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Finding the Better of Two Similar Designs
by Monte Carlo Techniques

PETER W. BECKER, ASSOCIATE MEMBER, IEEE

ABSTRACT-During the iterative design of a system (or circuit) the **Crude Monte Carlo" and "Correlated Sampling," can be
designer is often faced with the problem of ranking two designs according to used to rank "A" and "B"; in particular it studies for each
some criterion. If the system elements have uncertain values, each system method the number of simulations required to achieve a
manifestation can be evaluated as to whether or not it meets some perfor-
mance criterion. The fraction which meets or exceeds the criterion is called ranking with a prescribed level of confidence.
the yield. Monte Carlo techniques can be used to simulate the population of
systems and thus to estimate the ranking of two designs. The first result
presented in the paper is a derivation of the probability that one design is 1.2 Notation
better than another, along with confidence limits for that probability.

If the two designs are topologically the same, i.e., they differ only in the Y yield (Y is fraction of the population which meets all
nominal values and actual distributions of true parameter values, then the Y the ( criteri orthe systema hand l
same set of random numbers can be used for one simulation of each design. of the success criteria for the system at hand)
Due to the similarity there may be a positive correlation between the 2 Y an estimate of Y (Y is a random variable)
results which can then be used to narrow the confidence limits from the crude A, B names of the 2 designs being compared
method mentioned above. The second result is a derivation of these narrow a b si7 , a ~~~~~~~~~~~~~a,b subscripts indicating designs A or Bcontidence limits. AY Y-Yb

Reader aids: AY an estimate of AY (AY is a random variable)
Purpose: Widen state of the art (De ) the cumulative distribution function, Cdf, of a stan-
Special math needed for explanations: Elementary statistics d N
Special math needed for results: None dard Normal variate
Results useful to: Designers and reliability engineers N the number of simulations of each system

Ns the number of "successes" in N trials (see Y above)

1. INTRODUCTION x outcome of a subtest on one design or the other,
x = 0 Indicates a failure, x = 1 indicates a success

1.1 The Pr oblem (x is a random variable)
njk number of times the test outcome is (j,k); (j,k) can

The problem of ranking two designs is a recurring one in equal (0,0), (0, 1), (1,0) or (1, 1)
design optimizations. Though the results presented in this p correlation coefficient
paper have broad applicability, we will restrict the discus- E implies sum from 1 to N
sionl to one important particular problem arising in con- U2,h variance ofA Y - Y. with no correlation possi-
nection with the optimization of system- and circuit-yield. ble between any elements of any tests (see Sec. 4)
Yield (strictly speaking, production yield) is the fraction of ab2 variance of A £ Y - Yb with correlation possible
systems or circuits meeting the stated specifications at the between elements of a pair of tests, and only between
moment they have been built according to the design. elements of single pairs of tests (see Sec. 5)
During design optimization the designer will again and
again be faced with the problem of deciding which of two
designs "A" and "B" has the higher yield. During the opti- 2. THE MONTE CARLO METHOD
mization procedure it is sufficient that the designer be able
to rank the designs; only towards the end will it become 2.1 The Estimator of Yield
necessary to estimate the yield with accuracy. There are
several techniques for estimating yield [1, Chap. 51 and With the advent of electronic computers the Monte
yield-differences, the most powerful being the Monte Carlo Carlo method has gained increasing use in simulation
methods. This paper shows how two Monte Carlo methods, problems [2, 3, 41. In this paper we simulate the process

taking place in a production run. The circuits (or systems)
Manuscript receivZed June 13, 1972; revised October 2, 1973. and March a.re assembled using components selected at random from

