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Abstract

Recently there has been a lot of interest in geometrically moti-
vated approaches to data analysis in high dimensional spaces. We
consider the case where data is drawn from sampling a probability
distribution that has support on or near a submanifold of Euclidean
space. We show how to “learn” the homology of the submanifold
with high confidence. We discuss an algorithm to do this and pro-
vide learning-theoretic complexity bounds. Our bounds are obtained
in terms of a condition number that limits the curvature and nearness
to self-intersection of the submanifold. We are also able to treat the
situation where the data is “noisy” and lies near rather than on the
submanifold in question.
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1 Introduction

In recent years, there has been considerable interest in the possibility of
analyzing and processing data in high dimensional spaces. Following the
intuition that naturally occurring data may be generated by structured
systems with possibly much fewer degrees of freedom than the ambient
dimension would suggest, various researchers (see [11, 8, 9, 12, 7] have
considered the case when the data lives on or close to a submanifold of
the ambient space. One hopes then to estimate geometrical and topolog-
ical properties of the submanifold from random points (“scattered data”)
lying on this unknown submanifold. These questions belong to a class of
problems that have come to be known as manifold learning.
In this paper, we consider the particular question of identifying the homol-
ogy of the submanifold from random samples. The homology of the sub-
manifold (see [15] for definitions) are natural topological invariants that
provide a good characterization of many aspects of it. For example, the
dimensions of the homology groups, the Betti numbers (b0, b1 . . .) have nat-
ural interpretations. b0, the dimension of the zeroth homology group is the
number of connected components of the submanifold. In data analysis sit-
uations, the number of clusters of the data may sometimes be understood
in terms of the number of components of an underlying manifold (or other
geometric object). If the dimension of the submanifold is d, then one sees
that bj = 0 for all j > d. Thus the the largest non-trivial homology gives us
the dimension of the submanifold. If the submanifold is two-dimensional,
then b0 and b1, are related to the number of connected components and
number of holes respectively of the submanifold.
We show that it is possible to identify the homology from random samples
and discuss an algorithm to do this. There are a few aspects of the develop-
ments in this paper that are worth emphasizing. First, we provide sample
complexity estimates on the number of examples that are needed to iden-
tify the homology with high confidence. Our results are in the style of
learning theoretic treatments (for example, the Probably Approximately Cor-
rect framework [20]) where unknown objects (typically functions in learn-
ing theory) are “learned” from random samples and confidence estimates
are provided. Second, we treat the situation where data might be drawn
from a distribution that is concentrated around the manifold rather than
precisely on it. Under specific models of noise, we show that our algo-
rithm can work even with noisy data. In all cases, estimates are provided
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in terms of a condition number that limits the curvature and nearness to
self-intersection of the submanifold.
Our results may also be of interest to researchers in computational ge-
ometry and topology who have considered the question of computing
homology from simplicial complexes in the past (see [19, 13] for details
and further references). A number of researchers in these computational
geometry and topology have considered the problem of manifold recon-
struction from point cloud data. Such work has typically focused on the
case of surfaces in IR3 and examples include algorithms associated with
the frameworks of alpha shapes [5], CRUST [1] and its variants, and CO-
CONE [2] and its generalizations. CRUST and COCONE provably recover
a simplicial 2-manifold that is homeomorphic to the surface. In [3] (writ-
ten after the results of our current paper were declared), it was shown how
to extend these ideas to the general setting of a k-manifold embedded in
IRN . In much of this work, the medial axis plays a central role in charac-
terizing the conditioning of the manifold (see our later remarks in Section
2). It is also worth noting that none of the work mentioned above consid-
ers the probabilistic setting where examples are drawn at random — so
no high confidence guarantees are provided. The theorems in [1, 2, 3] are
analogous to our Proposition 3.1. No version of our main theorem (The-
orem 3.1) exists in the literature. Finally, it is also worth noting that there
is a body of work on persistence homology [7, 6] that seeks alternative
topological characterizations of the manifold and its homology. See the
discussion after Proposition 3.1.
In conclusion, we hope that researchers in graphics, pattern recognition,
solid modeling, molecular biology, finance, and other areas where large
amounts of high dimensional data are available may find some use for the
topological perspective on data analysis embodied in the algorithms and
analyses of this paper.

2 Preliminaries

Consider a compact Riemannian submanifold M of a Euclidean space
IRN . Sample the manifold according to a uniform probability measure
on it. Thus points x1, . . . , xn ∈ M are generated. This set of points x̄ =
{x1, . . . , xn} will be the data set on the basis of which homology groups
will be calculated. In later sections, we will consider the case when the
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data is drawn from a probability measure with support close to the mani-
fold.
Throughout our discussion, we will associate to M a condition number
(1/τ ) where τ defined as the largest number having the property: The open
normal bundle about M of radius r is imbedded in IRN for every r < τ . Its
image Tubτ is a tubular neighborhood of M with its canonical projection
map

π0 : Tubτ → M
Note that τ encodes both local curvature considerations as well as global
ones: If M is a union of several components τ bounds their separation.
For example, if M is a sphere, then τ is equal to its radius. If M is an
annulus, then τ is the separation of its components. In Section 6 we re-
late the condition number 1

τ
to classical notions of curvature in differential

geometry via the second fundamental form.
Finally, it is also useful to relate τ to the notions of medial axis and lo-
cal feature size that have been developed in the computational geometry
community. Given M, one may define the set

G = {x ∈ IRN such that ∃ distinct p, q ∈ M where d(x,M) = ||x−p|| = ||x−q||}

where d(x,M) = infy∈M ||x − y|| is the distance of x to M. The closure of
G is called the medial axis and for any point p ∈ M the local feature size
σ(p) is the distance of p to the medial axis. Then it is easy to check that

τ = inf
p∈M

σ(p)

