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Abstract

We describe a new algorithm to enumerate the k
shortest simple (loopless) paths in a directed graph and
report on its implementation. Our algorithm is based
on a replacement paths algorithm proposed recently
by Hershberger and Suri [7], and can yield a factor
Θ(n) improvement for this problem. But there is a
caveat: the fast replacement paths subroutine is known
to fail for some directed graphs. However, the failure is
easily detected, and so our k shortest paths algorithm
optimistically uses the fast subroutine, then switches to
a slower but correct algorithm if a failure is detected.
Thus the algorithm achieves its Θ(n) speed advantage
only when the optimism is justified. Our empirical
results show that the replacement paths failure is a
rare phenomenon, and the new algorithm outperforms
the current best algorithms; the improvement can be
substantial in large graphs. For instance, on GIS
map data with about 5000 nodes and 12000 edges,
our algorithm is 4-8 times faster. In synthetic graphs
modeling wireless ad hoc networks, our algorithm is
about 20 times faster.

1 Introduction

The k shortest paths problem is a natural and long-
studied generalization of the shortest path problem, in
which not one but several paths in increasing order of
length are sought. Given a directed graph G with non-
negative edge weights, a positive integer k, and two
vertices s and t, the problem asks for the k shortest
paths from s to t in increasing order of length. We
require that the paths be simple (loop free). See
Figure 1 for an example illustrating the difference
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between the k shortest paths problem with and without
the simplicity constraint. (As the figure shows, even
in graphs with non-negative weights, although the
shortest path is always simple, the subsequent paths
can have cycles.) The k shortest paths problem
in which paths are not required to be simple turns
out to be significantly easier. An O(m + kn log n)
time algorithm for this problem has been known since
1975 [3]; a recent improvement by Eppstein essentially
achieves the optimal time of O(m + n log n + k)—the
algorithm computes an implicit representation of the
paths, from which each path can be output in O(n)
additional time [2].
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Figure 1: The difference between simple and non-
simple k shortest paths. The three simple shortest
paths have lengths 6, 20 and 21, respectively. Without
the simplicity constraint, paths may use the cycles
(a, b, a) and (d, e, d), giving shortest paths of lengths
6, 8, 10.

The problem of determining the k shortest simple
paths has proved to be more challenging. The problem
was originally examined by Hoffman and Pavley [10],
but nearly all early attempts to solve it led to expo-
nential time algorithms [16]. The best result known
to date is an algorithm by Yen [18, 19] (general-
ized by Lawler [12]), which using modern data struc-
tures can be implemented in O(kn(m+n log n)) worst-
case time. This algorithm essentially performs O(n)



single-source shortest path computations for each out-
put path. In the case of undirected graphs, Katoh,
Ibaraki, and Mine [11] improve Yen’s algorithm to
O(k(m+n log n)) time. While Yen’s asymptotic worst-
case bound for enumerating k simple shortest paths in a
directed graph remains unbeaten, several heuristic im-
provements to his algorithm have been proposed and
implemented, as have other algorithms with the same
worst-case bound. See for example [1, 6, 13, 14, 15].

In this paper we propose a new algorithm to find
the k shortest simple paths in a directed graph. Our
algorithm is based on the efficient replacement paths
algorithm of Hershberger and Suri [7], which gives a
Θ(n) speedup over the näıve algorithm for replacement
paths. The efficient algorithm is known to fail for some
directed graphs [8]. However, the failure is easy to de-
tect, and so our k shortest paths algorithm optimisti-
cally tries the fast replacement paths subroutine, then
switches to a slower but correct algorithm if a failure
occurs.

We have implemented our optimism-based k short-
est paths algorithm, and our empirical results show
that the replacement paths algorithm almost always
succeeds—in our experiments, the replacement paths
subroutine failed less than 1% of the time. Thus, we
obtain a speedup over Yen’s algorithm that is close
to the best-case linear speedup predicted by theory.
The algorithm is never much worse than Yen’s, and
on graphs where shortest paths have many edges, such
as those derived from GIS data or locally-connected
radio networks, the improvement is substantial. For
instance, on GIS data representing road networks in
the United States, our algorithm is about 20% faster
for paths from Washington, D.C., to New York (rela-
tively close cities), and about 8 times faster for paths
from San Diego to Piercy, CA. Similarly, on synthetic
models of wireless networks, our algorithm is 10 to 20
times faster. Random graphs tend to have small diam-
eters, but even on those graphs, our algorithm usually
outperforms Yen’s algorithm.

