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Heterogeneity in the performance of persons affected with schizophrenia or schizotypic psychopathology
on various laboratory tasks has long been recognized, both for its consistency across tasks and studies and
for the massive methodological and substantive challenges it poses for experimental psychopathology,
genetic, and other investigations. Traditional multivariate techniques, such as factor analysis, discrimi-
nant function analysis, and cluster analysis, have all been deemed inadequate for resolving heterogeneity,
because of one or another statistical limitation. Here, an objective statistical approach based on a formal
statistical model that uses the ubiquitous and well-developed expectation-maximization (EM) algorithm
(A. P. Dempster, N. M. Laird, & D. B. Rubin, 1977) is presented, which enables one effectively to
partition a group of experimental subjects, in this case identified initially using the well-known
Perceptual Aberration Scale (L. J. Chapman, J. P. Chapman, & M. L. Raulin, 1978), in a manner that
reduces heterogeneity and allows for the separation of what are termed genuine and false-positive
schizotypes. The validity of the parsing strategy was supported by reference to other laboratory indexes
of relevance to schizophrenia and schizotypy that were not included in the initial EM-based analyses. The
potential utility of this approach is discussed with reference to future schizophrenia and schizotypy
research.

Schizophrenia has long been known to be characterized by
considerable heterogeneity in its clinical presentation (Bleuler,
1911/1950; Kraepelin, 1919/1971); indeed, Bleuler (1911/1950)
referred to the “group of schizophrenias,” and this heterogeneity
has been a major source of frustration for schizophrenia research-
ers. It is well known that heterogeneity exists in all aspects of the
illness, including symptoms, cognitive and behavioral dysfunc-
tions, age and type of onset of illness, longitudinal course, and
long-term outcome. Attempts to resolve this heterogeneity have
usually taken the form of clinical subtyping approaches or multi-
dimensional conceptualizations that seek to identify either homo-
geneous subgroups of patients or homogeneous dimensions of
phenomenology or other characteristics (cf. Andreasen, Arndt,
Alliger, Miller, & Flaum, 1995; Neale & Oltmanns, 1980). For
example, the Diagnostic and Statistical Manual of Mental Disor-
ders (4th ed.; DSM–IV; American Psychiatric Association, 1994),
like other systems before it, allows for the clinical subtypes (i.e.,
disorganized, paranoid, catatonic, and undifferentiated) even
though these subtypes are well known to be arbitrary and unstable
over time within individuals (Andreasen et al., 1995). An empirical

approach to the heterogeneity of schizophrenia phenomenology,
based on confirmatory factor analytic results, organized the symp-
toms into four major dimensions: negative, disorganized, reality
distortion, and premorbid social functioning (Lenzenweger &
Dworkin, 1996). Nonetheless, echoing the trenchant view of
Gottesman (1987), aspiring cartographers of the heterogeneous
phenomenological terrain of schizophrenia have been frustrated by
this aspect of the disease for nearly a century.

Recognition of the Challenge Posed by Heterogeneity of
Performance

Experimental psychopathology laboratory investigations of
schizophrenia have similarly encountered the effects of heteroge-
neity (Maher, 2003), and this reality has forced many researchers
to focus on the development of statistical or methodological strat-
egies for dealing with the heterogeneity (e.g., L. J. Chapman &
Chapman, 1977, 1989). For example, although there are some
well-established laboratory findings about the illness (e.g., eye-
tracking dysfunction; Levy, Holzman, Matthysse, & Mendell,
1993; and deficits in sustained attention; Cornblatt & Keilp, 1994),
not all schizophrenia patients show deviance on any single given
index, and more important, most schizophrenia cases do not dis-
play more than one of these deficits.

Although heterogeneity has long been observed and even taken
as an assumed reality characteristic of the symptoms of schizo-
phrenia and the laboratory task performance patterns of those
affected with the illness, there is also an underlying presumption
(one might say, theoretical hope) that there must be some core
illness pattern or set of performance features that would uniquely
demarcate those persons who genuinely have the illness from those
with other psychiatric illnesses, or demarcate those who carry the
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liability for schizophrenia from those who do not (assuming either
a polygenic [or oligogenic] system with a threshold effect or a
single major locus operating against a background of polygenic
effects; Gottesman, 1987; Korfine & Lenzenweger, 1995). The
effect of heterogeneity on any investigation of schizophrenia has
long been known to increase noise and, thereby, obscure signal in
nearly every study.

Our understanding of schizophrenia and its manifestations is
further complicated by the fact that the illness picture is blurred by
additional complicating third-variable factors such as medication,
institutionalization, deterioration, and stigma of diagnosis effects.
One way to deal with this issue has been to study those persons at
risk for the illness who are currently unaffected with schizophre-
nia. The at-risk individuals do not present the complicating fea-
tures noted above. There are three approaches to defining risk in
schizophrenia research: (a) genetic risk (e.g., the study of biolog-
ical offspring, the study of first-degree biological relatives), (b)
clinical definition of schizotypes (e.g., DSM–IV schizotypal per-
sonality disorder), and (c) laboratory definition of schizotypes
(e.g., defined in terms of deviance on a reliable and valid indica-
tor). However, even though the study of at-risk populations avoids
the complications of the third variables, heterogeneity still exists in
the laboratory performance of groups known to be at risk for the
illness (Lenzenweger, 1998).

Prior Approaches to the Problem of Heterogeneity and
Their Inadequacy

Traditional statistical approaches to the reduction of heteroge-
neity have been unable to address this vexing issue in schizophre-
nia research. For example, factor analytic procedures help to
reduce large numbers of variables to a smaller set of factors, and
in doing so, variables are reorganized, not persons. Discriminant
function analysis seeks linear combinations of variables that effi-
ciently separate diagnostic groups, and profile analysis seeks to
determine if groups differ in their configuration of performance on
variables or measures of interest. However, both discriminant
function and profile analysis presume that group membership of
the subjects is already known, and these techniques seek merely to
sharpen the distinction between known (i.e., preexisting) groups,
using variables of interest (but, most important, the subjects them-
selves are not reassigned or sorted in any way to new groups with
either technique when applied initially to a data set), or they may
be used to predict group membership for future unassigned sub-
jects. In short, none of these commonly known methods can
adequately separate out individuals who might represent the
schizophrenia signal from those who represent noise within an
at-risk-for-schizophrenia group, nor do they take into account
adequately the heterogeneity in performance of normal subjects.
Although traditional cluster analysis seeks to classify subjects
using quantitative (i.e., continuous) data into meaningful sub-
classes and can be thought of as an aid in the investigation of latent
classes, the marked limitations of cluster analysis for even simple
classification tasks (e.g., male vs. female) are known (see Golden
& Meehl, 1980) and limit enthusiasm for the technique in studies
of heterogeneity. Another severe limitation of cluster analysis it
that the method lacks a formal statistical procedure for the deter-
mination of the proper (or correct) number of classes underlying a
multivariate space.

