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Abstract. Stereo matching is an ill-posed problem for at least two prin-
cipal reasons: (1) because of the random nature of match similarity mea-
sure and (2) because of structural ambiguity due to repetitive patterns.
Both ambiguities require the problem to be posed in the regularization
framework. Continuity is a natural choice for a prior model. But this
model may fail in low signal-to-noise ratio regions. The resulting arte-
facts may then completely spoil the subsequent visual task.
A question arises whether one could (1) find the unambiguous component
of matching and, simultaneously, (2) identify the ambiguous component
of the solution and then, optionally, (3) regularize the task for the am-
biguous component only. Some authors have already taken this view. In
this paper we define a new stability property which is a condition a set
of matches must satisfy to be considered unambiguous at a given confi-
dence level. It turns out that for a given matching problem this set is (1)
unique and (2) it is already a matching. We give a fast algorithm that
is able to find the largest stable matching. The algorithm is then used
to show on real scenes that the unambiguous component is quite dense
(10–80%) and error-free (total error rate of 0.3–1.4%), both depending
on the confidence level chosen.

1 Introduction

The problem of computational stereopsis has been studied in the computer vi-
sion field for about four decades [1]. From the very beginning it was clear that
binocular stereo matching is an ill-posed problem, since, except in special cases,
the solution to a given matching problem is not unique. Not much effort has
been spent on understanding the inherent ambiguity of stereopsis, except for the
work on the visual hull [2] and the recent work of Baker, Sim, and Kanade [3].

Our working hypothesis is that stereoscopic ambiguity originates from three
independent factors: (1) Data uncertainty due to insufficient signal-to-noise ratio
(SNR) in images of weakly textured objects; (2) Structural ambiguity due to the
presence of periodic structures combined with the inability of a small number
of cameras to capture the entire light field; (3) Task formulation: If stereoscopic
vision goal is posed as scene reconstruction from image projections the problem
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is that the same image set can be generated by infinitely many scenes even if
the above two factors do not manifest itself [4,2].

The Class 1 ambiguity is the most serious one because it is never completely
avoidable. Data uncertainty can be partly reduced by using better cameras or
more discriminable match quality measures [5]. It cannot be suppressed by using
more cameras [3].

It has long been observed experimentally that more cameras can reduce
Class 2 ambiguity significantly [6,7]. To our knowledge the necessary and suffi-
cient conditions for eliminating this ambiguity have not yet been stated.

The Class 3 ambiguity was studied in the work on the photo-hull [2]. Im-
ages from any number of cameras are photo-consistent with uncountably many
scenes. One avoids the Class 3 ambiguity by separating the stereo matching prob-
lem from the scene reconstruction problem. The stereo matching itself, which is
nothing but establishing the correspondence mapping between two (or among
more) images, is not ill-posed in this sense.

The Class 1 and 2 ambiguities require a prior model to regularize the stereo-
scopic matching problem. Usually, some form of uniform continuous prior is im-
posed. The early solutions based on the heuristic of cohesiveness [8] culminated
in the classical algorithm by Pollard, Mayhew and Frisby [9]. Although some
interest remained [10], many authors departed from this path and tried to pose
the problem in the framework of statistical estimation theory with a probabilistic
continuity prior. The ML estimators of early 90’s, based on dynamic program-
ming, were later put on a more sound basis by [11,12] (assuming continuity along
epipolar lines) and by others [13,14,15] (assuming isotropic continuity prior). Re-
cent disparity component matching [16] and network flow [17,18,19] formulations
of the matching task also include isotropic prior model but their computational
complexity is lower.

Since the most important cause of ambiguity is poor SNR, one has to be
very careful in selecting a proper regularizer. Consider a depth discontinuity
under low signal-to-noise ratio (from at least one side of the discontinuity im-
age). Strong artefacts may occur if continuity prior is used, see, for instance,
the MAP results in Fig. 3, where the thin stripes are not recovered under low
SNR. The prior model becomes locally stronger than the constraints given by the
input data, which results in interpolation effect within the boundaries surround-
ing the weakly-textured region. But such interpolation is quite often erroneous,
especially in scenes of deep range and relatively thin objects.