The fact that Yen’s worst-case bound for directed
graphs remains unbeaten after 30 years raises the pos-
sibility that no better algorithm exists. Indeed, Her-
shberger, Suri, and Bhosle recently have shown that
in a slightly restricted version of the path comparison
model, the replacement paths problem in a directed
graph has complexity Ω(m

√
n), if m = O(n

√
n) [9].

(Most known shortest path algorithms, including those
by Dijkstra, Bellman-Ford and Floyd-Warshall, satisfy
this model. The exceptions to this model are the ma-
trix multiplication based algorithms by Fredman and
others [4, 17, 20].) The same lower bound construction
shows that any k simple shortest paths algorithm that

finds the best candidate path for each possible branch
point off previously chosen paths is also subject to this
lower bound, even for k = 2. All known algorithms for
the k simple shortest paths fall into this category.

2 Path Branching and
Equivalence Classes

In the k shortest paths problem we are given a directed
graph G = (V, E), with n vertices and m edges. Each
edge e ∈ E has an associated non-negative weight c(e).
A path in G is a sequence of edges, with the head of
each edge connected to the tail of its successor at a
common vertex. A path is simple if all its vertices are
distinct. The total weight of a path in G is the sum of
the weights of the edges on the path. The shortest path
between two vertices s and t, denoted by path(s, t), is
the path joining s to t, assuming one exists, that has
minimum weight. The weight of path(s, t) is denoted
by d(s, t).

We begin with an informal description of the
algorithm. Our algorithm generates k shortest paths in
order of increasing length. Suppose we have generated
the first i shortest paths, namely, the set Πi =
{P1, P2, . . . , Pi}. Let Ri denote the set of remaining
paths that join s to t; this is the set of candidate paths
for the remaining k− i shortest paths. In order to find
the next shortest path in Ri efficiently, we partition
this set into O(i) equivalence classes. These classes
are intimately related to the branching structure of
the first i paths, which we call the path branching
structure Ti. This is a rooted tree that compactly
encodes how the first i paths branch off from each
other topologically, and it can be defined procedurally
as follows. (N.B. The procedural definition is not part
of our algorithm; it is just a convenient way to describe
the path branching structure.)

The subroutine to construct Ti is called with
parameters (s, Πi), where s is the fixed source and
Πi = {P1, P2, . . . , Pi} is the set of the first i shortest
paths. We initialize Ti to the singleton root node s.
Let (s, a, b, . . . , u) be the longest subpath that is a
common prefix of all the paths in Πi. We expand Ti

by adding a node labeled u, and creating the branch
(s, u). The node u is the child of s. The set of paths
{P1, P2, . . . , Pi} is defined to be the path bundle of
(s, u) and denoted by B(s, u).1 We now partition the
path bundle B(s, u) into sets S1, S2, . . . , Sα such that

1Strictly speaking, the bundle notation should have the
subscript i to indicate that it refers to a branch in tree Ti. We
drop this subscript to keep the notation simple, since the choice
of branching structure will always be clear from the context.
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Figure 2: (i) Four shortest paths, P1, . . . , P4. (ii) The
associated path branching structure.

all paths in Sj follow the same edge after u, and paths
in different groups, Sj , Sl, follow distinct edges. We
then make recursive calls (u, Sj), for j = 1, 2, . . . , α,
to complete the construction of Ti. The recursion
stops when |Sj | = 1, i.e., Sj contains a single path
P . In this case we create a leaf node labeled tP ,
representing the target vertex parameterized by the
path that reaches it, and associate the bundle {P} with
the branch (u, tP ). See Figure 2 for an example of a
path branching structure.

Remark: It is possible that the paths in the bundle
B(s, u) have no overlap, meaning u = s. In this case,
the branch (s, u) is not created, and we go directly to
the recursive calls.

