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Abstract

Image text carries essential information to understand the scene and perform reasoning. Text-

based visual question answering (text VQA) task focuses on visual questions that require reading

text in images. Existing text VQA systems generate an answer by selecting from optical charac-

ter recognition (OCR) texts or a fixed vocabulary. Positional information of text is underused and

there is a lack of evidence for the generated answer. As such, this paper proposes a localization-

aware answer prediction network (LaAP-Net) to address this challenge. Our LaAP-Net not only

generates the answer to the question but also predicts a bounding box as evidence of the gen-

erated answer. Moreover, a context-enriched OCR representation (COR) for multimodal fusion

is proposed to facilitate the localization task. Our proposed LaAP-Net outperforms existing ap-

proaches on three benchmark datasets for the text VQA task by a noticeable margin.

1 Introduction

Visual Question Answering (VQA) has attracted much interest from the communities and witnessed

tremendous progress. However, lacking the ability to generate answers based on texts in the image limits

its applications. Recently, many new datasets (Biten et al., 2019a; Singh et al., 2019) and new methods

(Singh et al., 2019; Hu et al., 2020) are proposed to tackle this challenge and refer it as text VQA.

The earliest method for text VQA is LoRRA(Singh et al., 2019), which provides an optical character

recognition (OCR) module for the VQA input and proposes a dynamic copy mechanism to select the

answer from both fixed vocabulary and OCR words. The following work M4C(Hu et al., 2020) inspired

by LoRRA, uses rich representations of OCR as input and utilizes dynamic pointer network to deal with

out-of-vocabulary answers, leading to state-of-the-art performance. However, M4C simply concatenates

all modalities as transformer input and does not consider the high-level interaction among modalities of

text VQA. Moreover, it is unable to provide evidence for the answer since the text is not localized in the

image. Another recent work (Wang et al., 2020) proposes a new dataset for evidence-based text VQA,

which suggests Intersection over Union (IoU) based evaluation metric to measure the evidence. Our work

follows the spirit of evidence-based text VQA. More specifically, we generate the answer text bounding

box during the answer prediction process as supplementary evidence for our answer. We propose a

localization-aware answer prediction module (LaAP) that integrates the predicted bounding box with

our semantic representation for the final answer. Besides, we propose a multimodal fusion module with

context-enriched OCR representation, which uses a novel position-guided attention to integrate context

object features into OCR representation.

The contributions of this paper are summarized as follows: 1) We propose a LaAP module, which pre-

dicts the OCR position and integrates it with the generated answer embedding for final answer prediction.

2) We propose a context-enriched OCR representation (COR), which enhances the OCR modality and

simplifies the multimodal input. 3) We show that the predicted bounding box can provide evidence

for analyzing network behavior in addition to improving the performance. 4) Our proposed LaAP-Net
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outperforms state-of-the-art approaches on three benchmark text VQA datasets, TextVQA(Singh et al.,

2019), ST-VQA(Biten et al., 2019b) and OCR-VQA(Mishra et al., 2019), by a noticeable margin.

2 Related Works

2.1 Text Visual Question Answering

Text VQA has attracted much attention from the communities. The predominate method is LoRRA

(Singh et al., 2019), which takes image features, OCR features and questions to generate the answer.

LoRRA mimics the human answering process by providing the image-looking module, text-reading

module and answer-reasoning module. The generated answer could be selected from a fixed answer

vocabulary or one of the OCR tokens by the copy module. The copy module is further improved by M4C

(Hu et al., 2020) using dynamic pointer network. The M4C also proposes a transformer based network

with 3 multi-modal input (question, image object features and OCR features). We share the same spirit as

M4C but split the network into a clear encoder-decoder structure. We further propose a context-enriched

OCR representation to extract OCR related image features.

2.2 Evidence-based VQA and Multitask Learning

Evidence-based VQA has been proposed in the recent work (Wang et al., 2020), which suggests to use

intersection over union (IoU) to indicate the evidence. Many existing works (Selvaraju et al., 2017;

Goyal et al., 2016; Yu et al., 2019; Gao et al., 2019) compute the attention scores and build spatial maps

on image to highlight regions, which the model focuses on. The spatial maps serve as an evidence and

visual explanations of a VQA architecture. Our method further extends this by designing a location

predictor to generate a bounding box on the image to explain the answer generated. The bounding box

explains that the correct answer generated is based on the analysis of underlying reasoning instead of

exploiting the statistics of the dataset. As such, the bounding box becomes evidence of the VQA answer.