3 An Outline of our Main Results

Ultimately we wish to compute the homology of the manifold M ⊂ IRN

from the randomly sampled datapoints x̄ = {x1, . . . , xn} ⊂ M. We first
begin by considering Euclidean balls (in the ambient space IRN ) of radius
ε and centers xi’s. Let us denote these balls as Bε(xi). We can now define
the open set U ⊂ IRN given by

U = ∪x∈x̄Bε(x)

Our first proposition states that if x̄ = {x1, . . . , xn} is ε/2 dense in M, then
M is a deformation retract of U .
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Proposition 3.1 Let x̄ be any finite collection of points x1, . . . , xn ∈ IRN such
that it is ε

2
dense in M, i.e., for every p ∈ M, there exists an x ∈ x̄ such that

‖ p − x ‖IRN < ε
2
. Then for any ε <

√

3
5
τ , we have that U deformation retracts to

M. Therefore homology of U equals homology of M.

We prove this proposition in Section 4. Subsequent to our work, the au-
thors of [6] presented a different type of calculation of the homology of
M based on their homology approximation theorem together with the
method of computing persistent homology (e.g. [7]). Their method does
not give the homotopy type of M. On the other hand, it does apply to a
class of metric spaces more general than well conditioned manifolds.
In the case under consideration here, the points x1, . . . , xn are sampled in
i.i.d. fashion from the uniform probability distribution on M. By proba-
bilistic considerations, we will then prove (in Section 5)

Proposition 3.2 Let x̄ be drawn by sampling M in i.i.d. fashion according to
the uniform probability measure on M. Then with probability greater than 1− δ,
we have that x̄ is ε

2
-dense (ε < τ

2
) in M provided

|x̄| > β1(log(β2) + log(
1

δ
))

where β1 = vol(M)

(cosk(θ1))vol(Bk
ε/4

)
and β2 = vol(M)

(cosk(θ2))vol(Bk
ε/8

)
. Here k is the dimension of

the manifold M and vol(Bk
ε ) denotes the k-dimensional volume of the standard

k-dimensional ball of radius ε. Finally θ1 = arcsin( ε
8τ

) and θ2 = arcsin( ε
16τ

).

Putting these two propositions together, we see that we are able to provide
a finite sample estimate for how many times we need to sample M so that
we are guaranteed with high confidence that the homology of the random
set U equals the homology of M. Thus our main theorem is

Theorem 3.1 Let M be a compact submanifold of IRN with condition number τ .
Let x̄ = {x1, . . . , xn} be a set of n points drawn in i.i.d fashion according to the
uniform probability measure on M. Let 0 < ε < τ

2
. Let U = ∪x∈x̄Bε(x) be a

correspondingly random open subset of IRN . Then for all

n > β1(log(β2) + log(
1

δ
))

the homology of U equals the homology of M with high confidence (probability
> 1 − δ).
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Remark. Note that no version of our main theorem exists in the literature
so far. However, versions of our Proposition 3.1 do exist. We have char-
acterized Proposition 3.1 in terms of τ but one may obtain an alternate
characterization in terms of the medial axis and the local feature size. In
fact, if one considers the union of balls centered at the data points given
by U = ∪x∈x̄Bεx(x) where εx = rσ(x), then it is possible to show that the
homology of U coincides with that of M if x̄ is εx

2
-dense in M and for all

r < 0.21. For the case of surfaces in IR3, a similar result is obtained by
Amenta et al for r < 0.06. The set x̄ is said to be εx

2
-dense if for every

p ∈ M there exists some x ∈ x̄ such that ||p − x|| < εx

2
. We will prove this

in a later paper. It is not obvious, however, how to obtain a version of our
main theorem in terms of the local feature size. Finally, we recall the recent
results of [6] that we have already alluded to.

3.1 Computing the Homology of U

One now needs to consider algorithms to compute the homology of U .
Noting that the Bε(xi)’s form a cover of U , one can construct the nerve of
the cover. The nerve is an abstract simplicial complex constructed as fol-
lows: One puts in a k-simplex for every k+1-tuple of intersecting elements
of the cover. The Nerve Lemma (see [10]) applies in our case, as balls are
convex, to show that the homology of U is the same as the homology of
this complex. The algorithm consists of the following components.

1. Given an ε, and a set of points x̄ = {x1, . . . , xn} in IRN , each j-simplex
is given by a subset of the n points that have non-zero intersection.
Thus we may define Lj to be the collection of all j-simplices. Each
simplex σ ∈ Lj is associated with a set of j+1 points (p0(σ), . . . , pj(σ) ∈
x̄) such that

∩j
i=0Bε(pi(σ)) 6= ∅

An orientation for the simplex is chosen by picking an ordering and
let us denote the oriented simplex by |p0(σ), . . . , pj(σ)|.

2. A very crude upper bound on the size of Lj (denoted by |Lj|) is given
by

(

n
j+1

)

. However, it is clear that if two points xm and xl are more
than 2ε apart, they cannot be associated to a simplex. Therefore, there
is a locality condition that the pi(σ)’s must obey which results in |Lj|
being much smaller than this crude number. The simplicial complex
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Kj = ∪j
i=0Lj together with face relations. The simplicial complex

corresponding to the nerve of U is K = KN .

3. A basic subroutine for computing the simplicial complex (steps 1 and
2 above) involves the decision problem: for any set of j points, de-
termine whether balls of radius ε around each of these points have
non-empty intersection. This problem is related to the smallest ball
problem defined as follows: Given a set of j points, find the the ball
with smallest radius enclosing all these points. One can check that
∩j

i=1Bε(pi) 6= ∅ if and only if this smallest radius < ε. Fast algorithms
for the smallest ball problem exist. See [17] for theoretical discussion
and “http://www2.inf.ethz.ch/personal/gaertner/miniball.html” for
downloadable algorithms from the web.

4. We will work in the field of coefficients IR. Then a j-chain is a func-
tion c : Lj → IR and can be written as a formal sum

c =
∑

σ∈Lj

c(σ)σ

By adding j-chains component wise, one gets the vector space of j-
chains denoted by Cj .