For any given branch (u, v), B(u, v) is exactly the
set of paths that terminate at leaf descendants of v.
The bundles are not maintained explicitly; rather, they
are encoded in the path branching structure. Each
branch (u, v) has a path in G associated with it. This
path, denoted branchPath(u, v), is shared by all the
paths in B(u, v). Its endpoints are the vertices of G
corresponding to nodes u and v. The first edge of
branchPath(u, v) is the lead edge of the path, denoted
lead(u, v). A node u in Ti has a prefix path associated
with it, denoted prefixPath(u). The prefix path is the
concatenation of the branch paths for all the branches
from s to u in Ti. Thus a shortest path P is equal to
prefixPath(tP ).

It is important to note the distinction between
nodes in Ti and their corresponding vertices in G. A
single vertex u ∈ V may have up to k corresponding
nodes in Ti, depending on how many different paths
from s reach it. For example, vertex t has one node

in Ti for each of the k shortest paths, which is why
we distinguish the t nodes by their prefix paths (e.g.,
tP ). Likewise, a pair of vertices u, v may correspond
to multiple branches, each with its own branch path.
The following lemma is straightforward.

Lemma 2.1. The path branching structure Ti has O(i)
nodes and exactly i leaves.

The preceding lemma would apply to a branching
structure built from any i simple paths from s to t—
it does not depend on the paths of Πi being shortest
paths. The following lemma characterizes the branches
of Ti more precisely, and it does depend on the short-
ness of the paths.

Lemma 2.2. Let (u, v) be a branch in Ti. Let P
be the shortest path from vertex u to vertex t in G
that starts with lead(u, v) and is vertex-disjoint from
prefixPath(u). Then branchPath(u, v) ⊆ P .

Proof. Recall that the ith path Pi is the shortest path
that is not an element of Πi−1. Therefore, Pi must
branch off from each path in Πi−1. Let x be the vertex
of Pi farthest from s where Pi branches off from a path
in Πi−1. Since Ti−1 contains exactly the paths in Πi−1,
Pi branches off from some branchPath(·, ·) of Ti−1 at x.
Let e be the edge on Pi that follows x. Because Pi is
the shortest simple path not in Πi−1, it must a fortiori
be the shortest simple path that branches off from Ti−1

at x and follows e. The simplicity requirement means
that the part of Pi after x must be disjoint from all
the vertices on the prefix path in Ti−1 from s to x.
However, the only other requirement on the part of Pi

after e is that it be as short as possible; this implies that
the part of the path after x contains no loops. More
generally, for every edge e′ on Pi after x, the subpath
optimality property of shortest paths implies that the
part of Pi after e′ is the shortest path from the head
vertex of e′ to t that avoids the vertices of the prefix
of Pi up through the tail vertex of e′.

Any branch (u, v) in Ti is a subset of a branch
(x, tPj ) that was created as a branch off Tj−1 for some
j ≤ i. (Branches are not moved by later branches,
only subdivided.) The edge lead(u, v) belongs to
branchPath(x, tPj ), and hence as noted in the preced-
ing paragraph, the part of Pj after u, which contains
branchPath(u, v), is the shortest path that starts with
lead(u, v) and is vertex-disjoint from prefixPath(u).

We associate the equivalence classes of candidate
paths with the nodes and branches of Ti, as follows.
Consider a non-leaf node u ∈ Ti, and suppose that the



children of u are labeled v1, v2, . . . , vα. We associate
one equivalence class with each branch out of u,
denoted C(u, vj), and one with node u itself, denoted
C(u). The class C(u, vj) consists of those paths of
Ri that overlap with the paths in prefixPath(vj) up
to and including the lead edge lead(u, vj), but this
overlap does not extend to vj . That is, each path
of C(u, vj) diverges from prefixPath(vj) somewhere
strictly between u and vj . The final set C(u) consists
of those paths that overlap with each prefixPath(vj) up
to u, but no farther. That is, these paths branch off at
u, using an edge that is distinct from any of the lead
edges lead(u, vj), for j = 1, 2, . . . , α. The equivalence
partition associated with the path branching structure
Ti is the collection of these sets over all branches and
non-leaf nodes of Ti.