To achieve the aforementioned target, we design a multitask learning process, which not only generates

the answer based on the image and question but also provides the bounding box for the answer. The

proposed method improves the interpretation of VQA results and leads to better performance.

3 Localization-aware Answer Prediction Network

3.1 LaAP Network Architecture

To better utilize the position information of image texts and enforce the network to better exploit visual

features, we propose a localization-aware answer prediction network (LaAP-Net). Our LaAP-Net is built

based on the multimodal transformer encoder, transformer decoder and localization-aware prediction net-

work as shown in Figure 1. The transformer encoder takes the question embedding and OCR embedding

as input. Question embedding is generated by putting the question through a pretrained BERT-based

model, whereas the OCR embedding is generated by our proposed context-enriched OCR representa-

tion module. As highlighted in dark yellow in Figure 1, the decoding process starts with the <begin>

signal. For each decoded output, we first generate a bounding box. This bounding box will then be em-

bedded and added to the current answer decoder output, which is referred as localization-aware answer

representation. Finally, it is fed to the vocabulary score module and OCR score module. The scores are

concatenated and the element with the maximum score is selected as the final answer. In the following

section, we will present the three components of LaAP-Net: the context-enriched OCR representation,

the localization-aware predictor and the transformer with simplified decoder.

3.2 Context-enriched OCR Representation

Existing work (Hu et al., 2020) builds a common embedding space for all modalities. However, this

common embedding space has difficulty utilizing the image object features. We observe this by training

the M4C (Hu et al., 2020) network without the image object modality. The accuracy is almost unaffected.

To better exploit the image object modality, we propose the context-enriched OCR representation (COR)

module (Shown in Figure 2). Ideally, the answer for text VQA should be found from OCR tokens, thus we
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Figure 1: An overview of LaAP model. We perform context-enriched OCR representation to extrat object features. Then
question words and enriched OCR tokens are input to the transformer encoder and the transformer decoder. Based on the
transformer decoder outputs, we first predict the answer localization, and then integrate this localization to the OCR embed-
ding. Decoder output is also equipped with OCR position embedding. The OCR scores and vocabular scores are calculated
accordingly to find the answer from an OCR token or a word from the fixed answer vocabulary.

integrate geometric context objects of an OCR token into its representation to improve the discriminative

power. Take Figure 5(b) for example, the OCR representation for sixers enriched with the features of the

object red jersey can be better attended by the question. The context objects are attended according to

the proposed position-guided attention, where only spatial relationship between objects and OCR tokens

are considered.

Following M4C (Hu et al., 2020), we use features extracted from N object detected by the Faster

R-CNN (Ren et al., 2015), denoted as x
obj
n (where n = 1, ..., N). The corresponding bounding box

coordinates are represented as b
obj
n (where n = 1, ..., N). A combination of Faster R-CNN, Pyramidal

Histogram of Characters (PHOC) (Almazán et al., 2014) and FastText (Bojanowski et al., 2017) embed-

ding is adopted for M OCR tokens in an image, denoted as xocrm (where m = 1, ...,M) with the bounding

box denoted as bocrm (where m = 1, ...,M). We embed the given question into a set of word embedding

x
ques
k (where k = 1, ...,K and K is the number of words) through a pretrained BERT language model

(Devlin et al., 2019). All embeddings are then linearly projected to a d-dimensional space.