5. The boundary operator ∂j is a linear operator from Cj to Cj−1 defined
as follows. For each (oriented) simplex σ ∈ Lj ,

∂jσ =

j
∑

i=0

(−1)iσi

where σi is a j − 1 face of σ (facing point pi(σ)) and the orientation of
σi is given by |p0, . . . , pi−1, pi+1, . . . , pj|. Now ∂j is defined on j chains
by additivity as

∂j(
∑

σ∈Lj

c(σ)σ) =
∑

σ∈Lj

c(σ)∂jσ

Thus, ∂j can be represented as a nj−1 ×nj matrix where nj−1 = |Lj−1|
and nj = |Lj| respectively. The matrix is usually sparse in our setting.

7



6. This defines the chain complex

. . . Cj+1
∂j+1→ Cj

∂j→ Cj−1 . . .

One can finally define the image and kernel of the boundary operator
given by

Im ∂j = {c ∈ Cj−1|∃c′ ∈ Cj where ∂jc
′ = c}

and
Ker ∂j = {c ∈ Cj|∂jc = 0}

Now Im ∂j+1 is the vector space of j-boundaries and Ker ∂j is the
vector space of j cycles. Then the jth homology group is the quotient
of Ker ∂j over Im ∂j+1, i.e.,

Hj = Ker ∂j/Im ∂j+1

The calculation of Hj is seen to be an exercise in linear algebra given
the matrix representation of the boundary operators. In our expo-
sition here, we have been working over a field resulting in vector
spaces which are characterized purely by their ranks (the Betti num-
bers). One approach to this is also via the combinatorial Laplacian
as outlined in Friedman (1998). More generally, one can work over a
module and Hj would then be an Abelian group.

4 The Deformation Retract Argument

In this section we prove Proposition 3.1. Recall that ε <
√

3/5τ . Consider
the canonical map π : U → M given by (π is the restriction of π0 to U )

π(x) = arg min
p∈M

||x − p||

Then we see that the fibers π−1(p) are given by T⊥
p ∩ U ∩ Bτ (p). The inter-

section with Bτ (p) is necessary to eliminate distant regions of U that may
intersect with Tp (because the manifold may curve around over great dis-
tances) but do not belong to the fiber. For example, for the standard circle
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in IR2, at any point p on the circle, T⊥
p intersects the circle at two points.

One of these is in Bτ (p) and the other is not. Therefore,

π−1(p) = ∪x∈x̄Bε(x) ∩ T⊥
p ∩ Bτ (p)

where T⊥
p is the normal subspace at p ∈ M orthogonal to the tangent space

Tp. Let us also define st(p) as

st(p) = ∪{x∈x̄;x∈Bε(p)}Bε(x) ∩ T⊥
p ∩ Bτ (p)

It is immediately clear that

st(p) ⊆ π−1(p)

Then the following simple proposition is true.

Proposition 4.1 st(p) is star shaped relative to p and therefore contracts to p.

PROOF:Consider arbitrary v ∈ st(p). Then v ∈ Bε(x) ∩ T⊥
p for some x ∈ x̄

such that x ∈ Bε(p). Since x ∈ Bε(p), we immediately have p ∈ Bε(x).
Since v, p are both in Bε(x), by convexity of Euclidean balls, we have that
the line segment v̄p joining v to p is entirely contained in Bε(x). At the
same time, v̄p is entirely contained in T⊥

p and it follows therefore that v̄p is
contained in st(p).

¤

We next show that the inclusion of st(p) in π−1(p) is an equality proving
that π−1(p) contracts to p.

Proposition 4.2
st(p) = π−1(p)

PROOF:We need to show that π−1(p) ⊆ st(p). Consider an arbitrary v ∈
Bε(q) ∩ T⊥

p ∩ Bτ (p) where q ∈ x̄ and q 6∈ Bε(p). For such v the picture of
fig. 1 can be drawn. Following lemma 4.1, we see that the distance of v to p

is at most ε2

τ
. Now by the fact that x̄ is ε

2
-dense, we have that there is some

point x ∈ x̄ which is within ε
2

of p. The worst case picture of this is shown
in fig 2. From lemma 4.2, we see that v ∈ Bε(x) for this x. The proposition
is proved.

¤

These two propositions taken together show that M is a deformation re-
tract of U . We see that M ⊂ U . Further let F (x, t) : U × [0, 1] → U be given
by F (x, t) = tx+(1− t)π(x). Then F is continuous, F (x, 0) = π and F (x, 1)
is the identity map.

9



�
�
�
�

�
�
�
�

�
�
�
�

θ

ε

A
b

τ
q

p
Tp

Tp

v

Figure 1: A picture showing the worst case. The picture shows the plane
passing through points v, p, and q. Tp and T⊥

p are shown intersecting with
this plane and are represented by the dotted horizontal line and the solid
vertical line respectively. On the plane of interest, one may then draw two
circles (of radius τ each) that are tangent to Tp and are on either side of
Tp as shown. Clearly v lies on T⊥

p and is marked in the figure. On the
other hand q could potentially lie anywhere outside the two circles. A
moment’s reflection shows that ||v − p|| is greatest when q lies on one of
the two circles. Without loss of generality one may consider it to lie on the
top circle as shown. Over all choices of such q, the worst case is derived in
lemma 4.1
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Lemma 4.1 Consider any q 6∈ Bε(p). Let v ∈ Bε(q) ∩ T⊥
p ∩ Bτ (p). Then the

Euclidean distance from v to p is less than ε2

τ
.