For instance, consider node a in Figure 2. There
are three equivalence classes associated with a: class
C(a, c) includes those paths that share the subpath
from s to a with P3, P4, and branch off somewhere
strictly between a and c (assume that the subpath from
a to c contains more than one edge). Similarly, the
class C(a, b) contains paths that coincide with P1, P2

until a, then branch off before b. Finally, the class C(a)
contains paths that coincide with P1, . . . , P4 up to a,
then branch off at a.

Lemma 2.3. Every path from s to t that is not among
the i shortest paths belongs to one of the equivalence
classes associated with the nodes and branches of Ti.
The number of equivalence classes associated with the
path branching structure Ti is O(i).

Proof. Consider a path P different from the first i
shortest paths. Suppose Pj , where 1 ≤ j ≤ i, is the
path that shares the longest common prefix subpath
with P . In Ti, let (u, v) be the first branch where P
and Pj diverge. Then P belongs in the equivalence
class associated with either u or (u, v). Finally, the
total number of equivalence classes is O(i) because
each node and branch of Ti has only one equivalence
class associated with it, and there are O(i) nodes and
branches in Ti.

We are now ready to describe our algorithm for
enumerating the k shortest simple paths.

3 Computing the k Shortest
Paths

We maintain a heap, which records the minimum
path length from each of the O(i) equivalence classes.
Clearly, the next shortest path from s to t is the

smallest of these O(i) heap entries. Once this path is
chosen (and deleted from the heap), the path branching
structure is modified, and so is the equivalence class
partition. Computationally, this involves refining one
equivalence class into at most four classes. For each
class, we determine the minimum element, and then
insert it into the heap. See Figure 3.

Algorithm k-ShortestPaths

• Initialize the path branching structure T to con-
tain a single node s, and put path(s, t) in the heap.
There is one equivalence class C(s) initially, which
corresponds to all the s–t paths.

• Repeat the following steps k times.

1. Extract the minimum key from the heap.
The key corresponds to some path P .

2. If P belongs to an equivalence class C(u) for
some node u then

(a) Add a new branch (u, tP ) to T that
represents the suffix of P after u.

(b) Remove from C(u) the paths that share
at least one edge with P after u and
put all of them except P into the newly
created equivalence class C(u, tP ).

3. Else (P belongs to the equivalence class
C(u, v) for some branch (u, v))

(a) Let w be the vertex where P branches off
from branchPath(u, v).

(b) Insert a new node labeled w, and split
the branch (u, v) into two new branches
(u,w) and (w, v). Add a second branch
(w, tP ) that represents the suffix of P
after w.

(c) Redistribute the paths of C(u, v) \ P
among the four new equivalence classes
C(u,w), C(w, v), C(w, tP ), and C(w),
depending on where they branch from
branchPath(u, v) and/or P .
i. Paths branching off branchPath(u, v)

before node w belong to C(u,w).
ii. Paths branching off branchPath(w, v)

after node w belong to C(w, v).
iii. Paths branching off P after node w

belong to C(w, tP ).
iv. Paths branching off both P and

branchPath(u, v) at node w belong to
C(w).



4. For each new or changed equivalence class (at
most four), compute the shortest path from
s to t that belongs to the class. Insert these
paths into the heap.
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Figure 3: Illustration of how the equivalence class
partition and branching structure change with the
addition of a new path. The left figure shows the
structure before adding the new path. There is an
equivalence class for each non-leaf node and branch
of the tree. The right figure shows the portion of the
structure that is affected if the newly added path came
from the class belonging to branch (u, v). The classes
corresponding to the node and three branches that are
inside the shaded oval are modified.

Lemma 3.1. Algorithm k-ShortestPaths correctly
computes the ith shortest path, the branching structure
Ti, and the equivalence class partition of the candidate
paths Ri, for each i from 1 to k.

The complexity of the algorithm described above
is dominated by Step 4. Step 1 takes only O(log k)
time per iteration of the repeat loop, and Steps 2
and 3 take O(n) time for path manipulation. The
redistribution of candidate paths among equivalence
classes is conceptual—the hard work is computing the
minimum element in each class in Step 4. In the
following section, we discuss how to implement this
step efficiently.

Remark: Our algorithm is conceptually similar to
those of Yen and Lawler. The main difference is
that our algorithm partitions the candidate paths into
equivalence classes determined by the path branching
structure, and those algorithms do not. This additional
structure together with the fast replacement paths
subroutine (Section 4) is the key to our algorithm’s
efficiency.