The detailed computation process for COR is described as follows. Firstly, the position-guided atten-

tion score vector attm between the m-th OCR token and the image objects is calculated as

attm = softmax((WQbocrm )T ∗ [WKb
obj
1

, ...,WKb
obj
N ]),m = 1, ...,M (1)

where WQ and WK are query projection matrix and key projection matrix respectively. Then the m-th

image attended OCR representation is calculated as weighted sum of the N object feature vectors as

xocr|objm = [xobj
1

, ..., x
obj
N ] ∗ attTm,m = 1, ...,M (2)

Note that we omit the multi-head attention mechanism (Vaswani et al., 2017) for simplicity. Finally, each

OCR token is represented by aggregating OCR feature embedding, image attended OCR representation

and position embedding as

x̂ocrm = xocrm + xocr|objm +W ocrbocrm ,m = 1, ...,M (3)
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Figure 2: Context-enriched OCR representation to integrate the object features based on the spatial information (bounding
box)

where W ocr is a matrix that linearly project the bounding box coordinate vector to d dimension. With

the proposed attention, the image object modality is merged into OCR. We then feed x̂ocr
1

,...,x̂ocrM and

x
ques
1

, ..., x
ques
K into the transformer encoder as input. The strengthened OCR representation x̂ocrm empow-

ers the network to better learn the semantic correlation between OCR tokens and question. Meanwhile,

it simplifies the multimodal feature input to improve the localization-aware answer prediction.

3.3 Localization-aware Answer Prediction

3.3.1 Localization-aware Predictor

To exploit the positional information of image features and texts, we design a localization-aware predictor

to perform the bounding box prediction. The bounding box is embedded and added to the decoder output

to generate the localization-aware answer representation. More specifically, given the answer embedding

ydec output from the decoder, we calculate the localization-aware answer representation zans by fusing

ydec with the gated bounding box projection as

zans = ydec + gloc ◦ (W loc ∗ bpred + biasloc) (4)

where W loc and biasloc are weights of a linear layer to project the location bounding box to the same

dimension as ydec and ◦ represents element-wise multiplication. gloc is the localization gate. Note

that our network update the gate weight automatically through training, so that it implicitly reveals the

statistical importance of the localization information. Similarly, we calculate the high-level localization-

aware representation zocrm (where m = 1, ...M) of each OCR token as

zocrm = yocrm + gloc ◦ (W loc ∗ bocrm + biasloc), m = 1, ...,M (5)

where yocrm , denotes the m-th OCR encoding from the last encoder layer and bocrm is the corresponding

bounding box coordinates. bocrm goes through the same linear projection layer and localization gate as

bpred so that they are projected to the same high-dimensional space.

Then similar to (Hu et al., 2020), we obtain the similarity score socrm between each OCR representation

and the answer representation as

socrm = (W ans ∗ zans + biasans)(W ocr ∗ zocrm + biasocr), m = 1, ...,M (6)

where W ans, biasans, W ocr and biasocr are parameters of linear projection layers. The localization-

aware answer representation zans is also fed into a classifier to output V scores svocv (v = 1, ..., V ),
where V is the vocabulary size. The final prediction is selected as the element with the maximum score

as

max [socrm ; svocv ] (7)
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Figure 3: An overview of the transformer with simplified decoder (TSD). TSD output is used to generate the bounding box,
which is then used for answer prediction

Note that the predicted bounding box is not explicitly used in generating the answer. However, local-

ization prediction is a vision task so it can enforce the network to exploit visual features. As a result, it

serves as a good complement to the classical vocabulary classification task, which mainly focuses on lin-

guistic semantics. The localization-aware predictor strengthens the learned answer embedding to attend

to the correct OCR token, which in turn facilitates the classifier to correctly find the word. Moreover,

this localization information improves the performance of position-related questions as shown in Figure

4(a) and 4(c), which will be further discussed in Section 4.2

3.3.2 Loss Design to Incorporate the Evidence Scores

We use the IoU scores as the evidence for the answer generated. Therefore, we propose a multitask loss,

which facilitates the answer embedding to learn both the semantics and localization information provided

by the OCR tokens. The proposed multi-task loss consists of three individual loss functions: localization

loss Ll, semantic loss Ls and the fusion loss Lf .

The answer embedding output from the decoder is fed into a multilayer perceptron (MLP) to directly

predict the bounding box location bpred of the answer OCR token. Inspired by (Carion et al., 2020), the

localization loss Ll is defined as:

Ll = (1− IoU(bpred, bgt) + L1(b
pred, bgt)) ∗ I (8)

where bgt denotes the ground truth bounding box, which is obtained by matching the OCR token text to

the ground truth answer text. IoU and L1 calculate the intersection over union and L1 norm respectively

between the prediction and ground-truth bounding box. I = 1 if the answer word matches one of the

recognized OCR text and 0 otherwise.