Proposition of a New Model and Method for Resolving
Heterogeneity

Prior statistical and data-analytic approaches to the problem of
heterogeneity of performance in laboratory measures are beset
with shortcomings, and they are inherently insufficient as methods
for this problem. Therefore, one must ask, what sort of model and
method would one want to more effectively address the problem of
heterogeneity in laboratory performance measures? What should it
be able to do? How should it work? What aspects of data should
it use to accomplish its goals? Ideally, one would want an approach
that (a) was statistically well principled, (b) was not inordinately
dependent on excessively large sample sizes (as many psychopa-
thology studies have small sample sizes), and (c) would allow one
to use performance data from a known normal group to assist in
the subdivision of a hypothetically pathological group into mean-
ingful subgroups. We argue that such a method should take into
account the conditional probability structure of selected laboratory
measures known to exist within a normal group and use such
information to sift through the observed data on the same measures
in the pathological group. In doing so, the method should be able
to identify those cases (i.e., individuals) within the pathological
group who are most likely misclassified as putatively pathological.
Such an identification process would be empirically enabled as
each individual within the putatively pathological group would be
assigned a posterior probability (meaning given observed data),
derived using established Bayesian principles, as to their likely
status as a genuine instance of the pathological group (i.e., a
true-positive case) as opposed to an incorrect instance of classifi-
cation to the pathological group (i.e., a false-positive case). Such a
model and method should not merely identify more severely
affected cases within the putative pathological group vis-à-vis the
normal group, as existing strategies for identification of severity of
impairment are generally adequate as a basis for parsing a sample.
Moreover, the method should be automatic in the sense that from
a specified model, it can be applied to data without adjustment or
tuning by the investigator.

Therefore, we undertook the present study with a large, multi-
variate database gathered from individuals who were identified
initially as putative schizotypes or nonschizotypes and used a
statistical approach for mixture models, based on the expectation-
maximization (EM) algorithm, designed to sift through the labo-
ratory task performance patterns of these study subjects, guided by
the probability structure of the performance of the normal subjects,
to reduce heterogeneity among the schizotypes. In short, this study
sought to segregate, in an almost automatic manner, those schizo-
typic subjects who are most likely to be genuine schizotypes from
those who might best be thought of as false-positive cases.1

1 We readily acknowledge that there could be a difference of opinion as
to the use of terms such as true or genuine schizotypes. We have used
genuine schizotype in a conceptual manner to convey the essence of what
we are trying to accomplish with this exercise. Given that many investi-
gators call those persons selected on the basis of high scores on a schizo-
typy indicator putative schizotypes, we wanted to avoid potential confusion
(and awkwardness of expression) by describing those persons we term
genuine schizotypes as putative putative schizotypes. We anticipate the
reader will distill the meaning and intent of our use of the term genuine
schizotype.
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Method

Subjects

Subjects for the present study were drawn from a randomly ascertained
sample of 1st-year undergraduates at a university in the Northeast, who
voluntarily completed a 250-item psychological inventory titled Attitudes,
Feelings, and Experiences Questionnaire, which included the Perceptual
Aberration Scale (PAS; L. J. Chapman et al., 1978; see below for detail).
This approach was used to maximize diversity within the pool of potential
study subjects, as well as to minimize the effects of both subject self-
selection factors and group-related test-taking attitudes often found in
introductory-psychology-course-based sampling procedures.

Two thousand individuals were initially selected at random from a
university roster of all 1st-year students who entered during a fall semester
(approximately 3,000 students per year). Of the 2,000 potential sub-
jects, 1,684 (51.3% women, 48.7% men) completed the inventory. The
response rate for the screening was 84.2%.

To detect pseudorandom responding and invalid test-taking attitudes
among those screened, a 14-item version of Jackson’s (1984) Infrequency
scale from his Personality Research Form was included in the 250-item
screening inventory. Subjects scoring greater than 3 on the Infrequency
scale were dropped from the sample; 35 (2.1%) were excluded from our
sample on this basis. Three additional subjects were dropped because of
extensive missing data on the inventory. The final sample consisted
of 1,646 cases, from which two subject groups were composed for the
experimental assessments described below. Separate group means and
standard deviations for men and women on the PAS were computed and
served as the basis for subject selection. Following L. J. Chapman and
Chapman (1985), high-PAS subjects were required to have scored at
least 2.0 standard deviations above the group mean on the PAS, whereas
normal controls were required to have scored no higher than 0.5 standard
deviations above the group mean. Study subjects for each of the two groups
were selected at random from the two subsamples of subjects meeting the
specified criteria. Subsequent testing was carried out while unaware of
group membership. Twenty-six (14 female and 12 male) normal control
subjects and 31 (16 female and 15 male) high-PAS subjects were tested.
The proportions of male and female subjects across the two groups did not
differ significantly, �2(1, N � 57) � 0.028, p � .87. The mean ages of the
high- and low-PAS subjects were 19.00 years (SD � 0.52) and 18.96 years
(SD � 0.53), respectively. The mean PAS scores of the high- and low-PAS
subjects were 19.00 (SD � 6.35) and 0.77 (SD � 0.99), respectively. There
were no significant differences between the two groups in terms of agree-
ment to participate in the study described below.

Although the individuals contained in the pool of 1,646 potential study
subjects had been preselected initially for academic achievement (i.e.,
university admission), academic ability does not preclude risk for psycho-
pathology (Lenzenweger, 1999; Lenzenweger, Loranger, Korfine, & Neff,
1997). The population from which the sample was drawn was most
probably somewhat biased against particularly early-onset and clinically
expressed variants of severe psychopathology. However, one would not
necessarily anticipate any diminution in the prevalence of schizophrenia-
spectrum-related liability in the undergraduate population studied.

Measures

Screening Measures

PAS. The PAS is a 35-item true–false self-report measure of distur-
bances and distortions in perceptions of body image as well as of other
objects (L. J. Chapman et al., 1978), and its construction was inspired, in
part, from Meehl’s model and compendium of schizotypic signs (Meehl,
1962, 1964). Multiple converging lines of criterial evidence show that the
PAS is a valid, although imperfect, psychometric indicator of some aspects
of schizotypy (cf. Cronbach & Meehl, 1955), and extensive literature
reviews bearing on the reliability and validity of the PAS as schizotypy (or,

perhaps more broadly, psychosis-proneness) measures can be found else-
where (J. P. Chapman, Chapman, & Kwapil, 1995; Lenzenweger, 1998). In
short, the PAS is known to be significantly associated with (a) increased
risk for schizophrenia in the first-degree biological relatives (but not risk
for unipolar or bipolar illness), (b) poor Wisconsin Card Sorting Test
(WCST) performance, (c) increased thought disorder, (d) Minnesota Mul-
tiphasic Personality Inventory schizophrenia-related deviance (Hathaway
& McKinley, 1983), (e) increased schizotypal personality disorder symp-
tomatology, (f) impaired smooth-pursuit eye movements, (g) poor antisac-
cade performance, (h) poor delayed response task (DRT) performance, and
other schizophrenia-relevant processes (see Lenzenweger, 1998, for exten-
sive review). At this time, no other psychometric measure of schizotypy is
associated with such a multidimensional profile of validating evidence.