Various attempts to switch the regularizer off at discontinuities rely on ei-
ther detecting image edges under the assumption that they coincide with object
boundaries [20,21] or by weighting the regularizer by image gradient [13]. This
coincidence does not always occur. Alternatively, they rely on identifying high-
tension regions in regularized solution [22], releasing the continuity prior there,
and re-computing the solution. Yet another alternative is to use robust regu-
larizers [15]. None of those methods proved fully satisfactory, mainly because
they do not work where they are supposed to: under simultaneous occurrence of
Class 1 and Class 2 ambiguity.
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It seems a possible solution would be to reject ambiguous correspondences. If
ambiguities of the first two classes are present we may want to pose the problem
as finding the unambiguous component of the matching. This has been success-
fully attempted by Manduchi and Tomasi [23]. They were able to automatically
find (Class 2) unambiguous points and match them. The resulting disparity maps
are rather sparse. But it is clear that the aim cannot be at dense matching. We
therefore pose stereo matching as a two-part task:

P1. Establishing the largest possible unambiguous matching.
P2. Partitioning the images into three components:

1. binocularly visible region where reliable matches can be found,
2. monocularly visible region due to identified occlusions,
3. ambiguous region where selecting the unique solution to the matching

problem requires regularization.

In this paper we will be interested in matching identifying the largest possible
image subset as unambiguous at a given confidence level. This is where we differ
from [23]. As will be seen in Sec. 4 there are natural scenes where the component
is quite large.

Is there any principle that could be used to find the largest unambiguous
component of stereoscopic matching in a simple way? Let us first develop a
bit of insight on a simple case: suppose (1) there is a signature assigned to
each pixel in input images, (2) the signatures of corresponding points are equal,
and (3) all pixel signatures are unique. Under such restricted conditions the
(actual) matches dominate all alternative matches in their signature similarity
measure. It is then easy to find such dominant pairs. We call the result the
dominant matching. An example of dominant matching algorithm is the popular
‘symmetric maximum method.’ In the noise-free case dominant matching leaves
only half-occluded regions unmatched.

If signatures become corrupted by random noise (which is closer to reality),
dominant matching fails in a peculiar way. Under Class 1 ambiguity, signature
similarity measure can be thought of as a random variable. Some correct matches
receive lower similarity and some other candidate matches receive higher similar-
ity. Since there are usually many competitors to a given correct match, the prob-
ability of a false match becoming dominant is low compared to the probability
of a correct match ceasing to be dominant. The result is that under uncertainty
due to noise the dominant matching becomes rather sparse but the component of
the matching that survives is exceptionally error-free [24]. The sparsity is due to
the strength of the dominance condition. Fortunately, dominant matching turns
out to be a special case of stable matching which was introduced in [24]. General
stable matching has a greater potential to be dense.

Roughly speaking, matching M is stable if every match p ∈ M has no com-
petitor at all or if each of its competitors q (q /∈ M) has a competitor r ∈ M
(cf. Fig. 1). Match q is a competitor to a match p if they cannot be both mem-
bers of the same matching (due to uniqueness and/or ordering constraints, for
instance) and the signature similarity of q is greater or equal to that of p [24].
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Obviously, the q would be a better candidate to be matched if there were no
other constraints than the value of its signature similarity alone.

As will be seen later in this paper, stability is a global property of the matched
set and stable matching can be computed by a non-iterative algorithm.

Fig. 1. Let M = {p, r} be a matching (full
circles) on a 2 × 2 matching problem. Match
p = (i, j) of similarity 0.8 has a competitor
q = (i, l) of similarity 0.9. The q has a com-
petitor r = (k, l) of similarity 1.0. The pair p is
thus stable in M (its competitor has a competi-
tor from M). The r is trivially stable since it has
no competitor.
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After only slight changes in the definition (concerning the sharpness of the in-
equalities) stable matching is able to reject Class 2 ambiguities in the noise-free
case. Unfortunately, it is unable to reject Class 1 ambiguities and Class 2 am-
biguities under noise. The reason is two-fold: (1) stable matching as introduced
above is always complete,1 (2) the inequalities in the definition are sensitive to
even small noise. In Sec. 3 we formalize the problem of stable matching in a
way that there is a margin allowed in the inequalities, which reduces the noise
sensitivity. The margin will be computed from confidence intervals for signature
similarity measure for each potential pair. We call the result Confidently Stable
Matching. It is complete only in the case of no ambiguity in input data and is
capable of rejecting both Class 1 and Class 2 ambiguities under noise, which is
our ultimate goal. Some experimental results will be shown in Sec. 4.