1. 1974. particular bins. The true values of these components, the
This paper is adaptedl lYom one pr-esented alt the NATO Conference

on Reliability Testing and Reliability Evaluation,' The Hague, Nether- input parameters, follow probability distributions of some
lands, September 4-8! 1972~15]. kind.
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In translating this situation into an equivalent computer 3. THE PROBLEM OF RANKING
problem, the first step is to write a program for computing TWO ALTERNATE DESIGNS
the true values of the m output parameters as function of
the true values of the n input parameters. Secondly, we This paper is particularly concerned with the following
obtain (or postulate) the shapes of the probability distri- problem [1]: design a circuit or system which, when mass
butions for the true values of the input parameters. There is produced, will meet certain specifications. To arrive at an
no reason to believe that the yield rankings are robust with optimum design an iterative procedure is used which con-
respect to the pdf's used to describe the distribution of the tinuously modifies the design, checks to see if the yield has
true values of the input parameters; in other words, use of increased, modifies the better design, checks to see if the
inaccurate pdf's may well lead to incorrect rankings. new modification has increased the yield further, etc.
Within the computer a random-number generator is used Assume that somewhere during the optimization we must
to pick values from these distributions. Once a set of true choose one of the two alternate designs, "A" and "B" having
input parameter values has been obtained, they are inserted the yields Ya, and Yb. The two designs will often be very
in the program and the true values of the circuit output similar with regard to topology, nominal values, and toler-
parameters are computed. If any output parameter value ances of input parameters, etc. The relevant question is,
violates its constraints the circuit is rejected. The procedure "is Ya or Yb the larger?" In realistic cases Yj and Yb can never
is repeated many times. When a suitable number of circuits, be determined; only the values of the estimators Ya and yb
N, has been simulated in this manner, Ns of which met the can be determined. Then from the sign of A Y- (- - Yb),
circuit specification, the yield is estimated by which is an unbiased estimator for (YXi - Yb), we must

decide:
Y_= N,/N. (1)

(i) which is the larger, Y,, or Yb, and
Following [1, Sec. 5.5] Y is an unbiased estimator of Y Y is (ii) how confident (statistically) we can be that our
a random variable, the values of which are binomially decisions are correct.
distributed. To simplify the notation let the symbol pYwt s
indicate both the estimator and the values of the estimator.
From [6, Sec. 3.2 and Example 5-35] the mean and the accuracy that the sign of the difference is correct (at some

variance of the binomially distributed g are pre-determined level of probability), the reason being that
it is the proper ranking of the yields that matters during the

EfY} = Y (2) optimization. When the optimization is terminated it is of
course necessary to estimate accurately the yield of the

Var{ Y} Y(1 - Y)/N. (3) final system.
In the remaining part of the paper we are concerned with

the estimator (Xi - Yb). Two different methods: "Crude
The Monte Carlo method Monte Carlo," described in Section 4 and "Correlated

a) has great intuitive appeal Sampling" described in Section 5 are used to determine the

b) can handle, without difficulty, any number of output associated statistical confidence levels. Finally the two

variables, be they linear or nonlinear functions of the methods are compared in Section 6.

input variables
c) readily takes into account statistical dependence
among the input variables. 4. RANKING BY CRUDE MONTE CARLO

4.1 The Probability Density Function of the Yield Difference

2.2 Sample Size A simple direct approach to generating A Y is to generate
Ya and Yh separately (see Sec. 2.1) and then to subtract Yb

The number of trials necessary to obtain some informa- from Ya. Each yield estimate has a binomial distribution
tion, in this case about the yield, from a Monte Carlo [1]. According to de Moivres' theorem [6], for NY(1 -
simulation is important. Naturally the sample size should be Y) > 1, a binomial distribution can be approximated by a

small, as otherwise computer run time will be excessive. On Normal distribution with the same mean and variance; see
the other hand, if the number of trials is too small the (2) and (3). It follows that the variable Y is approximately
statistical confidence level for the computed results is insuf- Normally distributed with mean Y and variance Y(1-
ficient and the effort is wasted. Certain methods exist for Y)/N.
reducing the number of trials; they are based on the exploi- Let there be N simulations of each system, all of them
tation of a feature peculiar to the problem at hand [7, 8]. mutually statistically independent. Then Ag is approxi-
E.g., in Section 5, we show that a certain covariance may be mately Normally distributed with mean [Yi - Yb] and
positive when we rank alternate designs which are similar; variance
later in Section 5 we show how this covariance can be used2 [X1 )-vYl-Yb1N
to reduce the number of trials substantially. ¢h Y( a bl-Y,]N
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TABLE I wishes to know which of the two designs is better; and, in
=- - _ -advance of the tests, we do not know the sign of AY. If Iz is