To accurately answer a question, OCR localization and semantic information are both critical. Thus,

we propose a fusion loss Lf to couple the localization prediction and semantic representation of the

answer. The two aspects of information complement each other in the process of decision making.

Formally, given the target scores tocrm ∈ {0, 1}(m = 1, ...M), we formulate our fusion loss Lf using

cross entropy as

Lf =

M∑

i=1

losscross_entropy(s
ocr
m , tocrm ) (9)

In order to exploit the linguistic meaning of the answer embedding, we collect a fixed vocabulary of

frequently used words. We feed the localization-aware answer representation zans into a linear classifier

to classify answer embedding of each decoding step to one of the vocabulary. Our semantic loss Ls is

computed as the cross entropy between the classification score vector and the one hot encoding from

the ground truth word. The overall multi-task loss of the network is calculated as L = Lf + λlLl +
λsLs, where λl and λs are regulation coefficients that determine the importance of localization loss and

semantic loss. The value of λl and λs are experimentally selected.
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3.4 Transformer with Simplified Decoder

Existing works (Hu et al., 2020; Gao et al., 2020) use BERT alike transformer architecture, which allows

each decoder layer to attend to the same depth encoder layer. However, a deeper encoder layer extracts

a more broad view of the input than a shallow layer (Clark et al., 2019). As such, we adopt the standard

transformer encoder-decoder structure as shown in Figure 3. Here, we use the transformer with simplified

decoder (TSD) by removing the decoder self-attention to save the computational cost. We experimentally

find that only using the encoder-decoder attention can maintain the same performance. The multimodal

inputs are encoded by L stacked standard transformer encoder layers. The embedding of the last encoder

layer is fed into each of the L decoder layers. The answer word is generated in an auto-regressive

manner, i.e. for each decoding step, we take the predicted answer embedding from the previous step

as the decoder input and obtain the answer embedding as the decoder output. The decoding process is

performed by the proposed localization-aware prediction module as shown in Figure 1 and discussed in

Section 3.3.

4 Experiments

We evaluate our LaAP-Net on the three challenging benchmark datasets: TextVQA (Singh et al., 2019),

ST-VQA (Biten et al., 2019a) and OCR-VQA (Mishra et al., 2019). We show that the proposed LaAP-

VQA network outperforms state-of-the-art works on these datasets. We further perform the ablation

study to investigate the proposed context-enriched OCR representation (COR) and the localization-aware

answer prediction (LaAP) on TextVQA dataset.

4.1 Implementation Details

For a fair comparison with the state-of-the-art methods, we follow the same multimodal input as M4C

(Hu et al., 2020). More specifically, we use a pretrained BERT (Devlin et al., 2019) model for question

encoding, the Rosetta-en OCR system (Borisyuk et al., 2018) for OCR representation and a Faster-RCNN

(Ren et al., 2015) based image feature extraction. The OCR tokens are represented by a concatenation

of the appearance features from Faster R-CNN , FastText embeddings (Bojanowski et al., 2017) , PHOC

feature (Almazán et al., 2014) and bounding box (bbox) embedding. We set the common dimensionality

d = 768 and the number of transformer layers L = 4. More details of training configuration are

summarized in the supplementary material.

4.2 Evaluation on TextVQA Dataset

The TextVQA (Singh et al., 2019) dataset contains 28408 images with 34602 training, 5000 validation

and 5734 testing question-answer pairs. We compare our result on TextVQA to the newest SOTA method

SMA (Gao et al., 2020) and other existing works like LoRRA (Singh et al., 2019), MSFT VTI (MSFT-

VTI, 2019), and M4C (Hu et al., 2020). The proposed LaAP-Net achieves a 40.68% validation accuracy

and a 40.54% testing accuracy, which improves the SOTA by 1.10% (absolute) and 0.25% (absolute).

Methods Val Acc. Test Acc.

