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Abstract

Many discovery problems,e.g.,subgroup or association rule discovery, can naturally be cast asn-
best hypotheses problems where the goal is to find then hypotheses from a given hypothesis space
that score best according to a certain utility function. We present a sampling algorithm that solves
this problem by issuing a small number of database queries while guaranteeing precise bounds on
the confidence and quality of solutions. Known sampling approaches have treated single hypothesis
selection problems, assuming that the utility is the average (over the examples) of some function
— which is not the case for many frequently used utility functions. We show that our algorithm
works for all utilities that can be estimated with bounded error. We provide these error bounds
and resulting worst-case sample bounds for some of the most frequently used utilities, and prove
that there is no sampling algorithm for a popular class of utility functions that cannot be estimated
with bounded error. The algorithm is sequential in the sense that it starts to return (or discard)
hypotheses that already seem to be particularly good (or bad) after a few examples. Thus, the
algorithm is almost always faster than its worst-case bounds.

Keywords: Sampling, online learning, incremental learning, large databases.

1. Introduction

The general task of knowledge discovery in databases (KDD) is the “automatic extraction of novel,
useful, and valid knowledge from large sets of data” (Fayyad et al., 1996). An important aspect
of this task is thescalability, i.e., the ability to successfully perform discovery in ever-growing
datasets. Unfortunately, even with discovery algorithms optimized for very large datasets, for many
application problems it is infeasible to process all of the given data. Whenever more data is available
than can be processed in reasonable time, an obvious strategy is to use only a randomly drawn
sampleof the data. Clearly, if some part of the data is not looked at, it is impossible in general
to guarantee that the results produced by the discovery algorithm will be identical to the results
returned on the complete dataset. If the use of sampled datasets is to be more than a practitioner’s
“hack”, sampling must be combined with discovery algorithms in a fashion that allows us to give
the userguaranteesabout how much the results obtained using sampling differ from the optimal
(non-sampling based) results. The goal of a sampling discovery algorithm then is to guarantee this
quality using the minimum amount of examples (Toivonen, 1996).
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Known algorithms that do give rigorous guarantees on the quality of the returned solutions for
all possible problems usually require an impractically large amount of data. One approach to finding
practical algorithms is to process a fixed amount of data but determine the possible strength of the
quality guarantee dynamically, based on characteristics of the data; this is the idea of self-bounding
learning algorithms (Freund, 1998) and shell decomposition bounds (Haussler et al., 1996, Langford
and McAllester, 2000). Another approach (which we pursue) is to demand a certain fixed quality
and determine the required sample size dynamically based on characteristics of the data that have
already been seen; this idea has originally been referred to as sequential analysis (Dodge and Romig,
1929, Wald, 1947, Ghosh et al., 1997).

In the machine learning context, the idea of sequential sampling has been developed into the Ho-
effding race algorithm (Maron and Moore, 1994) which processes examples incrementally, updates
the empirical utility values simultaneously, and starts to output (or discard) hypotheses as soon
as it becomes very likely that some hypothesis is near-optimal (or very poor, respectively). The
incremental greedy learning algorithm PALO (Greiner, 1996) has been reported to require many
times fewer examples than the worst-case bounds suggest. In the context of knowledge discovery in
databases, too, sequential sampling algorithms can reduces the required amount of data significantly
(Haas and Swami, 1992, Domingo et al., 1999).

These existing sampling algorithms address discovery problems where the goal is to select from
a space of possible hypothesesH one of the elements with the maximal value of aninstance-
averagingquality function f , or all elements with anf -value above a user-given threshold (e.g.,
all association rules with sufficient support). With instance-averaging quality functions, the quality
of a hypothesish is the average across all instances in a datasetD of an instance quality function
finst.

Many discovery problems, however, cannot easily be cast in this framework. Firstly, it is often
more natural for a user to ask for then best solutions instead of the single best or all hypotheses
above a threshold – see,e.g.,Wrobel (1997). Secondly, many popular quality measures cannot be
expressed as an averaging quality function. This is the casee.g., for all functions that combine
generality and distributional properties of a hypothesis; generally, both generality and distributional
properties (such as accuracy) have to be considered for association rule and subgroup discovery
problems. The task of subgroup discovery (Kl¨osgen, 1995) is to find maximally general subsets of
database transactions within which the distribution of a focused feature differs maximally from the
default probability of that feature in the whole database. As an example, consider the problem of
finding groups of customers who are particularly likely (or unlikely) to buy a certain product.

