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Abstract

Background: The first generation of genome sequence assemblies and annotations have had a significant impact
upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species,
the study of populations within and across species, and have informed the biology of humans. As only a few
Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for
improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted
for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer
genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect
genomes.

Results: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set
(OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect
genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and
complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported.
About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred
based on new RNAseq and protein data.

Conclusions: Lessons learned from this genome upgrade have important implications for future genome
sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee,
a key model for social behavior and essential to global ecology through pollination.
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Background
Honey bee, Apis mellifera, provides a key model for un-

derstanding the diverse and widespread group of social

insects. Thanks, in part, to resources generated during

the initial honey bee genome sequencing effort [1],

honey bees are now widely used for elucidating the mo-

lecular basis of behavior [2], development [3], disease

transmission [4], epigenomics [5] and gene regulation

[6]. Honey bees are also a vital pollinator of many of the

world’s crops [7,8], and genomic tools are being used to

address recent serious and unexplained declines in some

honeybee populations [9,10]. In light of the current

interest in honey bee genetics, improved genomic tools

for this species are required.

Because fewer than 11,000 genes were predicted, one

of the major questions coming out of the initial honey

bee genome sequencing effort was, “Where are the miss-

ing genes?” Were there issues with the genome sequence

that meant that the genes were filled with gaps and

therefore not annotated? Or were the genes located in

islands of repetitive sequence and therefore not identi-

fied? Were the gene prediction methods poorly adapted

to a genome with a bimodal distribution in GC content?

Or was the tuning of gene prediction algorithms to an

average GC content failing to represent genes in regions

of more extreme GC content? Was there insufficient

mRNA evidence? Were the genes different enough from

known genes that the prediction tools failed to find the

genes due to lack of protein evidence? Or might the

honey bee have thousands fewer genes than the few

insects with sequenced genomes at the time?

All early genome sequencing projects used Sanger data

and either a BAC-based hierarchical-sequencing model

[11] or a whole-genome-shotgun model [12]. In either

case, a completed draft genome has contiguous sequence

pieces (contigs) spaced by paired clone end sequences,

forming scaffolds. Missing sequences between consecu-

tive contigs are represented by segments of ambiguous

bases, denoted as Ns, the lengths of estimated gap sizes.

Few Metazoan genomes have been improved to finished

quality by filling in the missing sequence [13-16]. The

genome scaffolds, with islands of sequence information

and lack of information (in a draft genome), are anno-

tated with gene features using gene prediction methods.

When gene signals such as splice sites, start codons and

termination codons are missing from the assembly, a

computational gene prediction tool may miss an exon or

even an entire gene. Thus, gaps within genic regions of

an assembly can hinder annotation and lead to an in-

complete gene list.

The first A. mellifera genome sequencing project [1] re-

vealed genome characteristics with potential missing as-

sembly information that could impact the gene list. The

genome assembly had the lowest mean GC content

(percent of G +C nucleotides) and the most heterogeneous

GC content of any sequenced metazoan genome at that

time, with GC content ranging from 10% to 70% across the

published genome assembly (Amel_4.0) [1]. Analyses of ini-

tial assemblies showed that regions with low GC content

were under-represented in libraries, so additional shotgun

libraries were generated after fractionating DNA with CsCl-

bisbenzimide density gradient centrifugation, and appro-

ximately 800,000 reads of <30% GC content were added to

the data that lead to Amel_4.0 [1].

In addition to potentially missing assembly informa-

tion, other factors including limited EST data and the

large evolutionary distance between honey bee and other

insects with sequenced genomes were thought to have

contributed to difficulty in gene prediction. The 78,001

A. mellifera ESTs that were available at the time pro-

vided only 9,408 unique consensus sequence alignments

to the genome [17]. The closest organisms with available

protein sets were the Dipterans, Drosophila melanogaster

and Anopheles gambiae, with an estimated divergence

time from honey bee (Hymenopteran) of 300 million

years.

Honey bee researchers suspected that the first Official

Gene Set (OGSv1.0), generated by creating a consensus

gene set with GLEAN [1,17], was incomplete, as it com-

prised only 10,157 genes, far fewer than expected based

on the estimate of ~13,600 genes in D. melanogaster at

the time. Recently sequenced Hymenoptera genomes

(parasitoid wasp and seven ant species), predicted to

contain ~17,000-18,500 protein-coding genes [18-24],

further support the suspicion that a large number of A.

mellifera genes had not yet been detected. Whole ge-

nome tiling arrays provided experimental evidence for

missing genes, with the detection of signals “intergenic”

to OGSv1.0 genes [1]. Finally, evaluation of the genome-

wide distribution of OGSv1.0 genes revealed another po-

tential factor in computational gene prediction, which

relied on algorithms optimized for gene and genome

characteristics known at that time. Unlike any previously

sequenced metazoan genome, OGSv1.0 genes occurred

in gene regions that were more GC-poor (29% GC) than

the mean genome GC content (33%), and were located

in regions with GC content as low as 11% [1].

Genome sequencing and assembly methods have chan-

ged with the advent of next-generation sequencing tech-

nologies. Newer technologies typically produce shorter

reads at greatly reduced cost and allow the completion of

projects with much deeper sequence coverage using many

more reads than a Sanger-based project. While contiguous

sequence may suffer from these shorter reads that cannot

span repetitive sequences, scaffolding can benefit from the

increased mate-pair information. Furthermore, different se-

quencing technologies have different biases related to nu-

cleotide composition, so combining technologies provides
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the potential for one technology to fill in gaps produced by

another.

A bigger impact of the reduced sequencing cost of

second-generation sequencing methods is the ability to

generate much more transcript sequence than ever be-

fore. These transcript data are very useful as evidence

supporting gene model prediction. As will be discussed

below, the alignment of new transcriptome data pro-

vided evidence for most of the previously un-annotated

genes in the honey bee genome.

This paper presents a de novo annotation of the A.

mellifera genome based on an upgraded genome assem-

bly and new transcript data. We generated additional

genome sequence data using ABI SOLiD and Roche 454

paired-end sequencing technologies to superscaffold and

fill gaps in the Amel_4.0 assembly using the Atlas-link

software, creating the improved assembly (Amel_4.5).

We also deep-sequenced the transcriptome of seven A.

mellifera tissues and sequenced the genomes of two

closely related species, the dwarf honey bee (A. florea)

and buff-tailed bumble bee (Bombus terrestris) (both of

which will be published elsewhere).

To avoid perpetuating errors in OGSv1.0 and avert dif-

ficulties in tracking genes between assemblies (e.g. re-

ported in [25]), we chose not to track and update the

previous annotation on the Amel_4.5 assembly. Instead

we decided to annotate the Amel_4.5 assembly de novo

and generate a new official gene set (OGSv3.2) and a

new list of repetitive elements based on the most current

evidence and methodologies. To learn which factors

were most important in identifying previously unknown

genes, and to inform potential strategies for future ge-

nome projects, we compared both gene sets and charac-

terized genes that were missing from OGSv1.0.

Results
Improvements to the genome assembly

Additional sequence coverage generated using the ABI

SOLiD [26] technology (~20x) and Roche 454 [27] tech-

nology (~4x) from small insert fragments (~2 k) was in-

corporated into Amel_4.5. The sequence data are

summarized in Table 1 and Table S1 in Additional file 1

and are available from the NCBI Sequence Read Archive

(SRA). We compared assembly statistics for Amel_4.5

with the previous assembly, Amel_4.0, which is de-

scribed in [1] and is the assembly used by the research

community since 2006. The genome assembly improve-

ments increased the contig N50 from 40 kb to 46 kb

and the scaffold N50 from 359 kb to 997 kb, with an

additional 5.5% of the sequence anchored to linkage

groups (Table 2).

The completeness (extent of coverage of the genome) of

the new Amel_4.5 and the earlier, Amel_4.0, assemblies

were measured by BLASTN comparison to available de

novo assembled 454 contigs from seven libraries. Amel_4.5

showed slightly more complete coverage than Amel_4.0

(88.7% vs. 88.2%; Table 3).

As hoped, the new sequence data had a large impact on

the regions of the genome that were of low starting quality.

While the new sequence did not specifically target the GC-

poor regions of the genome that were underrepresented in

the initial Sanger libraries, the sequence reads were more

evenly distributed across the regions of different GC con-

tents (Figure 1). A segmentation analysis of Amel_4.5 to

identify GC compositional domains that are homogenous

in GC content within domains, but different in GC content

across domain boundaries, showed that the genomic pro-

portion of compositional domains low in GC content in-

creased in Amel_4.5 (Figure 2). As a consequence, many

newly discovered genes were annotated in GC poor regions

(Figure 2).

Generating and assessing a New official gene Set

Testing combined gene set approaches

We tested two approaches, MAKER2 [28] and GLEAN

[17], for combining outputs from multiple gene prediction

tools to create an Official Gene Set (OGS). Each approach

has advantages and disadvantages. An advantage of

MAKER2 is that given sufficient transcript data, it can pre-

dict multiple alternative splice forms per locus, while

GLEAN computes only one gene model per locus.

MAKER2 provides both a conservative biological sequence

(transcript and homolog) alignment-based set of gene

models that best agree with transcript and protein homolog

Table 1 Additional sequence data for the improved

honey bee genome

Mate-pair
distance

Roche 454
fragment

Roche 454
2.75 kb

SOLiD

Number of reads 2.9 M 5.24 M 90 M

Read length 290 bp 56 bp 50 bp

Pairs No Yes Yes

Sequence coverage 3.6× 1.3× 20×

Table 2 Assembly statistics for the improved honey

bee genome

Assembly Number N50
(kb)a

Bases + Gaps
(kb)

Bases
(kb)

Amel_4.5 Anchored 340 1,209 203,000 200,000

Scaffolds 5,644 997 250,271 229,734

Contigs 16,501 46 229,734 229,734

Amel_4.0 Anchored 626 621/135 217,195 183,323

Scaffolds 10,742 359 315,719 231,029

Contigs 18,944 40 231,029 231,029
aFor Amel_4.0 Anchored scaffolds, N50 was calculated separately for 320

oriented and 306 non-oriented scaffolds.

Elsik et al. BMC Genomics 2014, 15:86 Page 3 of 29

http://www.biomedcentral.com/1471-2164/15/86



alignments, and a set of ab initio gene predictions that do

not overlap the biological sequence alignment-based set.

The final set of MAKER2 biological sequence alignment-

based gene set contained 12,268 genes, encoding 12,575

transcripts, with an additional set of 31,047 ab initio gene

predictions that did not have support from transcript or

protein alignments. Without filtering the ab initio set for

likely false positives, the choices of final gene sets generated

with MAKER2 would have been 1) a conservative set of

only 12,268 genes, still much lower than gene numbers

found in other sequenced insect genomes or 2) a set of

43,315 genes that included ab initio gene models. Other

hymenoptera genome projects using MAKER have selected

ab initio gene models with matches to InterPro domains

[29] to include in the final predicted gene set [20-22]. This

approach would allow us to add 1,215 MAKER2 ab initio

genes to the final predicted gene set, for a total of 13,303

genes. However, since only 8,602 of the 12,268 MAKER2

biological sequence alignment-based genes had InterPro

matches, we were concerned that the InterPro approach to

boost ab initio genes to the final gene set would miss some

rapidly diverging genes.

An important difference between GLEAN and MAKER2

is the way ab initio predictions without biological sequence

evidence are handled. GLEAN collects evidence for genes (ab

initio gene predictions and biological sequence alignment-

based), generates maximum likelihood estimates of accuracy

and error rates for these signals for each gene predic-

tion set, constructs consensus gene models that maximize

the scores for the signal sites in each gene model, and la-

bels each model with a probabilistic confidence score

reflecting the underlying support for that gene model [17].

In addition to identifying consensus models supported by

transcript and protein alignments, GLEAN identifies ab

initio predictions with high computed probabilities, filter-

ing out likely false positive ab initio predictions. This ap-

proach would not require filtering ab initio predictions

using an InterPro search, and would potentially include

high confidence ab initio predictions that are true, rapidly

diverging genes without significant InterPro domain

matches.

Since GLEAN weighs different sources of gene predic-

tion evidence based on agreement among sources,

Table 3 Assembly comparison to 454 transcriptome data

Tissue Total
assembled
transcripts

Amel_4.5 Amel_4.0

Number Percent Number Percent

Abdomen 14,614 13,980 95.6% 13,987 95.7%

Brain + ovary 27,412 26,341 96.0% 26,342 96.0%

Embryo 19,616 18,565 94.6% 18,565 94.6%

Larvae 18,050 9,061 50.1% 9,041 50.0%

Mixed antennae 14,891 13,868 93.1% 13,865 93.1%

Ovary 28,451 27,500 96.6% 26,929 94.6%

Testes 10,557 9,234 87.4% 9,060 85.8%

Total 133,591 118,549 88.7% 117,789 88.2%

Note: BLAT alignments of the assembled transcripts to the genome assemblies

using default parameters and counting matches of any length at 95% identity.

