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Abstract. We give a linear-time algorithm for computing the medial axis of a simple
polygonP. This answers a long-standing open question—previously, the best deterministic
algorithm ran inO(n logn) time. We decomposeP into pseudonormal histograms, then
influence histograms, thenxy monotone histograms. We can compute the medial axes for
xy monotone histograms and merge to obtain the medial axis forP.

1. Introduction

Themedial axisof a simple plane polygonP goes by many names, includingsymmetric
axisorskeleton. One of the more picturesque is thegrassfire transform: Imagine igniting
all boundary points ofP. If the flame burns inward at a uniform rate, then thequench
pointswhere the flame meets and extinguishes itself define the medial axis. Equivalently,
the medial axis is the locus of all centers of circles insideP that touch the boundary of
P in two or more points.

The medial axis was proposed and named by Blum [3] in a 1967 article entitled, “A
transformation for extracting new descriptors of shape.” The pattern recognition literature
uses it heavily as a one-dimensional structure that represents two-dimensional shape [4],
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[8], [18], [22], [24]; it has also been used in solid modeling [27], mesh generation [10],
pocket machining [11], etc.

To a computational geometer, the medial axis of ann-gonP is a Voronoi diagram [2],
[21] whose sites are the open edges and the vertices of the boundary. In 1982 Lee [17]
developed anO(n logn) algorithm to compute the medial axis. (Yap’s [29] or others’
[16], [20] Voronoi diagram algorithms for line segments can also be used, although
implementing a general algorithm to handle the degenerate cases of segments with the
same endpoints is a headache.)

Since that time, it has been an open question to determine the time required to compute
the medial axis. Up to 1995 there were two significant milestones: In 1987 Aggarwal et
al. [1] first published an algorithm that can compute the medial axis of aconvexpolygon
P in linear time. Their algorithm computes the Voronoi diagram of the vertices of a
convex polygon inO(n) time; the medial axis are obtained by erecting planes in space
through the edges ofP at 45◦ angles to the plane ofP and using the dual algorithm to
compute the intersection of the half-spaces that containP. In 1991 Devillers [6] first
published arandomizedalgorithm for the medial axis that runs inO(n log∗ n) expected
time and uses Seidel’s acceleration technique [25].

Decompositions of a simple polygonP into histograms have been profitably applied to
theconstrained Voronoi diagram: the Voronoi diagram of the vertices ofP where distance
is measured along a shortest path insideP. (This is the problem that Aggarwal et al.
[1] solve in linear time for convex polygons.) Klein and Lingas [14] extended histogram
partitions from orthogonal polygons to simple polygons. They developed a randomized
algorithm for the constrained Voronoi diagram of a histogram and, by merging diagrams
for histograms, computed the constrained Voronoi diagram ofP in O(n) expected time.
Wang and Chin [28] established a deterministic linear-time algorithm for the constrained
Voronoi diagram by further decomposing histograms.

We extend Wang and Chin’s decomposition to compute the medial axis of a simple
polygon P. Our algorithm decomposesP into normal histograms, then into influence
histograms, andxymonotone histograms. It computes the Voronoi diagrams ofxymono-
tone histograms, and merges to obtain the medial axis ofP. After reviewing definitions
and known results about Voronoi diagrams and histogram decompositions in Section 2,
we describe the new steps in reverse order: In Section 3 we extend the algorithm of
Aggarwal et al. [1] to compute the Voronoi diagram of selected edges and vertices of
an xy-monotone histogram and to extend Voronoi diagrams. In the process, we sim-
plify part of the analysis and note that a randomized incremental construction may be
simpler to implement. In Section 4 we compute the Voronoi diagram of a histogram by
decomposing it into influence histograms andxy monotone histograms. We conclude in
Section 5 by mentioning some extensions and applications.