LoRRA 26.56 27.63

M4c 39.40 39.01

M4C+COR 39.78 —-

M4C+COR+LaP 40.73 40.41

TSD 39.86 —-

TSD+LaP 39.37 —-

TSD+COR 40.49 —-

TSD+COR+LaP(ours) 40.68 40.54

Table 1: Ablation study on context-enriched OCR rep-
resentation and localization-aware answer prediction for
M4C model and our proposed model

Methods Val Acc

M4C 39.40

w/o Vocab 31.76

w/o OCR copy 14.94

LaAP-Net (ours) 40.68

w/o Vocab. 31.37

w/o OCR Copy 24.71

w/o OCR embedding Copy 34.51

w/o OCR bbox Copy 40.49

Table 2: Ablation study by removing its fixed answer vo-
cabulary (w/o Vocab.) or OCR copying (w/o OCR Copy)
on the TextVQA dataset.
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Figure 4: Qualitative examples from TextVQA dataset. We display predicted answers (Yellow for word generated from OCR
and blue for vocabulary) of LaAP-Net and M4C with ground-truth (GT). Our predicted bounding box (blue box) is also depicted
in the images to compare to the GT box (red box). The IoU as an evidence score is also shown in each image. For Figure (d),
IoU 0 (0.49) indicates OCR recognition error, 0.49 is the IoU with the GT bounding box.

Note that we only compare with SMA results using the same set of features to show the advantage of the

network structure itself. We also train our network with additional data from ST-VQA dataset following

M4C and boost the test accuracy by 0.95% (absolute).

Ablation Study on Network Components. Context-enriched OCR representation (COR) and

Localization-aware predictor (LaP) are the two key features of our network. We investigate the im-

portance of both components by progressively adding them on our transformer with simplified decoder

(TSD) backbone. First, we remove COR and LaP from our network and feed image object feature

directly into the encoder as in M4C. The answer prediction part is also strictly following M4C. This

configuration is denoted as TSD in Table.1. Then we add COR on TSD, which is denoted as TSD+COR.

The third ablation is adding only LaP to TSD (TSD+LaP). Each component demonstrates a contribution

to performance improvement as shown in Table 1. To further prove the effectiveness of COR and LaP,

we add them on our baseline network M4C. COR and LaP individually lead to an accuracy improve-

ment of 0.38 and 0.95 respectively. COR and LaP together boost the accuracy by 1.33. Note that our

network without COR, i.e. TSD+LaP surfers from performance retrogress. The rationale behind is that

flat multimodal feature used in place of COR contains both objects and OCR tokens. Object’s position

embedding introduces much noise for the localization task. COR absorbs context object features in OCR

representation and improves its discriminating power. Meanwhile, the encoder multimodal input is sim-
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Method
Val.

Acc.

Test

Acc.

LoRRA (Singh et al., 2019) 26.56 27.63

MSFT VTI (MSFT-VTI, 2019) 32,92 32.46

M4C (Hu et al., 2020) 39.4 39.1

SMA (Gao et al., 2020) 39.58 40.29

LaAP-Net 40.68 40.54

M4C + STVQA (Hu et al., 2020) 40.55 40.46

LaAP-Net + STVQA 41.02 41.41

Table 3: On the TextVQA dataset, our model outper-
forms LoRRA and M4C by 13.11% and 1.44% (abso-
lute) respectively. Our final model trained on TextVQA
and STVQA dataset advances the state-of-the-art perfor-
mance to 41.41% on TextVQA test split dataset.

Method
Acc.

Val

ANLS

Val.

ANLS

Test

VTA

(Biten et al., 2019a)
—– —– 0.282

M4C

(Hu et al., 2020)
38.05 0.472 0.462

SMA

(Gao et al., 2020)
—– —– 0.466

LaAP-Net 39.74 0.4974 0.485

Table 4: On the STVQA datset, our LaAP-Net model
achieves +0.02 (absolute) ANLS over the most recent
work SMA and approximately +0.2 (absolute) boost over
the challenge winner, VTA (Biten et al., 2019a).

plified, which leads to noise reduction. In summary, LaP and COR are not two independent modules

simply added together. They enhance each other and improve our network as a system.

Ablation Study on Source of Answer. We restrict the answer generation source to study the effect of

our method on word semantic learning and OCR selection. As shown in Table.2, our model significantly

improves the accuracy when we only predict the answer from vocabulary. It implies that our localization

prediction module enhances the network’s capacity for learning the semantics of OCR tokens, which

coincides with our qualitative analysis.