4 The Replacement Paths
Problem

The key step in our k shortest paths algorithm is
the computation of the best path in each equivalence
class, which can be formulated as a replacement paths
problem. Let H = (V, E) be a directed graph with
non-negative edge weights, and let x, y be two specified
nodes. Let P = {v1, v2, . . . , vm}, where v1 = x,
and vm = y, be the shortest path from x to y in
H. We want to compute the shortest path from x to
y that does not include the edge (vi, vi+1), for each
i ∈ {1, 2, . . . , m− 1}. We call this the best replacement
path for (vi, vi+1); the reference to the source x and
target y is implicit.

A näıve algorithm would require m−1 invocations
of the single-source shortest path computation: run the
shortest path algorithm in graph H−i, where H−i is the
graph H with edge (vi, vi+1) deleted. The following
algorithm does batch computation to determine all
the replacement paths in O(|E| + |V | log |V |) time; as
mentioned earlier, it can fail for some directed graphs,
but the failure can easily be detected. This algorithm is
a slight simplification of the one in [7]. For full details
of the algorithm’s data structures, refer to that paper.

Algorithm Replacement

1. In the graph H, let X be a shortest path tree from
the source x to all the remaining nodes, and let Y
be a shortest path tree from all the nodes to the
target y. Observe that P , the shortest path from
x to y, belongs to both X and Y .

2. For every edge ei = (vi, vi+1) ∈ P

(a) Let Xi = X \ ei. Let Ei be the set of all
edges (a, b) ∈ E \ ei such that a and b are
in different components of Xi, with a in the
same component as x.

(b) For every edge (a, b) ∈ Ei

Let pathWeight(a, b) = d(x, a)+c(a, b)+
d(b, y). Observe that d(x, a) and d(b, y)
can be computed in constant time from
X and Y .

(c) The replacement distance for ei is the mini-
mum of pathWeight(a, b) over all (a, b) ∈ Ei.

The quantity pathWeight(a, b) is the total weight of
the concatenation of path(x, a), (a, b), and path(b, y).
By sweeping over the edges of P from one end of P
to the other while maintaining a priority queue on the



edges of Ei, with pathWeight(e) as the key of each edge
e ∈ Ei, the entire algorithm takes the same asymptotic
time as one shortest path computation.

Let us now consider how this algorithm may fail in
some directed graphs. It is clear that pathWeight(e) is
the length of the shortest path from x to y that uses
edge e = (a, b) ∈ Ei, and hence the algorithm finds the
shortest path that uses an edge of Ei. However, this
path may not be the path we seek, because the suffix
path(b, t) may traverse ei. A simple example of this
pathological behavior is shown in Figure 4.

20

5 5

100

1 1 1
x e y

v

Figure 4: A directed graph for which the replacement
paths algorithm fails. The shortest path from v to y
goes through the edge e, which causes our algorithm
to compute an incorrect path for the replacement edge
candidate (x, v). The correct replacement path for e
uses the second shortest path from v to y, which does
not go through e.

Define low(v) to be the smallest i such that
path(v, y) contains vertex vi. (In the original paper [7],
low(v) is replaced by an equivalent but more com-
plicated quantity called minblock(v), for reasons spe-
cific to that paper.) We say that (a, b) ∈ Ei is the
min-yielding cut edge for ei if (a, b) has the minimum
pathWeight() over all cut edges in Ei. We say that
(a, b) is valid if low(b) > i. The following theorem
identifies when the replacement paths algorithm may
fail.

Theorem 4.1. The algorithm Replacement cor-
rectly computes the replacement path for ei if the min-
yielding cut edge for ei is valid.

In undirected graphs, all min-yielding cut edges
are valid. In directed graphs, exceptions can arise.
However, an exception is easily detected—the low()
labels for all the vertices can be computed by a preorder
traversal of the shortest path tree Y , and so we certify
each min-yielding cut edge in constant time. When
an exception is detected, our algorithm falls back to
the slower method of running separate shortest path
algorithms for each failing ei.