2 Preliminaries

For simplicity we assume throughout this paper that we are solving calibrated
stereo problem where epipolar lines coincide with image lines. This simplifies the
definition of ordering constraint and makes the definitions simple and intuitive.
We will assume matching is done on individual epipolar lines independently. As
will be seen in the experimental section this does create any serious artifacts.

Only binocular matching problem is discussed here as it is the most difficult
case in stereoscopic vision. A generalization for polynocular stereo is possible
but requires slightly more general theory.

We first need to re-formulate and/or generalize several known concepts so
that they better serve our definition of stability and its properties.

Let I, J = {1, 2, . . . , N} be two sets indexing pixels on the left-image and
the right-image epipolar lines, respectively and let P ⊆ I × J . The element

1 Complete matching explains all pixels as either matched or occluded, see later for a
precise definition.
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p = (i, j) ∈ P will be called a (candidate) pair. Let c be the signature simi-
larity measure assigning each pair p a real number c(p).2 We will visualize P
as a matching table as shown in Fig. 2 in which each crossing (circled or not)
represents a pair from I × J . Note that, in case of sparse matching problems,
the I × J may or may not be fully populated by P .

Fig. 2. A pair p in
matching table P (left),
the X-zone X(p) (cen-
ter, empty circles), and
the F -zone F (p) (right).
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p ∈ P X(p) ⊆ P F (p) ⊆ P

The X-zone3 X(p) ⊆ P of a pair p = (i, j) ∈ P consists of all pairs q ∈ P
with the same row index i or column index j, except for the pair p itself, as
shown in Fig. 2 (center). Similarly, the F -zone4 F (p) ⊆ P of a pair p ∈ P is
formed by two opposite quadrants around (i, j) as shown in Fig. 2 (right). The
union of X(p) and F (p) will be called the FX-zone, FX(p) = X(p) ∪ F (p).

A bipartite matching M is a subset of P in which each i ∈ I and each j ∈ J is
represented at most once. For the sake of brevity, we omit the word ‘bipartite’ in
the following text. A subset M ⊆ P is a matching iff for each p, q ∈ M it holds
that p /∈ X(q) (this is the so called ‘uniqueness constraint’ [8]). The cardinality
of matching M is denoted as |M |. A maximum cardinality matching has the
greatest number of pairs possible.

Matching M is monotonic iff for each two pairs p, q ∈ M , p = (i, j), q = (k, l)
such that k > i it holds that l > j. A subset M ⊆ P is monotonic iff for each
p, q ∈ M it holds that p /∈ F (q) (this is the so called ‘ordering constraint’ [26]).

Let us, for a moment, consider the general subsets M of P (not necessarily
matchings). A pair p ∈ P has an inhibition zone Z(p) ⊆ P if it holds that
if p ∈ M then no pair q ∈ Z(p) must be in M . Two pairs p, q such that
p ∈ Z(q) will be called discordant. For instance, X-zone is the inhibition zone
for matchings and F -zone is the inhibition zone for monotonic subsets of P . See
also Observation 1 later.

Let p ∈ Z(q) iff q ∈ Z(p). Then the discordance relation is symmetric. In
this paper we will assume that inhibition zone Z always generates symmetric
discordance relation. For short we will say the zone is symmetric. The X-zone
and the F -zone shown in Fig. 2 are both symmetric.

2 The theory is independent on the choice of this measure, you may safely imagine we
talk about normalized cross-correlation computed over small pixel neighborhoods.

3 The name of the X-zone was chosen because of its shape.
4 The F -zone stands for forbidden zone [25].
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In the next section we define the confident stability condition, describe its
properties in the view of the discussion given in the introduction, and present a
simple and fast matching algorithm.

3 Confidently Stable Matching

Definition 1 (Matching Problem). Let P be a matching table, let c : P → IR
and ∆ : P → IR+0 be bounded functions such that

[

c(p) − ∆(p), c(p)
]

is the
confidence interval associated with signature similarity for pair p ∈ P , and let
Z(p) be symmetric inhibition zone for each p ∈ P . Then (P, c,∆,Z) will be called
a matching problem.