Figure 1 Distribution of mapped 454 reads with respect to AT content. The genomic reads were mapped to the Amel_4.5 assembly
(scaffolds and contigs) using BLAT. With relatively stringent filtering (at least 80% of total length matched and gap size < 30%), 242,284 reads (93%
of all reads) were aligned to the assembly. Most reads (236,090, 93%) aligned to fewer than 10 locations, and had unique alignments (210,625,
87%). The AT content for each alignment (adding 10% extension on either end) was calculated for reads with≤ 10 match locations.
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without a priori information on the quality of individual

input gene prediction sets, the choice of input datasets

impacts the results. Evaluating GLEAN runs with differ-

ent combinations of input sets allowed us to determine

the optimum selection of datasets. We ran GLEAN 32

times with different combinations of input sets, and

resulting GLEAN sets ranged in size from in 10,403

(with three input gene sets) to 17,724 genes (with seven

input gene sets), (Additional file 2). In some cases,

GLEAN predicted a larger number of genes than the

MAKER2 set supported by either biological sequence

alignment or InterPro. Although GLEAN generates only

one transcript per gene locus, we decided to use GLEAN

to create the OGS, because we prioritized GLEAN’s

potential identification of a more comprehensive set

of gene loci over MAKER2’s identification of 307

alternative transcripts. Since with GLEAN we did not

need to filter ab initio genes based on InterPro, it might

allow the genome-conservation-based N-SCAN dataset

to provide support for other ab initio predictions even

without detectable conservation with known InterPro

domains. Another consideration was that assembly

methods for Illumina RNASeq were not well established.

We were concerned about the possibility of merging

genes or missing introns due to potential genomic con-

tamination in RNASeq experiments. GLEAN uses tran-

script alignments to support splice predictions, but does

not merge or split genes based on transcript alignments,

while MAKER2 creates gene models that best agree

with transcript alignments, and works best with highly

reliable transcript assemblies.

Selecting an official gene set

We evaluated the 32 GLEAN sets based on several cri-

teria, including overlap with a conservative evidence-

based set (RefSeq), transcript sequences, peptides and the

CEGMA [30] conserved core set (Additional file 2). No

single gene set was optimal with respect to all criteria. We

chose to rank sets based on number of peptide matches,

which would prioritize completeness of a protein-coding

gene set rather than correctness of gene structure.

Assessing the new official gene set

The selected GLEAN set, OGSv3.2 (GLEAN31 in Additional

file 2), represented a significant improvement because

it included 15,314 protein-coding genes, which is 5,157

more genes than the first official gene set, OGSv1.0.

The proportion of genes on placed scaffolds as well as

those with expressed sequence coverage also increased

over OGSv1.0 (Table 4). Since GLEAN predicts only

coding exons, but not untranslated regions (UTRs), we

used MAKER2 [28] to add UTR to the final GLEAN

gene predictions. Out of a total of 15,314 OGSv3.2

genes, UTR were added to 7,514 genes (49%).

Many split and merged gene models were noted when

comparing the 32 GLEAN sets, including OGSv3.2, to the

conservative RefSeq gene set (Additional file 2). Since it is

difficult to computationally resolve disagreements among

gene sets, the OGSv3.2 genes in question are provided as a

separate track on the BeeBase Amel_4.5 genome browser

[31]. Web Apollo [32] annotation tools allow registered

BeeBase users to modify gene models, and can be used to

manually correct split or merged genes [33].

To address the question of whether the increased gene

number was due to splitting genes, we looked at the

total number of coding nucleotides (nt) and the distri-

bution of coding sequence lengths in OGSv1.0 and

OGSv3.2. The ranges in coding sequence lengths were

24-53,649 and 75-70,263 nt for OGSv1.0 and OGSv3.2,

respectively. Note that the gene prediction parameters

Figure 2 GC content of genic regions and overall genome

assemblies. For each gene, the GC content (percent G + C
nucleotides) of genomic regions containing the gene was
determined as described in methods. The cumulative distributions of
GC content for overall genome assemblies (thin red line for Amel 4.5
and thin black line for Amel_2.0) show that the Amel_4.5 assembly
has a higher fraction of low GC content regions than does the
Amel_2.0 assembly (note the thin red line is to the left of the thin
black line below about 28% GC). The cumulative distributions of GC
content for the regions containing genes (thick red line for all
OGSv3.2, thick green line for Previously known genes, thick blue line
for Type I New genes and thick pink line for Type II new genes)
show that regions containing genes are lower in GC content than
the overall genome. This trend applies for the complete set of
OGSv3.2 genes, as well as the three subsets. The distribution for
Type I New genes lies to the left of the other distributions, showing
that Type I New genes are located in lower GC content regions than
the other gene subsets. The distribution for Type II new genes is to
the right of the distributions for the other gene subsets, showing
that the Type II New genes are located in higher GC
content regions.
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did not allow coding sequences less than 75 nt for

OGSv3.2, but a minimum coding sequence parameter

was not applied in the generation of OGSv1.0; however

there were only 6 OGSv1.0 genes less than 75 nt. The

OGSv3.2 gene with the largest coding sequence over-

lapped a single RefSeq gene prediction (XM_623650.3),

and was found to be homologous to genes predicted to

code for titin. The total number of coding nucleotides

increased from 16,484,776 in OGSv1.0 to 19,342,383 in

OGSv3.2. The increase in coding nucleotides by only

2,857,607 (17.3%) compared to a 50.8% increase in the

number of genes suggested that new genes were shorter

and possibly a result of splitting OGSv1.0 gene models.

However, the distribution of coding sequence length in

the two gene sets suggested that splitting genes was not

the major source of the increased gene number (Figure 3).

Although OGSv3.2 possessed a large number of short

coding sequences (< ~1.5 kb) compared to OGSv1.0, the

larger genes did not appear to be missing. Furthermore,

analyzing overlapping gene alignments (described below),

showed that 4,735 of the OGSv3.2 genes did not overlap

with genes in OGSv1.0, and thus were not likely to be a

result of splitting OGSv1.0 genes.

Biological evidence for the new official gene set

In assessing the gene set, we define biological evidence

to include biological sequence alignments used in gene

prediction pipelines (transcript, peptide, protein homo-

log) as well as matches to InterPro domains and align-

ment to other bee genomes. We define biological gene

evidence as all of the datasets considered as biological

evidence, except alignment to other bee genomes, since

we did not use information about genes or expression

for the other bee genomes. Some form of biological gene

evidence supported the majority (14,084, 92%) of the

OGSv3.2 genes. An additional 754 (4.9%) OGSv3.2 genes

aligned to either the Apis florea or Bombus terrestris

genome for a total of 14,836 (96.9%) of the OGSv3.2

genes with biological support. Requiring that transcripts

be spliced reduces the number of supported genes to

13,264 (86.8%) or 14,661 (95.7%) if alignment of the

gene to another bee genome is considered as support.

Identification and characterization of New genes

Identifying new genes due to improved assembly or

improved gene prediction

In order to compare the old and new OGS (OGSv1.0

and OGSv3.2), we mapped OGSv3.2 coding sequences

to the Amel_2.0 assembly because it was the assembly

used to predict OGSv1.0 genes [1], which were later

mapped to Amel_4.0. We chose to use Amel_2.0 in this

step, because generation of Amel_4.0 and intermediate

assemblies had involved rearranging and splitting scaf-

folds and incorporating unscaffolded contigs using an

updated genetic map [1]. We wished to minimize map-

ping errors in our comparison of gene sets by using

Amel_2.0 to determine which OGSv3.2 genes corres-

pond to OGSv1.0 genes.

We performed the mapping twice using different

alignment criteria, stringent (95% identity and 80% align-

ment coverage) and relaxed (95% identity and 50% align-

ment coverage). We will report results only for the

stringent criteria (Table 5) unless otherwise specified,

but have provided the relaxed mapping results in Table

S2 in Additional file 1. On the basis of mapping to

Amel_2.0 and overlap between the OGSv3.2 coding se-

quence alignments with OGSv1.0 gene models, we di-

vided the 15,314 OGSv3.2 genes into three sub-sets

(Table 5). Any OGSv3.2 gene that did not align to the

Amel_2.0 assembly we deemed a “Type I New” gene.

Any OGSv3.2 gene that aligned to the Amel_2.0 assem-

bly, but whose coordinates did not overlap an OGSv1.0

gene by a single coding base pair on the same strand, we

deemed a “Type II New” gene. Finally, any OGSv3.2

Table 4 Comparison of OGSv1.0 and OGSv3.2

OGSv1.0 OGSv3.2

Number of genes 10,157 15,314

Number of genes within mapped scaffolds (% of total no. of genes) 5,973 (58.8%) 13,285 (86.8%)

Number of genes within un-mapped scaffolds (% of total no. of genes) 4,184 (41.2%) 2,029 (13.2%)

Average coding sequence length (bp) 1,623 1,266

Average number of coding exons 6.4 5.3

Number of single coding exon genes (% of total no. of genes) 795 (7.8%) 2,059 (13.4%)

Number of multi-coding exon genes (% of total no. of genes) 9,362 (92.2%) 13,255 (86.6%)

Number of genes with spliced EST coverage (% of total no. of genes) 3,039 (29.9%) 12,172 (79.5%)

Number of genes with un-spliced EST coverage (% of total no. of genes) 1,734 (17.1%) 11,019 (72%)

Number of genes that overlap a protein alignment (% of total no. of genes) 7,940 (78.2%) 6,778 (44.3%)
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gene that both aligned to the Amel_2.0 assembly and

overlapped an OGSv1.0 gene we deemed a “Previously

Known” gene.

Of the 5,157 additional genes in OGSv3.2 compared to

OGSv1.0, 4,735 genes did not overlap OGSv1.0 genes.

The other 422 additional genes in OGSv3.2 were due to

either splitting OGSv1.0 genes (discussed above) or to

the annotation of additional recent paralogs in OGSv3.2,

and are included in the total count of 10579 Previously

Known genes. The 4735 genes that did not overlap with

OGSv1.0 genes could be classified as 782 genes discov-

ered due to the additional sequencing and reassembly of

the bee genome for the Amel_4.5 assembly (Type I New

genes; Table 5) and 3,953 genes detected by improved

gene prediction, either through the use of new expressed

sequence and protein data or improved gene prediction

algorithms (Type II New genes; Table 5). We could map

405 additional Type I New genes to the Amel_2.0 as-

sembly if we required only 50% of the gene to be cov-

ered (Table S2 in Additional file 1), rather than the more

stringent 80% gene coverage reported in Table 5, con-

sistent with the Amel_2.0 assembly being less continu-

ous than Amel_4.5. This lack of contiguity and resulting

fragmentation of genes in the Amel_2.0 assembly likely

impaired the initial gene prediction efforts. While the

frequency of genes with some form of biological support

(transcript, peptide, protein homolog, InterPro domain,

and/or alignment to another bee genome) was highest

for Previously Known genes (99.7%), most of the Type I

New genes (93.8%) and Type II New genes (89.9%) were

also supported (Table 5).

Characteristics of new genes

We analyzed the data that went into the annotation of

OGSv3.2 and evaluated which pieces of evidence con-

tributed to the prediction of the genes to understand

why they were missed in OGSv1.0. To determine

whether genes that were not detected in OGSv1.0 have

common characteristics that make them more challen-

ging to predict, we compared them to the Previously

Known genes. We evaluated features such as tissue ex-

pression specificity, coding feature length, GC content,

overlap of protein homolog alignments on Amel_4.5 and

the proportion of non-canonical splice sites. Additional

file 3 provides sources of evidence for each OGSv3.2

gene.