Psychosis screening. All subjects completed the self-administered
computerized screening version of the Diagnostic Interview Schedule
(DISSI; Robins, Helzer, Croughan, & Ratcliffe, 1981) to assess lifetime
presence of a schizophrenia–schizophreniform psychosis. The DISSI
screening assessment was done using a computerized, self-administered
version of the DISSI. Subjects completed the DISSI alone at a computer
workstation. No subject met DISSI screening criteria for a suspected prior
schizophrenia–schizophreniform psychosis.

Laboratory Performance Measures

Each of the laboratory measures that generated the performance indexes
for the present demonstration has been described in previously published
articles, and therefore, extensive detail regarding the tasks’ properties and
the associated procedures for their administration have been omitted.

Measures Used in Expectation-Maximization-Based
Classification Approach

Wisconsin Card Sorting Test. A computerized WCST was adminis-
tered according to the standard guidelines specified in the WCST manual
(Heaton, 1981) and scored using a computerized version of the test (Harris,
1988). The WCST is the well-known neuropsychological task that mea-
sures abstraction ability and cognitive flexibility and is commonly hypoth-
esized to be associated with functioning of the dorsolateral prefrontal
cortex (see Goldman-Rakic, 1991), although the specificity of this rela-
tionship is debated (see Wagman & Wagman, 1992). For this analysis, we
used the WCST index known as the failure to maintain set (FMS), which
assesses loss of the correct sorting principle needed to perform the WCST
properly (Harris, 1988) and has been shown to discriminate schizotypes
from nonschizotypes (Lenzenweger & Korfine, 1994; Park, Holzman, &
Lenzenweger, 1995).

Eye-movement measurement. As described in detail in O’Driscoll,
Lenzenweger, and Holzman (1998), oculomotor recordings for eight cycles
were obtained in a darkened room, using an Optokinetograph (OKG)
system. Eye-movement-pursuit-performance quality was evaluated inde-
pendently by two expert raters (P. S. Holzman & G. A. O’Driscoll),
unaware of subject group membership. The mean of the two raters, which
was highly reliable (intraclass r � .93), served as the basic performance
index for the eye-tracking performance (see O’Driscoll et al., 1998, for
additional detail) and is denoted as our eye-tracking dysfunction (ETD)
index below. ETD scores are recoded in the analyses to correspond to
higher scores indicating poorer performance.

Measures Used in Validation Phase of This
Demonstration

Continuous Performance Test. Sustained attention was measured us-
ing the well-known Continuous Performance Test—Identical Pairs Version
(CPT–IP; Cornblatt, Lenzenweger, & Erlenmeyer-Kimling, 1989; Corn-
blatt, Risch, Faris, Friedman, & Erlenmeyer-Kimling, 1988). The CPT–IP
is a high momentary processing load, low a priori signal probability
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attention task that taps effortful or controlled information processing. The
CPT–IP has been described in great technical detail elsewhere (Cornblatt,
Lenzenweger, & Erlenmeyer-Kimling, 1989; Cornblatt, Risch, et al., 1988;
Lenzenweger, Cornblatt, & Putnick, 1991). The performance measure
derived from the CPT–IP for use in this particular investigation is the
average reaction time (in milliseconds) of subjects recorded in connection
with their correct target detections (i.e., hits; see Lenzenweger, 2001, for
additional detail).

Thought Disorder Index. Thought disorder ratings were made from
speech samples using the thought disorder scoring approach developed by
Holzman and colleagues (Holzman et al., 1986; Johnston & Holzman,
1979), which is considered reliable (Coleman et al., 1993). The TDI
manual contains complete descriptions of the thought disorder categories
that are rated as well as the psychometric characteristics of the validation
studies (Holzman et al., 1986; Johnston & Holzman, 1979). This thought
disorder rating system produces a total Thought Disorder Index (TDI)
score, among other scores; the higher the TDI score, the higher the level of
formal thought disorder in the subject’s performance. (See Coleman, Levy,
Lenzenweger, & Holzman, 1996, for additional detail.)

Oculomotor delayed response task. The DRT used in this study, which
involved an oculomotor delayed response that assessed spatial working
memory, was that originally described by Park et al. (1995). Extensive
detail regarding the properties of the task and its administration can be
found in Park et al. The primary performance index for this DRT was the
percentage of correct performance on those trials that required working
memory. The percentage correct was therefore an accuracy score in which
higher scores indicated better working memory performance.

Recruitment and Testing Procedures

Potential study participants were contacted by telephone and were in-
vited to participate voluntarily in a study of young adult development for
which they would receive a $50 honorarium. A complex coding scheme
was used to disguise the group status of the subjects, and all study staff
were unaware of a subject’s group membership throughout the study.
Subjects were tested in a quiet darkened room; all gave informed consent.
The order of the administration of the study measures (i.e., laboratory
measures, questionnaires, and other measures) was randomized across
subjects.

Statistical Analysis

In this section, we describe our statistical approach to the problem at
hand. This section is necessarily technical in some respects; however, we
have sought to convey the logic and concepts behind our method to
highlight the utility of this statistical approach.

We begin by noting that each subject can be represented by membership
in a particular cell of a two-way contingency table with dimensions defined
by their possible outcomes on the FMS index (Categories 1, 2, . . . , 6) and
ETD (Categories 1, 2, . . . , 8, which correspond to possible mean ETD
values) tasks. We have separate two-dimensional tables of cell counts (i.e.,
number of subjects in each cell) for classified normals and classified
schizotypes, and the location of each individual is dictated by their per-
formance on FMS and ETD tasks. The sample size for this analysis was 46,
rather than the original 57 subjects, because complete data were required
for both the FMS and ETD indices.

Several assumptions were made about these observed counts (i.e., dis-
tribution of subjects in the two-way table):

1. The classification was correct for all individuals initially classi-
fied as normal.

2. The classification was potentially incorrect for individuals ini-
tially classified as schizotypes, that is, some of those subjects
classified as schizotypes were false positives.

3. Normal individuals misclassified as schizotypes would have the
same model on their observed FMS and ETD measures as normal
individuals who were correctly classified, that is, the false pos-
itives mentioned above would perform similarly to individuals
classified as true normals on the FMS and ETD tasks.

4. The FMS and ETD measures were assumed to be independent in
true normal individuals, whereas no independence between FMS
and ETD measures was assumed for genuine schizotypic subjects
(the actual correlation between the FMS and ETD scores in the
classified normals was only .13 and reasonably consistent with
this assumption). We are unaware of any published empirical
data that would suggest that this assumption is unfounded or
unreasonable. In fact, the FMS and ETD variables were selected
a priori for the reasonableness of this assumption.