We will be interested in matchings that remain stable for the worst possible
combination of match similarities from the confidence intervals. Such matchings
will certainly be very little sensitive to Class 1 or Class 2 ambiguity. They can be
regarded as unambiguous with certainty related to the confidence level chosen.
In practice, this is of course limited by the capture probability of the confidence
interval estimator.

We will now state the confident stability condition which defines when a sub-
set of matching table P is considered unambiguous. Later we prove an algorithm
that is able to find the largest subset of this property.

Definition 2 (Confident Stability). Let (P, c,∆,Z) be a matching problem.
A subset S ⊆ P is confidently stable if for each p ∈ S and every q ∈ Z(p) the
following holds: If c(q) ≥ c(p) − ∆(p) then there must be r ∈ S ∩ Z(q) such that
c(r) > c(q) + ∆(r).

Thus, stability is a global property of subsets of P . It is not a one-step look-
ahead rule in a discrete minimization strategy. In fact, there is no obvious cost
function associated with this problem. Later we will see there is a non-iterative
algorithm that finds stable subset of maximum cardinality. See [24] for reasoning
that results in this definition. It is easy to see [24] that the following holds:

Observation 1 If X ⊆ Z then S is a matching. If F ⊆ Z then S is monotonic.

Before we review the basic properties of Def. 2 we need to introduce the
following concept:

Definition 3 (Completeness). A subset M ⊆ P is complete iff for each pair
p /∈ M it holds that the intersection Z(p) ∩ M is non-empty.

A complete subset (matching) is ‘the most dense.’ It explains all pixels in an im-
age as either matched or half-occluded. As discussed above, we are not searching
for complete matching unless the matching problem is unambiguous. The fol-
lowing lemma tells us what happens if there is no ambiguity:

Lemma 1. Let (P, c,∆,Z) be a matching problem. If ∆(p) ≡ 0 for all pairs p
in confidently stable subset S ⊆ P and no two discordant pairs are of equal cost
c(·) then S is complete.
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In general, the converse is not true (S can be complete even if ∆ 6≡ 0). The proof
of this lemma is given in [24]. Finally, we give the existence theorem:

Theorem 1. For any given matching problem (P, c,∆,Z) there is a unique (pos-
sibly empty) confidently stable subset S ⊆ P of maximum cardinality.

The theorem is proven by defining quasi-stable subset M ⊆ P which is not unique
but always exists and is always complete and by showing that any confidently
stable subset S must be a subset of some quasi-stable subset M . Quasi-stability
is defined by choosing ∆ ≡ 0 and making the second inequality not sharp in
Def. 2. Then the observation is made that any two complete quasi-stable subsets
M differ in equal-cost discordant pairs only. But such pairs cannot be in S, which
means S is a subset of the intersection of all quasi-stable subsets of P . It is then
shown that if there are two confidently stable subsets in P they must be nested.
By induction one gets there is a unique confidently stable matching of maximum
cardinality, which completes the proof. Details of the proof are found in [27].

It may seem that confidently stable subset is empty quite often. In [5] we
show that the sparsity of stable matching is governed by discriminability D(c)
of the signature similarity function c. Let T be the set of correct matches for a
matching problem. Discriminability is the probability of an inequality event

D(c) = P
(

c(p | p ∈ T ) > c(p | p /∈ T )
)

. (1)

As long as D(c) > 0.5 the stable subset is not empty. As shown in a numerical
experiment in [5], common similarity measures do differ in their discriminability,
but all of them approach the undecidability limit of D(c) = 0.5 for signal-to-
noise ratios well below −20dB. This means that if (1) images do not exhibit
Class 2 ambiguity (repetitive texture) everywhere and (2) we are able to ob-
tain sufficiently tight confidence interval estimates for our image measurements,
confidently stable matching will be non-empty.

The algorithm for finding confidently stable matching proceeds as follows:

Algorithm 1

Input: Confidently stable matching problem (P, c,∆,Z).

Output: Confidently stable subset S.