In this paper, we present a general sampling algorithm for then-best hypotheses problem that
works for any utility functions that can be estimated with bounded error. To this end, in Section 2,
we first define then-best hypotheses problem more precisely and identify appropriate quality guar-
antees. Section 3 then presents the generic sequential sampling algorithm. In Section 4, we prove
that many of the popular utility functions that have been used in the area of knowledge discovery in
databases indeed can be estimated with bounded error, giving detailed bounds. In order to motivate
the instantiations of our sampling algorithm and put it into context, we first define some relevant
knowledge discovery tasks in Section 4. For one popular class of functions that cannot be used by
our algorithm, we prove that there cannot be a sampling algorithm at all. Our results thus also give
an indication as to which of the large numbers of popular utility functions are preferable with respect
to sampling. In Section 6, we evaluate our results and discuss their relation to previous work.
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2. Approximating n-Best Hypotheses Problems

In many cases, it is more natural for a user to ask for then best solutions instead of the single best
or all hypotheses above a threshold. Suchn-best hypotheses problems can be stated more precisely
as follows – adapted from Wrobel (1997), where that formulation is used for subgroup discovery:

Definition 1 (n-best hypotheses problem)Let D be a database of instances, H a set of possible
hypotheses, f: H×D→ IR≥0 a quality or utility function on H, and n,1≤ n < |H|, the number of
desired solutions. The n-best hypotheses problemis to find a set G⊆ H of size n such that

there is no h′ ∈H: h′ 6∈G and f(h′,D) > fmin, where fmin := minh∈G f (h,D).

Whenever we use sampling, the above optimality property cannot be guaranteed, so we must find
appropriate alternative guarantees. Since forn-best problems, the exact quality and rank of hy-
potheses are often not central to the user, it is sufficient to guarantee thatG indeed “approximately”
contains then best hypotheses. We can operationalize this by guaranteeing that, with high probabil-
ity, there will be no non-returned hypothesis that is “significantly” better than the worst hypothesis
in our solution. More precisely, we will use the following problem formulated along the lines of
PAC (probably approximately correct) learning:

Definition 2 (Approximate n-best hypotheses problem)Let D, H, f and n as in the preceding
definition. Then letδ, 0 < δ ≤ 1, be a user-specified confidence, andε ∈ IR+ a user-specified
maximal error. Theapproximaten-best hypotheses problemis to find a set G⊆H of size n such that

with confidence1−δ, there is no h′ ∈H: h′ 6∈G and f(h′,D) > fmin+ε, where fmin :=
minh∈G f (h,D).

In other words, we want to find a set ofn hypotheses such that, with high confidence, no other
hypothesis outperforms any one of them by more thanε, where f is an arbitrary performance mea-
sure.

In order to design an algorithm for this problem, we need to make certain assumptions about the
quality function f . Ideally, an algorithm should be capable of working (at least) with the kinds of
quality functions that have already proven themselves useful in practical applications. If the problem
is to classifydatabase items (i.e., to find a total function mapping database items to class labels),
accuracyis often used as the utility criterion. For the discovery ofassociation rules, by contrast,
one usually relies ongeneralityas the primary utility criterion (Agrawal et al., 1993). Finally, for
subgroup discovery, it is commonplace to combine both generality anddistributional unusualness,
resulting in relatively complex evaluation functions – see,e.g.,Klösgen (1996) for an overview.

In light of the large range of existing and possible future utility functions and in order to avoid
unduly restricting our algorithm, we will not make syntactic assumptions aboutf . In particular,
unlike Domingo et al. (1999), we will not assume thatf is a single probability nor that it is (a func-
tion of) an average of instance properties. Instead, we only assume that it is possible to determine
a confidence interval fthat bounds the possible difference between the true utility (on the whole
database) and estimated utility (on the sample) with a certain confidence. We expect the confidence
interval to narrow as the sample size grows. As we will show in Section 4 below, finding such con-
fidence intervals is straightforward for classification accuracy, and is also possible for all but one
of the popular utility functions from association rule and subgroup discovery. More precisely, we
define a confidence interval forf as follows.
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Definition 3 (Utility confidence interval) Let f be a utility function, let h∈H be a hypothesis. Let
f (h,D) denote the true quality of h on the entire dataset,f̂ (h,Qm) its estimated quality computed
based on a sample Qm⊆ D of size m. Then E: IN× IR→ IR is a utility confidence boundfor f iff
for anyδ, 0 < δ≤ 1,

PrS[| f̂ (h,Qm)− f (h,D)| ≤ E(m,δ)]≥ 1−δ (1)

Equation 1 says thatE(m,δ) provides a two-sided confidence interval onf̂ (h,Qm) with con-
fidenceδ. In other words, the probability of drawing a sampleQm (when drawingm transactions
independently and identically distributed fromD), such that the difference between true and esti-
mated utility of any hypothesis disagree byE(m,δ) or more (in either direction) lies belowδ. If, in
addition, for anyδ,0 < δ ≤ 1 and anyε there is a numberm such thatE(m,δ) ≤ ε we say that the
confidence intervalvanishes. In this case, we can shrink the confidence interval (at any confidence
level δ) to arbitrarily low nonzero values by using a sufficiently large sample. We sometimes write
the confidence interval for a specific hypothesish asEh(m,δ). Thus, we allow the confidence inter-
val to depend on characteristics ofh, such as the variance of one or more random variables that the
utility of h depends on.