The mean coding sequence lengths of Type I New

(1,172 bp) and Type II New genes (331 bp) were shorter

Figure 3 Distribution of coding sequence lengths in OGSv3.2 and OGSv1.0. Histogram plots showing the number of genes having “X”
coding sequence length in bins of 20 nt are illustrated using points instead of lines to allow visualization of both distributions. The range in
coding sequence length extends to 70,263 and 53,649 in OGSv3.2 (blue) and OGSv1.0 (red), respectively, but this figure zooms in to show lengths
only up to 5,000 nt. There were 386 and 344 genes with coding sequences longer than 5,000 nt in OGSv3.2 and OGSv1.0, respectively. This figure
shows that the increased number of genes in OGSv3.2 is largely due to increased numbers of short genes. The number of larger genes is not
decreased, so gene splitting is not likely a major source of additional genes.
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Table 5 New and previously known OGSv3.2 genes

All
OGSv3.2

Type I new
genes

Type II new
genes

Previously
known genes

Number of genes (% of total OGSv3.2 genes) 15,314
(100%)

782 (5.1%) 3,953 (25.8%) 10,579 (69.1%)

Scaffold analysis Number of genes within mapped scaffolds (% of no. of gene type) 13,285
(86.8%)

544 (69.6%) 3,199 (80.9%) 9,542 (90.2%)

Number of genes within un-mapped scaffolds (% of no. of gene type) 2,029
(13.2%)

238 (30.4%) 754 (19.1%) 1,037 (9.8%)

CDS analysis Average CDS length 1,266 1,172 330 1,622

Average no. CDS Exons 5.3 5.6 2.1 6.5

Number of single CDS exon genes (% of no. of gene type) 2,059
(13.4%)

101 (12.9%) 1,239 (31.3%) 719 (6.8%)

Number of multi-CDS exon genes (% of no. of gene type) 13,255
(86.6%)

681 (87.1%) 2,714 (68.7%) 9,860 (93.2%)

Intron analysis Number of introns (% of total OGSv3.2 introns) 66,212
(100%)

3,585 (5.4%) 4,333 (6.5%) 58,294 (88%)

Number of introns validated by EST intron coordinates (% of introns of gene type) 54,514
(82.3%)

2,573 (71.8%) 1,930 (44.5%) 50,011 (85.8%)

Peptide analysis Number of genes with a peptide match (% of no. of gene type) 3,631
(23.7%)

132 (16.9%) 82 (2.1%) 3,417 (32.3%)

Protein analysis No. of genes with overlap to at least one protein alignment (% of no. of gene type) 6,778
(44.3%)

270 (34.5%) 186 (4.7%) 6,322 (59.8%)

No. of genes with overlap to a Dmel protein alignment (% of no. of gene type) 1,205
(7.9%)

38 (4.9%) 13 (0.3%) 1,154 (10.9%)

Total spliced and un-spliced expressed
sequence support

No. of genes with overlap to at least one transcript alignment from any of the ten libraries
(% of no. of gene type)

13,517
(88.3%)

704 (90.0%) 2,771 (70.1%) 10,042 (94.9%)

Spliced expressed sequence analysis No. of genes with overlap to at least one spliced transcript alignment from each of the ten
libraries (% of no. of gene type)

1,062
(6.9%)

32 (4.1%) 15 (0.4%) 1,015 (9.6%)

No. of genes with overlap to at least one spliced transcript alignment from any of the ten
libraries (% of no. of gene type)

12,172
(79.5%)

622 (79.5%) 2,110 (53.4%) 9,440 (89.2%)

No. of genes without overlap to any spliced transcript alignments in any of the ten libraries
(% of no. of gene type)

3,142
(20.5%)

160 (20.5%) 1,843 (46.6%) 1,139 (10.8%)

Genes broadly expressed across four tissues (% of no. of gene type) 2,326
(15.2%)

60 (7.7%) 95 (2.4%) 2,171 (20.5%)

Genes narrowly expressed in only a single tissue (% of no. of gene type) 3,346
(21.8%)

234 (29.9%) 1,139 (28.8%) 1,973 (18.7%)

No. of genes without overlap to any spliced transcript alignments in any of the four tissues
(% of no. of gene type)

3,632
(23.7%)

192 (24.6%) 1,985 (50.2%) 1,455 (13.8%)
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Table 5 New and previously known OGSv3.2 genes (Continued)

Analysis of alignments to other bee
genomes

No. of genes that align to Aflo_1.0 (% of no. of gene type) 13,491
(88.1%)

566 (72.4%) 2,584 (65.4%) 10,341 (97.8%)

No. of genes that align to Bter_1.0 (% of no. of gene type) 12,262
(80.1%)

527 (67.4%) 1,566 (39.6%) 10,169 (96.1%)

Evidence-supported genes No. of genes with overlap to at least one form of biological evidence (% of no. of gene type) 14,084
(92.0%)

713 (91.2%) 2,930 (74.1%) 10,441 (98.7%)

No. of genes that align to Aflo_1.0 and/or Bter_1.0 and/or overlap at least one form of
biological evidence (% of no. of gene type)

14,836
(96.9%)

734 (93.9%) 3,555 (89.9%) 10,547 (99.7%)

GC analysis Number of genes on GC compositional domains >10 kb (% of OGSv3.2 total) 15,224
(99.4%)

777 (5.1%) 3,923 (25.8%) 10,524 (69.1%)

Avg. GC content of compositional domain gene resides in 29.60% 26.40% 32.00% 28.90%

ENC analysis Effective number of codons 44.95 41.97 45.69 44.9

Genes were mapped to Amel_2.0 assembly with stringent mapping criteria of 80% gene coverage and 95% identity. Biological evidence includes transcript overlap (spliced or un-spliced), peptide hit, protein homolog

alignment overlap, or InterPro domain presence.
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than that of Previously Known genes (1,623 bp) (P = 2.3 ×

10-12 and P < 2.2 × 10-16 respectively) (Table 5). This dif-

ference may be due to a higher fraction of single coding

exon genes among new genes. Thirteen percent of Type I

New genes and 31% of Type II New genes contained one

coding exon, while only 6.8% of Previously Known genes

contained one coding exon (P < 2.805 × 10-10 and P < 2.2 ×

10-16 for Type I and Type II genes, respectively) (Table 5).

The number of canonical versus non-canonical splice sites

was not significantly different between the Previously

Known and Type II New genes (Table S3 in Additional

file 1).

Type I New genes were found to reside in GC com-

positional domains with mean 26.4% GC, significantly

lower than that of Previously Known genes (28.9%)

(P = 2.188 × 10-13), supporting improvement in the as-

sembly of the high-AT-content regions. On the other

hand, Type II New genes were found in GC compos-

itional domains with a mean GC content of 32.0%,

higher than that of than Previously Known genes

(P < 2.2 × 10-16), but still slightly lower than the mean

GC content of the genome (32.7%)

The effective number of codons is an estimate of the

deviation from equality of synonymous codon usage of

all codons of a gene, and ranges from 20 (extreme bias

where only one codon is used for each amino acid) to 61

(no bias, all synonymous codons are used equally) [34].

Type I New genes had a significantly lower mean effect-

ive number of codons than Previously Known genes,

41.97 vs. 44.90 respectively (P = 2.26 × 10-12) (Table 5).

This is consistent with the idea that the more extreme

the deviation from equal proportions of G + C and A + T

nucleotides in coding sequences, the lower the potential

diversity of synonymous codons. Consistent with their

locations in less extreme GC compositional domains,

Type II New genes had a significantly higher mean ENC

than the Previously Known genes, 45.69 vs. 44.90 re-

spectively (P = 3.923 × 10-05) (Table 5).

Expression evidence for new genes

The majority of OGSv3.2 genes were supported by tran-

script evidence. When combined, the spliced and un-

spliced transcript alignments overlapped 13,517 (88.3%)

of OGSv3.2 genes. An analysis of OGSv3.2 gene cover-

age by transcript dataset (Table S4 in Additional file 1)

showed that the fraction of genes represented in a tran-

script dataset ranged from 28.3% (both larvae and testes)

to 79.2% (forager brain) (Table S4 in Additional file 1).

Both Type I New (79.5%, 622) and Type II New (53.4%,

2110) genes were less likely to overlap a spliced tran-

script alignment than Previously Known genes (89.2%,

9,440) (P = 3.298 × 10-16 and P < 2.2 × 10-16, respectively)

(Table 5).

Compared to Previously Known genes both Type I

New and Type II New genes were more likely to be nar-

rowly expressed or overlap transcript alignments from

only one tissue (P = 2.136 × 10-14 and P < 2.2 × 10-16,, re-

spectively) 18.7% of Previously Known, 29.9% of Type I

New and 28.8% of Type II New were narrowly expressed

(Table 5). Conversely, Previously Known genes (20.5%,

2,171) were more likely to be broadly expressed or over-

lap transcript alignments from all tissues than either

Type I New or Type II New genes (P < 2.2 × 10-16 for

both tests). 20.5% of Previously Known, 7.7% of Type I

New and 2.4% of Type II New genes overlapped tran-

script alignments from all tissues. However, the fractions

of narrowly expressed (18.7%) and broadly expressed

(20.5%) genes were similar to each other for Previously

Known genes.

Homolog alignment evidence for new genes

Results suggested that the use of dipteran proteins as

the main source of protein homolog evidence for

OGSv1.0 may have been a contributing factor to an in-

complete gene set; 44.3% of the OGSv3.2 genes over-

lapped at least one protein homolog alignment, but only

7.9% overlapped an alignment of a D. melanogaster pro-

tein (Table 5). Differences among gene sets further sup-

ports the limited value of Dipteran proteins as a

primary source of homolog evidence for A. mellifera

gene prediction. Both Type I New and Type II New

genes were less likely than Previously Known genes to

overlap a D. melanogaster homolog alignment (P =

1.394 × 10-07 and P < 2.2 × 10-16, respectively). The ef-

fect was more drastic for Type II New genes; only 0.3%

of Type II New genes overlapped a D. melanogaster

homolog alignment, while the proportions were 4.9%

and 10.9% for Type I New and Previously Known genes,

respectively.

Both Type I New and Type II New genes were less

likely than Previously Known genes to overlap any

homolog alignment from another sequenced genome

(P < 2.2 × 10-16 for both tests), but the difference was

more extreme for Type II New genes, potentially imply-

ing that a greater number of the Type II New genes are

specific to either A. mellifera, bees, or Hymenoptera

than the Previously Known genes (Table 5). 59.8% of

Previously Known genes overlapped a homolog align-

ment, while only 34.5% and 4.7% of Type I and Type II

new genes, respectively, overlapped a homolog alignment

(Table 5).

Genome alignment evidence for new genes

Over 80% of the OGSv3.2 genes aligned to both the

Aflo_1.0 and Bter_1.0 genome assemblies (Table 5).

A notable difference between Type II New genes and the

other gene sets was the proportion of genes that were
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supported by genome conservation, but not other sources

of evidence. Of the 3,555 Type II New genes supported

by any evidence, 17.5% were not supported by other

sources. On the other hand, only 2.9% of supported Type

I New genes and 1% of supported Previously Known

genes were supported by only genome conservation.

The remaining 20% of the OGSv3.2 genes have the

potential to be Apis-specific (8% of genes that align to

Aflo_1.0, but not Bter_1.0) or A. mellifera specific (12% of

OGSv3.2 genes that do not align to Aflo_1.0) (Table 5).

Peptide analysis

Use of peptide evidence

Peptide data were used in four ways. First, peptide data

were used in gene prediction by AUGUSTUS, the only

program used in this study that accepts this source of

gene evidence. Second, peptides were compared to all

consensus gene prediction sets to identify the set with

the highest representation of peptides (described above;

Additional file 2). Third, peptide support was used in

characterizing Previously Known, Type I and Type II

New genes. Fourth, venom peptides were used to manu-

ally annotate venom genes associated with the sting of

the honey bee.

Gene set comparison with all peptides

Peptide sequences aligned to a greater number of Previ-

ously Known genes than to Type I or Type II New genes

(P < 2.2 × 10-16 for both tests). Peptides aligned to 32%

of the Previously Known genes, but to only 17% of Type

I and 2% of Type II New genes (Table 5 and Additional

file 3).

Venom peptide analysis

Despite the lower proportion of new genes compared to

Previously Known genes with peptide matches, analysis

of venom peptides (a subset of the peptide data) showed

that the Amel_4.5 assembly provides a significant contri-

bution to venom proteome research. 705 unique venom

peptides provided biological evidence for 102 genes

(described in [35]). Searching the venom mass spectra

against OGSv1.0 and OGSv3.2 showed that the improved

assembly allowed detection of 21 additional peptides sup-

porting 9 new venom protein identifications in OGSv3.2

(Additional file 4). Additional tryptic peptides were dis-

covered for 7 venom proteins as a result of improved

gene predictions (Additional file 4).

Manual annotation of genes supported by the venom pep-

tides (Additional file 5) using Apollo [36] showed that most

honey bee venom genes are fully (76.5%) or partially (19.6%)

covered by transcriptome evidence. The putative biological

functions of these genes are described elsewhere [35]. We

discovered that one of the annotated genes (GB40695) codes

for tertiapin. While the tertiapin peptide was already found

in bee venom [37], no genomic or transcriptomic evidence

had been described, an issue which is now solved as the

genome improvement project supplies both a gene predic-

tion (GB40695, NCBI Gene ID 100576769) and EST evi-

dence (Genbank:HP466647.1). The gene is positioned on

linkage group 12, next to the apamin and mast cell de-

granulating peptide venom genes. The three genes are

tandemly arranged which suggest their origin by gene du-

plication via unequal crossing over, and may also point to

a joint control of transcription [38].