Procedure:

1. Initialize U := ∅, M := ∅, S := ∅, for all p ∈ P let c̃(p) := c(p).

2. If P is empty, terminate.

3. Remove from P the subset L of pairs of the largest cost c̃(p) in P .

4. For all r ∈ L do:
(a) if r ∈ U then R := R ∪ Z(r)

(b) else if r /∈ M then
i. c̃(r) := c(r) − ∆(r),

ii. P := P ∪ {r},

iii. M := M ∪ {r},

iv. U := U ∪ Z(r).
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5. For all r ∈ (L ∩ M) \ R do:

(a) S := S ∪ {r},

(b) P := P \ (Z(r) ∪ {r}).

6. Go to Step 2.

Theorem 2 (Alg. 1 Correctness). For any matching problem (P, c,∆,Z)
Alg. 1 terminates and finds the confidently stable matching of maximum cardi-
nality.

In the proof one first notices the difference between confidently stable match-
ing S and quasi-stable matching M is that S contains no pairs in inhibition zones
of converting pairs C ⊆ P \M . The task of the converting pairs is thus to remove
some pairs from M to obtain S. One then shows there is a strict partial ordering
on C for any ∆ that allows us to uniquely identify C in P . One shows that the
set M in the algorithm is quasi-stable matching on (P, c,∆,Z). The statement
of the theorem follows as a corollary. Details are found in [27].

To summarize the algorithm, it constructs a quasi-stable subset M from
pairs in P in the order of their decreasing cost c and it simultaneously identifies
converting pairs C, also in the order of their decreasing cost c − ∆. The quasi-
stable subset is found by the successive selection of the largest-cost pair r in P
(which is always quasi-stable [24]) in Steps 3 and 4(b)iii followed by the removal
of its inhibition zone Z(r) from the set of all potential matches P in Step 5b.
This is repeated until P is empty. But every quasi-stable pair p is forced to cycle
through the loop 3–6 twice. When it appears in Step 4 for the first time, its
cost c(p) has the value of the upper limit of the confidence interval. Such pair
must be quasi-stable. Its cost is decreased to c(p)−∆(p) and it is returned to P
in Step 4(b)ii. This is followed by the update in Step 4(b)iv of the set U of all
potential converting pairs. The same quasi-stable p is bound to appear in Step 4
for the second time. Then, unless it is in the inhibition zone of some converting
pair q ∈ C (i.e. unless it is absent in the set of removed pairs R), it is confidently
stable and is added to the set S in Step 5a. Pairs that are not quasi-stable cycle
only once; when they are recognized as such by testing their presence in the
set U in Step 4a, it is known they must be converting pairs. A converting pair
q prevents any pair from its inhibition zone Z(q) to become confidently stable
(by adding Z(q) to the set R). Note that some pairs from P are never visited
in Step 3, as they are deleted from P in Step 5b. The correctness of the whole
procedure is guaranteed by Theorem 2. Its proof gives more insight into how the
algorithm works [27].

The worst-case time complexity of this algorithm is O(d2n) if P is a n × n
matching table and disparity search interval is d. The implementation of this
algorithm is quite simple for FX-stable matching. One uses a property of FX-
zones: the union of their complements in P is a set E ⊂ P such that it is
blockwise monotonic. The update of the type Q := Q ∪ FX(r) can be done in
O(d) time and the query of the type r ∈ Q can be done in O(1) time. More
implementation details are found in [27].
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4 Experimental Results

We restrict our experimental results to FX-stable subsets for which Z(p) =
F (p) ∪ X(p). Note that this choice implies the confidently stable subset is a
monotonic matching (it obeys ordering constraint). Ordering constraint, repre-
sented by the F part of inhibition zone (see Fig. 2) is a weak regularizer.

We first show results on a designed artificial scene, see Fig. 3. The scene con-
sists of three long thin textured stripes in front of a textured plane. The stripes
are approximately 14 pixels wide in 300 × 337 images. The object-background
distance was adjusted such that the width of the half-occluded region is exactly
equal to the width of the stripes. The scene was illuminated by controlled sta-
bilized illuminant, whose adjustable intensity was used to vary texture contrast.
Disparity slowly varies across both the object and the background in the range
of (−17, 20). Disparity search was done in the full range of ±337. We use this
dataset for measuring accuracy of stereo algorithms [24].