Evidence-based Qualitative Analysis on TextVQA Dataset. One challenge for the existing VQA sys-

tem is that the correct answer generated is hard to tell whether the answer is based on the analysis of

underlying reasoning or through exploiting the statistics of the dataset. As such, Intersection-over-Union

(IoU) (Wang et al., 2020) is recommended to measure the evidence for the answer generated. The IoU

result of our bounding box is shown in Figure 4. For example, in Figure 4(b), two IoU results (0.84, 0.68)

explain the reason for the answer "startling stories". Higher IoU indicates better evidence. Furthermore,

these IoU scores show the answer is generated by exploiting the image features instead of exploiting the

statistics of the data set, i.e. a coincidental correlation in the data.

Furthermore, we observe that most of the text VQA errors come from inaccurate OCR result. e.g. in

Figure 4(d), the OCR token "intel)" is recognized wrongly, which results in the false answer of M4C.

Due to the localization prediction, our method generates the correct answer even in such case (4(d)).

Since localization tends to use visual features of OCR tokens rather than their text embedding, it can

better determine the attended OCR token in spite of the text recognition result. With the predicted

OCR bounding box, the answer generation problem is converted to a conditioned classification process

P (text|predicted box) to recognize the text from the vocabulary. More examples supporting our analysis

can be found in Figure 4.

Our localization predictor also shows the capability of understanding position and direction as shown

in Figure 4(a, c). Our network learns to understand position in training because the ground-truth position

is provided straight to guide the localization prediction, while in previous works, positional information

is put through several layers of encoder and decoder without explicit guidance.

4.3 Evaluation on ST-VQA Dataset.

We evaluate the proposed model on the open vocabulary task of ST-VQA (Biten et al., 2019b), which

contains 18921 training-validation images and 2971 test images. Following previous works (Hu et al.,

2020; Gao et al., 2020), we split the images into training and validation set with size of 17028 and 1893

respectively.

We report both accuracy and ANLS score (default metric of ST-VQA) in Table 4. Our LaAP-Net

surpasses the SOTA method by a large margin on both metrics. Note that SMA improves its baseline

method M4C by only 0.004 in testing ANLS score while we boost the result by 0.019.

Evidence-based Qualitative Analysis on ST-VQA Figure 5 shows IoU scores, our predicted bounding
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(a) (b) (c) (d)

Figure 5: Qualitative examples from ST-VQA dataset. We display predicted answers (Yellow for word generated from OCR
and blue for vocabulary) of LaAP-Net and M4C with ground-truth (GT) (GT word not contained in any OCR is printed in
gray). Our predicted bounding box is also depicted in the images (blue box) to compare to the GT box (red box). The IoU as
an evidence score is also shown in each image. For Figure (c), IoU 0 (0.32) indicates OCR recognition error, 0.32 is the IoU
with the GT bounding box.

(a) (b)

Figure 6: Failure examples of our LaAP-Net

Method Val Acc. Test Acc.

BLOCK

(Mishra et al., 2019)
—- 42.0

CNN

(Mishra et al., 2019)
—- 14.3

Combine+W2V

(Mishra et al., 2019)
—- 48.3

M4C

(Hu et al., 2020)
63.5 63.9

LaAP-Net 63.8 64.1

Table 5: On the OCR-VQA dataset, our LaAP-
Net model achieves the state-of-the-art result
64.1% accuracy comparing to M4C (Hu et al.,
2020).

box and answer. In those examples, our proposed localization-aware answer predictor not only gen-

erates correct answer, but also predicts exact bounding box(drawn in blue) of the corresponding OCR

token. Similar conclusion can be drawn from the result as discussed for TextVQA dataset. In Figure

5(a), our network correctly attends to the middle sign designated by the question, where our reference

method M4C fails. In Figure 5(c), our network manages to predict the word ’river’ even though it is not

recognized by the OCR system. More qualitative examples can be found in the supplementary material.

4.4 Evaluation on OCR-VQA Dataset

Unlike TextVQA and ST-VQA that contain "in the wild" images, OCR-VQA dataset consists of 207572

images only of book covers. Thus, the image object modality is less important in OCR-VQA. Moreover,

since questions are about the title or author of a book, it is relatively difficult to determine the location.