We will discuss confidence intervals for different functions of interest in Section 4. Here, as a
simple example, let us only note that iff is simply a probability over the examples, then we can use
the Chernoff inequality to derive a confidence interval; whenf is the average (over the examples)
of some function with a bounded range, then the Hoeffding inequality implies a confidence interval.
Of course, we should also note that the trivial functionE(m,δ) := Λ is an error probability bound
function for anyf with lower bound of zero and upper bound ofΛ, but we will see that we can only
guarantee termination when the confidence interval vanishes as the sample size grows.

3. The GSS Sampling Algorithm

A general approach to designing a sampling algorithm is to use an appropriate error probability
bound to determine the required number of examples for a desired level of confidence and accu-
racy. When estimating a single probability, Chernoff bounds (Chernoff, 1952) that are used in PAC
theory (Kearns and Vazirani, 1994, Wolpert, 1995, Vapnik, 1996) and many other areas of statis-
tics and computer science can be used to determine appropriate sample bounds (Toivonen, 1996).
When such algorithms are implemented, the Chernoff bounds can be replaced by tighter normal or
t distribution tables.

Unfortunately, the straightforward extension of such approaches to selection or comparison
problems like then-best hypotheses problem leads to unreasonably large bounds: to avoid errors in
the worst case, we have to take very large samples to recognize small differences in utility, even if
the actual differences between hypotheses to be compared are very large. This problem is addressed
by sequentialsampling methods (Dodge and Romig, 1929, Wald, 1947) which have also been re-
ferred to asadaptivesampling methods (Domingo et al., 1998). The idea of sequential sampling is
that when the difference between two frequencies is very large after only a few examples, then we
can conclude that one of the probabilities is greater than the other with high confidence; we need
not wait for the sample size specified by the Chernoff bound, which we have to wait for when the
frequencies are similar. Sequential sampling methods have been reported to reduce the required
sample size by several orders of magnitude –e.g.,Greiner and Isukapalli (1996).

In our algorithm (Table 1), we combine sequential sampling with the popular “loop reversal”
technique found in many KDD algorithms. Instead of processing hypotheses one after another,
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and obtaining enough examples for each hypothesis to evaluate it sufficiently precisely, we keep
obtaining examples (step 3b) and apply these to all remaining hypotheses simultaneously (step
3c). This strategy allows the algorithm to be easily implemented on top of database systems (most
newer database systems are capable of drawing samples at random),andenables us to reach tighter
bounds. After the statistics of each remaining hypothesis have been updated, the algorithm checks
all remaining hypotheses and (step 3(e)i) outputs those for which it can be sufficiently certain that
the number of better hypotheses is no larger than the number of hypotheses still to be found (so they
can all become solutions), or (Step 3(e)ii) discards those hypotheses for which it can be sufficiently
certain that the number of better other hypotheses is at least the number of hypotheses still to be
found (so it can be sure the current hypothesis does not need to be in the solutions). When the
algorithm has gathered enough information to distinguish the good hypotheses that remain to be
found from the bad ones with sufficient probability, it exits in step 3.

Indeed it can be shown that this strategy leads to a total error probability less thanδ as required.

Table 1: Sequential sampling algorithm for then-best hypotheses problem

Algorithm Generic Sequential Sampling. Input: n (number of desired hypotheses withn< |H|),
ε and δ (approximation and confidence parameters).Output: n approximately best hypotheses
(with confidence 1−δ).

1. Let n1 = n (the number of hypotheses that we still need to find) andLet H1 = H (the set of
hypotheses that have, so far, neither been discarded nor accepted).Let Q0 = /0 (no sample
drawn yet).Let i = 1 (loop counter).

2. Let M be the smallest number such thatE(M, δ
2|H| )≤ ε

2.

3. Repeat until ni = 0 Or |Hi+1|= ni Or E(i, δ
2|Hi |)≤ ε

2

(a) Let Hi+1 = Hi, Let ni+1 = ni .

(b) Query a random item of the databaseqi . Let Qi = Qi−1∪{qi}.
(c) Update the empirical utilitŷf of the hypotheses inHi.

(d) Let H∗
i be theni hypotheses fromHi which maximize the empirical utilitŷf .

(e) For h∈Hi While ni > 0 And |Hi|> ni

i. If f̂ (h,Qi) ≥ Eh(i, δ
2M|Hi |) + max

hk∈Hi\H∗
i

{
f̂ (hk,Qi)+Ehk(i,

δ
2M|Hi |)

}
− ε And h ∈ H∗

i

(h appears good)Then Output hypothesish and thenDelete h from Hi+1 and
Decrementni+1. Let H∗

i be the new set of empirically best hypotheses.

ii. Else If f̂ (h,Qi)≤ min
hk∈H∗

i

{
f̂ (hk,Qi)−Ehk(i,

δ
2M|Hi |)

}
−Eh(i, δ

2M|Hi |) (happears poor)

Then Deleteh from Hi+1. Let H∗
i be the new set of empirically best hypotheses.

(f) Increment i.