Klein and Lingas have recently extended their work on histogram decompositions to
obtain the medial axis ofP in expectedlinear time [15]. Their algorithm adds edges
to close off all histogram polygons and applies randomization twice: once to compute
the medial axis of all edges of a histogram polygon, and again when non-P edges are
removed and the medial axes are merged to obtain the medial axis ofP. The second
could be replaced by a deterministic step along the lines of Section 3, but it is not clear
what to do about the first, which is strongly predicated on the fact that all edges affect the
medial axis. Addition and deletion of edges also adds to the programming complexity.
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2. Preliminaries

Let P be a simple polygon withn vertices,{p1, p2, . . . , pn}. The boundary∂(P) consists
of these vertices and the edges (open line segments) between consecutive vertices. We
assume that the vertices and edges ofP are in general position: no two vertices on the
same horizontal or vertical line, no two edges parallel, no three vertices colinear, and
no set of four vertices or edges cocircular (i.e., no circle throughi vertices is tangent
to more than 3− i edges). General position can be simulated by (actual or conceptual)
perturbation of the input [9].

In this section we define the medial axis ofP and its connection to the Voronoi
diagram of the vertices and edges ofP. We also state a lemma on merging. Almost all
deterministic algorithms for medial axis and Voronoi diagram computation are merge
based. We also define pseudonormal histograms [14] and review how to decompose
polygon P into pseudonormal histograms (PNHs) and how to merge medial axes of
PNHs to obtain the medial axis ofP.º

2.1. The Medial Axis and Voronoi Diagram of P

TheVoronoi diagram[2], [21] of a set ofsitesis the partition of the plane into connected
regions having the same set of closest sites. This partition consists ofVoronoi cells, which
are the regions with one closest site,Voronoi edges, which have two closest sites, and
Voronoi vertices, which have three or more closest sites—these are illustrated in Fig. 1.

If we select the vertices and edges (open line segments) of polygonP to be the sites,
then our general position assumption ensures that Voronoi vertices are defined by three
sites. Voronoi edges become segments of straight lines or parabolas that are bisectors of
two sites—straight lines when the two closest sites are two points, two open segments,
or an open segment and one of its incident vertices, and parabolas when the two closest
sites are an open segment and a nonincident vertex.

Themedial axisof P is the locus of all centers of circles contained inP that touch∂(P)
in two or more points. Thus, the medial axis consists of Voronoi vertices and Voronoi
edges. The only Voronoi edges that are not part of the medial axis are the bisectors
of an edge and an incident vertex (which is the perpendicular to the segment through
the vertex.) We, therefore, concentrate on computing the Voronoi diagramV(P) in this
paper, and obtain the medial axis by removing these Voronoi edges.

Fig. 1. Medial axis (solid) and Voronoi diagram (solid and dotted).
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Fig. 2. Merging Voronoi diagrams.

Theconstrained Voronoi diagramof a set of sites on the boundary ofP is the Voronoi
diagram in which distance is measured along a shortest path insideP. All of our Voronoi
diagrams should be considered constrained Voronoi diagrams, even though we typically
omit the word “constrained.” In our algorithms, the reflex vertices are always sites, so
the shortest paths are line segments.

Algorithms to merge Voronoi diagrams have been important since Shamos and Hoey’s
divide and conquer algorithm [26], [23]. See also [12], [17], or [13].

Lemma 2.1. Let Q be a polygon that is divided into Q1 and Q2 by a diagonaluv. Let
subsets of vertices and edges S1, S2, and S= S1 ∪ S2 be the sites in Q1, Q2, and Q,
respectively. Given the Voronoi diagrams of S1 in Q1 and S2 in Q2, the Voronoi diagram
of S in Q can be obtained in time proportional to the number of Voronoi edges that
intersectuv and the number of new edges added.

Proof. We sketch a proof; refer to references [12], [13], [17], [23], and [26] for more
details. Figure 2 illustrates polygonal chainsQ1 andQ2 formed by dividing the polygon
in Fig. 1 along a diagonaluv. Assume that the Voronoi diagram ofQi is extended across
the segmentuv to a new half-space (which may be considered to lie on a separate sheet
from Qi if Qi also extends across the lineuv). We can use the routine of Theorem 3.6
to compute the extension, if necessary, in time proportional to the number of Voronoi
edges that intersectuv.

The bisector between sites inQ1 and sites inQ2 is a curve fromu to v. We can trace
this curve starting with the line segment that bisects the edges ofQ incident tou, if u is
a convex corner ofQ as in Fig. 2, or by tracing the perpendicular to an edge atu, if u is
a reflex corner.