In schizotypy research, the ideal situation would be one where we knew
that our selection measure (i.e., the PAS in this instance) was functioning
perfectly and only would select genuine schizotypes. However, simply put,
it was not known which individuals within the group originally classified
as schizotypic on the PAS were genuine schizotypes and which were
actually normal (but plainly misclassified by the fallible PAS). Thus, our
assumptions implied that the classified schizotype group was actually a
mixture of genuine schizotypes and true normals, whereas all individuals in
the classified normal group were true normals. We note that the notion that
a group of individuals selected on the basis of a fallible measure of
schizotypy consists of a mixture of true-positive and false-positive schizo-
types is well known (cf. Lenzenweger & Moldin, 1990), and the presence
of this admixture is a psychometric or classification reality, not merely an
assumption of our statistical approach. However, this mixture complicates
the estimation of the unknown parameters of interest, namely, the separate
cell probabilities for the distinct true normal and genuine schizotype tables,
and the proportion of genuine schizotypes within the classified schizotype
group. In this analysis, we focus on maximum likelihood estimation of
these parameters of interest. (For a detailed technical analysis of this
problem from the Bayesian perspective, see Jensen, Lenzenweger, &
Rubin, 2002).

If we were somehow omniscient and knew which schizotypes were false
positives, we could just subtract the counts corresponding to these false
positives from the classified schizotype table and add them into the
classified normal table, thereby creating both a true normal table and a
genuine schizotype table. The proportion of genuine schizotypes within the
classified schizotype group would then be a known quantity, and maximum
likelihood estimation of the true cell probabilities would be trivial (and
technically uninteresting). Then, the maximum likelihood estimates of the
true normal probabilities for each cell would be simply the products of the
row and column proportions (because of the assumed independence),
whereas maximum likelihood estimates of the genuine schizotype proba-
bilities for each cell would be the cell counts divided by the number of
genuine schizotypes (or simple proportions in the cells).

Of course, we do not know which schizotypes are false positives. How
can one proceed if one does not know which of the putative PAS-selected
schizotypes is a false positive? We propose that this situation can be
viewed as a missing data problem, with the missing data being an indicator
variable for each subject in the classified schizotype group that indicates
whether that subject is a genuine schizotype. By the first assumption, we do
not need an unknown indicator variable for any subject classified as
normal, because they are all assumed to be true normals. This assumption
is reasonable given the location in the distribution of PAS scores from
which the normals were selected initially.

How does one then go about estimating the missing indicator variable
given what is known about the subjects? This is a challenging problem that
cannot be addressed satisfactorily using conventional procedures (e.g.,
factor analysis, cluster analysis). One approach to this problem is to use the
well-known and powerful iterative EM algorithm (Dempster et al., 1977),
which can be used to calculate maximum likelihood estimates in the
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presence of missing data. Although perhaps not well known among psy-
chologists, the EM algorithm has had a major impact in statistical theory
and has transformed many approaches to statistical and computational
problems. The EM algorithm is, in fact, used somewhat invisibly by
various statistical software programs that are often used by psychologists
(e.g., hierarchical linear modeling, missing data procedures). In this study,
we have used the fundamental EM algorithm and implemented it in the
service of the problem at hand, that is, trying to determine which subjects
in the schizotype pool are genuine schizotypes via the estimation of the
so-called indicator variable.

Briefly, the EM algorithm is iterative, where each iteration consists of
two statistical steps: the expectation (E) step and the maximization (M)
step. In our problem, in the E step, the expectation of each missing value
is calculated, conditional on the observed data and initial values of the
parameters. In the M step, the expectations calculated in the E step are
substituted for the missing values, so that the data no longer has any
missing components. With this complete data, new maximum likelihood
estimates of the parameters are calculated. This completes the first itera-
tion. These new values of the parameters can then be used in the E step of
the next iteration, which results in new expected values of the missing data
that are then used in the next M step, and so on. Each step of EM strictly
increases the observed-data likelihood, and if EM converges, it is to a
maximal value. Most important, Dempster et al. (1977) demonstrated that
the EM algorithm is guaranteed (essentially) to converge to the maximum
likelihood estimate (i.e., conditional only on the observed data). This is a
highly attractive feature of the EM method. Further details regarding the
EM algorithm are rather technical in nature and beyond the scope of this
report (for extensive technical detail, see Dempster et al., 1977; Little &
Rubin, 2002; McLachlan & Krishnan, 1997).

In the present situation, implementation of the E step is really quite
straightforward.2 The expectation of an indicator variable of genuine
schizotypy for a classified schizotype is simply the probability of that
subject being a genuine schizotype, conditional on (a) his or her cell in the
classified schizotype table and (b) current maximum likelihood estimates
of the parameters (from the previous M step). (For those readers interested
in the technical aspects of these probability calculations, those details are
given in the appendix.)

The data are then completed by filling in the missing indicator variables
with their expectations from the E step. For example, say that Subject A
has a probability of .7 of being a genuine schizotype, given the cell of
Subject A in the estimated genuine schizotype table and the current
parameter values. This means that .7 of Subject A’s count is placed in the
genuine schizotype table, whereas .3 of Subject A’s count is placed in the
true normal table. Similarly, all other subjects in the putative schizotype
table are split between the genuine schizotype and true normal table on the
basis of their probability of being a genuine schizotype, as calculated in the
E step.

For our problem, the M step is straightforward because maximum
likelihood estimates are easy to calculate when the true normal and genuine
schizotype counts are known. As mentioned previously, the maximum
likelihood estimates of the true normal probabilities for each cell are
simply the products of the marginal probabilities in the true normal table,
whereas maximum likelihood estimates of the genuine schizotype proba-
bilities for each cell are the true schizotype cell counts divided by the
number of genuine schizotypes. The maximum likelihood estimate of the
proportion of genuine schizotypes within the classified schizotype group is
simply the total of all counts in the genuine schizotype table divided by all
counts in the classified schizotype table. The EM procedure then cycles
through the E and M steps many times to refine the estimates.

Finally, a word about the assumptions of this statistical method. All of
the assumptions that are required for this approach have been presented
above, and no additional assumptions are required. The approach we have
taken, and implemented using the EM algorithm, does not assume multi-
variate normality. It is not a technique that is restricted to use with
extremely large sample sizes, as the stability of the estimations produced

by the method can be assessed using a validation simulation (as we have
done in this study as described below). Finally, note also that this particular
method shares essentially nothing with the taxometric analysis procedures
developed by Meehl (e.g., Waller & Meehl, 1998).

Validation of the Subgroup Membership: Contrast
Analyses

The EM analysis generated an estimated posterior probability (i.e., the
probability of the indicator variable being positive) for each of those
initially classified as schizotypes, with a high probability suggesting that a
subject was likely to be a genuine schizotype rather than a false-positive
schizotype. We used these estimated posterior probabilities to partition
those individuals initially identified as schizotypes, by virtue of their initial
PAS scores, into either the genuine or false-positive schizotype groups. We
then sought to evaluate the validity of this parsing of the schizotypic
subjects on the basis of the EM analysis by using laboratory indices that
were not used in the original EM computations.

We conducted two sets of contrast analyses with analysis of variance
(ANOVA; Rosenthal, Rosnow, & Rubin, 2000), each of which was guided
by theoretical considerations, using other laboratory task performance data
that were not included in the classification analysis (which used only FMS
and ETD data). These other laboratory task data were derived from
assessments of sustained attention, spatial working memory, and thought
disorder (measures described above).