4. Output theni hypotheses fromHi which have the highest empirical utility.
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Theorem 4 When the algorithm terminates, it will output a group G of exactly n hypotheses such
that, with confidence1− δ, no other hypothesis in H has a utility that is more thanε higher than
the utility of any hypothesis that has been returned:

Pr[∃h∈ H \G : f (h) > fmin+ ε]≤ δ (2)

where fmin = minh′∈G{ f (h′)}; assuming that|H| ≥ n.

The proof of Theorem 4 can be found in Appendix A

Theorem 5 (Termination) If for any δ (0 < δ ≤ 1) and ε > 0 there is a number m such that
E(m,δ)≤ ε, then the algorithm can be guaranteed to terminate.

The correctness of Theorem 5 follows immediately from Step 3e of the algorithm. Theorem 5
says that we can guarantee termination if the confidence interval vanishes for large numbers of
examples. This is a benign assumption that is satisfied by most utility functions, as we will see in
the next section.

4. Instantiations

In order to implement the algorithm for a given utility function we have to find a utility confidence
interval E(m,δ) that satisfies Equation 1 for that specificf . In this section, we will introduce
some terminology, and present a list of confidence intervals for the utility functions that are most
commonly used in knowledge discovery systems. Since the database is constant, we abbreviate
f (h,D) as f (h) throughout this section.

Most of the known utility functions refer toconfidence, accuracy, “statistical unusualness”,
supportor generalityof hypotheses. Let us quickly put these terms into perspective. Association
rules and classification rules are predictive; forsomedatabase transactions they predict the value
of an attribute given the values of some other attributes. For instance, the rule “beer= 1→ chips=
1” predicts that a customer transaction with attribute beer= 1 will also likely have the attribute
chips= 1. However, when a customer does not buy beer, then the rule does not make any prediction.
In particular, the rule does not imply that a customer who does not buy beer does not buy chips
either. The number of transactions in the database for which the rule makes a correct prediction (in
our example, the number of transactions that include beer and chips) is called thesupport, or the
generality.

Among those transitions for which the rule does make a prediction, some predictions may be
erroneous. Theconfidenceis the fraction of correct predictions among those transactions for which
a prediction is made. Theaccuracy, too, quantifies the probability of a hypothesis conjecturing a
correct attribute. However, the term accuracy is typically used in the context of classification and
refers to the probability of a correct classification for a future transaction whereas the confidence
refers to the database used for training. From a sampling point of view, confidence and accuracy
can be treated equally. In both cases, a relative frequency is measured on a small sample; from
this frequency we want to derive claims on the underlying probability. It does not make a difference
whether this probability is itself a frequency on a much larger instance space (confidence) or a “real”
probability (accuracy), defined with respect to an underlying distribution on instances.

Subgroups are of a more descriptive character. They describe that the value of an attribute
differs from the global mean value within a particular subgroup of transactions without actually
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conjecturing the value of that attribute for a new transaction. Thegeneralityof a subgroup is the
fraction of all transactions in the database that belong to that subgroup. The termstatistical unusu-
alnessrefers to the difference between the probabilityp0 of an attribute in the whole database and
the probabilityp of that attribute within the subgroup. Usually, subgroups are desired to be both
general (largeg) and statistically unusual (large|p0− p|). There are many possible utility functions
for subgroup discovery which trade generality against unusualness (Kl¨osgen, 1996). Unfortunately,
none of these functions can be expressed as the average (over all transactions) of an instance utility
function. But, in Sections 4.2 through 4.4 we will show how instantiations of the GSS algorithm
can solve sampling problems for these functions.

We would like to conclude this subsection with a remark on whether a sample should be drawn
with or without replacement. When the utility function is defined with respect to a finite database, it
is, in principle, possible to draw the sample without replacement. When the sample size reaches the
database size, we can be certain to have solved the real, not just the approximate,n best hypothesis
problem. So it should be possible to give a tighter utility confidence bound when the sample is
drawn without replacement. Consider the simple case when the utility is a probability. When the
sample is drawn with replacement, the relative frequency corresponding to the target probability is
governed by the binomial distribution whereas, when the sample is drawn without replacement, it is
governed by the hyper-geometrical distribution for which we can specify a tighter bound. However,
for sample sizes in the order of magnitude that we envision, the only feasible way of calculating both
the hyper-geometrical distribution and the binomial distribution is to use a normal approximation.
But the normal approximation of both distributions are equal and so we cannot realize the small
advantage that drawing without replacement seems to promise. The same situation arises with other
utility functions.

4.1 Instance-Averaging Functions

This simplest form of a utility function is the average, over all example instances, of some instance
utility function finst(h,qi) whereqi ∈D. The utility is then defined asf (h) = 1

|D| ∑
|D|
i=1 finst(h,qi) (the

average over the whole database) and the estimated utility isf̂ (h,Qm) = 1
m ∑qi∈Qm

finst(h,qi) (aver-
age over the example queries). An easy example of an instance-averaging utility is classification
accuracy (wherefinst(h,qi) is 0 or 1). Besides being useful by itself, this class of utility functions
serves as an introductory example of how confidence intervals can be derived. We assume that the
possible range of utility values lies between 0 andΛ. In the case of classification accuracy,Λ equals
one.