5 The Shortest Path in an
Equivalence Class

We describe briefly how the replacement path sub-
routine is used to compute the shortest path in an
equivalence class. Consider the four equivalence classes
created in step (3), in which P branches off from
branchPath(u, v) at a vertex w.

First consider a branch’s equivalence class. Let
(a, c) be a branch in T , and choose b such that
lead(a, c) = (a, b). The paths in C(a, c) follow
prefixPath(c) up through b, then branch off strictly be-
fore c. Thus it suffices to find the shortest suffix start-
ing at b, ending at t, subject to the constraints that
the suffix (1) is vertex-disjoint from prefixPath(a) and
(2) branches off branchPath(a, c) before c. We deter-
mine this path using the replacement path problem in
a subgraph H of G, defined by deleting from G all the
vertices on prefixPath(a), including a.

The shortest path in the node’s equivalence class
C(w) is easier to find: We obtain a graph H by deleting
from G all the vertices in prefixPath(w) except w, plus
all the lead edges that leave from w. We compute the
shortest path from w to t in H, then append it to
prefixPath(w).

If the next shortest path P belongs to a node
equivalence class C(u) (step (2) of Algorithm k-
ShortestPaths), then C(u) is modified and a new equiv-
alence class C(u, tP ) is created. We can find the short-
est paths in C(u, tP ) and C(u) as above. (In the latter
case, we simply remove one more edge lead(u, tP ) from
H and recompute the shortest path from u to t.)

Thus, the overall complexity of the k shortest paths
algorithm is dominated by O(k) invocations of the
replacement paths subroutine. In the optimistic case,
this takes O(m + n log n) time per invocation; in the
pessimistic case, it takes O(n(m + n log n)) time per
invocation.

6 Implementation and
Empirical Results

6.1 Implementation

We have implemented our algorithm using Microsoft
Visual C++ 6.0, running on a 1.5 Ghz Pentium IV
machine. The implementation follows the pseudo-code
in Section 3 and the more detailed algorithm descrip-
tion of the replacement paths algorithm in [7]. We list a
few of the notable features of the implementation here:

1. The Fibonacci heap data structure is used in both
Dijkstra’s shortest path algorithm and our replace-



ment paths subroutine. Fibonacci heaps therefore
contribute to the performance of both our k short-
est paths algorithm and Yen’s algorithm. We im-
plemented the Fibonacci heap from scratch, based
on Fredman and Tarjan’s paper [5].

2. Our graph data structure is designed to reduce
memory allocation of small structures, since mea-
surements showed it to be a significant cost. The
chief components of the graph data structure are
an array of nodes, an array of edges, and scratch
space for use in creating subgraphs. We store two
arrays of pointers to edges, one sorted by source
node and one sorted by destination node. Each
node gets access to its incident edges by pointing
to the appropriate subsequences in these arrays.

A primary operation for the k shortest paths al-
gorithm is producing subgraphs efficiently. Since
memory allocation/deallocation is relatively ex-
pensive and most of the information in a subgraph
is the same as that in the parent graph, a sub-
graph borrows structures from the parent graph,
uses these structures to compute some path, and
then returns them to the parent graph. Because a
subgraph generally has nodes or edges eliminated,
we maintain a separate array of edges as scratch
space in the parent graph for use by the subgraph.

3. Our program sometimes chooses to use a näıve
algorithm instead of the replacement paths algo-
rithm of Section 4. The näıve algorithm deletes
each shortest path edge in turn, and finds the
shortest path from the source to the sink in this
new subgraph. Because the replacement paths
algorithm calculates two shortest path trees and
also performs a priority queue operation for every
graph edge, we estimated that each näıve shortest
path computation should take about 1/3 of the
time of the whole replacement paths algorithm.
Therefore, our k shortest paths implementation is
a hybrid: it chooses whichever replacement paths
subroutine is likely to be faster, using a threshold
of 3 for the branch path length.

Subsequent measurement suggested that a thresh-
old closer to 5 might be more appropriate. See
Figure 5—the crossover point between the two al-
gorithms appears to be around five. Future work
will explore this more fully.