Even so, our model still achieves the state-of-the-art result, 64.1% accuracy as shown in Table 5.

4.5 Failure Analysis

Two failure cases are shown in Figure 6. As discussed in Section 4.2, our model is sensitive to positional

instruction in a question. However, in Figure 6(a), the question asks about relative position, which our

network does not gain knowledge on. In Figure 6(b), the position "right" is indicated by an arrow, but
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our network locates the road sign on the right of the image. In this case, question answering requires

reasoning in addition to text reading function, which we will investigate in our future work.

5 Conclusion

This paper proposes a localization-aware answer prediction network (LaAP-Net) for text VQA. Our

LaAP-Net not only generates the answer to the question, but also provides a bounding box as an evi-

dence of the answer generated. Moreover, a context-enriched OCR (COR) representation is proposed

to integrate object related features. The proposed LaAP-Net outperforms existing approaches on three

benchmark datasets for the text VQA task by a noticeable margin with new state-of-the-art performance:

TextVQA 41.41% , ST-VQA 0.485 (ANLS) and OCR-VQA 64.1%.
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Appendix

A Implementation and Hyper-parameter Setting

We use the LoRRA open sourced training environment developed by PyTorch. The question encoder

is performed by the first 3 layer of the pre-trained BERT-base model. We also set a maximum decoder

step 12 in the answer prediction process. Answer length 12 covers almost all the answers for TextVQA,

ST-VQA and OCR-VQA datasets.

We build a fixed vocabulary by using the top 5000 frequent words from the answers of the TextVQA

dataset. TextVQA has 10 answers for each question, and the accuracy is measured by the soft-voting

for the ten answers. The ST-VQA official metric is average normalized levenshtein similarity (ANLS),

which is defined as scores 1 − dL(apred, agt)/max(|apred|, |agt|), (where apred and agt are prediction

and ground-truth answers respectively, and dL is the edit distance) averaged over all questions.

The training batch size is set to 64 with 32000 iterations for both TextVQA and ST-VQA dataset. For

the OCR-VQA dataset, the batch size is 128. The best validation accuracy model is used for the test

dataset. The entire training takes around 7 hours for TextVQA, 11 hours for ST-VQA and 11 hours for

OCR-VQA on 2 Nvida 2080ti GPUs. We summarize the hyper-parameter table for the reproducibility

purpose.

Input Feature Parameters Value Optimizaiton Parameters Value

max question word number K 20 optimizer Adam

max detected object number N 100 warm-up learning rate factor 0.2

image object feature dimension 2048 max grad L2 -norm for clipping 0.25

max input OCR token number M 50 warm-up iteration 1000

OCR Fasttext dimension 300 max iteration TextVQA 32000

OCR PHOC dimension 604 max iteration ST-VQA, OCR-VQA 48000

OCR Faster R-RCNN dimension 2048 learning rate steps, TextVQA, ST-VQA 14000, 19000

input embedding dimension d 768 learning rate steps, OCR-VQA 28000, 38000

input dropout rate 0.1 base learning rate 1e-4

batch size, TextVQA, ST-VQA 64 learning rate decay 0.1

batch size OCR-VQA 128 max decoding steps T 12

Text BERT layer 3 LaAP-net Encoder/Decoder Layer 4

B Additional Qualitative Examples

In this section, we show additional examples of text VQA answer and predicted bounding box from both

TextVQA and ST-VQA datasets to support our claim in the paper.
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Figure 1: Qualitative examples from TextVQA dataset. We display predicted answers (Yellow for word generated from OCR
and blue for vocabulary) of our LaAP-Net and the ground-truth (GT). Our predicted bounding box (blue box) is also depicted
in the images to compare to the GT box (red box). Note that some images do not contain GT bounding box while some images
contain more than one GT bounding box
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Figure 2: Qualitative examples from ST-VQA dataset. We display predicted answers (Yellow for word generated from OCR
and blue for vocabulary) of our LaAP-Net and the ground-truth (GT). Our predicted bounding box (blue box) is also depicted
in the images to compare to the GT box (red box).