PROOF:We need to consider which configuration of v, q, and p makes the
distance ||v−p|| as large as possible. It is easiest to reason about this in the
plane passing through these points. It suffices to consider q on the curve
as shown in fig. 1. See the caption for further explanation. Following the
symbols on the figure, we have

A = b sin(θ) +
√

ε2 − b2 cos2(θ)

where b = 2τ sin(θ). Therefore, we have

A = 2τ sin2(θ) +
√

ε2 − 4τ 2 sin2(θ) cos2(θ)

From this we see that

dA

dθ
= 2τ sin(2θ) − 4τ 2 sin(2θ) cos(2θ)

2
√

ε2 − τ 2 sin2(2θ)
= 2τ sin(2θ)(1 − τ cos(2θ)

√

ε2 − τ 2 sin2(2θ)
)

It is easy to check that if ε < τ , dA
dθ

< 0, i.e., A is monotonically decreasing
with θ. Therefore the worst case situation is when b = 2τ sin(θ) = ε. For
this value of θ, we see that A = ε2

τ
.

¤

The following lemma ensures that there is an x ∈ x̄ ∩ Bε(p) such that v ∈
Bε(x) ∩ T⊥

p .

Lemma 4.2 Let x̄ be ε/2-dense in M. For any p ∈ M, let v ∈ π−1(p). Then for

0 < ε <
√

3/5τ, we have that v ∈ Bε(x) ∩ T⊥
p for some x ∈ Bε(p) ∩ x̄.

PROOF:By the ε/2 dense property, we know that there is an x ∈ x̄ such
that x ∈ Bε/2(p). Consider the picture in fig. 2. This represents the most
unfavorable position that such an x might have for the current context.
The picture shows the plane passing through the points x, v and p. By the
same argument of lemma 4.1 we see that

A =
√

ε2 − b2 cos2(θ) − b sin(θ)

where b = 2τ sin(θ) = ε
2
. Putting this value in, we have

A =

√

ε2 − ε2

4
(1 − ε2

16τ 2
) − 2τ

ε2

16τ 2
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Simplifying, we see that A > ε2

τ
(needed by lemma 4.1) if

√

ε2 − ε2

4
(1 − ε2

16τ 2
) >

9

8

ε2

τ

Squaring both sides, we have

3

4
ε2 +

ε4

64τ 2
>

81ε4

64τ 2

This simplifies to
ε2

τ 2
<

3

5

Therefore, as long as ε <
√

3
5
τ , we will have that v ∈ Bε(x) for a suitable x.

¤

5 Probability Bounds

Following our assumption, that the points xi are drawn at random, we
now provide a bound on how many examples need to be drawn so that the
empirically constructed complex has the same homology as the manifold.
We begin with a basic probability lemma.

Lemma 5.1 Let {Ai} for i = 1, . . . l be a finite collection of measurable sets and
let µ be a probability measure on ∪l

i=1Ai such that for all 1 ≤ i ≤ l, we have
µ(Ai) > α. Let x̄ = {x1, . . . , xn} be a set of n i.i.d. draws according to µ. Then if

n ≥ 1

α

(

log l + log(
1

δ
)

)

we are guaranteed that with probability > 1 − δ, the following is true

∀i, x̄ ∩ Ai 6= ∅

PROOF:This follows from a simple application of the union bound. Let Ei

be the event that x̄∩Ai is empty. The probability with which this happens
is given by

IPEi = (1 − µ(Ai))
n ≤ (1 − α)n.
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Figure 2: A picture showing the worst case. The picture is of the plane
containing the points p, v, and x. The two circles are each of radius τ and
tangent to Tp. Tp and T⊥

p are represented by their intersection with the
plane of interest as dotted horizontal and solid vertical lines respectively.
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Therefore, by the union bound, we have

IP∪iEi ≤
l

∑

i=1

IPEi ≤ l(1 − α)n

It remains to show that for n ≥ 1
α

(

log l + log(1
δ
)
)

, we have

l(1 − α)n ≤ δ

To see this, simply note that f(x) = xex − ex + 1 ≥ 0 for all x ≥ 0. This
is seen by noting that f(0) = 0 and f ′(x) = xex ≥ 0 for all x ≥ 0. Putting
x = α in the above function, we have

(1 − α) ≤ e−α

and therefore it is easily seen that

l(1 − α)n ≤ le−nα ≤ δ

for the appropriate choice of n.
¤

Applying this to our setting, we consider a cover of the manifold M by
balls of radius ε

4
. Let {yi; 1 ≤ i ≤ l} be the centers of such balls that consti-

tute a minimal cover. Therefore, we can choose Ai = B ε
4
(yi) ∩M. Apply-

ing the above lemma, we immediately have an estimate on the number of
examples we need to collect. This is given by

1

α

(

log l + log(
1

δ
)

)

where

α = min
i

vol(Ai)

vol(M)

and l is the ε
4

covering number. These may be expressed entirely in terms
of natural invariants of the manifold and we derive these quantities below.
First, we note that the covering number may be bounded in terms of the
packing number, i.e., the maximum number of sets of the form Ni = Br ∩
M (at scale r) that may be packed into M without overlap. In particular,
if C(ε) is the ε-covering number of M and P (ε) is the ε-packing number,
then the following simple lemma is true.
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Lemma 5.2
P (2ε) ≤ C(2ε) ≤ P (ε)

PROOF:The fact that P (2ε) ≤ C(2ε) follows from the definition. To see that
C(2ε) ≤ P (ε), begin by letting Bε(x1), . . . , Bε(xN) be a realization of an op-
timal ε-packing so that N = P (ε). We claim that B2ε(x1), . . . , B2ε(xN) form
a 2ε-cover. If not, there exists an x ∈ M such that Bε(x)∩Bε(xi) is empty for
all i. In that case, one can add Bε(x) to the collection to increase the pack-
ing number by 1 leading to a contradiction. Since B2ε(x1), . . . , B2ε(xN) is a
valid 2ε-cover, we have C(2ε) ≤ N = P (ε).

¤

Since l is the ε/4 covering number, we see that l ≤ P (ε/8) from lemma 5.2.
Now we need to bound the packing number. To do so, we need the fol-
lowing result.