6.2 Experiments

We compared our new algorithm with an implemen-
tation of Yen’s k shortest paths algorithm. We imple-
mented Yen’s algorithm ourselves, using state of the art
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Figure 5: Time to compute replacement paths by the
näıve algorithm (circles) and our algorithm (triangles).
The small glyphs show the raw data; the large ones
show the average time value for each shortest path edge
count. Note the large variance in the runtime of the
näıve algorithm, and the essentially constant runtime
of our algorithm. There are equal numbers of small
circles and triangles for each x-value; the low y-variance
of the triangles means some small triangles are hidden
by the large ones.

data structures (Fibonacci heap) and optimized mem-
ory management. Our test suite had three different
kinds of experimental data: real GIS data for road net-
works in the United States, synthetic graphs modeling
wireless networks, and random graphs.

GIS Road Networks. We obtained data on ma-
jor roads from the Defense Mapping Agency.
These graphs represent the major roads in a lat-
itude/longitude rectangle. The edge weights in
these graphs are road lengths. The first graph
contains the road system in the state of Califor-
nia, and the second contains the road system in
the northeastern part of the U.S.

The experiments show that in the California
graph, for 250 shortest paths from San Diego to
Piercy, our algorithm is about 8 times faster than
Yen’s. For a closer source–destination pair (Los
Angeles, San Francisco), the speedup factor is
about 4. Finally, when the source and destina-
tion are fairly close (Washington, D.C., and New
York), the relative speed advantage is about 20%.
Figure 6 summarizes the results of these experi-
ments.
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Figure 6: Time to compute k shortest paths on GIS
graphs. Circles represent Yen’s algorithm; triangles
represent our algorithm.
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Figure 7: Time to compute 100 shortest paths on
neighborhood graphs, plotted versus the average num-
ber of edges in all the paths. Each plot summarizes
100 trials on graphs with the same (n,m), but with the
grid rectangle’s aspect ratio varied to control the aver-
age shortest path length. Circles represent Yen’s algo-
rithm, triangles our algorithm. The charts for m = 8n
are similar to those for m = 4n, and are omitted to
save space.



Geometric Neighborhood Graphs. We generated
synthetic models of ad hoc wireless networks, by
considering nodes in a rectangular grid. The
aspect ratio of the rectangle was varied to create
graphs of varying diameter. The source and target
were chosen to be opposite corners of the grid.
In each case, we considered two models of edges:
in one case, all 8 neighbors were present, and
their distances were chosen uniformly at random
in [0, 1000]; in the second case, 4 of the 8 neighbors
were randomly selected.

Our experiments, summarized in Figure 7, show
that our new algorithm is faster by a factor of at
least 4. In the large graphs (10000 nodes, 40000
edges), the speedup is around twentyfold.

Random Graphs. The new algorithm achieves its
theoretical potential most fully when the average
shortest path has many edges. This is clear from
the experiments on the GIS and neighborhood
data. Random graphs, on the other hand, tend
to have small diameter. (In particular, a random
graph on n nodes has expected diameter O(log n).)
These graphs, therefore, are not good models for
systems with long average paths. Even in these
graphs, our new algorithm does better than Yen’s
in most cases, although the speed advantage is not
substantial, as expected.

Each random graph is generated by selecting edges
at random until the desired number of edges is
generated. Edge weights are chosen uniformly at
random in [0, 1000]. We tried three random graph
classes: (1K nodes, 10K edges), (5K nodes, 20K
edges), and (10K nodes, 25K edges). We plot
the time needed to generate 100 shortest paths
between a random (s, t) pair, against the average
number of edges in the 100 paths. See Figure 8.

6.3 Discussion

We can characterize our results according to the fol-
lowing broad generalizations.

Average Number of Edges in Shortest Paths.
The efficiency of the new algorithm derives mainly
from performing batch computations when finding
the best path in an equivalence class. The relative
gain is proportional to the number of edges in
the branch path where the replacement paths
subroutine is applied. Thus, if the replacement
paths subroutine works without failover, our
algorithm is likely to deliver a speedup that grows
linearly with the average number of edges in the k
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Figure 8: Time to compute 100 shortest paths on
random graphs, plotted versus the average number
of edges in all the paths. Each plot summarizes
100 random (s, t) trials in random graphs with the same
(n,m) parameters. Circles represent Yen’s algorithm,
triangles our algorithm. The x-coordinate of each
glyph is the nearest integer to the average number of
edges in all 100 paths. The small glyphs show the
raw data; the large ones show the average time value
for each shortest path edge count. Note the heavy
concentration of the average path edge count around a
mean value that increases with the graph size, probably
logarithmically, and also note the large variance in the
runtime of Yen’s algorithm. There are equal numbers
of small circles and triangles for each x-value; the low
y-variance of the triangles means some small triangles
are hidden by the large ones.