The first contrast, which represented the strongest expression of our
theoretical model, held the genuine schizotypes apart from the other two
subject groups, which were constrained not to differ (contrast weights:
genuine schizotypes � 2, false-positive schizotypes � –1, normal con-
trols � –1). The second contrast, which was orthogonal to the first contrast,
held aside the genuine schizotypes and contrasted the performance of the
false-positive schizotypes and the normal control subjects (contrast
weights: genuine schizotypes � 0, false-positive schizotypes � –1, normal
controls � 1).

For the first contrast analysis, our prediction was that the genuine
schizotypes would show poorer performance than the combined false-
positive schizotype and normal subject groups, thereby providing support
for the parsing produced by the EM-based procedure. The second contrast
tested whether the performance of the false-positive schizotypes differed
from that of the normal controls. If the performance of the false-positive
schizotypes did not differ significantly from that of the normal controls,
this pattern of results would provide additional support for the parsing
produced by the EM-based procedure (i.e., false-positive schizotypes are
similar to normals in their performance).

The specific dependent variables for the contrast analyses were (a) mean
reaction time for hits (i.e., correct detections) on the CPT–IP, (b) total
number of thought disorder responses scored according to the TDI proce-
dure, and (c) percentage correct performance on a spatial delayed response
task. Given the clear-cut directionality of our first contrast, the p values
associated with the contrast t tests (equal-variance t tests) for that set of
variables are one-tailed; whereas the p values for the second contrast t tests
(equal-variance t tests) are two-tailed, given the absence of a directional
hypothesis. Effect-size estimates for the contrast are reported as rcontrast

following Rosenthal et al. (2000).

Results

The true normal and true schizotype cell probabilities calculated
with the EM algorithm as described above are given in Table 1,
along with the empirical probabilities from the tables for those

2 The EM-algorithm-based approach used in this study was implemented
using code written by Shane T. Jensen. Inquiries regarding the code may be
sent to jensen@fas.harvard.edu.
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initially classified as normal and as schizotypes. The remaining
parameter, the proportion of true schizotypes (designated as � in
our statistical notation in the appendix and in Figure 1) within the
classified schizotype group, was estimated to be .38.3

The next step in this procedure was to address the central
question of this study: Who is a genuine schizotype versus a
false-positive schizotype (i.e., someone misclassified by the
PAS)? In general, the posterior probabilities calculated for each
subject in the classified schizotype group were near either 0
or 1, so that it was an easy and unambiguous operation to
reclassify the 25 putative schizotypes (i.e., on the basis of the
initial PAS-based classification) into 10 genuine schizotypes
and 15 false-positive schizotypes.4 The means for the three
subject groups for the FMS and ETD were as follows: For
normals, FMS � 0.52, SD � 0.68; ETD � 2.46, SD � 0.76; for
false-positive schizotypes, FMS � 0.60, SD � 0.63;
ETD � 1.97, SD � 0.89; for genuine schizotypes, FMS � 2.20,
SD � 1.99; ETD � 1.95, SD � 0.50.

Given that our sample size was somewhat small, we under-
took a rigorous but straightforward approach to evaluating the

3 Clearly, this analysis required a check for the possible existence of
multiple modes in the likelihood. To check for the possibility that the
likelihood had multiple modes, we started the EM algorithm with several
other well-dispersed initial parameter values. The EM algorithm consis-
tently converged to the same final values, suggesting that the likelihood
was indeed unimodal.

4 We estimated the probability of each putative schizotype representing
a genuine schizotype, conditional on their performance measures and our
best estimates of the unknown parameters. This probability is known as a
posterior probability, which is relatively easy to estimate for each of the
putative schizotypic subjects by the probability calculation in the final E
step of the EM algorithm given above (and detailed in the appendix), on the
basis of maximum likelihood estimates of the unknown parameters (i.e.,
their values at the last M step). If this probability is reasonably unambig-
uous for a subject (i.e., near either 0 or 1), then the person can be
reclassified as either a genuine schizotype (probability near 1) or a false-
positive (probability near 0).

Table 1
Values From the Expectation-Maximization Algorithm (FMS � ETD)

Eye-tracking dysfunction

Normal classification Schizotype classification

FMS �3 �2.75 �2.5 �2.25 �2 �1.75 �1.5 �1 �3 �2.75 �2.5 �2.25 �2 �1.75 �1.5 �1

Initial proportion

0 .381 .048 .048 .095 .080 .080 .040 .040 .040 .080
1 .143 .048 .048 .048 .048 .080 .080 .080 .040 .120
2 .048 .048 .040 .040
3 .040
4 .040 .040
6 .040

Final proportion

0 .214 .071 .095 .014 .126 .105 .105
1 .158 .053 .070 .011 .093 .210 .105
2 .039 .013 .017 .003 .023 .039 .017
3 .105
4 .105 .105
6 .105

Note. ETD (eye-tracking dysfunction) values are reversed from the original scoring so that higher scores (less negative) are indicative of poorer smooth
pursuit performance. FMS (failure to maintain set on the WCST) values are coded so that higher scores are indicative of poorer WCST performance.
WCST � Wisconsin Card Sorting Test.

Figure 1. Distribution of lambda values generated by the validation
simulation procedure using several hundred generated datasets, as detailed
in the text. The x-axis covers the range of the estimated values of lambda,
and the y-axis is the observed counts in each bin of the lambda values. The
black vertical line represents the true value of lambda derived from the
analysis of the actual data for the study subjects.
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validity of our EM-based estimations. We performed a simple
validation simulation to ensure that the EM algorithm used
above could recover the truth. Three-hundred new data sets
of 46 individuals each were drawn from multinomial distribu-
tions with parameters values given by the maximum likelihood
probability estimates in Table 1, as well as the maximum
likelihood estimate of the proportion of true schizotypes (� �
.38). The EM algorithm was then applied to each generated data
set to see if the algorithm would converge back appropriately to
the true parameter values. The distributions of the final values
from each EM analysis, as obtained from each of the 300
generated data sets, were found. We have presented in Figure 1
the results of the validation simulation for the parameter
lambda. In Figure 1, one sees the distribution of the 300 lambda
values.

The x-axis in Figure 1 covers the range of the estimated values
of lambda, and the y-axis is the observed counts in each bin of the
lambda values. The black vertical line represents the true value of
lambda derived from the analysis of the actual data for the study
subjects. Thus, what one sees in this figure is the actual true
parameter value for lambda obtained in our analysis of the actual
data surrounded by a distribution of 300 estimates of lambda based
on the 300 generated data sets. In general, the EM algorithm seems
to recover effectively the truth (i.e., the final parameter estimates
are close to the underlying true parameter), and these results
support the validity of the solution we obtained. Had we not been
able to recover the truth in this instance, we would have had
considerably less confidence in the solution for our actual data set.
We conducted analogous analyses for all other parameters. The
results for these other parameters, which are not reported here but
are available on request, were similar in pattern to those reported
for lambda, the proportion of genuine schizotypes, in Figure 1. In
short, the results of the validation simulation provide important
support for the ability of this approach to work well in the context
of a small sample.