Orthology assessment

Analysis of two different A. mellifera gene sets in com-

parison to genes from other insects allowed us to investi-

gate the impact of the new genome and gene annotations

on the numbers of A. mellifera genes in near-universal

orthologous groups. Although true gene losses can and

do occur, these near-universal insect orthologous groups

highlight possible missed gene annotations in each

species.

Numbers of orthologs were counted for each of the two

sets, V2 (similar to OGSv1.0, described in Methods) and

OGSv3.2. Figure 4 and Table S5 in Additional file 1 show

the near-universal orthologs missing in each genome. The

pea aphid (Acyrthosiphon pisum) was found to be miss-

ing more orthologous groups than the other insects. The

A. mellifera V2 annotation was average for the genomes

analyzed (missing 263 orthologs), but the OGSv3.2 anno-

tation was much more complete, missing fewer orthologs

(112) than the other genomes. Thus, the new gene set

OGSv3.2 reduced the total number of potentially missing

orthologs in A. mellifera by 57%, demonstrating the annota-

tion improvement that recovered more “universal” insect

orthologs than the previous one did.

Predicted gene functions

Gene ontology analysis

Gene Ontology analysis (Additional file 6) showed enrich-

ment of some specific functions in new genes. Type I New

genes were enriched for the biological processes “apop-

tosis” (corrected e-score = .0016), “neurotransmitter re-

lease” (corrected e-score = .0025), and “secondary active

organic cation transmembrane transporter” (corrected

e-score < .0001). The detection of these Type I New genes

due to new assembly data is likely due to their location in

low GC content regions, which were underrepresented in

the older assembly; this is in agreement with the lower

mean GC content of GC compositional domains contain-

ing Type I New genes. Type II new genes were enriched

for the molecular function “nuclease activity” (corrected

e-score = .011). Rapidly evolving and single exon genes are

more difficult to annotate automatically, so it is perhaps
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not surprising that we found significant differences in

some activities.

InterPro analysis

Comparison of InterPro protein domains found in

OGSv3.2 and OGSv1.0 proteins showed that 269 of the

InterPro domains present in OGSv3.2 were not present

in OGSv1.0 (Additional file 7). There were also signifi-

cant differences in the fraction of genes with the

domains IPR004117 (Olfactory receptor, Drosophila,

p < .02) and IPR001888 (Transposase, type 1; p < .01).

There were 141 and 92 genes with olfactory receptor do-

mains in OGSv3.2 and OGSv1.0, respectively. Olfactory

receptor genes contain a single olfactory receptor do-

main, so the domain count corresponds to the gene

count. The additional olfactory receptor genes were

found among both the Type I and Type II New genes.

The family of olfactory receptor genes is expanded in

hymenopteran insects, with rapidly diverging family

members that are often arranged in tandem arrays

[20,21,39]. Many of the 166 known A. mellifera olfactory

receptor genes were identified by manual annotation of

the previous assembly, because they were not found in

OGSv1.0 [20,21,39]. Improved computational prediction

of olfactory receptors in the new assembly was likely due

to increased assembly continuity which would improve

identification of tandemly repeated genes, and new

sources of biological sequence alignment evidence (e.g.

transcript and protein homolog sequences) which im-

prove identification of rapidly diverging genes.

There were 18 and 3 genes with transposase type 1

domains in OGSv3.2 and OGSv1.0, respectively. Thir-

teen of the additional transposase type 1domains were in

Type 1 New genes. Transposases are associated with

transposable elements, which are a class of interspersed

repeats. Since the new assembly information filled in

gaps, and gaps in de novo assemblies are found where

the assembly process fails to find an unambiguous path

(e.g. repetitive loci), we were not surprised to identify

InterPro domains associated with repetitive sequences

among the Type I New genes. Predicted genes with

matches to transposable element domains are often re-

moved from gene sets. We further investigated OGSv3.2

for presence of interspersed repeats, and decided not to

remove the small number of genes associated with trans-

posable element domains, because evidence suggested

that some were real host genes (see Genome-wide repeat

analysis).

Pediculus

humanus

Acyrthosiphon

pisum

Nasonia

vitripennis

Apis

mellifera

Apis

mellifera

Linepithema

humile

Pogonomyrmex

barbatus

Tribolium

castaneum

Danaus

plexippus

Anopheles

gambiae

Drosophila

melanogaster

V3.2

V2 Single-copy in all but 1

Single-copy in all but 2

Present in all but 1
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Number of Orthologous Groups

Figure 4 Insect orthologs in two A. mellifera gene sets (V2 and OGSv3.2). For each species, counts of near-universal orthologous groups that
are missing an ortholog in that species, or in that species and one other species, are shown. Total counts are divided into groups with only
single-copy orthologs and those with gene duplications, further divided into those with only one missing species and those with two
missing species.
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Genome-wide repeat analysis

Processing the Amel_4.5 assembly with the REPET pipe-

line yielded 2,401 de novo predicted repetitive elements,

of which 1,045 were validated by annotation of at least

one complete copy. In total 9.46% (22.13 Mb) of the gen-

ome appears to be repetitive (Table 6). Non-interspersed re-

peats (SSR, low complexity, satellite) accounted for 4.05%

(9.49 Mb), whereas interspersed repeats represented 5.07%

(12.69 Mb) of the Amel_4.5 assembly. The latter estimate

for transposable elements is similar to a previous estimate

of 3% [1], whereby only Mariner and R2 elements were re-

ported. Thus the honey bee remains a species with an un-

usually low amount of repetitive DNA.

Most of the groups of retrotransposable elements

were detected in the genome of the honey bee. In com-

parison to many other organisms, the most striking dif-

ference is the extremely low diversity and abundance of

these elements. LTR retrotransposons accounted for

only 0.02% of the genome (49.6 kb) and included exam-

ples from only one Copia and a putative, unclassified

element. Only fragments of elements from the BelPao

and Gypsy superfamily were found. The DIRS group

was represented by two incomplete elements and

accounted for 0.01% of the genome (12.5 kb). LINEs

accounted for only 0.04% of the genome (83.1 kb), and

were represented by only two R2 elements, one I (nim-

bus) element, and a few fragments, potentially belonging

to I (R1) and Jockey (CR1). Of the SINE elements de-

tected, 14 could not be classified and five had similar-

ities to SINEs of the 5S type, all representing 0.03% of

the genome (70 kb). Together with another unclassified

element, all class I retroelements summed up to only

224 kb (0.09%) of the genome, among the lowest in the

animal kingdom. TRIMs (terminal repeat retrotranspo-

sons in miniature) [40] and LARDs (large retrotrans-

poson derivatives) [41] are derivatives of retroelements

and were detected in larger number occupying 9.57 Mb

(4.09%) of the genome (Table 6).

Class II DNA transposons were more frequent and

accounted for 0.57% of the genome (1.34 Mb). The vast

majority of the elements were TIR (terminal inverted re-

peat) transposons of the Mariner superfamily (0.49%,

1.15 Mb). Otherwise only two elements of the PiggyBac

superfamily (0.04%, 88 kb) and five unclassified TIR ele-

ments could be detected. Other types of DNA transpo-

sons, Crypton, Maverick and Helitron could not be

found. The DNA transposon derivatives, MITES (mini-

ature inverted transposable elements), were found only

once and accounted for less than 0.01% of the genome

(3.8 kb) (Table 6).

Besides the well-classified sequences, many repetitive

elements could not be assigned to a superfamily or even

class. The latter includes a larger number of elements

(0.65%, 1.52 Mb), which could represent novel types,

but need further investigation. We separately annotated

and excluded from the transposable element counts ele-

ments that could not be categorized and elements with-

out typical transposable element features that contained

profiles from protein coding genes. Both together com-

prise 2.96% (6.93 Mb) of the genome (Table 6).

The detected elements of the R2 and the majority of

those of the Mariner type belonged to or were very similar

to previously described elements from A. mellifera or other

insects (RepBase v17.01, [42]). A few other Mariner and the

PiggyBac elements showed similarities to elements known

from distant animal species. This indicates a potential hori-

zontal gene transfer as previously suggested [43].

Most of the elements appeared to be fragmented and

incomplete. Although some contained sequences of typ-

ical transposable element protein domains, they seemed

to be inactive due to stop codons and frameshift muta-

tions. We detected only four retrotransposons and 27

DNA transposons with RT (reverse transcriptase) or

Tase (transposase) domains, respectively. None of the

retrotransposons appeared to possess an active ORF

containing an entire RT domain, so we classified them

as inactive. Among the DNA transposons, six of the

Mariners appeared to be complete and two were poten-

tially active. Five additional Mariner elements possessed

an intact ORF spanning at least parts of a Tase domain,

so they might have limited activity. The higher abun-

dance and higher number of chimeric inserts of Mari-

ners (Table 6) suggests that transposons were more

recently active than retrotransposons.

Repeats associated with the official gene set

Since gene annotation had been performed on an assembly

that was masked for repeats early in the project, prior to

the availability of results from the genome-wide repeat ana-

lysis, we expected some OGS genes to overlap newly-

detected repeats due to incomplete masking. Coding se-

quences of 1,234 genes overlapped interspersed repeats de-

tected by REPET. These genes were further investigated for

characteristics that would support their annotation as host

genes, including whether the gene was Previously Known,

had multiple coding exons, overlapped a spliced transcript

alignment, and had InterPro domain matches (Additional

file 8). Of these 1,234 REPET-overlapping genes, 739 were

classified as Previously Known, 185 as Type I New genes,

and 310 as Type II New genes. 1,040 of the REPET-

overlapping genes had multiple exons and 972 overlapped

spliced transcript alignments.

Inspecting InterPro results to identify protein domains

known to be associated with transposable elements, but

not host genes, resulted in the following list of domains:

DDE superfamily endonuclease; Integrase, catalytic core;

Reverse transcriptase, RNA-dependent DNA polymerase;

Retrotransposon, Pao; Ribonuclease H domain; Ribonuclease
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Table 6 Repetitive elements in the Apis mellifera genome

Type of element No. elements
(no. chimeric/nested insert)a

No. Ffagments
(no. full length copies)b

Genome
coverage (bp)

% of genome
(234.087 Mb)

Ac Bc Cc Dc Ec

Repetitive DNA 22,134,229 9.46

NON-INTERSPERSED REPEATS 94,86,745 4.05

SSR 29,697 1,441,651 0.62

Low complexity 31,728 8,001,104 3.42

Satellite 5 (0) 75 (6) 43,990 0.02 0 na 0 0 0

INTERSPERSED REPEATS 881 (65) 28,004 (1102) 12,647,484 5.40 25 7 40 2 6

Class I - Retrotransposons 758 (13) 21,244 (903) 9,790,204 4.18 4 1 4 0 0

LTR retrotransposons 2 (9) 42 (4) 49,549 0.02 1 1 1 0 0

Copia 1 (3) 29 (3) 43,892 0.02 0 1 1 0 0

Gypsy 0 (2) 0 (0) 0 0.00 0 0 0 0 0

Bel-Pao 0 (4) 0 (0) 0 0.00 0 0 0 0 0

Unclassified LTR retrotransposons 1 (0) 13 (1) 5,657 0.00 1 0 0 0 0

DIRS retrotransposons 2 (0) 9 (3) 12,472 0.01 0 0 2 0 0

LINE (non-LTR) Retrotransposons 3 (4) 140 (3) 83,103 0.04 2 0 1 0 0

R2 (NeSL, R2, R4, CRE) 2 (1) 112 (2) 72,107 0.03 2 0 0 0 0

Jockey (Rex, Jockey, Cr1, Kiri, L2, crack, Daphne) 0 (1) 0 (0) 0 0.00 0 0 0 0 0

I (R1, I, Nimb, outcast, Tad, Loa) 1 (1) 28 (1) 10,996 0.00 0 0 1 0 0

Unclassified LINE 0 (1) 0 (0) 0 0.00 0 0 0 0 0

SINE 19 (0) 222 (29) 69,938 0.03 0 0 0 0 0

SS-Sine 5 (0) 31 (7) 22,660 0.01 0 na 0 0 0

Unclassified SINE 14 (0) 191 (22) 47,278 0.02 0 na 0 0 0

Unclassified retrotransposons 1 (0) 2 (1) 8,526 0.00 0 na 0 0 0

LARD 301 (0) 16,406 (348) 7,256,932 3.10 1 0 0 0 0

TRIM 430 (0) 4,423 (515) 2,309,684 0.99 0 0 0 0 0

Class II - DNA transposons 51 (52) 3,209 (93) 1,339,131 0.57 7 6 27 2 5

TIR 50 (46) 3,200 (89) 1,335,380 0.57 7 6 27 2 5

Tc1/Mariner 43 (40) 2,636 (80) 1,147,521 0.49 5 6 25 2 5

PiggyBac 2 (6) 184 (2) 87,963 0.04 2 0 2 0 0

Unclassified TIR DNA transposons 5 (0) 380 (7) 99,896 0.04 0 na 0 0 0

Unclassified DNA-transposons 0 (6) 0 (0) 0 0.00 0 0 0 0 0

MITE 1 (0) 9 (4) 3,751 0.00 0 na 0 0 0

Unclassified, putative elements 72 (0) 3,551 (106) 1,518,149 0.65 14 na 9 0 1
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Table 6 Repetitive elements in the Apis mellifera genome (Continued)