Lemma 5.3 Let p ∈ M. Now consider A = M ∩ Bε(p). Then vol(A) ≥
(cos(θ))kvol(Bk

ε (p)) where Bk
ε (p) is the k-dimensional ball in Tp centered at p,

θ = arcsin( ε
2τ

). All volumes are k-dimensional volumes where k is the dimension
of M.

PROOF:Consider the tangent space at p given by Tp and let f be the projec-
tion of IRN to Tp. Let Bk

r (p) be the k-dimensional ball of radius r = ε cos(θ)
(where θ = arcsin( ε

2τ
)) centered at p lying in Tp. Let fA = {f(q) |q ∈ A}

be the image of A under f . We will show that Bk
r (p) ⊂ fA. Since f is a

projection we have

vol(A) ≥ vol(fA) ≥ vol(Bk
r (p)) = (cosk(θ))vol(Bk

ε (p))

To see that Bk
r (p) ⊂ fA, notice that f is an open map whose derivative is

nonsingular for all q ∈ A (by Lemma 5.4). Therefore f is locally invertible
and there exists a ball Bk

s (p) of radius s such that f−1(Bk
s (p)) ⊂ A. One

can keep increasing s until it happens for the first time (say at s = s′) that
f−1(Bk

s (p)) 6⊂ A. At this stage, there exists a point q in the closure of A
such either (i) f is singular at q or (ii) q 6∈ A. By Lemma 5.4, we see that (i)
is impossible. Therefore, q 6∈ A but q is in the closure of A implying that
‖q − p‖ = ε. We see that s′ = ε cos(φ) where φ is the angle between the
line q̄p (the line joining q to p) and the line ¯f(q)p (the line joining f(q) to p).
By the curvature bound implied by τ , we see that |φ| ≤ |θ| and therefore
s′ = ε cos(φ) ≥ ε cos(θ) = r. ¤
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Lemma 5.4 Let p ∈ M, let A = M ∩ Bε(p), and let f be the projection to the
tangent space at p (Tp). Then for all ε < τ

2
, the derivative df is nonsingular at all

points q ∈ A.

PROOF:
Suppose df was singular for some q ∈ A. That means that the tangent
space at q (Tq) is oriented so that the vector with origin q and end point
f(q) lies in Tq. Since q ∈ Bε(p), we have that d = ||q − p|| < τ

2
. Putting

propositions 6.2 and 6.3 together, we get that

cos(φ) ≥
√

1 − 2d

τ
> 0

where φ is the angle between Tp and Tq. From this we see that φ < π
2

leading to a contradiction.
¤

Using lemma 5.3, we see that a simple bound on the packing number is
obtained. We obtain immediately that

P (ε) ≤ vol(M)

(cosk(θ))vol(Bk
ε (p))

Therefore, we have

l ≤ P (
ε

8
) ≤ vol(M)

(cosk(θ2))vol(Bk
ε
8

(p))

where θ2 = arcsin( ε
16τ

). Similarly, we have that

1

α
≤ vol(M)

(cosk(θ1))vol(Bk
ε
4

(p))

where θ1 = arcsin( ε
8τ

).

6 Curvature and the Condition Number 1
τ

In this section1, we examine the consequences of the condition number
1
τ

for the submanifold M. As we have mentioned before, τ controls the

1Thanks to Nat Smale for discussions leading to the writing of this section.
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curvature of the manifold at every point. This fact has been exploited in
our earlier proofs. For submanifolds, one may formally study curvature
through the second fundamental form (see e.g., [14]). Here we show for-
mally that the norm of the second fundamental form is bounded by 1

τ
.

Thus a large τ corresponds to a well conditioned submanifold that has
low curvature.
Proposition 6.1 states the bound on the norm of the second fundamental
form. Proposition 6.2 states a bound on the maximum angle between tan-
gent spaces at different points in M. Proposition 6.3 states a bound on
the maximum difference between the geodesic distance and the ambient
distance for neighboring points in M.
Let us begin by recalling the second fundamental form. Fix a point p ∈
M. Following standard accounts (see, e.g. [14]), there exists a symmetric
bilinear form B : Tp × Tp → T⊥

p that maps any two vectors in the tangent
space (u, v ∈ Tp) into a vector B(u, v) in the normal space. Thus for any
normal vector (unit norm) η ∈ T⊥

p , one can define the following

Bη(u, v) = 〈η,B(u, v)〉 = 〈u, Lηv〉

where the inner product 〈·, ·〉 is the usual inner product in the tangent
space of the ambient manifold (in our case IRN ). Since Bη : Tp × Tp → IR
is symmetric and bilinear, we see that Lη : Tp → Tp is a linear self-adjoint
operator. The norm of the second fundamental form in direction η is now
given by

λη = sup
u∈Tp

〈u, Lηu〉
〈u, u〉

It is seen that λη is the largest eigenvalue of Lη. (In general, the eigenval-
ues are also known as the principal curvatures in the normal direction η).
Given this, we can prove the following proposition that characterizes the
relation between the curvature through the second fundamental form and
the condition number of the submanifold.

Proposition 6.1 If M is a submanifold of IRN with condition number 1
τ
, then

the norm of the second fundamental form is bounded by 1
τ

in all directions. In
other words, for all points p ∈ M and for all (unit norm) η ∈ T⊥

p , we have

λη = sup
u∈Tp

〈u, Lηu〉
〈u, u〉 ≤ 1

τ
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PROOF:We prove by contradiction. Suppose the proposition is false. Then
there exists a point p ∈ M, a tangent vector (unit norm) u ∈ Tp and a
normal vector (unit norm) η such that

〈η,B(u, u)〉 >
1

τ

Consider a geodesic curve c(t) ∈ M parametrized by arc length such that
c(0) = p and ċ(0) = dc

dt
(0) = u. For convenience, we will place the origin at

p so that c(0) = 0 = p. With this (ambient) coordinate system, consider the
point given by τη, i.e., the point a distance τ from p in the direction η. By
our hypothesis on the condition number of the submanifold, we see that
p ∈ M is the closest point on the manifold to the center of the τ -ball given
by τη.