Validation Analyses Using External Criteria

One might imagine that this reclassification of the schizo-
typic subjects did nothing more than partition schizotypic sub-
jects into two new groups that had no differential relations with
external criteria of validity for schizophrenia-related deviance.
If that were the case, then this EM-based exercise would be less
than illuminating. However, if the new classes containing the
newly assigned schizotypes did, in fact, bear some meaningful
relation to external validity criteria, then this reclassification
approach would represent an increment in our ability to parse
heterogeneity in laboratory index performance. To assess the
relations of the new group memberships with external criteria of
validity, we conducted the two sets of contrast analyses de-
scribed above. The means and standard deviations for the
CPT–IP reaction time, thought disorder, and delayed response
task performance variables can be found in Table 2. The two
sets of contrast analyses were performed for each of these
dependent variables using the classification results from the
initial EM estimations using FMS and ETD. The first contrast
reflected the most conservative (i.e., strongest theoretical state-
ment) hypothesis that genuine schizotypes performed more
poorly than either of the other two groups, which were hypoth-
esized not to differ (contrast weights for genuine schizotypes,
false-positive schizotypes, and normal controls were 2, –1, and
–1, respectively). The results were as follows: CPT–IP reaction
time (in milliseconds), t(43) � 1.83, p � .035, rcontrast � .27;
sum of thought disordered responses, t(42) � 1.72, p � .045,
rcontrast � .26; delayed response task performance t(43) � 2.13,
p � .02, rcontrast � .31. Our hypothesis reflected in this contrast
was clearly directional, and therefore, we report one-tailed p
values for the contrast t tests. We note in this context a sup-
plementary series of t-test comparisons of the genuine schizo-
types and the normal controls, holding aside the false-positive
schizotypes, reveal substantial (i.e., large effect sizes) and

Table 2
Reaction Time Thought Disorder and Delayed Response Task Performance in Three Participant
Groups Using the Two-Variable Expectation-Maximization Model Classifications

Measure

Subject groups

Normal controls
(n � 21)

False szt
(n � 15)

Genuine szt
(n � 10)

M SD M SD M SD

CPT–IP reaction time (hits) 543.53 53.69 572.48 60.18 595.44 59.19
Delayed response task 93.26 5.40 90.85 7.95 86.65 8.70
Total thought disorder 2.57 3.17 5.79 8.27 9.50 15.01

Note. The reaction time index is in milliseconds. Delayed response task values represent percentage of
correct performance. Total thought disorder is the total number of thought-disordered responses for an
individual as scored by the Thought Disorder Index (Holzman, Shenton, & Solovay, 1986). Contrast
analyses for these data can be found in the text. The sample size for the false schizotypes for total thought
disorder is 14 owing to one missing case. The means and standard deviations for the combined schizotype
group (false and genuine schizotypic participants) were as follows: for CPT–IP reaction time, M � 581.66,
SD � 59.65; for the delayed response task, M � 89.17, SD � 8.34; and for Total thought disorder,
M � 7.33, SD � 11.41. Szt � schizotype; CPT–IP � continuous performance test—Identical Pairs Version
(Lenzenweger, 2001).
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statistically significant differences among the groups in the
predicted direction.5

The second set of contrasts, which was orthogonal to the first set
of contrasts, held aside the genuine schizotypes and tested whether
the performance of the false-positive schizotypes differed signifi-
cantly from the normal controls (contrast weights for genuine
schizotypes, false-positive schizotypes, and normal controls
were 0, –1, and 1, respectively). The hypothesis reflected in this
contrast was nondirectional, and therefore, we report two-tailed p
values for the contrast t tests. The results were as follows: CPT–IP
reaction time (in milliseconds), t(43) � 1.50, p � .14, rcontrast �
.23; sum of thought-disordered responses, t(42) � 1.08, p � .29,
rcontrast � .16; and delayed response task performance,
t(43) � 1.01, p � .32, rcontrast � .15 (see Footnote 5).

Comparison of Expectation-Maximization Subdivision of
Schizotypes With Other Commonly Used Approaches

Given that our approach involves a complex statistical method,
one might wonder if our EM-based reclassifications of the schizo-
typic subjects into false-positive and genuine schizotypes might
have been achieved with more commonly available statistical
techniques or simpler approaches. Therefore, we used both cluster-
analytic and median-split approaches to address this issue using
the same variables that were used in the EM-based computations,
namely FMS and ETD. A central issue for this set of analyses
concerned whether these more commonly used methods would
essentially subdivide the study subjects in the same manner as that
achieved with the EM-based approach. A K-means cluster solution
that retained three clusters (resulting cluster ns � 1, 12, and 33,
respectively) did not remotely recover the same classification of
the study subjects as was achieved with the EM-based approach;
rather, it misclassified a relatively large number of normal subjects
as well as schizotypic subjects when compared with the EM-based
memberships. For the three-cluster solution, the breakdown of the
subjects in terms of their initial PAS-based classification was as
follows: for Group 1 (n � 1), 1 putative schizotype; for Group 2
(n � 33), 17 normals, 16 putative schizotypes; for Group 3 (n �
12) 4 normals, 8 putative schizotypes. A K-means cluster analysis
of ETD and FMS that was constrained to two clusters failed to
recover (or approximate) even the basic high- versus low-PAS
status of the subjects, combining 42 of the 46 subjects (the 42
subjects included 21 normals and 21 putative schizotypes; the
second group of 4 subjects included only putative schizotypes).
One might consider how the K-means-clustering-assigned group
memberships were related to the validation indexes, namely work-
ing memory (DRT), sustained attention (CPT–IP hit rate reaction
time; CPT–IP RT), and thought disorder (TDI). The heterogeneous
grouping of normal control and putative schizotype subjects pro-
duced by the three-cluster K-means solution, as well as the fact that
one of the clusters contained but a single subject, to our minds,
precluded a serious consideration of this solution. However, per-
formance of the two clusters (Group 2 [n � 33] vs. Group 3 [n �
12]) on the validation measures was compared using t tests, and the
two groups did not differ significantly on any of the three measures
(DRT, p � .17, CPT–IP RT, p � .47, and TDI, p � .60). For the
two-cluster K-means solution, which yielded two groups (Group 1
[n � 42], Group 2 [n � 4]), the two groups differed on only one
of the validation variables (DRT), t(44) � 2.03, p � .05, but not
on the other measures (CPT–IP RT, thought disorder). Note that

we are not advocating the use of cluster analysis as an analytic
approach to reducing heterogeneity. We have used cluster analysis
here only because it is one of the techniques that some psychopa-
thologists might elect to use to classify subjects. We note in this
context that cluster analysis is typically used with sample sizes
considerably larger than those in this study.