shortest paths. This advantage is minimized for
random graphs, because the expected diameter
of a random graph is very small. This is cor-
roborated by the data in Figure 8. In geometric
graphs, such as those obtained from GIS or ad
hoc networks, shortest paths are much more likely
to have many edges, and our algorithm has a
corresponding advantage. This is borne out by
Figures 6 and 7.

Replacement Path Failure. Our experiments show
that the replacement paths algorithm rarely fails.
When averaged over many thousands of runs, the
replacement paths subroutine failed 1.2% of the
time on random graphs, 0.5% on neighborhood
graphs, and never on GIS graphs. Thus, in
practice our k shortest paths algorithm shows an
asymptotic speedup over Yen’s algorithm. It also
exhibits far more consistency in its runtime.

Contraindications. Yen’s algorithm optimizes over
the same set of candidate paths as our algorithm.
If the average path length is small, our hybrid algo-
rithm does essentially the same work as Yen’s algo-
rithm, running Dijkstra’s algorithm repeatedly. In
this case our algorithm is slightly less efficient than
Yen’s because of the extra bookkeeping needed to
decide which subroutine to use, but the relative
loss is only about 20% in speed.

In other cases, the replacement paths algorithm
may be beaten by repeated Dijkstras even when
the shortest path length is greater than three.
This seems to occur most often in dense random
graphs where Dijkstra’s algorithm can find one
shortest path without building the whole shortest
path tree; the replacement paths algorithm, on the
other hand, always builds two complete shortest
path trees.

7 Concluding Remarks and
Future Work

We have presented a new algorithm for enumerating
the k shortest simple paths in a directed graph and
reported on its empirical performance. The new
algorithm is an interesting mix of traditional worst-
case analysis and optimistic engineering design. Our
theoretical advantage comes from a new subroutine
that can perform batch computation in a specialized
equivalence class of paths. However, this subroutine is
known to fail for some directed graphs. Nevertheless,
our experiments show that the strategy of using this

fast subroutine optimistically and switching to a slower
algorithm when it fails works very well in practice.

We are exploring several additional directions for
further improvements in the algorithm’s performance.

1. When should we switch to the näıve replacement
paths algorithm? Is (path length ≤ 3) the right
cutoff, or would a more sophisticated condition
give better results?

To help answer this question, we ran the k shortest
paths algorithm on 140 different random and
neighborhood graphs, measuring the runtime for
each threshold value between 2 and 7. Figure 9
combines the results for all experiments. For
each test case, we computed the minimum running
time over the six threshold values. We then
computed a normalized runtime for each of the
threshold values by dividing the actual runtime by
the minimum runtime. Figure 9 shows the average
normalized runtime over all 140 test cases.

Averaged normalized runtime emphasizes the im-
portance of test cases for which the threshold mat-
ters. A test case for which the threshold choice
makes little difference has little effect on the av-
erage normalized time, because all its normalized
times will be near 1.0. A test case for which one
threshold is clearly better will assign high normal-
ized weights to the other thresholds, and hence
will select against them strongly.
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Figure 9: Average normalized runtime for all test cases.

This chart suggests that 5 and 6 are the best
thresholds. They should give about a 2% im-
provement in runtime over the threshold of 3 that
we used in the experiments of Section 6.2. We



plan further measurements to confirm this expec-
tation. Note that the chart also shows that no
single threshold is ideal for all the test cases: the
best thresholds (5 and 6) give a runtime 2% worse
than would be obtained by an optimal threshold
choice for each experiment.

2. We have discovered an improved version of the
algorithm that makes only two calls to the re-
placement paths subroutine after each new path is
discovered. Currently, our algorithm makes three
calls to the subroutine, plus one Dijkstra call. This
change should improve the running time of our al-
gorithm by about 40%.
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