Other DNA elements (not repetitive DNA) 158 (0) 13,760 (250) 6,934,063 2.96 17 0 0 0 0

Not categorized 6 (0) 946 (11) 1,233,884 0.53 0 na 0 0 0

Potential host gened 152 (0) 12,814 (239) 5,700,179 2.44 17 na 0 0 0

For each group, the number of elements (putative families), the number of element fragments or copies in the genome, the cumulative length, the proportion of the genome and other features (elements containing

chimeric or nested inserts of other elements (A), elements that appear to be complete with all typical structural and coding parts present even if stop codons or frameshifts are present (B), elements with a RT or Tase

domain detected (C), potentially active elements that contain an intact ORF with all the typical domains although these can lack terminal repeats (D), elements with an intact ORF for the RT domain or parts of the

Tase domain that could thus be partly active (E) are shown. The elements that could not be categorized or contained features of A. mellifera coding regions are shown at the bottom, these are probably not

transposable elements.
aThe numbers of chimeric/nested elements within elements of other categories are not included in the total numbers of elements.
bThe software uses alignments to identify the longest fragment, which it deems as full-length. The number of full-length copies is also included in the total number of fragments.
cAdditional Columns:

A. No. elements containing inserts

B. No. complete elements

C. No. elements with RT or Tase domains

D. No. potentially active elements

E. No. potentially partially active elements
dPotential host genes were predicted by software using DNA characteristics, not by overlap analysis with gene predictions. An example of a potential host gene element is a coding sequence for a repeated protein

domain or motif.
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H-like domain; Transposase, Tc1-like; Transposase, type 1;

Transposase, Synechocystis PCC 6803. Of the 760 REPET-

overlapping genes that had InterPro matches, only 35

matched one of these transposable element domains. Some

protein domains, such as zinc fingers, peptidases and heli-

cases, are similar between host genes and transposable ele-

ments, so cannot be used to classify genes as transposable

elements. Among the genes that matched non-transposable

element domains were some known to be members of large

gene families, such as olfactory receptors, and genes with re-

petitive domains, such as ankyrin repeat-containing domains.

We were not surprised that these would be included in a set

of de novo detected repeats.

Of the 35 genes with transposable element domain

matches, 13 had other domains suggesting they could be

host genes, and 28 overlapped spliced transcript align-

ments. Only four genes with either transposable element

or unknown/uncharacterized domain family matches

lacked evidence of being a host gene. That is these four

genes had a single coding exon, lacked spliced transcript

overlap and had no other InterPro domain match. We

chose not to remove from the OGS genes that overlapped

repeats detected by REPET or genes that matched Inter-

Pro transposable element domains, because of evidence

supporting a large number of them as host genes, and

the possibility that transposable elements may have

contributed to the evolution of some host genes (e.g.

reviewed in [44]).

Discussion
In the approximately seven years that have elapsed be-

tween generation of OGSv1.0 and OGSv3.2, new se-

quence was added to the assembly; new sequencing

technologies, genome assembly methods and gene pre-

diction methods were applied; and new sources of gene

prediction evidence became available. Several lines of evi-

dence indicate that the new assembly is more complete.

These include improved continuity of scaffolds, increased

coverage of low GC content regions of the genome, iden-

tification of 782 new genes that do not align to the older

assembly, and increased number of detectable repetitive

elements. The upgraded assembly allowed us to conduct

a comprehensive analysis of repetitive elements in the

genome, create an improved gene set and confirm previ-

ous findings related to GC composition. It also allowed

us to confirm that low amounts of transposable elements

and repetitive DNA are bona fide features of the honey

bee genome, and not artifacts of incomplete assembly

and annotation.

Transposable elements can be a major factor in genome

and gene evolution. Previous analyses found a low number

of transposons and retrotransposons in the assembled

genome compared to other sequenced insect genomes [1],

but researchers questioned whether additional elements

were present in unassembled portions of the genome.

The upgraded assembly allowed us to better characterize

repetitive elements in the genome. Despite a more com-

prehensive repetitive element annotation, the genomic

coverage of transposable elements was extremely low,

most striking for the retrotransposons, in agreement with

the previous analyses. The most apparent difference be-

tween A. mellifera and other hymenopteran insects is the

relative lack of retrotransposable elements; genomes of

other bee, wasp, ant and insect species all contain higher

proportions [22,23,45]. Although comparisons across

studies are difficult due to methodological differences, our

results show that the total fraction of repetitive DNA in

the A. mellifera genome (9.46%) is lower than that of most

other sequenced hymenoptera genomes. Some of the

ant genomes have more than twice as much repetitive

DNA (Atta cephalotes, 25%, Linepithema humile 23.5%,

Acromyrmex echinator 27%, Harpegnathos saltator 27%,

Solenopsis invicta >23%) and the genome of the parasitoid

wasp, Nasonia vitripennis, contains more than three times

the amount (>30%) [18-20,22-24]. The ants Camponotus

floridanus and Pogonomyrmex barbatus are more similar

to A. mellifera, with estimates of 15% and 9%, respectively

[18,21]. However, those analyses did not include LARD,

TRIM and MITE elements, which make up a considerable

fraction of the repetitive elements in A. mellifera (4.1% of

the genome; 43.3% of the repetitive DNA). Without these

derivative elements, A. mellifera would possess well less

than 1% transposable elements. This extraordinarily low

proportion of mobile elements suggests that evolutionary

processes molding the A. mellifera genome differ from

processes working on other hymenopteran genomes, even

though many of the species listed above are also insects

with eusocial lifestyles.

Combined with new biological evidence for gene predic-

tions, the upgraded assembly allowed for significant im-

provement to the A. mellifera gene set, with >50% more

genes. The identification of 269 additional InterPro do-

mains and the 57% reduction in number of missing univer-

sal insect orthologs indicate a more comprehensive catalog

of protein functions. The presence of nine new venom pro-

tein genes, the detection of new tryptic peptides in existing

venom protein genes, and the 53% increase in the number

of computationally identified olfactory receptor domains

are examples of more comprehensive annotation of specific

gene families important to bee biology enabled by the im-

proved genome.

The previously described A. mellifera genome charac-

teristics of low and heterogeneous GC content [1] remain

after the addition of new sequence to the assembly. Ex-

pansion and improvement of the low GC content regions

in the new Amel_4.5 assembly was supported by the

identification of Type I New genes, which were found in
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regions of lower GC content than that of Previously

Known genes. While it is impossible to know whether

new gene prediction evidence (transcript, peptide,

homolog, genome conservation) affected the ability to

predict the Type I New genes, the identification of

Type II New genes in regions with slightly higher GC

content than Previously Known genes suggested that

the addition of new gene evidence had a greater impact

on gene prediction in higher GC regions. Although any

single evidence type was less frequent in the Type II

New genes, the total number of Type II New genes

supported by the evidence (3,555) was higher than that

of Type I New genes (734). Higher recombination rates

[46] and rates of molecular evolution in high GC con-

tent regions of the A. mellifera genome [47] may have

contributed to sequence divergence that made Type II

New genes difficult to detect when generating

OGSv1.0. High GC content regions have been shown

to be enriched in genes associated with behavioral

traits [47], suggesting that some Type II New genes

may be associated with important bee-specific traits.

Despite the higher mean GC content of regions contain-

ing Type II New genes, the strong bias for A. mellifera

genes to reside in low GC content regions relative to the

genome [1] remains. Among the wide range of insect ge-

nomes we have examined thus far, only the hymenop-

terans A. mellifera and H. saltator show a strong bias for

genes to occur in compositional domains with low GC

content, although S. invicta, P. barbatus, L. humile and

N. vitripennis show a slight bias [48]. The biological mean-

ing of this, and whether this is related to the lifestyles of

these hymenopterans, is still unclear.

Comparisons of the old and new gene sets suggested

that short and single coding exon genes, with spatially-

or temporally-restricted expression patterns and low

protein homology remain difficult genes to predict. Com-

pared with Previously Known genes, Type II New genes

were more rarely and narrowly expressed, had shorter

coding sequences, were more likely to be single coding

exon genes, and were less likely to have detectable homo-

logs. The characteristics of Type II New genes were

consistent with those of new genes identified in the mod-

Encode effort to reannotate the developmental transcrip-

tome of Drosophila melanogaster [49]. Their “new

transcribed regions” (NTRs) in Drosophila also had low

expression levels with temporally restricted patterns. In

addition more than half of these NTRs were single-exon

genes, and the multi-exon NTRs were shorter and less

conserved than previously annotated genes [49]. While

difficulty in computational identification of functional

small open-reading frames (smORFs; <100 codons) has

led to their low representation in genome annotations,

increasing evidence supports functional smORFs in eu-

karyotes [50,51].

Efficient and effective annotation methods for non-

model organisms has become critical in a time when ini-

tiatives such as i5K (5000 insect genomes [52]) and

G10K (10,000 animal genomes [53]) motivate scientists

to investigate genomes of diverse organisms, many of

which will be evolutionarily distant from existing model

organisms. Our results suggest that investigators wishing

to comprehensively annotate protein-coding genes in ge-

nomes of non-model organisms should invest in tran-

scriptome sequencing that is both deep and broad,

similar to findings in re-annotation of the green anole

lizard (Anolis carolinensis) genome [54]. Type II New

genes were more likely to be narrowly expressed, so

transcript evidence from only a single tissue may have

missed a high proportion of the expressed genes. Tran-

scriptome sequence from multiple tissues, life stages and

conditions may be more useful than protein homolog

evidence; the number of Type II New genes with tran-

script evidence exceeded the number of those with pro-

tein homolog evidence, despite the relatively close

evolutionary distance between A. mellifera and some of

the reference species, which included six species within

the order Hymenoptera. Even with sampling many tran-

scriptomes, rarely expressed genes can be missed, and

genomic sequence from closely related species can aid

gene prediction by leveraging nucleotide sequence con-

servation; our analysis showed that 752 of the OGSv3.2

genes were supported by genome conservation as their

only source of biological evidence. As more genomes are

sequenced and annotated, gene prediction should be-

come easier. When expression and homolog evidence

are lacking, it is important to train ab initio prediction

algorithms using genes representing the true distribution

of gene features such as coding sequence and exon

length, codon usage and GC content. Our analysis of

Type I and Type II New genes suggests that the bimodal

distribution of genome GC content in A. mellifera re-

sults in at least two classes of genes distinguished by dif-

ferent distributions of GC content and codon usage.

Ab initio gene predictors may benefit by training with

coding sequences from each class separately.

Conclusions
We have shown that next generation sequencing followed

by de novo annotation can substantially improve an unfin-

ished first generation genome sequence assembly and an-

notation. The upgraded assembly and annotation allowed

us to confirm that the honey bee genome contains a

typical number of genes relative to other insects. The

improved honey bee gene set will be invaluable to the

honey bee research community in efforts to elucidate the

mechanisms behind fundamental biological processes,

such as evolution of insect eusociality, as well as agricul-

tural issues, such as pollinator health and immunity.
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Furthermore, understanding the reasons genes were not

predicted in OGSv1.0 will lead to more effective gene pre-

diction strategies for new genome projects.

Methods
Genome sequencing and assembly

We improved the published genome assembly of 2.7

million Sanger reads of the honey bee genome, version

Amel_4.0 [1] by incorporating ABI Solid sequence and

Roche 454 paired-end sequence to superscaffold and

gap-fill the Amel_4.0 assembly using the Atlas-Link

software [55]. The new sequence data as well as the

existing sequence data were used to link the genome

contigs from Amel_4.0 into more contiguous scaffolds.

Adjacent contig sequences within these scaffolds were

assessed and overlapping and redundant contigs were

merged.

We used the paired-end reads for superscaffolding

and intra-scaffold gap filling. The Amel_4.5 assembly

contains new scaffolds formed from merging existing

scaffolds and filling some intra-scaffold gaps with other

scaffolds or contigs.

The newly formed scaffolds were anchored to the same

linkage group that their member contigs were anchored to

in Amel_4.0. Ten of the new scaffolds could be anchored

to two different linkage groups so a manual break was

inserted to split these scaffolds for consistent anchoring.