for all t, ||c(t) − τη||2 ≥ τ 2

from which we get

∀t, 〈c(t), c(t)〉 − 2τ〈c(t), η〉 ≥ 0

Consider the function g(t) = 〈c(t), c(t)〉− 2τ〈c(t), η〉. Since c(0) = 0, we see
that g(0) = 0. Further, we have g′(t) = 2〈c(t), ċ(t)〉−2τ〈ċ(t), η〉. Since c(0) =
0 and 〈ċ(0), η〉 = 0, we see that g′(0) = 0. Finally, g′′(t) = 2〈ċ(t), ċ(t)〉 +
2〈c(t), c̈(t)〉 − 2τ〈c̈(t), η〉. Since c is parameterized by arc length, we have
〈ċ(t), ċ(t)〉 = 1 and g′′(0) = 2 − 2τ〈c̈(0), η〉.
Noting that the tangent vector field dc

dt
is parallel (see proof of Proposi-

tion 6.2), we see that B(dc
dt

, dc
dt

) = c̈(t). Therefore, by assumption, we have
that

〈η,B(u, u)〉 = 〈η,B(
dc

dt
,
dc

dt
)〉 = 〈η, c̈(0)〉 >

1

τ

Therefore, g′′(0) < 2 − 2τ( 1
τ
) = 0. By continuity, there exists a t∗ such that

g(t∗) < 0. But this leads to a contradiction since g(t) ≥ 0 for all t.
¤

Since the norm of the second fundamental form is bounded, we see that
the manifold cannot curve too much locally. As a result, the angle between
tangent spaces at nearby points cannot be too large. Let p and q be two
points in the submanifold M with associated tangent spaces Tp and Tq.
Since Tp and Tq are affine subspaces of IRN , one can compare them in the
ambient space in a standard way.

18



Formally, one may transport the tangent spaces to the origin (according
to the standard connection defined in the ambient space IRN ) and then
compare vectors in each of these tangent spaces with each other. Thus for
any (unit norm) vectors u ∈ Tp and v ∈ Tq, we may define the angle θ
between them by

cos(θ) = |〈u′, v′〉|
where 〈·, ·〉 is the usual inner product in IRN , u′, v′ are the vectors obtained
by parallel transport (in IRN ) of u and v respectively to the origin. Here-
after, we will always take this construction as standard. We will drop the
prime notation and use 〈u, v〉 to denote 〈u′, v′〉 in what follows.
We can now state the following proposition.

Proposition 6.2 Let M be a submanifold of IRN with condition number 1
τ
. Let

p, q ∈ M be two points with geodesic distance given by dM(p, q). Let φ be the the
angle between the tangent spaces Tp and Tq defined by cos(φ) = minu∈Tp maxv∈Tq |〈u, v〉|.
Then cos(φ) is greater than 1 − 1

τ
dM(p, q).

PROOF:Consider two points p, q ∈ M connected by a geodesic curve c(t) ∈
M. Let c(t) be parametrized (proportional to arc length) so that c(0) = p,
and c(1) = q.
Now let vp ∈ Tp be a tangent vector (unit norm) and let v(t) be the parallel
transport of this vector along the curve c(t). Thus we have v(0) = vp,
v(1) = vq ∈ Tq. Clearly 〈v(t), v(t)〉 = 1 for all t since v is parallel.
Notice that

〈v(0), v(1)〉 = 〈v(0), v(0) + w〉 = 1 + 〈v(0), w〉 (1)

where

w =

∫ 1

0

(
dv

dt
)dt (2)

Combining 1 and 2, we see

cos(θ) = |〈v(0), v(1)〉| ≥ 1 − |〈v(0), w〉| ≥ 1 − ||w|| (3)

where θ is the angle between the vectors v(0) and v(1). Since vp = v(0) was
arbitrary, it is easy to check that cos(φ) ≥ cos(θ).
Now

dv

dt
= ∇̄ dc

dt
v(t)
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where ∇̄ denotes the connection in Euclidean space. At the same time

∇ dc
dt

v(t) = (∇̄ dc
dt

v(t))T

where for any r ∈ M and v ∈ T̄r (here T̄r is the tangent space of IRN at
r) we denote by (v)T the projection of v onto Tr (here Tr is the tangent
space to M at r viewed as an affine space with origin r). But since v(t)
is parallel, we have that ∇ dc

dt
v(t) = 0. Therefore, ∇̄ dc

dt
v(t) is entirely in the

space normal to Tc(t). But the component of ∇̄ dc
dt

v(t) in the normal direction

is precisely given by the second fundamental form. Hence, we have that

dv

dt
= B(

dc

dt
, v(t))

where B is a symmetric, bilinear form (the second fundamental form).
Letting η be a unit norm vector in the direction dv

dt
, i.e., η = (1/||dv

dt
||)dv

dt
, we

see that

||dv

dt
|| = 〈η,

dv

dt
〉 = 〈η,B(

dc

dt
, v(t))〉 = 〈dc

dt
, Lnv(t)〉

where Ln is a self adjoint linear operator. By Proposition 6.1, the norm of
Lη is bounded by 1

τ
. Therefore, we have

‖dv

dt
‖ ≤ ‖dc

dt
‖‖Lnv‖ ≤ ‖dc

dt
‖‖Lη‖

and

‖w‖ = ‖
∫ 1

0

dv

dt
‖ ≤

∫ 1

0

‖dv

dt
‖ ≤ ‖Ln‖

∫ 1

0

‖dc

dt
‖dt ≤ 1

τ
dM(p, q) (4)

Combining eq. 3 and eq. 4, we get

cos(φ) ≥ 1 − 1

τ
dM(p, q)