The bisector follows line segments and parabolas, changing whenever it leaves a cell
of the Voronoi diagram ofQ1 or of Q2. We can determine when it leaves by walking
the portions of the cell boundaries that will be discarded, as indicated in Fig. 2. These
discarded portions are forests (trees, if we include a vertex at infinity) whose complexity
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Fig. 3. Histograms.

is proportional to the number of their leaves, which is the number of new Voronoi edges
added in the bisector.

2.2. Histograms

A normal histogram(NH) is a simple polygonH whose boundary consists of abase
edge eand a chain that is monotone with respect toe—that is, any line perpendicular
to e that intersects∂(H) intersectse and at most one other point or segment. Typically,
we rotate NHs so that the base is along thex axis and the rest of the polygon is in the
positive quadrant, as in Fig. 3. Thebase lineis the line throughe. When computing
Voronoi diagrams of histograms, we also compute the constrained Voronoi diagram in
the half-space below the base line whene is not a site.

A pseudonormal histogram(PNH), defined by Klein and Lingas [14], can be viewed
as a NH with a missing corner. That is, a PNH can be turned into an NH by replacing an
edge f incident to the base with a segment perpendicular to the base and an extension
of the base. Because of the merge lemma, an NH is as good as a PNH with respect to
computing a Voronoi diagram.

Corollary 2.2. The constrained Voronoi diagram of selected sites of an n-vertex PNH
can be obtained from the diagram of the corresponding NH in O(n) time.

Proof. The removed edgef can be reintroduced into the PNH as a diagonal by walking
through Voronoi cells inO(n) time. Then, if f is a site in the PNH, the polygon containing
only f can be merged to the rest of the PNH according to Lemma 2.1.

An NH is anxy-monotone histogramif, after putting the base along thex axis, they
coordinates of nonbase vertices are monotone increasing or monotone decreasing.

2.3. Decomposing P into Pseudonormal Histograms

Klein and Lingas’ algorithm for the constrained Voronoi diagram [14] is based on decom-
posing a polygonP into PNHs, computing their Voronoi diagrams (via the corresponding
NHs), and then merging. For completeness, we briefly sketch their decomposition and
note that only two calls to a linear-time trapezoidation algorithm are needed.
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Fig. 4. A decomposition ofP into a tree of PNHs.

Figure 4 shows a polygonP decomposed into 13 PNHs. PNHe is associated with the
vertical basee missing its upper corner; PNHe′ with the horizontal basee′ is missing its
left corner, etc. The decomposition can be represented as a rooted tree whose nodes are
PNHs and whose edges represent adjacency of two PNHs. The base edge of each child
PNH is a trapezoid edge of the parent PNH.

Lemma 2.3. An n-vertex simple polygon P can be decomposed, in linear time, into a
set of PNHs having a linear number of vertices.

Proof. The decomposition starts with an arbitrary edgee of P as the base of the first
PNH, PNHe. Make this edge horizontal, then use Chazelle’s algorithm [5] to compute
horizontal and vertical trapezoidations ofP, denotedH andV, in O(n) time. Store
trapezoids with links to adjacent neighbors.

Now, for the horizontal base edgee, form PNHe from all vertical trapezoids inV that
are incident oneores, wherees is one of the two edges (if any) incident toeat an interior
angle between 90◦ and 180◦. Remove PNHe from P; boundary edges of PNHe that are
not edges ofP will be base edges of PNHs in the next level of the decomposition, after
we repair the horizontal trapezoidationH both inside and outside of PNHe.

We can trace the boundary∂(PNHe) throughH in time proportional to the number of
trapezoids intersected—each trapezoid edge is cut at most twice—and split trapezoids
that are cut by vertical boundary segments. We can then remove horizontal trapezoidation
edges that no longer contain a vertex and merge adjacent trapezoids. All intersected
trapezoids will become part of a PNH at the next level.

The motivation for PNHs instead of NHs is that every PNH defined inP uses a vertex
along its base. Since a vertex is in at most two PNHs, the construction terminates. Also,
the work per trapezoid is constant, so the total amount of work performed isO(n).
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Fig. 5. The constrained Voronoi of selected sites.