For match similarity, modified normalized cross-correlation [28]

c(WL,WR) =
2 cov(WL,WR)

varWL + varWR

∈ [−1, 1] (2)

was computed for 5 × 5 image windows WL, WR.
A rigorous approach to constructing confidence intervals for stereoscopic

matching is discussed in [29]. We approximate the interval by sensitivity of c(·, ·)
to independent noise as

∆(WL,WR) = max

(

α
2 |c(WL,WR)|

varWL + varWR

, β

)

, α, β ≥ 0. (3)

Note it is not necessary that ∆ measure the image autocorrelation function
properties along the epipolar line direction: the X component of the inhibition
zone together with the confident stability constraint takes care of (locally) flat
or periodic autocorrelation function.

Computed disparity maps are shown in Fig. 3. Color coding (see the color
bar in Fig. 4, beside the images) is used to emphasize matching errors. Gray
encodes missing matches (half-occlusions and false negatives).

Low-contrast and high-contrast images of the same scene were tested and
compared with ground-truth. The percentage of matching error relative to the
matched set is 0.72% in the low-contrast image set and 0.47% in the high-contrast
set. Results are compared with the Maximum Aposteriori Probability (MAP)
solution using the Cox et al. algorithm based on dynamic programming [30].5 The
matching error percentages for MAP are 59% and 12%, respectively. Errors were
evaluated using methodology described in [24] which measures the consistency
of matching results over a wide range of SNR.

We demonstrate the performance of Alg. 1 for various choices of α and β on
the Shrub image pair in Fig. 4. The central object of the scene is a sign posted on

5 Regularization penalty of the Cox et al. algorithm was set to 500 to achieve the best
possible results for the high-contrast image pair.
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left images confidently stable segmentation MAP

Fig. 3. Matching results on the stripes scene. Left image of high and low con-
trasts (1st column), disparity maps (2nd column) and segmentations (3rd col-
umn) by confidently stable matching with α = 10, β = 0.02 (segmentation
colors: green–matched; blue–half-occluded; red–ambiguous, many matches pos-
sible; yellow–ambiguous, matched/occluded uncertainty), disparity map by the
MAP algorithm is shown for comparison (last column).

a thin pole just in front of a tall hedge. The leafed shrubs cannot be considered
as a surface at the scale of image resolution, so no continuity prior can be used.
Five shrubs can be distinguished, they differ by their distance from the camera.
The roadside is imaged at high inclination angle relative to the camera pair,
so in addition to the lack of texture (Class 1 ambiguity) it also exhibits large
relative affine distortion between the images. The rim of the curb is parallel to
epipolar lines in the left half of the image and it is thus difficult to match (Class
2 ambiguity). The background wall images as a very regular texture (Class 2
ambiguity) and it is thus difficult to match without a continuity prior. The dark
space in the open window does not contain any stereoscopic information. Besides
having no natural texture, the window glass partly reflects the featureless cloudy
sky (both Class 1 ambiguity). The images do not exactly correspond to the same
scene because of time difference breeze artefacts in the image capture.

Disparity maps shown in Fig. 4 are given for varying α (constant in rows)
and β (constant in columns). In the first row (α = 0) we can see that β itself
cannot resolve ambiguity due to low SNR (Class 1): the noisiness in the shad-
owed window area remains until large values of β (2.5% of signature similarity
range). The structural ambiguity (Class 2) is detected quite early: the number
of mismatches on the brick wall and on the rim of the curb decreases fast with
increasing β.

In the first column (β = 0) we can see that α itself does not detect structural
ambiguity very well: large proportion of mismatches remain on the wall and the
curb rim. The Class 1 ambiguity is detected early, on the other hand.
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left image right image

β = 0 β = 0.01 β = 0.02 β = 0.05

81.2% 49.9% 38.7% 20.0%

39.8% 34.2% 28.9% 17.1%

26.5% 24.6% 21.7% 13.8%

Fig. 4. The Shrub image pair (the wide-most stereo baseline of the set). Match-
ing results for varying α (per rows: α = 0, α = 10, α = 20) and β (columns).
Disparity color coding is shown beside the images (red: high disparity, blue: low
disparity, grey: holes). Matching window 5 × 5, disparity search range (10, 30),
image size 480×512, mean CPU time 8.2 sec (P7, 1GHz), percentage of matched
pixels given under maps.
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We conclude α is related to the ability to detect Class 1 ambiguity and β
is related to the ability to detect Class 2 ambiguity. Both have to be non-zero.
Increasing both of them decreases disparity map density but also eliminates
errors. Our short experience with the algorithm shows that α = 10 and β = 0.02
is suitable for a broad range of natural scenes. Under high structural ambiguity,
increasing β up to 0.04 suffices.