We can use theHoeffding inequality (Hoeffding, 1963) to bound the chance that an arbitrary
(bounded) random variableX takes a value that is far away from its expected valueE(X) (Equation
3). WhenX is a relative frequency andE(X) the corresponding probability, then we know that
Λ = 1. This special case of the Hoeffding inequality is calledChernoff ’sinequality.

Pr[|X−E(X)| ≤ ε]≥ 1−2exp

{
−2m

ε2

Λ2

}
(3)

We now need to define a confidence interval that satisfies Equation 1, where the Hoeffding inequality
serves as a tool to prove Equation 1. We can easily see that Equation 4 satisfies this condition.

E(m,δ) =

√
Λ2

2m
log

2
δ

(4)
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In Equation 5 we insert Equation 4 into Equation 1. We apply the Hoeffding inequality (Equation
3) in Equation 6 and obtain the desired result in Equation 7.

Pr
[| f̂ (h,Qm)− f (h)|> E(m,δ)

]
= Pr

[
| f̂ (h,Qm)− f (h)|>

√
Λ2

2m
log

2
δ

]
(5)

≤ 2exp



−2m

(√
Λ2

2m log 2
δ

)2

Λ2




(6)

≤ 2exp

{
− log

2
δ

}
= δ (7)

For implementation purposes, the Hoeffding inequality is less suited since it is not very tight. For
largem, we can replace the Hoeffding inequality by the normal distribution, referring to the central
limit theorem. f̂ (h,Qm)− f (h) is a random variable with mean value 0; we further know that
f̂ (h,Qm) is bounded between zero andΛ. In order to calculate the normal distribution, we need to
refer to the true variance of our random variable. In step 3, the variance is not known since we do
not refer to any particular hypothesis. We can only bound the variance from above and thus obtain a
confidence intervalE(m,δ) which is tighter than Hoeffding’s/Chernoff’s inequality and still satisfies
Equation 1. f̂ (h,Qm) is the average ofm values, namely1

m ∑m
i=1 f̂inst(h,qi). The empirical standard

deviationsf̂ (h,Qm)− f (h) = 1
m

√
∑m

i=1( f̂inst(h,qi)− f̂ (h,Qm))2 is maximized whenf̂ (h,Qm) = Λ
2 and

the individual f̂inst(h,qi) are zero for half the instancesqi andΛ for the other half of all instances. In

this case,s≤ Λ
2
√

m. Consequently,2
√

m( f̂ (h,Qm)− f (h))
Λ is governed by the standard normal distribution

(a normal distribution with mean value zero and standard deviation one) which implies that Equation
8 satisfies Equation 1.z is the inverse standard normal distribution that can be looked up in a table.

E(m,δ) = z1− δ
2
· Λ
2
√

m
(8)

In Steps 3(e)i and 3(e)ii, we refer to specific hypothesesh and can therefore determine the empirical
standard deviation of̂f (h,Qm). We can defineEh(m,δ) as in Equation 10.

E(m,δ) = z1− δ
2
·sh (9)

= z1− δ
2

1
m

√
m

∑
i=1

( finst(h,qi)− f̂ (h,Qi))2 (10)

Note that we have simplified the situation a little. We have confused the true standard deviationσ
(the average squared distance from the true meanf (h)) and the empirical standard deviationsh in
Equation 10. The empirical variance possesses one degree of freedom less than the true variance
and, to be quite accurate, we would have to refer to Student’st distribution rather than the normal
distribution. Empirically, we observed that the algorithm does not start to output or discard any
hypotheses until the sample size has reached the order of a hundred. In this region, Student’s
distribution can well be approximated by the normal distribution and we can keep this treatment
(and the implementation) simple.
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Let us now determine a worst-case bound onm (the number of queries that our sampling algo-

rithm issues). The algorithm exits the for loop (at the latest) whenE
(

m, δ
2|H|
)
≤ ε

2. We can show

that this is the case with certainty whenm≥ 2Λ2

ε2 log 4|H|
δ . In Equation 11, we expand our definition

of E(m,δ). TheΛ and log-terms cancel out in Equation 12; we can bound the confidence interval
to ε

2 in Equation 12 as required for the algorithm to exit in step 3e.

E

(
2Λ2

ε2 log
4|H|

δ
,

δ
2|H|

)
=

√√√√ Λ2

2
(

2Λ2

ε2 log 4|H|
δ

) log
2(
δ

2|H|
) (11)

=

√√√√ε2

4

log 4|H|
δ

log 4|H|
δ

=
ε
2

(12)

But note that our algorithm will generally terminate much earlier; firstly, because we use the normal
distribution (for largem) rather than the Hoeffding approximation and, secondly, our sequential
sampling approach will terminate much earlier when then best hypotheses differ considerably from
many of the “bad” hypotheses. The worst case occurs only when all hypotheses in the hypothesis
space are equally good which makes it much more difficult to identify then best ones.