The median-split approach is also a commonly used approach
for the classification of subjects based on performance measures.
It is one in which the median values for the ETD and FMS
variables among the normal subjects were used to subdivide the
two subject groups (controls and putative schizotypes), and it
generated four new subject classifications: good smooth-pursuit
eye tracking/low FMS, poor smooth-pursuit eye tracking/low
FMS, good smooth-pursuit eye tracking/high FMS, and poor
smooth-pursuit eye tracking/high FMS. This new redistribution of
subjects, based on the median-split classification, when crossed
with the EM-based classification yielded the following results: (a)
good smooth-pursuit eye tracking/low FMS (2 false-positive
schizotypes, 0 genuine schizotypes, 8 controls); (b) poor smooth-
pursuit eye tracking/low FMS (5 false-positive schizotypes, 2
genuine schizotypes, 4 controls); (c) good smooth-pursuit eye
tracking/high FMS (2 false-positive schizotypes, 0 genuine schizo-
types, 3 controls); and (d) poor smooth-pursuit eye tracking/high
FMS (6 false-positive schizotypes, 8 genuine schizotypes, 6 con-
trols). In short, the distribution of subjects achieved in this simpler
median-split approach did not resemble (or correspond to) the
EM-based analysis results in any compelling fashion. Analysis of
the performance of the subjects on the validation measures could
also be examined from the standpoint of the median-split approach
to subdividing the subjects. This would take the form of an
ANOVA with two between-subjects factors, namely, median-split-
based grouping (four levels) and initial PAS-based grouping (two
levels), which would yield a 2 � 4 ANOVA design. If the
median-split strategy provided enhanced the resolving power with
respect to efficient parsing of the subjects, then a substantial and
significant Median-Split Group � Initial PAS Classification inter-
action would reveal itself. We did not observe significant interac-
tions for any of the three validation measures: For CPT–IP RT,
F(3, 46) � 2.63, ns; for DRT, F(3, 46) � 2.41, ns; for TDI, F(3,
45) � 0.18, ns. Moreover, inspection of the cell means for each of
the three validation measures in each of the ANOVAs did not

5 Although we have a preference for focused contrasts in ANOVAs (see
Rosenthal et al., 2000), at the request of a reviewer, we also performed t
tests on the reaction time (CPT), working memory (DRT), and thought
disorder (TDI) indexes for two important comparisons: (a) genuine schizo-
types versus controls and (b) genuine schizotypes versus false-positive
schizotypes. In these additional t test analyses, we focused on the direction
of predicted effects and effect sizes rather than p values (given the small
sample sizes in this exercise). The genuine schizotypes differed substan-
tially (average Cohen’s d � .91) from the controls on the three validity
indicators of CPT, DRT, and TDI (these differences were all significant at
p � .025). The genuine schizotypes differed from the false-positive schizo-
types in the predicted direction on all three validity measures with appre-
ciable effect sizes (average Cohen’s d � .40), although the associated p
values were nonsignificant owing to the small sample sizes. Note that our
first contrast analysis reported in the text tested the genuine schizotypes
versus the combined pool of false-positive schizotypes and normal con-
trols. The complete details of this supplementary set of t test analyses may
be requested from Mark F. Lenzenweger.

464 LENZENWEGER, JENSEN, AND RUBIN



reveal a pattern that could be readily interpreted with confidence
(e.g., the slowest RTs on the CPT–IP were found among schizo-
types in the good smooth-pursuit eye tracking/low-FMS cell).
Finally, cell sizes began to shrink dramatically with the application
of the median-split strategy owing to the necessary resultant in-
crease of cells, a feature of the approach that directly affects
power.6 We are not taking a formal position on the relative merit
of the median-split approach to data analysis; however, it clearly
did not provide a clearer picture than was provided by our EM-
based analysis. Note also in this context that the median values
obtained from the normals that are used to parse subjects into
subgroups will necessarily be influenced by the sampling approach
(and any related artifacts, e.g., sample size) used to collect data
from the normal subjects, which will in turn influence (perhaps not
optimally) the redistribution of subjects in any application of this
approach.

One might also conjecture that the EM-based solution merely
organized the schizotypes in terms of their severity of impairment
on the FMS and ETD (smooth-pursuit eye tracking) indexes and
that the most deviant performers on these two measures were also
the most deviant performers on the TDI, DRT, and CPT–IP. We
tested this conjecture directly by constructing a z score-based
deviance index for the FMS and ETD variables, as well as one for
the TDI, CPT, and DRT variables. In short, those subjects who
were most deviant on the FMS–ETD index (i.e., 2 standard devi-
ations above the mean) were not the same subjects who were
deviant on the TDI–CPT–DRT z score index. In fact, only 2 of
the 5 subjects designated as deviant on the FMS–ETD index were
found among the 6 subjects designated as deviant on the TDI–
CPT–DRT index. Clearly, the EM approach we describe is not
merely detecting severity of impairment on the laboratory
measures.

When considered together, these results led us to think that the
EM-based method we propose here generates results that are not
easily obtained with other more common procedures, and these
alternative approaches (particularly the cluster-analysis approach)
did not appear to generate more valid classifications. Note, how-
ever, that we do not view the EM-based classifications as a gold
standard against which the other approaches must be evaluated, but
rather the EM-based approach yields a classification of subjects
that could not be resolved with the other commonly available
procedures.7

Did the Expectation-Maximization Approach Merely
Subdivide Subjects in Terms of Severity of Schizotypic

Features?

It is important to raise an additional question here regarding our
EM-based parsing, namely, did we merely ended up parsing the
schizotypic group in terms of severity on the initial selection index
(i.e., the PAS) or correlated schizotypic phenotypic features? If we
just ended up subdividing the schizotypic subjects on the basis of
their initial PAS severity (deviance), then one might question the
utility of our approach. To test this possibility, we contrasted the
false-positive and genuine schizotypic groups on their initial PAS
values and found them to not differ significantly (genuine schizo-
types: M � 18.10, SD � 3.57 vs. false-positive schizotypes:
M � 20.07, SD � 7.69), t(23) � 0.75, p � .46. Thus, the genuine
schizotypes were not more severely affected in terms of the initial
selection index, the PAS. Further, we contrasted the two schizo-

type groups for the number of schizotypal personality disorder
criteria met on the self-report International Personality Disorder
Examination—Screen (Lenzenweger et al., 1997) and found them
not to differ significantly (genuine schizotypes: M � 5.10,
SD � 1.45 vs. false-positive schizotypes: M � 5.33, SD � 1.50),
t(23) � 0.39, p � .70. Thus, the two schizotype groups would not
appear different in terms of their clinical symptom–feature presen-
tation. These supplementary data clearly suggest that our EM-
based approach did not merely represent a sophisticated statistical
technique used to divide the schizotypic group that indirectly
reflected simply a difference in the severity of phenotypic features,
as measured on the PAS, or the number of schizotypal features.
Rather, our approach enabled us to go into the sample of schizo-
types and objectively select a subgroup of subjects who possessed
significantly poorer correlated performance across a number of
laboratory measures independent among normals, even though
their phenotypic (symptomatic) presentation did not demarcate
them from the others.