Note that a few points of high disparity remain in the bushes for even very
wide confidence intervals. These are due to the wind artefacts mentioned above.

Another example of an outdoor scene is shown Fig. 5. The building is the
Branitz Castle in Brandenburg, Germany (built 1772). The image is a section
of a 360◦ panorama captured by a non-perspective camera with two vertically
aligned line sensors placed above each other and rotating around a common
vertical axis [31]. Epipolar lines are vertical in these images.

Fig. 5. Left image and disparity map of Branitz Castle. Disparity coding is the
same as in Fig. 4. Matching window 7 × 7 pixels, α = 10, β = 0.02, disparity
search range (0, 90), image size 2037 × 4421, 28% matched.
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This example was selected because of great scene depth and because it ex-
hibits various combinations of Class 1 and Class 2 ambiguity.

The disparity map is shown in Fig. 5. A few significant isolated errors appear
on the pilasters and near the bottom image edge. Even small and thin objects are
matched: the flower pots, the lions, and the lamp posts, the tree trunk supported
by the three pales, the wire loop on the flagpole or the tips of the lightning rods
on the roof corners and the chimneys. The individual branches of the foreground
tree are well distinguished. Ambiguous regions are suppressed, most notably
on the façade and the staircase. Note the tiled roof is matched quite densely;
the stripes of false negatives are sampling artefacts (due to spatial frequencies
close to Nyquist limit). Note the disparity map is especially dense on the lawn,
the shrubbery alongside the building, and the foliage in the background, i.e. in
regions of irregular texture.

We conclude the combination of Class 2 and Class 1 ambiguity is the worst
problem. But the Class 2 ambiguity can be reduced by using more views. With
an independent view the disparity map density would increase significantly.

To partially compare confidently stable matching with other stereo matching
algorithms we run Alg. 1 on the Scharstein & Szeliski’s test set [32]. The error
was evaluated only on the set of matches found by the algorithm. The results
shown in Fig. 6 were computed for α = 10, β = 0.02, 5 × 5 matching widow
using correlation (2) and (3). The average running time (CPU 1GHz P7) was
3.1 sec. We can see a straightforward stereo matching implementation based on
the stability principle alone can already be ranked as the fourth best (Feb 2002).

tsukuba sawtooth venus map

map error statistics
dataset density BŌ BT̄ BD

tsukuba 45% 1.4% 0.22% 7.8%

sawtooth 52% 1.6% 0.03% 14.0%

venus 40% 0.8% 0.04% 10.0%

map 74% 0.3% 0.20% 3.6%

Fig. 6. Results on the Middlebury data set. BŌ is the percentage of mismatches
in non-occluded region, BT̄ is the number of mismatches in textureless areas,
and BD is the number of errors at disparity discontinuities [32].



14

5 Conclusions

We have defined confidently stable matching that is able to (1) find the largest
unambiguous component of stereo matching and (2) to identify the part of so-
lution where regularization is necessary to resolve ambiguities.

We have seen on three natural scenes and on three artificial scenes that the
unique component of stable matching is large (10% to 80% of image density) even
if confidence interval for match similarity measure is wide (2.5% of its range).
Moreover, the experiment shows that confidently stable matching has very low
error rate (0.3% to 1.4% of all matches) and that even very small objects are
correctly matched.

The advantage of stability principle is that it gives a great freedom in defining
what is a set of good matches. Most importantly, since stability is a property
of partial orderings, it is easy to extend the results to multi-criterial matching,
which opens a possibility to influence the low-level vision process by some high-
level scene understanding process by means of meta-rules defining the relative
importance of the individual criteria. This is a topic for our future research.
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