4.2 Functions that are Linear in g and (p− p0)

The first class of nontrivial utility functions that we study weight the generalityg of a subgroup
and the deviation of the probability of a certain featurep from the default probabilityp0 equally
(Piatetski-Shapiro, 1991). Hence, these functions multiply generality and distributional unusualness
of subgroups. Alternatively, we can use the absolute distance|p− p0| between probabilityp and
default probabilityp0. The multi-class version of this function isg1

c ∑c |pi − p0i | wherep0i is the
default probability for classi.

Theorem 6 Let

1. f(h) = g(p− p0) and f̂ (h,Q) = ĝ(p̂− p0) or

2. f(h) = g|p− p0| and f̂ (h,Q) = ĝ|p̂− p0| or

3. f(h) = g1
c ∑c

i=1 |pi − p0i | and f̂ (h,Q) = ĝ1
c ∑c

i=1 |p̂i − p0i |.

Then Pr[| f̂ (h,Qm)− f (h)| ≤ E(m,δ)]≥ 1−δ when

smallm : E(m,δ) = 3

√
1

2m
log

4
δ

(13)

largem : E(m,δ) =
z1− δ

4√
m

+
(z1− δ

4
)2

4m
(14)

Eh(m,δ) = z1− δ
4
(sg +sp+z1− δ

4
sgsp) (15)

where z is the inverse normal distribution.
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Proof. (6.1) In Equation 16, we insert Equation 13 into Equation 1 and, for better readability,

introduceE as an abbreviation for
√

1
2m log 4

δ . We refer to the union bound in Equation 17. Then,

we exploit thatε2≤ ε and 2ε−ε2 > 0 for ε≤ 1 in Equation 18. The simple observation thatg≤ 1 and
(p− p0) ≤ 1 leads to Equation 19. Equations 20 and 21 are based on elementary transformations.
In Equation 22, we refer to the union bound again. The key observation here is thatab cannot be
greater than(c+ ε)(d+ ε) unless at leasta > c+ ε or b > d+ ε. The Chernoff inequality (which is
a special case of the Hoeffding inequality 3 forΛ = 1) takes us to Equation 23.

Pr[| f̂ (h,Qm)− f (h)|> E(m,δ)]

= Pr

[
|ĝ(p̂− p0)−g(p− p0)|> 3

√
1

2m
log

4
δ

= 3E

]
(16)

≤ Pr [ĝ(p̂− p0)−g(p− p0) > 3E]+Pr [ĝ(p̂− p0)−g(p− p0) <−3E] (17)

≤ Pr
[
ĝ(p̂− p0)−g(p− p0) > 2E +E2]

+Pr
[
ĝ(p̂− p0)−g(p− p0) <−2E+E2] (18)

≤ Pr
[
ĝ(p̂− p0)−g(p− p0) > gE+(p− p0)E +E2]

+Pr
[
ĝ(p̂− p0)−g(p− p0) <−gE− (p− p0)E +E2] (19)

≤ Pr [ĝ(p̂− p0)−g(p− p0) > (g+E)(p− p0+E)−g(p− p0)]
+Pr [ĝ(p̂− p0)−g(p− p0) < (g−E)(p− p0−E)−g(p− p0)] (20)

≤ Pr [ĝ(p̂− p0) > (g+E)(p− p0+E)]+Pr [ĝ(p̂− p0) < (g−E)(p− p0−E)] (21)

≤ 2Pr

[
q̂ >

(
q+

√
1

2m
log

4
δ

)]
+2Pr

[
q̂ <

(
q−
√

1
2m

log
4
δ

)]
(22)

= 2Pr

[
|q̂−q|>

√
1

2m
log

4
δ

]
≤ 4exp

{
−2m

1
2m

log
4
δ

}
= δ (23)

Let us now prove the normal approximation of the above confidence bound. We start in Equation
25 by inserting Equation 15 into Equation 1.sg andsp denote the standard deviations ofg and p,
respectively. We also cover Equation 14 in this proof. The standard deviations can be bounded

from above:sg,sp ≤ 1
2
√

m. Hence,z1− δ
4
(sg +sp +z1− δ

4
sgsp)≤

z
1− δ

4√
m +

(
z1− δ

4

1
2
√

m

)2
≤

z
1− δ

4√
m +

(z
1− δ

4
)2

4m

We expand the definition off in Equation 24 and apply the union bound in Equation 25. Equation
26 follows from g ≤ 1 and p− p0 ≤ 1 and in Equation 27 we exploit thatP(X < x) ≤ P(X <
y+z). Equation 28 is just a factorization ofg+z1− δ

4
sg. Again, note thatab cannot be greater than

(c+ ε)(d+ ε) unlessa > c+ ε or b > d+ ε. Applying the union bound in 29 proves the claim.