New data for gene prediction

RNAseq data

We sequenced samples from a number of tissues using

the 454 Titanium technology. Tissues from ovary, testes,

mixed antennae (worker, drones, and queens), larvae,

mixed embryos, abdomen, and a combined library from

brain and ovary samples were sequenced.

The testes cDNA library was prepared with the Clontech

“full-length” amplification protocol. A gel cut of 400 to

800 bp fragments was combined with nebulized products

from the larger cDNA fragments to generate fragments of

an optimum sized sequencing library for the 454 Titanium

platform. Other libraries were prepared by isolating total

RNA using Trizol and RNeasy columns followed by mRNA

isolation using the Qiagen kit and cDNA genration using

the Invitrogen Superscript kit #11917-010 with random

primers. A gel cut of 400 to 800 bp fragments was com-

bined with nebulized products from the larger cDNA

fragments to generate fragments of an optimum sized

sequencing library for the 454 Titanium platform.

Peptide data

Honey Bee peptide atlas We performed liquid chro-

matography-tandem mass spectrometric (LC-MS/MS)

analysis of bee protein extracts from 253 samples,

representing three castes, larvae and virtually all adult

honey bee tissues in both sexes and of different disease

states. Tissue collection and interpretation of the LC-

MS/MS data has largely been described elsewhere [56-61]

and is available for public download from the Honey Bee

Peptide Atlas [62]. The raw data from these studies,

amounting to more than 8 × 106 tandem mass spectra,

were searched against a six-frame translation (3,596,047

forward sequences, with reversed complemented se-

quences and common contaminants concatenated) of

Amel_4.5 using Mascot (v2.3, Matrix Science). This exer-

cise identified 30,622 unique peptide sequences at a false

discovery rate of 1%, of which 5,834 peptides mapped to

regions of the genome, where genes were previously un-

known in Amel_4.0. As these results were based solely on

a basic translation of raw genomic sequence, these pep-

tides represent only tryptic peptides wholly within a single

exon.

Venom peptides We analyzed the honey bee worker

venom proteome by integrating a combinatorial peptide

ligand library (CPLL) with liquid chromatography/Fourier

transform ion cyclotron resonance (LC-FTICR) MS/MS.

The collection and interpretation of the MS/MS data are

described elsewhere [35]. Gene prediction datasets and a

six-frame translation of Amel_4.5 were searched using

Mascot (v2.3, Matrix Science). Setting the significance

threshold at p < 0.01 led to a peptide false discovery rate

of 5.23% for the search of the AUGUSTUS AU9 gene set,

2.51% for the AUGUSTUS AU11 search and 3.77% for

the Amel_4.5 NCBI RefSeq search. MS/MS data generated

from the CPLL flow-through fractions, and the elution

fractions separated by Tris-glycine- or Tris-tricine-SDS-

PAGE gels were separately searched against the genome

six-frame translation resulting in false discovery rates of

respectively 1.56%, 3.75% and 3.44%.

Annotation methods

Summary of gene prediction sets

Genes were predicted using a variety of methods including

the NCBI RefSeq and Gnomon pipelines, AUGUSTUS,

SGP2, GeneID, Fgenesh++ and N-SCAN. Unless stated

otherwise below, gene prediction pipelines used the masked

assembly available from NCBI [63], which was generated

using RepeatMasker [64]. New transcriptome data was used

either directly as evidence or in the generation of training

sets for the predictors. The Augustus analysis also incorpo-

rated available peptide data, and the N-SCAN analysis lev-

eraged nucleotide sequence conservation between the A.

mellifera genome and the other bee genomes. SGP2 lever-

aged conservation between the A. mellifera genome and

the previously published Nasonia genomes [23] based on

translated alignments.
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NCBI RefSeq and Gnomon

The Amel_4.5 assembly was annotated with NCBI's

eukaryotic genome annotation pipeline (version 3.0), as de-

scribed at [65]. The NCBI pipeline uses a repeat-masked as-

sembly generated by WindowsMasker [66] and transcript

and protein alignment evidence supplemented with ab

initio prediction to annotate coding and non-coding tran-

scripts and proteins. The evidence used for this annotation

run included alignments of:

1) 9 million RNAseq reads from 454 sequencing

(described above), which were treated as ESTs in the

pipeline.

2) All available honey bee ESTs and mRNAs.

3) Proteins from the FlyBase annotation of Drosophila

melanogaster (release 5.30).

4) Proteins from the RefSeq annotation of human.

5) Proteins annotated on insect mRNAs.

6) Proteins from the annotations of the ant genomes,

Harpegnathos saltator and Camponotus floridanus

available in GenBank.

The final RefSeq annotation included models that were

completely or partially supported by alignment evidence.

The pipeline had some provisions to predict models that

were disrupted by frameshifts or stop codons in the assem-

bly, some of which were assigned protein accessions (XP_

prefixes) and named with the prefix ‘LOW QUALITY

PROTEIN’, whereas others were conservatively classified as

pseudogenes and not assigned protein accessions. The

RefSeq annotation is available from NCBI's genomes FTP

site as NCBI build 5.1 [63].

AUGUSTUS

AUGUSTUS can be used as an ab initio gene prediction

tool, but can also integrate extrinsic evidence from vari-

ous sources [67].

Generation of training gene structures and training

AUGUSTUS

We used Scipio [68] to generate gene structures on the

Amel_4.5 assembly with a protein set from a previous A.

mellifera annotation (Amel_pre_release2_OGS_pep.fa).

We used these gene structures to optimize AUGUSTUS

parameters for A. mellifera, and constructed UTR models

from 78,274 A. mellifera ESTs from GenBank, which were

used to train AUGUSTUS UTR parameters. We then pre-

dicted genes in the Amel_4.5 assembly. Individual RNA-

seq reads from 454 sequencing (described above) were

mapped against predicted transcripts, and fully covered

transcripts (2,151) were selected as training genes for opti-

mizing a final AUGUSTUS parameter set.

Gene prediction with AUGUSTUS

We generated three gene sets using AUGUSTUS: a gene

set with extrinsic evidence from ESTs and RNAseq data

(AU9), a particularly inclusive gene set that contained

many alternative transcripts for peptide identification

(AU11), and a gene set with extrinsic evidence from

ESTs, RNAseq data and peptide data (AU12) (Table S6

in Additional file 1).

We created extrinsic evidence “hints” for protein cod-

ing genes and transcripts from the A. mellifera ESTs and

from 454 transcriptome libraries. Genes were predicted

with AUGUSTUS, allowing the prediction of alternative

transcripts and allowing the splice site AT-AC (in

addition to GT-AG and GC-AG) in case of supporting ex-

trinsic evidence. The resulting gene set was named AU9.

AU9 genes were predicted using the following options:

2augustus –species = honeybee1 –UTR= on –print_utr =

on –hintsfile = all_but_no_peptide.hints –extrinsicCfgFile =

extrinsic.M.RM.E.W.cfg –exonnames=on –codingseq= on –

alternatives-from-evidence= true –allow_hinted_splicesites =

atac genome.fa

For the purpose of peptide identification, alternative

transcripts were extensively sampled with AUGUSTUS,

resulting in the gene set AU11. AU11 genes were

predicted issuing the following command: augustus –

UTR= on –print_utr = on –hintsfile = all_but_no_peptide.

hints –extrinsicCfgFile = extrinsic.M.RM.E.W.cfg –exon-

names = on –codingseq = on –species = honeybee1 –alter-

natives-from-evidence = true –alternatives-from-sampling =

true –sample = 100 –minexonintronprob = 0.1 –minmeanex-

onintronprob = 0.4 –maxtracks = -1 –allow_hinted_splice-

sites = atac genome.fa

We generated hints from peptide sequences by map-

ping the peptides against the protein set of AU11 and

against a six-frame translation of the genome using

BLAT [69] in a non-redundant way (i.e. parts of the six-

frame translation that were included in the protein set

AU11 and redundant parts of the AU11 protein set that

were removed). A final AUGUSTUS gene set AU12 was

generated using all available extrinsic evidence and the fol-

lowing options: augustus –species = honeybee1 –UTR=

on –print_utr = on –hintsfile = all.hints –extrinsicCfgFile =

extrinsic.M.RM.E.W.cfg –exonnames = on –codingseq= on –

alternatives-from-evidence = true –allow_hinted_splicesites =

atac genome.fa.

Fgenesh++

Predictions were made using FGENESH 3.1.1 [70,71]

using the HBEE matrix with parameters specific for

A. mellifera. We used Illumina transcriptome data

from A. mellifera forager and nurse brains available

from the SRA (SRP003528), which were a total of

181.8 M spots, 18.3G bases of 100 bp single end reads

generated on an Illumina Genome Analyzer II in 2010.
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We mapped the Illumina RNASeq using the ReadsMap

program [72], which provided intron position informa-

tion to Fgenesh for building sample-specific gene

models. Predictions were made based on individuals

used in Illumina RNASeq libraries (five nurses and five

foragers), and then were combined into forager and

nurse group predictions, and redundant genes (those

having coinciding coding sequences) were removed

from each set. Finally, the forager and nurse predic-

tions were combined into a final set of predictions, and

redundant genes (those having coinciding coding se-

quences) were removed from this combined set to pro-

duce the final Fgenesh++ prediction set.

GeneID

GeneID is an ab initio gene prediction program used to

find potential protein-coding genes in anonymous gen-

omic sequences. The training of GeneID to obtain a par-

ameter file for A. mellifera was based on the method

described to obtain a Drosophila melanogaster GeneID

parameter file [73]. Training was performed in a “semi-

automated” manner by employing a recently developed

GeneID training tool that computes position weight

matrices (PWMs) or Markov models of order 1 for

splice sites and start codons, and derives a model of cod-

ing DNA, which, in this case, is a Markov model of order

5. Furthermore, once a preliminary species-specific matrix

is obtained it is further optimized by adjusting two in-

ternal matrix parameters: -the cutoff of the scores of the

predicted exons (eWF) and the ratio of signal to coding

statistics information to be used (oWF).

The initial A. mellifera training set was comprised of the

2,151 gene models used to train AUGUSTUS (described

above). Of these gene models 80% (1,720) were used to

train GeneID while the remaining 20% (431) were set aside

to test the accuracy of the newly developed matrix. The

1,720 A. mellifera protein-coding gene models included

7,913 canonical donor splice sites/7,939 canonical acceptor

sites and 1,720 start codons. The start codons were used to

compute PWMs while the donor and acceptors were used

to derive Markov matrices of order 1. Given the large num-

ber of sequences we also had enough coding (2,338,800)

and non-coding (5,561,154) nucleotides to derive a Markov

of order 5 for the coding potential. We tested accuracy of

the GeneID A. mellifera parameter file on an artificial con-

tig consisting of the 431 evaluation-set concatenated gene

models with 800 nucleotides of intervening sequence be-

tween each of the genes (Table S7 in Additional file 1). We

then used the GeneID parameter files to predict genes on

an assembly consisting of Amel_4.5 sixteen chromosomes

and 5,304 "unplaced" scaffolds files that had repeat se-

quences masked using Repeatmasker. GeneID predicted

24,554 protein-coding genes.

SGP2

SGP2 is a syntenic gene prediction tool that combines ab

initio gene prediction (GeneID) with TBLASTX searches

between two or more genome sequences to provide both

sensitive and specific gene predictions, and it tends to im-

prove GeneID’s performance, especially by reducing the

number of false-positive predictions. SGP2 requires one

or more reference genomes to which the target genome

(in this case A. mellifera) is compared. We decided to use

the genomes of Nasonia vitripennis, N. giraulti and N.

longicornis [23] as references to develop our A. mellifera

parameter file for SGP2 because the genus Nasonia is at

an appropriate evolutionary distance from Apis such that

mostly the coding regions of the genes, not the introns or

intergenic regions, are significantly conserved between

these two genomes.

Obtaining the SGP2 A. mellifera-specific parameter

file was based on the methodology described by Parra

et al [74] used to obtain a human SGP2 parameter

file using mouse homology evidence. The starting

point to obtain a parameter file for SGP2 was the

previously described GeneID A. mellifera matrix. The

GeneID-derived SGP2 parameter file was optimized

on an artificial contig comprising the same concatenated

1,720 sequences used to train GeneID, with 800 nucleo-

tides between each of the gene models. We optimized the

SGP2 matrix by modifying not only the eWF internal par-

ameter (as previously for the GeneID parameter file) but

also two SGP2-specific internal parameters (“NO_SCORE”

and “HSP_factor”). The “NO_SCORE” parameter provides

a penalty for no overlap between TBLASTX-derived HSPs

(High-Scoring Pairs) and GeneID ab initio predictions in

the same region whereas the “HSP_factor” parameter re-

duces the score assigned to the HSPs in order to maximize

the prediction accuracy. We evaluated the newly devel-

oped SGP2 parameter file on the same artificial contig

consisting of the 431 concatenated gene models with 800

nucleotides of intervening sequence between each of the

genes used to evaluate the GeneID bee matrix (Table 1).

