-199b ARHGEF18 C4orf32 CGNL1 DIRAS1 FAM196A GTPBP8 EPN1 DAZAP2 GAL3ST1 HBS1L

ARMC10 C4orf45 CHML DNAJC14 FAM198B H6PD GIT2 DISC1 GBP2 HEY1

ATG2A C5AR1 CHST5 DPP9 FBXL18 HACE1 HDDC3 DKK1 GDF11 HIVEP3

ATP2B2 C9orf114 CHST6 DRP2 FCHSD1 HEPH CHST7 DLG5 GDF7 ID3

3.3 Biological Significance

Table 3 Most significant Gene Ontology terms concerning selected genes for Biological Process

(P), Cellular Component (C) and Molecular Function (F) obtained through Enrichment analysis

via Enrichr [9]

Term P-value Genes

GO Biological

cellular iron ion homeostasis (GO:0006879) 3.68e-05 HEPH, ABCB7, GDF2, CYBRD1, FTL

Process (P)

N-acetylglucosamine metabolic process (GO:0006044) 5.16e-05 CHST6, CHST7, CHST5

sulfur compound metabolic process (GO:0006790) 9.36e-05 CHST6, CHST7, CHST5

positive regulation of cyclin-dependent protein serine (GO:0045737) 4.64e-04 CCNT2, CCND2, CCNT1

negative regulation of cytoplasmic translation (GO:2000766) 8.66e-04 CPEB3, CPEB2

GO Cellular

cyclin/CDK positive transcription elongation factor complex (GO:0008024) 1.60e-03 CCNT2, CCNT1

Component (C)

messenger ribonucleoprotein complex (GO:1990124) 1.60e-03 CPEB3, CPEB2

Golgi membrane (GO:0000139) 1.66e-03 EXT1, CDC42, GALNT6, CHST6,

CHST7, HACE1, GNPTAB, EDEM1, CHST5

CCR4-NOT complex (GO:0030014) 6.59e-03 CNOT6L, CPEB3

neuron projection (GO:0043005) 1.36e-02 CALB2, CDC42, CPEB3, CPEB2

GO Molecular

N-acetylglucosamine 6-O-sulfotransferase activity (GO:0001517) 1.53e-05 CHST6, CHST7, CHST5

Function (F)

7SK snRNA binding (GO:0097322) 8.66e-04 CCNT2, CCNT1

mRNA 3’-UTR AU-rich region binding (GO:0035925) 2.55e-03 CPEB3, CPEB2

transforming growth factor beta receptor binding (GO:0005160) 2.87e-03 GDF11, GDF2, GDF7

translation repressor activity, nucleic acid binding (GO:0000900) 3.10e-03 CPEB3, CPEB2

Biological significance analysis of the mRNAs-miRNAs pairs have been car-

ried out by KEGG pathway enrichment and Gene ontology analysis. In this re-

gards, miRSystem ver. 20160502 [11] and Enrichr [9] helps is finding the as-

sociated pathways of the significant mRNA-miRNA pairs. For the Gene enrich-

ment analysis, the biological process (P), cellular component (C) and molecular

function (F) hierarchies in gene ontology (GO) are considered. The most signif-

icant GO terms, with lowest p-values (< 0.001) for the biological processes (P)

associated with mRNA data are cellular iron ion homeostasis (GO:0006879), N-

acetylglucosamine metabolic process (GO:0006044), sulfur compound metabolic

process (GO:0006790), positive regulation of cyclin-dependent protein serine (GO:

0045737), negative regulation of cytoplasmic translation (GO:2000766) etc. Signif-

icant top 5 Gene Ontology terms concerning selected genes for Biological Process

(P), Cellular Component (C) and Molecular Function (F) are reported in Table.3.

This table also includes a list of associated genes corresponding to each ontology
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term. Association of the obtained mRNAs with different biological pathways are

been identified by KEGG pathway enrichment analysis. It has been observed that,

significant mRNAs are associated with many KEGG pathways. Among them, only

10 significant pathways with lowest p-values are presented in Table.4. For this anal-

ysis, 98 up-regulated mRNA and 62 down-regulated mRNA are considered. Overall,

the results signify the importance of selected mRNA-miRNA pairs.

Table 4 Top 10 KEGG pathways associated with the selected up and down regulated mRNAs

Term P-value Genes

TGF-beta signaling pathway: hsa04350 0.0040 ID4, ID3, BMPR1B, GDF7

Signaling pathways regulating pluripotency of stem cells: hsa04550 0.0049 FZD3, ID4, ID3, BMPR1B, FGF2

Salivary secretion: hsa04970 0.0050 BST1, GNAS, ADCY2, ATP2B2

Pancreatic secretion: hsa04972 0.0065 BST1, GNAS, ADCY2, ATP2B2

Mineral absorption: hsa04978 0.0071 HEPH, CYBRD1, FTL

Retrograde endocannabinoid signaling: hsa04723 0.0077 GRM5, CNR1, ADCY2, GABRE

Dorso-ventral axis formation: hsa04320 0.0182 CPEB3, CPEB2

Rap1 signaling pathway: hsa04015 0.0238 CDC42, CNR1, GNAS, ADCY2, FGF2

Phospholipase D signaling pathway: hsa04072 0.0253 GRM5, GNAS, ADCY2, GAB2

Adrenergic signaling in cardiomyocytes: hsa04261 0.0277 GNAS, CACNA2D2, ADCY2, ATP2B2

4 Conclusion

In this paper, the integrated analysis of mRNA and miRNA expression data identi-

fied a number of mRNAs and miRNAs that are differentially expressed in control

and tumor samples. For this analysis, Random Forests is used as initial feature se-

lector. Thereafter, with the help of Particle Swarm Optimization and Support Vector

Machine classifier the proposed method is optimized to have best sets of mRNAs.

In addition to that, functional miRNA targets of selected mRNAs are also identi-

fied for the expression data of Kidney renal cell. Finally, differentially expressed

mRNA-miRNA pair are prepared. These selected mRNA-miRNA pairs are proven

to be relevant according to gene ontology and pathway analysis tools. Hence, these

mRNA-miRNA pairs are the potential biomarkers for the Kidney renal cell cancer

type. In conclusion, this analysis is proven to be helpful for the joint mRNA-miRNA

biomarker identification and could also be used as miRNA marker [3, 16] and gene

selection [2].
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