Pr[| f̂ (h,Qm)− f (h)|> z1− δ
4
(sg +sp +z1− δ

4
sgsp)] (24)

≤ Pr
[
ĝ(p̂− p0)−g(p− p0) > z1− δ

4
(sg +sp +z1− δ

4
sgsp)

]
+Pr

[
ĝ(p̂− p0)−g(p− p0) <−z1− δ

4
(sg +sp+z1− δ

4
sgsp)

]
(25)

≤ Pr

[
ĝ(p̂− p0)−g(p− p0) > (p− p0)z1− δ

4
sg +gz1− δ

4
sp +

(
z1− δ

4

)2
sgsp

]
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+Pr

[
ĝ(p̂− p0)−g(p− p0) <−(p− p0)z1− δ

4
sg−gz1− δ

4
sp−

(
z1− δ

4

)2
sgsp

]
(26)

≤ Pr

[
ĝ(p̂− p0)−g(p− p0) > (p− p0)z1− δ

4
sg +gz1− δ

4
sp +

(
z1− δ

4

)2
sgsp

]

+Pr

[
ĝ(p̂− p0)−g(p− p0) <−(p− p0)z1− δ

4
sg−gz1− δ

4
sp +

(
z1− δ

4

)2
sgsp

]
(27)

≤ Pr

[
ĝ(p̂− p0) >

(
g+z1− δ

4
sg

)(
p− p0+z1− δ

4
sp

)]

+Pr

[
ĝ(p̂− p0) <

(
g−z1− δ

4
sg

)(
p− p0−z1− δ

4
sp

)]
(28)

≤ Pr
[
|ĝ−g|> z1− δ

4
sg

]
+Pr

[
|p̂− p|> p+z1− δ

4
sp

]
≤ 2

(
δ
4

+
δ
4

)
= δ (29)

This completes the proof for Theorem (6.1).
(6.2) Instead of having to estimatep, we need to estimate the random variable|p− p0|. We

definesp to be the empirical standard deviation of|p− p0|. Since this value is bounded between
zero and one, all the arguments which we used in the last part of this proof apply analogously.

(6.3) Here, the random variable is1
c ∑c

i=1 |pi − p0i |. This variable is also bounded between zero
and one and so the proof is analogous to case (6.1). This completes the proof

Theorem 7 For all functions f(h) covered by Theorem 6, the sampling algorithm will terminate
after at most

m=
18
ε2 log

8|Hi |
δ

(30)

database queries (but usually much earlier).

Proof. The algorithm terminates in step 3 whenE
(

i, δ
2|H|
)
≤ ε

2. We will show that this is always

the case wheni ≥ m= 16
ε2 log

√
6|Hi |√

δ
. We insert the sample bound (Equation 30) into the definition

of E(m,δ) for linear functions (Equation 13); after the log-terms rule out each other in Equation 31
we obtain the desired bound ofε

2.

E

(
18
ε2 log

8|H|
δ

,
δ

2|H|
)

= 3

√√√√ 1

2
(

18
ε2 log 8|H|

δ

) log
4(
δ

2|H|
) (31)

≤ 3

√
ε2

36
=

ε
2

(32)

This completes the proof.
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4.3 Functions with squared terms

Squared terms (Wrobel, 1997) are introduced to put more emphasis on the the difference between
p and the default probability.

Theorem 8 Let

1. f(h) = g2(p− p0) and f̂ (h,Q) = ĝ2(p̂− p0) or

2. f(h) = g2|p− p0| and f̂ (h,Q) = ĝ2|p̂− p0| or

3. f(h) = g2 1
c ∑c

i=1 |pi − p0i | and f̂ (h,Q) = ĝ2 1
c ∑c

i=1 |p̂i − p0i | or

Then Pr[ f̂ (h,Qm)− f (h,Q)≤ E(m,δ)]≥ 1−δ when

smallm : E(m,δ) =
(

1
2m

log
4
δ

) 3
2

+3

(
1

2m
log

4
δ

)
+3

√
1

2m
log

4
δ

(33)

largem : E(m,δ) =
3

2
√

m
z1− δ

2
+

m+
√

m
4m
√

m
(z1− δ

2
)2 +

1
8m
√

m
(z1− δ

2
)3 (34)

Eh(m,δ) = 2sgz1− δ
2
+s2

g(z1− δ
2
)2 +spz1− δ

2
+2sgsp(z1− δ

2
)2 +sps2

g(+z1− δ
2
)3 (35)

Proof. (8.1) f (h) = g2(p− p0). As usual, we start in Equation 36 by combining the definition
of E(m,δ) (Equation 33) with Equation 1 which specifies the property ofE(m,δ) that we would
like to prove. Again, we introduce the abbreviationE for better readability in Equation 37. In
Equation 38 we exploit thatg ≤ 1 and p− p0 ≤ 1. In Equation 39 we again use that fact that
P(X < y)≤ P(X < y+z). In Equation 40 we addg2(p− p0) to both sides of the inequality an start
factorizing. In Equation 41 we have identified three factors. The observation thata2b cannot be
greater than(c+ ε)(c+ ε)(d+ ε) unless at leasta > c+ ε or b > d+ ε and the union bound lead to
Equation 42; the Chernoff inequality completes this part of the proof.