ASYJ Y N large, the null hypothesis is rejected and AY is asserted to__A_Y__ N

have the sign of AY. In the case when AY # 0 one usually
0.9 70 will wish to calculate a confidence interval. Table I shows

0.1 N versus AA Y and Y for a 5 % 2-sided significance test.
0.8 123

0.9 277
0.05 4.3 Confidence IntervalJor AY

0.8 492
Two-sided intervals are often appropriate, but one may

0.99 761 wish a single-sided test. The difficulty with the single-sided
0.01 6915 test is that in advance of the tests, one does not know which

side is the right one. To make that decision after the tests is
to change the statistical problem originally analyzed. If the

Minimum sample size for a 5 % 2-sided significance test to reject the null null hypothesis is rejected then
hypothcsis (AY 0). It is assumed that Nn = Nh = N = 2 Y/(AY)|
10 - Y)/(A Y) .0a25*aa= - Ya) + Yb(O - Yb)]/N. (8)I I 0.0 2 51~~ ~ ~ ~ ~ ~ ~ 0b =aaY

AY may be calculated from (6). Recalling the definition of

Each is easily estimated from the data, but, unfortunately, z in confidence statements such as

the distribution of the variance estimate &ab, is not tractable.
If it had the chi-square distribution and were independent AY ± - a % AY % A + +
of the estimate of the mean, one could use the Student's "t" V 2V
distribution; but those conditions are not satisfied. Never- l
theless we will ignore such considerations for the remainder are easi

.. ~~~~confidence interval includes zero, one might well wish toof the paper and assume that N is sufficiently large, so that th tA Y O
the random variable assert that A Y 0.

Table I and its associated formula illustrate two note-
AY - AY worthy facts (for Y > 0.5), namelyz- ^ (4)

(ab () ) for fixed IAY N decreases as Y increases
(ii) for fixed Y, N decreases as A Y |increases

has a standard Normal distribution. The method of esti-
mating Cab depends somewhat on the hypothesis made in In real life, Y will be fairly high, IA YI will be fairly small and
Secs. 4.2 and 4.3. When (4) applies one can make a signifi- N will probably be over 1000. The dire need for methods of
cance test of the null hypothesis or one can put confidence reducing sample size is as obvious as the methods are limited
limits on (A\ Y- A\ Y). The two procedures are essentially [7, 8]. Only by exploiting some feature peculiar to the
equivalent since they use the same information, problem at hand can one hope to reduce the sample size.

Correlated sampling can reduce sample size when the cor-
relation is positive; Section 5 shows why this is so.

4.2 Significance Test

For the statistical significance test make the null hypo- 5. RANKING BY CORRELATED MONTE CARLO
thesis, "A Y 0," and pool the estimates for Y to calculate
aab Suppose that the two designs are tested in pairs, one im-

N sa ± Nsb plementation of A and one implementation of B. For the

2N (sa) test i, we simulate each design with a set ofrandom numbers.
The result of test i is a pair of outcomes (xa,, Xb) which can

2 - 2 take the values (0,0), (0, 1), (1,0), (1, 1). In this section it is still
CabO Y(- Y)(21N) (5b) presumed that the tests are statistically independent, in

AY = Y- Yh = (Nsa -NSb)/N (6) pairs; i.e., the only possible dependence among the x's is
between those of a pair. In Sec. 4 it was presumed that there

Next we calculate z, (4) reduces to (7) under the null hypo- was no correlation between Xa and Xb in pair i. That assump-
thesis, namely tion is now dropped. The following relationships are not too

difficult to derive
z= (AY) Cabo (7)