Klein and Lingas proved that the Voronoi diagrams of vertices of two PNHs do not
interfere unless these two PNHs (i) are parent and child, or (ii) are children of the same
parent that face each other [14]. Their proof extends easily to edge sites.

Lemma 2.4[14, Theorem 4.6]. Given the Voronoi diagrams for the PNHs in a decom-
position of an n-vertex simple polygon P, the Voronoi diagram for P can be computed
in linear time.

Proof (Sketch). The children of a PNH can be separated into left and right groups. The
Voronoi diagram of the PNH is first merged with the Voronoi diagrams of all its left
children and then with those of its right. This merging of Voronoi diagrams can be done
in time linearly proportional to the total size of the PNH and all its children.

The task that remains is depicted in Fig. 5: to compute the constrained Voronoi diagram
of selected vertex and edge sites inside a normal histogram and in the half-space across
its base edge. The latter we do in the next section; the former requires us to compute the
Voronoi diagram of anxy monotone histogram.

3. Computing the Voronoi of anxy Monotone Histogram and the Voronoi
Extension

In this section we provide efficient subroutines for two Voronoi diagram problems. See
Fig. 6.

Voronoi of xy monotone histogram.Compute the constrained Voronoi diagram of
selected sites in anxy monotone histogramH .

Voronoi extension.Given the intersection of the Voronoi diagram of the sites in a
histogramH with the base edgee, compute the Voronoi diagram in the half-space
below the base line.
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Fig. 6. In both problems, the Voronoi diagrams are trees with known leaves.

In both problems the sites have an order given by a curve and the intersection of the
Voronoi diagram with the curve is known. In this paper we focus on thexy monotone
histogramH , where the curve is the monotone portion of the boundary ofH . We direct
initial and final rays tox = −∞ andy = ∞ as shown in Fig. 6.

Monotonicity in bothx and y implies that the boundary ofH does not leave the
bounding box of the diagonals that join consecutive sites inx coordinate order. Inside
such a box, the Voronoi diagram is determined by the endpoints of the diagonal. We
can replace portions of the boundary that are not sites with these diagonals. To avoid a
degenerate case, if an edge and its lower endpoint are both sites, we consider them as a
unit.

To make sure the problems are clear, Section 3.1 sketches a randomized incremental
construction that can solve our two Voronoi diagram problems in expected linear time.
Section 3.2 gives deterministic algorithms by adapting the work of Aggarwal et al. [1].

3.1. Randomized Incremental Construction

The randomized algorithm for these problems is simpler to implement than the deter-
ministic. The “tracing” in this lemma is standard [6], [13], [16] and is essentially the
computation of the merge Lemma 2.1; finding where to start tracing in constant time
gives us an algorithm with expected linear running time. Klein and Lingas [15] have
independently given another.

Lemma 3.1. The Voronoi diagram of an xy monotone histogram and the Voronoi
diagram below the base can both be computed by a randomized incremental construction
in expected time that is linear in the number of sites.

Proof. Each problem involves sites with a given order along a simple curve; we order
subsets of sites consistent with the curve order.
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Randomly delete the sites one at a time, storing the predecessor and successor of a
site when it is deleted. Then insert the sites according to the reverse permutation and
compute the portion of the Voronoi cell of each new site as it is added.

The new site will be a nearest neighbor to some point on the segment joining its
predecessor and successor. One can, therefore, compute the new cell by tracing the
portion of the Voronoi diagram to be deleted, starting from the Voronoi edge that crosses
this segment. The Voronoi edges deleted form a forest, whose complexity is proportional
to the Voronoi edges that bound the new Voronoi cell. Because the Voronoi cell for a
randomly chosen site has constant complexity, the expected time to trace all cells is
proportional to the number of sites.

3.2. Deterministic Algorithms

Djidjev and Lingas [7] pointed out that the algorithm of Aggarwal et al. [1] could find
the Voronoi diagram of the vertices of anxy monotone histogram. We show that the
algorithm can be adapted for segment sites, and simplify part of the analysis. The basic
idea of Aggarwal et al. is to identify a constant fraction of the Voronoi cells that are not
adjacent to each other, remove their corresponding sites, recursively compute the Voronoi
diagram of the remaining sites, and then independently merge in the nonadjacent cells.
Identifying nonadjacent cells is complicated by the fact that one does not have the cell
descriptions until the algorithm has completed its task.