We then used the SGP2 parameter file2 to predict genes

on the same assembly file used for GeneID, and generated

20,179 predictions.

N-SCAN

We used the N-SCAN package [75] to leverage conser-

vation between the A. mellifera genome and genomes of

two other bee species, A. florea (Aflo_1.0 ) and Bombus

terrestris (Bter_1.0). We first masked Amel_4.5 for sim-

ple sequence repeats using RepeatMasker [64]. We ran

LASTZ [76] using default parameters with Amel_4.5 as

the target genome, and either Apis florea (Aflo_1.0) or

Bombus terrestris (Bter_1.0) as the informant genome.

We then used iParameterEstimation to generate both an
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Amel_4.5-Aflo_1.0 specific parameter set as well as an

Amel_4.5-Bter_1.0 parameter set using the training set

described above for AUGUSTUS gene prediction, in-

cluding UTR features. Finally, we ran N-SCAN using

each of the A. mellilfera specific parameter sets with the

respective LASTZ informant alignments to produce two

N-SCAN prediction sets, one set based on Aflo_1.0 as

the informant genome and the other set based on

Bter_1.0 as the informant genome.

Combining gene sets

Input data for combined gene sets

We used MAKER2 and GLEAN to generate combined

gene sets. The MAKER2 and GLEAN analyses used the

same set of input data. Both analyses combined the

gene predictions described above (NCBI, AUGUSTUS,

Fgenesh++ with RNAseq, N-SCAN using A. florea as an

informant genome, GeneID and SGP2) with transcript and

protein homolog alignments. Transcript data included the

new 454 transcriptome data described above, A. mellifera

ESTs from GenBank and Illumina nurse and forager reads

downloaded from the SRA (SRP003528, described above).

We aligned Illumina reads to Amel_4.5 in two groups,

nurse and forager, using Tophat version 1.3.1 with the

option "–butterfly-search" for more sensitive splice junc-

tion detection, and then generated predicted transcripts

for each set of pooled data using Cufflinks version 1.0.3

with default parameters. The 454 reads were assembled

into contigs de novo using Newbler (2.3-PreRelease-9/

14/2009) with the cDNA option. We aligned 454 contigs

and ESTs to Amel_4.5 using MAKER2 v2.15, which uses

WU-BLAST [77] and Exonerate est2genome [78], with

minimum 80% alignment coverage and 95% identity.

Protein homolog alignments included SwissProt [79]

Metazoa homologs, Drosophila melanogaster (fruit fly;

r5.31) [80], Nasonia vitripennis (parasitoid wasp;

OGSv1.2) [23] and the ants: Atta cephalotes (OGSv1.1)

[22], Camponotus floridanus (OGSv3.3) [18], Harpeg-

nathos saltator (OGSv3.3) [18], Linepithema humile

(OGSv1.1) [20], Pogonomyrmex barbatus (OGSv1.1)

[21]). Proteins in the SwissProt dataset annotated as

transposable elements were removed prior to alignment.

We aligned protein sequences to Amel_4.5 using Exone-

rate protein2genome with a minimum 60% percent

identity and 60% alignment coverage.

MAKER2

To create a combined gene set, we ran MAKER2 v2.15

using parameters min_contig = 1000 and pred_gff, which

allowed us to provide as input the gene prediction sets

and alignments described above, instead of generating

new evidence tracks within MAKER2.

GLEAN

We ran GLEAN [17] 32 times to create consensus gene

sets using different combinations of the gene prediction

sets described above. All of the GLEAN runs included

the transcript and protein homolog alignments described

above, and required a minimum coding sequence length

of 75 nt.

Selecting the new official gene Set

We evaluated the 32 GLEAN sets based on several cri-

teria including overlap with a conservative evidence-

based set (RefSeq), transcript sequences, peptides and

the CEGMA conserved core set [30] (Additional file 2).

NCBI’s RefSeq pipeline has been considered reliable and

relatively conservative, so we performed overlap analyses

to determine how many of the RefSeq models were cap-

tured in the GLEAN consensus sets. We used FASTA

[81] to align GLEAN coding sequences with RefSeq cod-

ing sequences where a perfect alignment required 99%

identity over the entire lengths of both sequences. We

used FASTA to align peptides to GLEAN proteins, with

E-value and scoring matrix optimized for short exact

matches (E-value .01 and MD10 scoring matrix). We

parsed peptide alignments to count those with 100%

identity and 100% alignment coverage (Additional file 2).

In addition to alignments between GLEAN predictions

and RefSeq genes and peptides, we considered numbers

of gene models, total numbers of coding nucleotides,

average coding sequence lengths, and numbers of splits

and merges compared to RefSeq. We selected the

GLEAN31 set (Additional file 2) to be the official gene

set, OGSv3.2. It was the set generated using gene predic-

tions from NCBI Gnomon, AUGUSTUS, Fgenesh++,

N-SCAN using A. florea as an informant genome and

GeneID and SGP2 combined as a single set as well as the

transcript and protein homolog alignments.

Adding UTRs to OGSv3.2 gene models

Although we did not use MAKER2 to generate the offi-

cial gene set, we did use MAKER2 (v2.15) [28] to add

UTR to the GLEAN coding exons since GLEAN does

not produce annotations with UTR features. OGSv3.2

coding exons were input as “pred_gff” and transcriptome

evidence (including the 454 transcripts, Illumina contigs

and A. mellifera ESTs described above) was input as

“est”. MAKER2 aligned the EST evidence to Amel_4.5

using WU-BLAST and Exonerate est2genome then used

overlapping EST evidence to extend OGSv3.2 models to

include UTR features when possible. Because MAKER2

sometimes modified the coding exon coordinates, we

processed the MAKER2 output and retained UTRs only

when the coding exon structure was unchanged. Out of

a total of 15,314 OGSv3.2 genes, UTR were added to

7,514 genes (49%).
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Identifying and characterizing of new genes

Identifying of new and previously known OGSv3.2 genes

In order to compare the newest gene set (OGSv3.2) with

the first official gene set (OGSv1.0), we mapped OGSv3.2

coding sequences to Amel_2.0, which was the assembly on

which OGSv1.0 was generated [1]. First, we used Mega-

BLAST [82] to identify scaffold/gene matches with 95%

identity and E-value < 1 × 10-20. We then aligned coding se-

quences to matching scaffolds using GMAP [83], and

parsed the output to create two sets of splice-modeled

alignments, both requiring 95% identity. One set was based

on a relaxed coverage criterion, requiring that the align-

ment cover at least 50% of the coding sequence. The other

set was based on a stringent coverage criterion, requiring

that the alignment cover 80% of the coding sequence. Re-

sults of further analyses for the relaxed mapping set are

provided in the supplemental materials, but we discuss only

results for the stringent mapping.

On the basis of mapping OGSv3.2 to Amel_2.0 and

overlap between OGSv3.2 and OGSv1.0 gene models on

the Amel_2.0 assembly, we divided 15,314 OGSv3.2

genes into three sub-sets (Table 6). We deemed any

OGSv3.2 gene that did not align to the Amel_2.0 assem-

bly a “Type I New” gene. The additional sequencing and

reassembly of the genome for the Amel_4.5 assembly

likely allowed the detection of these genes. “Type II

New” genes were those that did align to the Amel_2.0

assembly, but whose coordinates did not overlap an

OGSv1.0 gene by a single coding base pair on the same

strand. Additional expressed sequence and protein

homolog evidence as well as improvements to gene pre-

diction algorithms likely contributed to the detection of

these genes. Finally, any OGSv3.2 gene that both aligned

to the Amel_2.0 assembly and overlapped an OGSv1.0

gene was deemed a “Previously Known” gene.

Coding sequence length analysis

The total length of the coding sequence was calculated

for each gene and the means for all genes and each gene

sub-set were calculated (Table 6). We tested the null hy-

potheses that the mean coding sequence lengths of Type

I and Type II New genes and Previously Known genes

were equal.

Splice site and single versus multiple coding exon

gene analysis

We assessed the genomic sequence of the two intronic base

pairs adjacent to each coding sequence exon-intron splice

site to determine whether they corresponded to the canon-

ical …]5’-GT/AG-3’[… splice site sequence. We considered

only splice sites supported by matching intron coordinates

of spliced transcript alignment evidence. We used chi-

square tests with one degree of freedom to compare the

frequencies of single coding exon genes and non-canonical

splice sites in Type I or Type II New genes with Previously

Known genes.

OGSv3.2 gene location relative to GC compositional

domains

We used IsoPlotter, a recursive segmentation algorithm

[84,85], to partition the A. mellifera genome into GC

compositionally homogeneous domains, contiguous re-

gions of the genome with similar GC content (percent

G + C nucleotides). We determined the GC content of

the GC compositional domain for each OGSv3.2 gene.

In cases where a gene spanned multiple GC compos-

itional domains, we calculated the average GC content

of the GC compositional domains, and weighted it ac-

cording to the fraction of the gene's length that occurs

in each GC compositional domain. We computed the

weighted percent GC based only on non-coding nucleo-

tides of the compositional domains, because we did not

wish to include effects of codon bias.

We compared the distribution of Type I and Type II

New genes with respect to GC content to that of Previ-

ously Known genes. IsoPlotter cannot segment scaffolds

less than 10 kb into compositional domains, so the 90

genes residing in these short scaffolds were not consid-

ered. We tested the null hypotheses that the means of

the weighted GC compositional domain contents for

genes in the Type I and Type II New gene sets were

equal to the mean of the Previously Known genes.

Effective number of codons analysis

Using the chips program within the EMBOSS package

[86], we calculated the effective number of codons sepa-

rately for each OGSv3.2 gene. We tested the null hypo-

theses that the mean effective number of codons values

for the Type I and Type II New genes were equal to the

mean of the Previously Known genes.

Tissue expression analysis

We determined the number of OGSv3.2 gene overlaps

to transcript alignments that were used in creating the

GLEAN consensus gene sets (454 reads, Illumina con-

tigs and A. mellifera ESTs from GenBank, described

above). We relied on splice signals to determine the di-

rectionality of a transcript read. We tallied spliced and

unspliced alignments separately, since we could be

confident when directionality of a spliced alignment

agreed with a gene prediction, but could not be confident

about unspliced alignments. For spliced transcript align-

ments, if the transcript was on the opposite strand from

the gene then it was discarded from further analysis. For

transcripts on the same strand or transcripts that were

un-spliced, in which case directionality could not be de-

termined, a coordinate overlap of at least one coding base

pair was required for a gene to count as overlapping with
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a transcript alignment. We counted the number of tran-

script data sets in which each OGSv3.2 gene was found

to have an overlapping alignment (Table 6.) We per-

formed chi-square tests with one degree of freedom to

compare the frequencies of spliced transcript overlap in

the Type I or Type II New gene sets with the Previously

Known gene set.

Of genes that overlapped spliced transcript align-

ments, we identified genes that were narrowly expressed

and genes that were broadly expressed on the basis of

overlap to the four single-tissue libraries (brain [com-

bined Illumina forager and nurse brain libraries] and

454 libraries of mixed antennae, ovary and testes). (For-

agers and nurses are worker honey bees that specialize

on collecting food and feeding brood, respectively.)

Genes were deemed narrowly expressed if they over-

lapped at least one transcript alignment in only one of

the four tissues and broadly expressed if they over-

lapped at least one transcript alignment from all four

tissues. We performed chi-square tests with one degree

of freedom to compare the frequencies of narrowly

expressed genes and broadly expressed genes in the

Type I or Type II New gene sets with the Previously

Known gene set.

Homolog analysis

We determined the number of protein alignments over-

lapping OGSv3.2 for protein data sets that were used in

creating the GLEAN consensus gene sets. We required

overlap of at least one coding base pair on the same

strand to deem a gene overlapping with a protein homo-

log alignment. We performed chi-square tests with one

degree of freedom to compare the frequency of the exis-

tence of overlaps to homolog alignments for Type I or

Type II New genes with that of Previously Known genes.

TBLASTN alignment of OGSv3.2 to A. florea and B. terrestris

genomes

We aligned OGSv3.2 protein sequences to the A. florea

(Aflo_1.0) and B. terrestris (Bter_1.0) genome assemblies

using TBLASTN [87] with an E-value criteria of 1 × 10-06.

We did not use information about predicted genes or ex-

pression in A. florea or B. terrestris.