Discussion

The primary purpose of this study was to apply a statistical
method, which uses the EM algorithm, to empirical data derived
from laboratory measures completed by the same subjects, to
resolve observed heterogeneity in performance on those measures
among the schizotypic subjects. The overall results of the study
indicated that the group originally designated as schizotypic on the
basis of initial deviance on the PAS consisted of an admixture of
genuine and false-positive schizotypes and, importantly, the
schizotypic sample could be meaningfully divided to reveal this
situation. Note, however, under our independence and dependence
assumptions, that our statistical approach did not invent the ad-
mixture of genuine and false-positive schizotypes within the orig-
inal schizotypic group. Rather, the admixture resided in the orig-
inal data, and we were able to discover it with our approach.
Specifically, for the two-variable estimations (using the FMS
variable from the WCST as well as a measure of smooth-pursuit
eye-tracking performance), the EM procedure led to substantial
differences between starting values for individual schizotypic
probabilities and the final convergent values for schizotypic prob-
abilities, with the proportions in several cells of the schizotype
table disappearing toward 0 as a result of some putative schizo-
typic individuals moving to be classified in the normal table. This
is not a surprising result, because an anticipated product of this
analysis was that the schizotype count table might change dramat-
ically as a result of our fundamental assumption that some of the
classified schizotype counts really belonged in the normal table.

When we extended our model to include a third variable, the
TDI, its addition did not seem to substantially change the majority

6 The means and standard deviations for the cells in the ANOVAs based
on the median-split approach were omitted to conserve space, but they are
available on written request to Mark F. Lenzenweger. Additionally, the
unfocused ANOVAs reported here for the median-split strategy were
requested by a reviewer. We did not conceptualize a set of a priori planned
contrasts for this supplementary analysis.

7 Extended detail regarding these alternative classification approaches
and the results of the analyses obtained is available on written request to
Mark F. Lenzenweger. This material was omitted from the present article
to conserve space.

465FINDING THE “GENUINE” SCHIZOTYPE



of the point estimates of the cell probabilities. In the context of our
model, we note that there is a cost to adding additional variables
because, although supplying additional information about the sub-
jects, extra variables also place additional stress on the important
assumption that the performance on each task is independent in
normal individuals. The trade-off between adding information via
additional variables and the potential violation of the independence
assumption is an unstudied question that merits additional statis-
tical research.

As noted above, each of the putative schizotypic subjects in the
original schizotypic sample was eventually assigned a probability
of being either a genuine schizotype or a false schizotype. To test
the validity of this parsing, on the basis of the EM results, these
two groups as well as the normal group were evaluated using three
separate and independent biobehavioral laboratory measures
known to be relevant to schizophrenia and schizotypic psychopa-
thology, namely, CPT–IP RT, TDI, and DRT performance (i.e.,
spatial working memory). As predicted, our first set of contrast
analyses using the three dependent variables (i.e., CPT–IP RT,
TDI, and DRT performance) revealed that the genuine schizotypes
performed significantly more poorly than either of the other two
subject groups; that is, the genuine schizotypes displayed slower
RTs on the CPT–IP, higher levels of thought disorder on the TDI,
and worse performance on the spatial working memory task
(DRT). The second set of contrast analyses revealed that the
performance of the false-positive schizotypes did not differ signif-
icantly from the normal controls (holding aside the genuine schizo-
types) on these dependent measures, although the effect directions
indicated that the misclassified normals had somewhat worse
performance than the pure normals. The overall pattern of the
contrast analysis results (as well as the supplementary t test anal-
yses reported in Footnote 3) suggested to us that our EM-based
procedure performed quite well in helping to resolve heterogeneity
of performance on the laboratory measures within the schizotypic
group. The EM-based approach that we used did not constitute
subject groups that could be easily recovered or discerned using
the modal approaches used in psychopathology research for the
reduction of heterogeneity in performance measures and the clas-
sification of subjects, namely, cluster-analytic, median-split, and
standard score composite approaches. Moreover, note also that our
approach did not merely reclassify the schizotypic subjects as a
function of their initial level either on the PAS or on a measure of
schizotypic features; thus, it was not just tapping into a severity
dimension.

Overall, we offer this EM-based approach as an objective
method for approaching the heterogeneity problem in schizophre-
nia and schizotypy research. In very practical terms, what this
approach offers is a useful and statistically principled method of
reducing heterogeneity in samples of subjects that have been
preselected as at risk on a psychometric (or other) measure of
liability. This method adds a refining step to the selection process
and extends the ability of the investigator to sift through putatively
at-risk cases to detect signal cases rather than noise cases. As such,
we suggest that our approach can be viewed as a useful adjunct to
the biobehavioral–psychometric high-risk paradigm, wherein risk
for schizophrenia (or putative schizophrenia liability) is thought to
be reflected merely in deviance on a laboratory index (e.g., the
PAS). As noted previously, it has long been recognized that any
sample selected on the basis of deviance on a putative schizophre-
nia liability marker (or any psychopathology risk measure) is

likely to consist of an admixture of genuine schizotypes (i.e., truly
at risk for schizophrenia and schizophrenia-related pathologies)
and false-positive schizotypes (e.g., Holzman et al., 1995; Lenzen-
weger & Moldin, 1990).

In sum, we used an EM-based statistical procedure to laboratory
data drawn from a study of putative schizotypes and normal
subjects and were able to divide the schizotypic group into genuine
and false-positive schizotypes. An approach such as the one we
describe could serve to help diminish or resolve heterogeneity in
laboratory or other indexes commonly used in schizotypy and
schizophrenia research and thereby better separate signal from
noise in the detection of genuine schizotypy. Such an advance
would be of considerable use to other schizophrenia-related or
other psychopathology studies, such as in neuropharmacologic and
genetic research, that demand a well-defined phenotype that is as
valid and refined as possible. More generally, for example, this
approach might represent a potentially valuable advanced quanti-
tative method for use in disssecting neurobehavioral profiles in
personality disorders research (Depue & Lenzenweger, 2001),
identifying treatment responders from large groups of individuals
who have received some intervention (Pilkonis, 2001), or refining
subject partitioning in cognitive neuroscience efforts (Barch et al.,
2002).
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Appendix

In the following, i � 1, . . . , 6 indexes the failure to maintain set (FMS) values on the Wisconsin Cord Sorting Test and
j � 1, . . . , 8 indexes the eye-tracking dysfunction (ETD) categories. The given data included 21 individuals classified as
normal and 25 individuals classified as schizotypic, so �, the proportion of individuals classified as normal, is 21/46.

Normal cell counts: N ij � multinomial��ij
N� Independence model on �ij

N

Schizotypic cell counts: S ij � multinomial��ij
S� Saturated model on �ij

S

Now, if �, the proportion of classified schizotypes that were true schizotypes, was known, then we would be able to augment
our data with Ik, a Bernoulli variable for each classified schizotype that would indicate their true status (Ik � 1 if true
schizotype, Ik � 0 if true normal).

Ik � Bernoulli� p�,

where p is the probability the kth classified schizotype is truly schizotypic, given the location of that position in the
schizotypic table. This p can be calculated simply by applying Bayes rule (FMS � A, ETD � B):

P�Ik � 1�A � i, B � j� �
P�A � i, B � j�Ik � 1� � P�Ik � 1�

P�A � i, B � j�

�
�ij

S � �1 � ���

�ij
S � �1 � ��� � �ij

N � �� � �1 � ���1 � ���
.
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