Let s1, s2, . . . , sk be the list of sites in order along the curve. (Include sites at infinity
ass0 andsk+1.) We mark sites red and blue to satisfy three rules:

1. No two adjacent sites are markedred.
2. No three adjacent sites are markedblue.
3. If the portion of the boundary below five sites (si−2, si−1, si , si+1, si+2) has a circle

below that touchessi−1 andsi+1 and does not contain any point ofsi−2, si , orsi+2,
then sitesi must bered.

Figure 7 shows two histograms with possible markings. Recall that if an edge and its
lower endpoint are both sites, we consider them as a unit—otherwise symbolic perturba-
tion would be needed so that two open edge sites with the same (nonsite) endpoint could
not be cocircular with two other sites. At the left of Fig. 7, marks on the concave chain
are constrained only by rules 1 and 2; at the right, the reds are forced by empty circles.

Lemma 3.2. A marking of sites can be computed in linear time.

Proof. The first and third rules do not conflict because the third cannot apply to two
adjacent sites. Such a configuration would require two circles that were centered inside
H , one touchingsi−1 andsi+1 and the other touchingsi andsi+2, but this would imply
that all four sites were cocircular or that two circles intersected in four points.

Thus, we can mark sites in linear time by initializing all sites to blue, then mark-
ing the sites that rule 3 says must be red. For each sequence ofi > 2 blues that remain,
we mark every other site red, starting with the second and ending one or two before
the last.
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Fig. 7. Possible markings.

This coloring has the following independence property:

Lemma 3.3. Consecutive red sites cannot have Voronoi cells that are adjacent.

Proof. Consider two sitess ands′ that have adjacent Voronoi cells. There is a circle in
H that touchess ands′ and excludes all other sites.

If s ands′ have a single sitet between them, then by rule 3,t is marked red and by
rule 1, boths ands′ are blue. On the other hand, if two sitest andt ′ lie betweens and
s′, then move the circle center along the bisector ofs ands′ towardt andt ′, as in Fig. 8.
The new circle exits the old only betweens ands′. Therefore, by monotonicity, the circle
encounterst or t ′ before encountering any other site. Suppose that it encounterst ′, then
t is red by rule 3 ands must be blue. Therefore, eithers ands′ are not both red or they
are not consecutive.

These two lemmas are sufficient to use the algorithm of Aggarwal et al. [1], as we
briefly describe. They prove the following combinatorial lemma.

Fig. 8. s or s′ is blue.
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Lemma 3.4[1]. Let T be a binary tree embedded in the plane. Each leaf of T has an
associated “neighborhood,” which is a connected subtree rooted at that leaf, and leaves
adjacent in the topological order around the tree have disjoint neighborhoods. Then
there are a fixed fraction of the leaves with disjoint, constant-size neighborhoods, and
such leaves can be found in linear time(assuming that neighborhoods can be traced out
in breadth-first order).

The rest of the proof follows Aggarwal et al. [1].

Theorem 3.5. The Voronoi diagram of an xy monotone histogram can be computed
in linear time.

Proof. By rule 2, a constant fraction of the sites are marked blue. We compute their
Voronoi diagram recursively and letT be the tree of Voronoi edges that start between
blues sites that are separated by reds (i.e., eliminate edges that are between adjacent
sites that are both marked blue). Now, the “neighborhood” of a leaf is the portion of the
Voronoi edge that is farther from the blue sites that define it than from the red site that is
being inserted. Lemma 3.3 says that adjacent neighborhoods are disjoint, so Lemma 3.4
says that a constant fraction of the red sites with disjoint, constant-size neighborhoods
can be found. These red sites can be merged into the blue diagram in constant time
apiece.

Finally, a constant fraction of the sites remain red; compute their Voronoi diagram
recursively and merge it into the blue Voronoi diagram—we can do this in linear total
time if we merge connected portions starting and ending on the histogram boundary.

We can deterministically compute the Voronoi diagram extension by a similar algo-
rithm.

Theorem 3.6. Given the intersection Voronoi diagram of a histogram with the base
edge, the extension below the base can be computed in linear time.