Statistical methods to test for differences in means between

new and previously known genes

To test the null hypothesis that the mean of a particular

variable for Type I or Type II New genes was equal to

the mean of the Previously Known genes, we used both a

non-parametric Kolmogorov-Smirnov test and a Welch

t-test with the correction for non-homogeneity of vari-

ances. Testing the hypotheses in this way avoids assum-

ing these data were normally distributed or had equal

variances. To be conservative, we report the least signifi-

cant P-value for each test.

Using peptide data in development and analysis of gene

sets

We used the peptide data is described above to evaluate

the GLEAN sets and analyze Type I New, Type II New,

and Previously Known genes. We aligned the peptide se-

quences to predicted protein sequences with FASTA

[81] with a relaxed E-value of 0.1 and the MD10 scoring

matrix. These parameters were found to allow matches

to peptide sequences as short as 6 amino acids with

100% identity. Only alignments with 100% identity were

retained. We used chi-square tests with one degree of

freedom to compare the frequency of proteins that

aligned to peptide sequences in Type I or Type II New

genes with that of Previously Known genes.

The venom peptide data were used separately to evalu-

ate gene sets for improved identification of venom

genes. All significant and top ranking venom peptides

from the Mascot output, with an ion score ≥30 were

retained in the final peptide lists. Venom mass spectra

were searched against the OGSv3.2 and OGSv1.0 to

compare the contribution of both datasets to the identi-

fication of new venom genes. The false discovery rates of

both searches were set to 1%.

Venom peptide data were used to annotate venom

genes using the Apollo annotation tool [36], provided

for Amel_4.5 by the Hymenoptera Genome Database

[88].

Assessing orthology

The protein-coding gene annotations from the two A. mel-

lifera genome assemblies were compared with orthologs

from OrthoDB [89] from nine other insects. These included

Pediculus humanus (PhumU1.2, 10,772 genes), Acyrthosi-

phon pisum (ACYPI v2.1, 36,275), Nasonia vitripennis

(nvit2, 24,369), Linepithema humile (OGSv1.2, 16,048),

Pogonomyrmex barbatus (OGSv1.2, 17,100), Tribolium cas-

taneum (Tcas 3.0, 16,565), Danaus plexippus (OGS2,

15,329), Anopheles gambiae (AgamP3.6, 12,670), and Dros-

ophila melanagaster (r5.45, 13,927). For annotations on the

older A. mellifera genome assembly, we used the gene set

known to the community as “Amel_prerelease2” (abbrevi-

ated as V2), available from BeeBase. It was the gene set

resulting from mapping OGSv1.0 from assembly Amel_2.0

to assembly Amel_4.0, and included a small number of

manual annotations, with a total of 10,699 genes. Compar-

ing each Apis annotation (V2 and OGSv3.2) to the other

nine gene sets identified near-universal orthologous groups

with orthologs in all but one or all but two insects. For each

gene set, Figure 4 and Table S5 in Additional file 1 show

counts of near-universal insect orthologous groups that are

missing orthologs in different species. Total counts were
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partitioned into groups with only single-copy orthologs and

those with gene duplications, further divided into those

with only one missing species and those with two missing

species.

Predicting protein functions

GO analysis

We used FASTA [81] with an E-value threshold of 1 ×

10-6 to compute reciprocal alignments between OGSv3.2

proteins and a D. melanogaster protein set consisting of

the longest protein isoform of each gene (annotation

version r5.42). We identified reciprocal best hits (RBH)

and transferred Gene Ontology (GO) [90] annotations

from the D. melanogaster protein to the A. mellifera

protein for each RBH pair, using the GO annotation file

available at FlyBase [80]. We used GeneMerge [91] to

test for enrichment of GO terms in OGSv3.2 protein

datasets, testing for each of the three GO ontologies

(Molecular Function, Biological Process and Cellular

Component) separately. Several tests were performed

with either the entire set of Gene Ontology terms, the

generic GO slim set, or the GO slim set developed for

A. mellifera by Whitfield et al. [92]. Population and test

gene datasets for a particular GO ontology included only

OGSv3.2 genes with GO annotations for that ontology.

Population datasets consisted of all OGSv3.2 genes with

GO annotations. Test datasets were 1) all new genes

based on stringent mapping criteria, 2) Type I New

genes using stringent criteria, 3) Type II New genes

based on stringent mapping criteria.

InterPro analysis

We used InterProScan [93] to compare OGSv3.2 and

OGSv1.0 proteins with the following InterPro [29] protein

domain and motif databases: PFAM [94], TIGRFAMS [95],

SMART [96], PRODOM [97], PROSITE [98], PIRSF [99],

GENE3D [100], SUPERFAMILY [101], and PANTHER

[102]. The total numbers of proteins annotated with at least

one InterPro domain were 9,479 and 8,552 for OGSv3.2

and OGSv1.0, respectively. For each InterPro domain iden-

tified in the combined datasets, we determined the number

of proteins containing that domain within OGSv3.2 and

OGSv1.0. Then for each InterPro domain, we used 2 × 2

chi-square tests with Yates correction and one degree of

freedom to determine whether the frequencies of proteins

containing that domain differed between the OGSv3.2 and

OGSv1.0 InterPro-annotated sets (total 9,479 and 8,552

proteins, respectively).

Detecting genome-wide repetitive elements

We detected and annotated repetitive elements with the

REPET software package ([103], version 2.0) consisting

of two pipelines integrating a set of bioinformatics

programs. First, repeated sequences were detected by

similarity, using an all-by-all BLAST [104] search via

BLASTER [105]. LTR-retrotransposons were detected by

structural search with LTRharvest [106]. The similarity

matches were clustered with GROUPER [105], RECON

[107] and PILER [108], the structural matches were clus-

tered with NCBI BLASTclust [109]. From each cluster a

consensus sequence was generated by multiple align-

ment with Map. We analyzed the consensus sequences

for terminal repeats (TRsearch), tandem repeats (TRF),

open reading frames (dbORF.py, REPET) and poly-A

tails (polyAtail, REPET). We screened the consensuses

for matches to nucleotide and amino acid sequences

from known transposable elements (RepBase 17.01, [42])

using BLASTER [105], which runs tblastx and blastx

[87], and searched them for HMM profiles (Pfam data-

base 26.0, [94]) using HMMER3 [110]. Based on the de-

tected structural features and homologies, we classified

the consensuses using PASTEC according to Wicker

et al. [111]. We then removed redundancies identified

with BLASTER and MATCHER [105] as well as ele-

ments classified as simple sequence repeats (SSRs; >0.75

SSR coverage) or unclassified elements built from less

than 10 fragments.

We used the set of de novo detected repetitive ele-

ments to mine the genome in a second pipeline with

BLASTER (using NCBI BLAST, sensitivity 4, followed

by MATCHER), RepeatMasker (using CrossMatch, sen-

sitivity q, cutoff at 200) and CENSOR (using NCBI

BLAST). We removed false positive matches using an

empirical statistical filter. Satellite repeats were detected

with TRF [112], MREPS [113]and RepeatMasker [64]

and were then merged into a single set. We also

screened the genomic sequences for matching nucleotide

and amino acid sequences from known transposable ele-

ments (RepBase 17.01, [42]) with BLASTER. Finally we

removed TE doublons (loci annotated as multiple trans-

posable elements) and SSR annotations within trans-

posable element annotations, and performed a "long join

procedure" to connect distant fragments. Sequences

from the de novo repetitive element library, which were

found to have at least one perfect match in the genome

were then used to rerun the whole analysis.

To ensure compatibility and to avoid introducing a bias,

we refrained from a manual curation or clustering of the

de novo detected elements before mining the genome.

However, post hoc we manually analyzed all elements,

which were previously classified into class I retrotransposon

or class II DNA transposon elements or unclassified ele-

ments with detected coding element features (similarity to

known transposable elements) due to potential chimeric in-

sertion. At this stage we excluded derivative elements

(LARD, TRIM, MITE) from further detailed inspection un-

less carrying a class I or class II element. Some elements
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were classified “potential Hostgene” in the computational

analysis, based on characteristics of the DNA, not based on

overlap analysis with predicted genes. These “potential

Hostgene” elements, as well as unclassified elements

(“noCat”), were also excluded from manual analysis. We

performed manual inspection by checking for open-reading

frames (ORF) with the NCBI ORF Finder (NCBI), by

searching the NCBI Conserved Domain Database (CDD)

[114], by searching the most up to date online RepBase

database (accessed December 2012-February 2013) via

CENSOR [115]. We also performed phylogenetic analysis

for LINE RT domains with RTclass1 [116] in order to

achieve a detailed classification for each element, determine

its potential relation to a family of known elements, to

evaluate the completeness and to detect potential active ele-

ments. We defined an element to be complete, if it pos-

sessed the relevant coding parts with the element-typical

domains and the structural features (LTR, TIR). The poten-

tial activity was defined according to the region an intact

ORF, if present, covered. If an intact ORF seemed to cover

a complete region including the typical domains (e.g. GAG

as well as POL, Tase) then the element was considered to

be potentially active. If a Tase domain was covered by a

truncated ORF or the Tase itself appeared to be truncated

but was covered by an intact ORF, or if the RT domain was

covered by an active ORF but not the remaining element-

typical domains, then the element was considered to be

maybe potentially active. During the manual classification

to at least superfamily level, novel transposable element

types not covered by the system of Wicker et al. [111] were

also considered: Kolobok, Sola, Chapaev, Ginger, Academ,

Novosib and ISL2EU class II DNA transposons [117,118].

Simple sequence repeats and other low complexity re-

gions were extracted from the REPET pipeline database

and processed with a custom Perl script to calculate the

total coverage of these types of repetitive DNA by omit-

ting overlaps with transposable element or other repe-

titive element annotations.

Ethical approval

Experimental research followed appropriate guidelines for

the ethical treatment of research subjects. Human subject

and animal protocol approvals were not applicable.

Data availability

The 454 transcript read data are available in the Sequence

Read Archive (SRA) [119] at the NCBI (SRP003261,

SRP003260, SRP001899). The assembled 454 transcripts

(119,959) are in the Transcriptome Shotgun Assembly

(TSA) database, and available through NCBI BioProject

pages for PRJNA51481 and PRJNA51483 [120].

The accessions for the assembled 454 transcript data

are: HP542035 to HP552088 (testes), HP527956 to

HP542034 (mixed antennae), HP509343 to HP527955

(embryo), HP482918 to HP509342 (brain; ovary), HP473

811 to HP482917 (larvae), HP459439 to HP473810 (abdomen),

and HP552089 to HP579397 (ovary).

The SOLID genomic read data are available in the

SRA (SRX097020). The 454 genomic read data are also

available (SRX006752, SRX000071).

The Amel_4.5 assembly is available from NCBI under

the accession GCA_000002195.1.

The following resources are available at BeeBase [121],

a division of the Hymenoptera Genome Database [88]:

genome browsers with gene annotations and supporting

evidence alignments; BLAST databases with the Amel_4.5

scaffold assembly, OGSv3.2, all input gene prediction sets

and transcript contig assemblies; and a data download

page with fasta sequence files and gff for annotations.

Peptides and their tandem mass spectra are available from

the Apis mellifera PeptideAtlas [62].

Additional files

Additional file 1: Is a document containing Tables S1 through S7

and Figure S1. Table S1. provides details for genomic sequencing runs,
listed by SRA run number. Table S2. provides a comparison of New and
Previously Known OGSv3.2 genes based on relaxed mapping criteria.
Table S3. provides a comparison of frequencies of canonical and
non-canonical splice sites in New and Previously Known genes. Table S4.

provides the number of genes overlapping expressed sequence
alignments for different transcript libraries. Table S5, provides counts of
near-universal insect orthologous groups that are missing orthologs in
each species. Table S6. provides evidence and sampling options used
for the three AUGUSTUS gene sets AU9, AU11, and AU12. Table S7.

provides gene prediction accuracy of GeneID and SGP2 on an A. mellifera

artificial contig. Figure S1. shows the proportions of different
transposable element groups in the A. mellifera genome.

Additional file 2: Is a spreadsheet showing results of evaluation of

32 consensus gene sets generated with GLEAN.

Additional file 3: Is a spreadsheet showing sources of biological

evidence and other characteristics for each OGSv3.2 gene, and is

the data used in comparing Type I New, Type II New and Previously

Known genes.

Additional file 4: Is a spreadsheet showing new venom proteins

and known venom proteins with newly identified tryptic peptides

in OGSv3.2.

Additional file 5: Is a spreadsheet providing results of manually

annotating venom peptides.

Additional file 6: Is a spreadsheet providing reciprocal best hit

orthologs between A. mellifera and D. melanogaster and gene

ontology for D. melanogaster proteins.

Additional file 7: Is a spreadsheet providing counts of InterPro

domains in OGSv3.2 and OGSv1.0.

Additional file 8: Is a spreadsheet providing an analysis of 1234

OGSv3.2 genes that overlap interspersed repeats identified by

REPET.
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