¤

We next show a relationship between the geodesic distance dM(p, q) and
the ambient distance ||p− q||IRN for any two points p and q on the subman-
ifold M.
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Proposition 6.3 Let M be a submanifold of IRN with condition number 1
τ
. Let

p and q be two points in M such that ||p − q||IRN = d. Then for all d ≤ τ
2
, the

geodesic distance dM(p, q) is bounded by

dM(p, q) ≤ τ − τ

√

1 − 2d

τ

PROOF:Consider two points p, q ∈ M and let c(t) be a geodesic curve join-
ing them such that c(0) = p and c(s) = q. Let c be parametrized by arc
length so that ||ċ(t)|| = 1 for all t and dM(p, q) = s.
Noting that the tangent vector field ċ along the curve is parallel, we have
c̈ = B(ċ, ċ) and from proposition 6.1, we see that for all t

||c̈|| = ||B(ċ, ċ)|| ≤ 1

τ

The chord length between p and q is given by ||c(s) − c(0)|| and we now
relate this to the geodesic distance dM(p, q). Observe that

c(s) − c(0) =

∫ s

0

ċ(t)dt

Now

ċ(t) = ċ(0) +

∫ t

0

c̈(r)dr

Thus ċ(t) = ċ(0) + u(t) where u(t) =
∫ t

0
c̈(r)dr. We see that

||u(t)|| ≤
∫ t

0

||c̈(r)dr|| ≤ t

τ

Therefore,

||c(s)−c(0)|| = ||
∫ s

0

ċ(0)dt+

∫ s

0

u(t)dt|| ≥ s||ċ(0)||−
∫ s

0

||u(t)||dt ≥ s−
∫ s

0

t

τ
dt

Therefore we get

||c(s) − c(0)|| = d ≥ s − s2

2τ
(5)
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where d is the ambient distance between the points p and q while s is the
geodesic distance between these same points. The inequality in eq. 5 is

satisfied only if s ≤ τ − τ
√

1 − 2d
τ

or s ≥ τ + τ
√

1 − 2d
τ

. Since s = 0 when

d = 0, we know that the second inequality does not apply. Therefore, from
the first inequality, we have

s ≤ τ − τ

√

1 − 2d

τ

¤

7 Handling Noisy Data

In this section we show that if our data is noisy in the sense that it is drawn
from a probability distribution that is concentrated around (rather than
on) the manifold, the homology of the manifold can still be computed from
noisy data.

7.1 The Model of Noise

Consider a probability measure µ concentrated around the manifold. We
assume that µ satisfies the following two regularity conditions.

1. The support of µ (suppµ) is contained in the tubular neighborhood
of radius r around M. Thus suppµ ⊂ Tubr(M).

2. For every 0 < s < r, we have that

inf
p∈M

µ(Bs(p)) > ks

where ks is a constant depending on s and independent of p.

In what follows, we assume the data is drawn in i.i.d. fashion according
to a P that satisfies the above properties.
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7.2 Main Topological Lemma: Sufficient Conditions

We will proceed by constructing ε-balls centered on our data points. If
these data are s-dense on the manifold, then the homology of the union
of these balls will equal that of the manifold M even if the data is drawn
from a noisy distribution. In order to see that this might be the case at all,
we provide a simple argument. This argument works with non-optimal
choices of ε and s and later sections will enter into the considerations of
choosing better values for these parameters and therefore provide more
natural complexity estimates.
Let x̄ = {x1, . . . , xn} be a set of n points in the tubular neighborhood of
radius r around M. Let U be given by

U = ∪x∈x̄Bε(x)

Proposition 7.1 If x̄ is r-dense in M then M is a deformation retract of U for

all r < (
√

9 −
√

8)τ and ε ∈
(

(r+τ)−
√

r2+τ2−6τr
2

, (r+τ)+
√

r2+τ2−6τr
2

)

.

PROOF:We show that for each p ∈ M, it is the case that π−1(p) contracts
to p. Consider a v ∈ π−1(p). Consider the line segment, v̄p, joining v to p.
We claim that this line segment is entirely contained in π−1(p). Clearly, if
v ∈ Bε(x) for some x ∈ x̄ ∩ Bε(p), this is immediate by the convexity of
balls in Euclidean space. So we only need to consider the situation where
v ∈ Bε(x) for some x 6∈ x̄ ∩ Bε(p). So let v ∈ Bε(q) ∩ T⊥

p . Let

u = arg min
x∈v̄p∩ ¯Bε(q)

||x − p||

As long as u ∈ Bε(x) for some x ∈ x̄ ∩ Bε(p), we see that the line segment
ūp is contained in π−1(p) and therefore v contracts to p.
Since we choose r < ε, we are guaranteed that there is an x ∈ x̄ ∩ Br(p) ⊂
Bε(p). The worst case picture is shown in fig. 3. Following the symbols of
the picture, as long as

τ − A < ε − r,

we have that v contracts to p. Thus we need

(τ − (ε − r))2 < A2 = (τ − r)2 − ε2 (6)

Expanding the squares, this reduces to

ε2 − ε(τ + r) + 2τr < 0
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This is a quadratic in ε and is satisfied for

ε ∈
(

(r + τ) −
√

r2 + τ 2 − 6τr

2
,
(r + τ) +

√
r2 + τ 2 − 6τr

2

)

(7)

provided
r2 − 6τr + τ 2 > 0

This, in turn, is a quadratic in r and it is easy to check that it is satisfied as
long as

r < (3 − 2
√

2)τ = (
√

9 −
√

8)τ (8)

Thus we see that for r, ε satisfying equations 7 and 8, we have that v
contracts to p. ¤

We now need to compute the probability of drawing a random x̄ that is
guaranteed to be r-dense. The following proposition is true.

Proposition 7.2 Let Nr/2 be the r/2-covering number of the manifold. Let p1, . . . , pNr/2
∈

M be points on the manifold such that Br/2(pi) realize an r/2-cover of the mani-
fold. Let x̄ be generated by i.i.d. draws according to a probability measure µ that
satisfies the regularity properties described earlier. Then if |x̄| > 1

kr/2

(

log(Nr/2) + log(1
δ
)
)

,

with probability greater than 1 − δ, x̄ will be r-dense in M.