Proof. Let s1, s2, . . . , sk be the sites whose Voronoi cells intersect the base edge in the
order of intersection. Mark the sites to satisfy rules 1, 2, and a modified rule 3: if a circle
centered below the base line touchessi−1 andsi+1 and does not contain any point ofsi−2,
si , or si+2, then sitesi must bered.

We can establish analogues of Lemmas 3.2 and 3.3: Labeling can be accomplished in
linear time using a constant time implementation of rule 3. In proving that consecutive
red sites are independent, the difficult case is when an empty circleC, centered below
the base line, touches sitess ands′ that have two sitest andt ′ between them. As before,
we can move the center ofC along the the bisector ofs ands′, maintaining tangency
with sitess ands′ until we encountert or t ′. We must encounter some site, because
the Voronoi cells ofs ands′ are not adjacent along the base line, andt and t ′ are the
only candidates because the circle pokes out ofC only betweens ands′. This circle will
certify thatt or t ′ is red and thuss or s′ is blue.

The rest of the computation continues as before.
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4. Finding the Voronoi Diagram of a Normal Histogram

The key property of the histogram decomposition of Klein and Lingas is that the influence
of a site is limited—the Voronoi cell of site does not extend beyond parents, children, or
siblings of histograms containing the site. Following Wang and Chin [28], we show that
limiting the influence is also key to computing the Voronoi diagram of an NH.

Let H be an NH with horizontal base edgee. We can identify the sites ofH whose
influence (i.e., Voronoi cell) extends across base edgee by considering circles centered
one that are empty of sites.

Lemma 4.1. In an NH H, the sites whose Voronoi cells extend below the base line are
those that can be touched by a circle centered at the base edge and empty of other sites.

Proof. Voronoi cells are simply connected, so a cell extends below the base edge iff it
intersects the base edge. The empty circle certifies that such an intersection exists.

We assume thatH has been decomposed into a linear number of horizontal trapezoids,
which is the result of our decomposition into PNHs or of running Chazelle’s algorithm
[5]. We call the horizontal segments introduced by trapezoidationchords. The dual graph
of the trapezoidation ofH is a tree rooted below the base edge whose edges correspond
to chords, as illustrated in Fig. 9.

The influence regionof H is the union of all circles centered at the base edge whose
interiors do not intersect a site. Theinfluence histogram, IH, consists of all horizontal
trapezoids that intersect the influence region.1 We find the IH by exploring the dual tree
of the trapezoidation and maintaining stacks of sites whose Voronoi cells may intersect
the base.

Fig. 9. Trapezoids in an IH.

1 This influence region and IH are slightly different from Wang and Chin’s corresponding ones for the
constrained Voronoi diagram of vertices ofP [28].
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Lemma 4.2. The IH of H can be computed in time linearly proportional to the number
of its trapezoids.

Proof. All circles in this algorithm will be centered on the base edgee. Any two such
circles intersect in at most one point above the base line. LetCs denote the largest circle
that crosses a chords and whose interior does not contain a site on or belows. If Cs

exists, it either touches sites to the left and right of its center, or is centered at a (nonsite)
endpoint ofe, or is infinite. The first case corresponds to the intersection ofe with the
bisector of the two sites touched, as can be seen in Fig. 5.

We compute all such largest circles. Initialize empty stacksL andR, for left and right.
If the left endpoint of the base edge is a site, insert it intoL; similarly, insert the right
endpoint intoR. Let chords= e.

Now, we maintain two invariants:

1. With respect to the histogram consisting of the trapezoids output so far, the stacks
contain the sites whose Voronoi cells intersecte in order.

2. The largest circleCs is determined by the sites at the tops ofL andR.

Let1s be the trapezoid aboves and lett andu be the at most two other chords of1s

as illustrated in Figure 4. Include1s in the output. If the segment of circleCs aboves
is contained in1s, then this branch of the IH is complete. IfCs crosses chordt but does
not contain a site in1s, then lets = t and continue. Otherwise, we need to reestablish
the invariants, as at the right of Fig. 10.

First, the new sites in1s may be closer toe than sites inL or R—new Voronoi cells
may crowd out old ones. If the largest circle determined by the next-to-top site inL and
sites in1s does not contain the top site inL, then pop the top ofL. The first site to
remain on the stack certifies that all sites beneath also remain, since stacked sites appear
in the same order as their Voronoi cells intersecte. HandleR similarly.