E-'Y} = Y
and we perform the usual significance test. Two-sided tests
arc more appropriate than single-sided tests. since one a2 Var Y} =Y(1 - Y)/N
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C(1{Y~Yb} 1 )noon11 =lnoIlnOIb* =22
COVI auY °vi EXai YaYNCEXbiN N Some further reflection leads to the observation that

COV{Xai,Xbi} and (n00n1, - noln1o) have the same sign.
N= N2oov{xai,Exbi = N2 E °v{xai ,Xbi} Inspection of (9) and (10) shows that:

2 COV{EXai,EXb1i!} -Y o a Xi

noon,, > nOlnlo +-+ cab a> I Z* > Z.

= Cov{xai,Xbi} We have thus come to the crux of the matter and the
rationale behind "correlated sampling": z* exceeds z if and

C0VjXai,XbijE(xaj only if Cov {Xai,Xbi} is positivc; the greater the correlationCov{xai,xbi} =E{(Xai- Ya)(Xbi - Yb)} the greater the (z*/z)-ratio will be. If z* > z, both the signi-
E{XaiXbi}- YaYb ficance test and confidence interval mentioned in Sec. 4

will be "sharp"; fewer tests will suffice to discriminate be-
a*2 = VarAY ar{Ya- Yb} tween the two designs. In realistic cases, unfortunately,

there is no simple expression, like the one from Table I for
= Var{ Ya}- 2 Cov{ Ya, Yb4 + Var{ Yb} the minimum number of tests, hutt if Cov (xai ,Xbi} is known,

one can derive an expression [5, (20)].In the following we assume, as in Sec. 4, that the sample on can deive an exress ion[5,p(20)].' ' . ~~~~~Atthis point a word of caution about pseudo-randomsize is large enough, so that the true values can be satisfac- number generators is in order. By definition a pseudo-
torily ostimated by the sample values (from all 2N simula- r n itorl I ~~~~~~~~~~~randomnumber iS generated deterministically; thereforetions). Under this assumption we can estimate the terms in

t, there iS some kind of statistical dependence from one num-the above expression for Var{IA Y_}1. Also we assume that the ber to the next. The reader should ensure that the existingcentral limit theorem holds. Under these assumptions and dependence is not of the kind that manifests itself during as
the null hypothesis few as 2N simulated designs; otherwise the results may well

z*= A Y/a^* and z -A Y/&ab be erroneous.
The sample correlation coefficient p can be checked for

both have a standard Normal distribution. The following being statistically significantly different from zero before

expressions can be derived using the definitions listed in the g
first section.

A Cov v/[A A

= vYa(,Yb}&aUb1
AY (n1o - n01)/N [nllnOO - nolnol]
¢a=(nlo + n1l)(noo + nol)IN3-/a

(n10 ± n11)(n00 ±

[(n,, + n1o)(nll + nol)(noo + n10)(noo + nol)]'/2
b= (nO I + n 1l)(noo + n 1O)/N

CNnIN has an approximately standard Normal distribution.C0VjXai ,Xbi} = (n 1/N) -(nl10 + n 1 )(no l + nl 1N2)/
Consequently, a 2-sided test for ,,IN being significantly

(n11n00 - n0n0)/N2 different from zero can be used.

Cov{ Ya} = (n11noO - n1n1o)/N3 Examples:

N nl noo n10 no, Ya Yb AY p pXIN z z
Jab = [4n10n01 + (nil ± n00)(n01 + n1o)]/N3 (9) I 200 150 20 20 10 0.85 0.80 0.05 0.5 7 1.8 1.3

3 II 800 600 80 80 40 0.85 0.80 0.05 0.5 14 3.6 2.6072b [2(n100nll + nlOnOl) + (nil + noo)(nO, + njo)]IN3
(10) The correlation coefficient estimate is positive, 0.5 in both

I and II. The z* in I is barely adequate to assert a difference
A moment's reflection reveals that, when Cov{ Ya, Yb} = 0, between A and B; clearly z is even less adequate to assert a
noO ,nOl ,n1 0 and n 1 1 have the following expectations: difference. The z* in II is quite adequate to assert a difference

and worth-while confidence intervals could be proposed;
E{noo} = (I - Y)(l - Yb)N, E{n01} = (1 - Y) YbN, even without the correlation (i.e. using z instead of z*) it is
E{n10}= Ya(l - Yb)N, E{1'n,,= YaYbN. reasonable to assert that Aand Bare different.