PROOF:Take Ai = Br/2(pi) and apply Lemma 5.1. By the conclusion of that
lemma, we have that with high probability each of the Ai’s is occupied by
atleast one x ∈ x̄. Therefore it follows that for any p ∈ M, there is atleast
one x ∈ x̄ such that ||p − x|| < r. Thus with high probability x̄ is r-dense
on the manifold.

¤

Putting these together, our main conclusion is

Theorem 7.1 Let Nr/2 be the r/2-covering number of the submanifold M of
IRN . Let x̄ be generated by i.i.d. draws according to a probability measure µ
that satisfies the regularity properties described earlier. Let U = ∪x∈x̄Bε(x).
Then if |x̄| > 1

kr/2

(

log(Nr/2) + log(1
δ
)
)

, with probability greater than 1 − δ,

M is a deformation retract of U as long as (1) r < (
√

9 −
√

8)τ and (2) ε ∈
(

(r+τ)−
√

r2+τ2−6τr
2

, (r+τ)+
√

r2+τ2−6τr
2

)
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Figure 3: A picture showing the worst case. As before, we draw the picture
in the plane connecting points v, p, and q. Tp and T⊥

p are intersected with
this plane in the picture and shown by the dotted horizontal line and solid
vertical line respectively. The concentric circles have the same center and
are of radius τ and τ − r respectively and follow our usual construction in
earlier figures and arguments. All lengths are marked by arrows.
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7.3 Main Topological Lemma – General Considerations

In general, we may demand points that are s-dense. Putting ε-balls around
these points we construct U in the usual way. The condition number τ and
the noise bound r are additional parameters that are outside our control
and determined externally. We now ask what is the feasible space (s, ε, r, τ)
that will guarantee that U is homotopy equivalent to M?
Following our usual logic, we see that the worst case situation is given by
fig. 4. An arbitrary v ∈ Bε(q) ∩ T⊥

p ∩ Bτ (p) will contract to p if

Bε(q) ∩ Bε(x) ∩ v̄p 6= φ

This is the same as requiring

(τ − w)2 < (τ − r)2 − ε2 (9)

Additionally, we have the following equations that need to be satisfied
(following fig. 4).

(τ − r)2 − (τ − β)2 = s2 − β2 (10)

s2 − β2 + (β + w)2 = ε2 (11)

If one eliminates w and β from the above equations, one will get a single
inequality relating s, ε, τ, r that describes for each τ, r the feasible set of
possible choices of s, ε that are sufficient to guarantee homotopy equiva-
lence. Let us see how our earlier theorems follow from particular choices
of this general set of equations.

7.3.1 The Case when s = r

We have already examined the case when the points x̄ are chosen to be
r-dense in M. Putting in s = r in equations 9, 10, and 11, we see the
following:
From eq. 10, we have (for s = r)

(τ − r)2 − (τ − β)2 = r2 − β2

This simplifies to give β = r.
Putting β = r and s = r in eq. 11, we get

r2 − r2 + (r + w)2 = ε2
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Figure 4: A picture showing the worst case. As before, we draw the picture
in the plane connecting points v, p, and q. Tp and T⊥

p are intersected with
this plane in the picture and shown by the dotted horizontal line and solid
vertical line respectively. The concentric circles have the same center and
are of radius τ and τ − r respectively and follow our usual construction in
earlier figures and arguments. All lengths are marked by arrows.
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giving us w = ε − r.
Finally, putting w = ε − r in inequality 9, we get

(τ − (ε − r))2 < (τ − r)2 − ε2

which is the same as inequality 6 whose solution was examined in the
previous section.

7.3.2 The Case when r = 0

We can recover our main theorem for the noise-free case by considering
the case r = 0. We proceed to do this now.
The fundamental inequality of 9 gives us (for r = 0)

(τ − w)2 < τ 2 − ε2

This is the same as requiring

w2 − 2τ + ε2 < 0

Using standard analysis for quadratic functions, we see that the following
condition is required:

w > τ −
√

τ 2 − ε2 (12)

We can eliminate w using equations 10 and 11. Thus, from eq. 10, we get

β = s2

2τ
and substituting in eq. 11, we get a quadratic equation in w whose

positive solution is given by w = − s2

2τ
+

√

s4

4τ2 + (ε2 − s2). This gives rise to

the following condition

− s2

2τ
+

√

s4

4τ 2
+ (ε2 − s2) > τ −

√
τ 2 − ε2 (13)

Inequality 13 gives the feasible region for s and ε for the homotopy equiv-
alence of U and M. Let us consider the special case when s = ε

2
— a choice

we made in Section 3 without any attention to optimality. Putting in this
value, after several simplifying steps, one obtains that

ε4 + 51ε2τ 2 − 48τ 4 < 0 (14)

This is satisfied for all 0 < ε2 < 0.9244τ 2 or

0 < ε < 0.96τ
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Remark 1 Note that in our original proof of our main noise free theo-
rem (Theorem 3.1), the deformation retract argument of Section 3 passes
through the construction of st(p) and shows contraction of π−1(p) by equat-
ing it with st(p). This condition is stronger than we require. Here we see
that the condition Bε(q)∩Bε(x)∩ v̄p 6= φ is sufficient. This latter condition
is weaker and therefore gives us a slightly stronger version of Theorem 3.1
in the sense that it holds for a larger range of ε.
Remark 2 If we assume that τ, r are beyond our control, the sample com-
plexity depends entirely upon s. Therefore if we wish to proceed by draw-
ing the fewest number of examples, then it is necessary to maximize s sub-
ject to the condition of eq. 13.
Remark 3 The total complexity of finding the homology depends both
upon s and ε in a more complicated way. The size of x̄ depends entirely
upon s and nothing else. However, the number of k-tuples to consider in
the simplicial complex depends both upon the size of x̄ as well as ε because
ε determines how many balls will have non-empty intersections. We leave
this more nuanced complexity analysis for future consideration.
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