Next, look at the new empty circles crossing chordst andu—if there are none, then
the branch of the IH ends here. If only one chord is crossed, then we push the new sites
whose Voronoi cells intersecte on theL and/or R stacks and continue. Otherwise, both
chords are crossed, as in Fig. 10; some site, call itq, touchesCt on the right andCu

on the left. We continue building the IH acrosst using circleCt and stackL and a new
stackR′ that contains siteq alone. Building IH acrossu usesCu, R, and a new stack
L ′ containing onlyq. Site q will not be popped off these stacks because among the

Fig. 10. The largest circleCs and the trapezoid1s.
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empty circles betweenCt andCu there must be one that touchesq directly above the
center—this circle, tangent tot andu, certifies that the Voronoi cell ofq in histogramH
intersects the base edgee. Thus, the branches can be computed independently and the
invariants can be maintained.

The IH contains all sites whose Voronoi cells intersect the base edge. It may also
contain other sites, but they can be grouped intoxy monotone histograms.

Lemma 4.3. The Voronoi diagram of an IH H can be computed in time linearly pro-
portional to the number of vertices in H.

Proof. Consider a trapezoid at which the IH branches, as at the right of Fig. 10. Let
p be the site that forced the branch. We know that the perpedicular fromp to the base
edgee is contained in the Voronoi cell of sitep—we can cut the IH along this segment.

After all cuts, we obtain a set of histograms; in each histogram an empty circle
intersects all horizontal trapezoids. Thus, the histograms arebitonicand can be cut into
two xy monotone histograms.

Finally, compute Voronoi diagrams of bitonic histograms by merging diagrams for
xy monotone histograms in linear time. The Voronoi diagram of the IH is obtained from
those of the bitonic histograms by simply rejoining along the vertical cuts.

At last, we return to the problem of computing the Voronoi diagram of an NHH with
a horizontal trapezoidation.

Theorem 4.4. The Voronoi diagram of selected sites in an NH H can be computed in
time linearly proportional to the number of vertices in H.

Proof. Again, we assume thatH is an NH with horizontal base edgee and thatH has
been decomposed into a linear number of horizontal trapezoids. We decomposeH into
a tree of IHs as follows. First, compute in IHI in H . Connected sets of trapezoids inH
that are not inI form NHs; makeI the parent of recursively computed subtrees of IHs
for these NHs. Lemma 4.2 says that each IH takes time proportional to the number of its
trapezoids, so the total time is linear in the size ofH .

By Lemma 4.3 the Voronoi diagrams of all IHs in the tree can be computed in linear
time. By the definition of IHs (see Lemma 4.1), the Voronoi cell of a site intersects only
its own IHs (at most two) and that of its parent. Thus, the cost to merge Voronoi diagrams
of IHs to form the Voronoi diagram ofH is also linear.

From this theorem, with the lemmas from Section 2.3, we obtain the final result.

Corollary 4.5. The Voronoi diagram of the vertices and edges of a polygon P can be
computed in time linearly proportional to the number of vertices in P.
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5. Conclusion

We have given an optimal linear-time algorithm for computing the Voronoi diagram or
medial axis of a simple polygon. There are two complex steps: using Chazelle’s algorithm
[5] to compute two trapezoidations, and using the technique of Aggarwal et al. [1] to
compute Voronoi diagrams ofxy monotone histograms. Both steps can be replaced by
simpler randomized algorithms, although the asymptotic running time of trapezoidation
increases by a log∗ n factor.

Several problems for simple polygons can be solved in linear time based on this result:
computing the largest inscribed circle, building a query structure for the closest boundary
point, and determining the buffer zone of all points withinε of a simple polygonal curve.
This algorithm also applies to otherL p metrics and constant-complexity convex distance
functions. If the unit ball is a convex polygon ofm vertices that contains the origin, the
necessary primitives can be implemented inO(logm) time apiece, giving anO(n logm)-
time medial axis algorithm.

One open question is whether the Voronoi diagram ofk polygons withn vertices total
can be computed inO(n+ k logk) time. It can be when the polygons are convex [19].
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