Consequently we may expect 6. CONCLUSIONS

nOOnnolnlO ~~~~Two Monte Carlo methods are feasible for determining
when separate sets of random numbers were used for all the statistical confidence associated with the correct ranking
2N design simulations. Inspection of(9) and (10) shows that of two system designs, namely, Crude Monte Carlo and
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Monte Carlo via Correlated Sampling. When the two design [3] Yu. A. Shreider, The Monte Carlo Method, Long Island City, New
systems, A and B, are similar in topology one can use the York: Pergamon Press, 1966.
same set of random numbers for simulation i of the A-design [4] N. P. Buslenko and J. A. Schreider, Die Monte-Carlo-Methode und

ihre Verwirklichung mit elektronischen Digitalrechnern. Leipzig
and simulation i of the B-design. Because of the similarity G.D.R.: B. G. Teubner Verlagsgesellschaft 1964 (translated from
the outcomes of the two subtests, xai and Xbi will have a Russian).
positive covariance, Cov{xai,Xbi} > 0. However, when the [5] P. W. Becker, "Ranking the reliability oftwo designs by Monte Carlo
covariance is positive, a b > a *2, implying that z* > z. It methods," 1972 NATO Conference Proceedings: Reliability Testing

t n l s and Reliabilitv Evaluation (The Hague, Netherlands, 4-8 September);follows that the method involving correlated sampling iS I

Paper no. II-C. Published by E. M. Scheuer, Editor, California State
more efficient; it achieves the same statistical confidence University, Northridge. 1973.
with a considerably smaller sample size. Formulas have been [6] A. Papoulis, Probability, Random Variables, antd Stochastic Processes,
derived for determining approximate confidence values for New York: McGraw-Hill, 1965; Section 3.3.
both methods. The aficionado of geometry will appreciate [7] A. E. Mace, Sample-Size Determination, New York: Reinhold, 1964.
that the same results can be proved geometrically [5]. [8] H. Kahn and A. W. Marshall, "Methods of reducing sample size in

Monte Carlo computations," Journial of the Operations Research
Societv of America, vol. 1, pp. 263-78: November 1953.

7. ACKNOWLEDGMENTS Mailing address:
Dr. Peter W. Becker

The author thanks Dr. Ralph A. Evans, Mr. Finn Jensen, Electronics Laboratory
Dr. Ann F. S. Mitchell and the referees for helpful sugges- Technical University of Denmark, Bldg. 344

tions. DK-2800 Lyngby, Denmark

Peter W. Becker was born in Copenhagen, Denmark in 1925. He received
REFERENCES his M.S. and Dr. Techn. degree in Electrical Engineering from the Techni-

cal University of Denmark; presently he is with the Electronics Laboratory
[1] P. W. Becker and F. Jensen, Design ofSystems and Circuits for Maxi- of the Technical University of Denmark. Dr. Becker's previous technical

mum Reliability or Maximum Production Yield; book to be published experience includes a ten year period with the General Electric Co.,
in 1974 by Polyteknisk Forlag, Copenhagen, Denmark. Electronics Laboratory, Syracuse, N.Y. He has written several papers in

[2] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, the field of reliability, is interested in pattern recognition, and published
London U.K. Methuen and Co. Ltd., 1967: Section 4.4. in 1968 the book, Recognition of Patterns.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 2, 2009 at 10:58 from IEEE Xplore.  Restrictions apply. 