Pr[| f̂ (h,Qm)− f (h)|> E(m,δ)]

= Pr

[
|ĝ2(p̂− p0)−g2(p− p0)|>

(
1

2m
log

4
δ

) 3
2

+3

(
1

2m
log

4
δ

)
+3

√
1

2m
log

4
δ

]
(36)

= Pr
[
|ĝ2(p̂− p0)−g2(p− p0)|> E

3
2 +3E+3

√
E
]

(37)

≤ Pr
[
ĝ2(p̂− p0)−g2(p− p0) > g2

√
E +2g(p− p0)

√
E +2gE+(p− p0)E +E

3
2

]
(38)

+Pr
[
ĝ2(p̂− p0)−g2(p− p0) <−g2

√
E−2g(p− p0)

√
E−2gE− (p− p0)E−E

3
2

]
≤ Pr

[
ĝ2(p̂− p0)−g2(p− p0) > g2

√
E +2g(p− p0)

√
E +2gE+(p− p0)E +E

3
2

]
(39)

+Pr
[
ĝ2(p̂− p0)−g2(p− p0) <−g2

√
E−2g(p− p0)

√
E+2gE+(p− p0)E−E

3
2

]
≤ Pr

[
ĝ2(p̂− p0) >

(
g2 +2g

√
E +E

)(
p− p0 +

√
E
)]

+Pr
[
ĝ2(p̂− p0) <

(
g2−2g

√
E +E

)(
p− p0−

√
E
)]

(40)
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≤ Pr
[
ĝ2(p̂− p0) >

(
g+

√
E
)(

g+
√

E
)(

p− p0+
√

E
)]

+Pr
[
ĝ2(p̂− p0) >

(
g−

√
E
)(

g−
√

E
)(

p− p0−
√

E
)]

(41)

≤ Pr

[
|ĝ−g|>

√
1

2m
log

4
δ

]
+Pr

[
|p̂− p|>

√
1

2m
log

4
δ

]
(42)

≤ 4exp

{
−2m

(
1

2m
log

4
δ

)}
= δ (43)

Let us now look at the normal approximation. First, we will make sure that Equation 34 is a special
case of Equation 35 (standard deviation bounded from above). The standard deviation of bothg and
p is at most 1

2
√

m. This takes us from Equation 35 to Equation 44. Equation 45 equals Equation 34.

2sgz1− δ
2
+s2

g(z1− δ
2
)2 +spz1− δ

2
+2sgsp(z1− δ

2
)2 +sps2

g(z1− δ
2
)3

≤ 1√
m

z1− δ
2
+

1
4m

(z1− δ
2
)2 +

1
2
√

m
z1− δ

2
+

1√
m

(z1− δ
2
)2 +

1
8m
√

m
(z1− δ

2
)3 (44)

=
3

2
√

m
z1− δ

2
+

m+
√

m
4m
√

m
(z1− δ

2
)2 +

1
8m
√

m
(z1− δ

2
)3 (45)

In Equation 46 we want to see if the normal approximation (Equation 35) satisfies the requirement
of Equation 1. We addg2(p− p0) to both sides of the equation and start factorizing the right hand
side of the inequality in Equations 47 and 48. The union bound takes us to Equation 49; Equation
50 proves the claim.

Pr[| f̂ (h,Qm)− f (h)|> E(m,δ)] (46)

= Pr[ĝ2(p̂− p0)−g2(p− p0) > 2sgz1− δ
2
+s2

g(z1− δ
2
)2

+spz1− δ
2
+2sgsp(z1− δ

2
)2 +sps2

g(z1− δ
2
)3]

+Pr[ĝ2(p̂− p0)−g2(p− p0) <−2sgz1− δ
2
−s2

g(z1− δ
2
)2

−spz1− δ
2
−2sgsp(z1− δ

2
)2−sps2

g(z1− δ
2
)3]

≤ Pr
[
ĝ2(p̂− p0) >

(
g2 +2gsgz1− δ

2
+s2

g(z1− δ
2
)2
)(

p− p0 +spz1− δ
2

)]
+Pr

[
ĝ2(p̂− p0) <

(
g2−2gsgz1− δ

2
+s2

g(z1− δ
2
)2
)(

p− p0−spz1− δ
2

)]
(47)

≤ Pr
[
ĝ2(p̂− p0) > (g+sgz1− δ

2
)(g+sgz1− δ

2
)(p− p0 +spz1− δ

2
)
]

+Pr
[
ĝ2(p̂− p0) < (g−sgz1− δ

2
)(g−sgz1− δ

2
)(p− p0−spz1− δ

2
)
]

(48)

≤ Pr
[
|ĝ−g|> sgz1− δ

2

]
+Pr

[
|p̂− p|> spz1− δ

2

]
(49)

≤ 2

(
δ
4

+
δ
4

)
= δ (50)

This proves case (8.1). For cases (8.2) and (8.3), note that the random variables|p− p0| and
1
c ∑i=1 c(p− p0) (both bounded between zero and one) play the role ofp and the proof is analo-
gous to the first case (8.1).
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Theorem 9 For all functions f(h) covered by Theorem 8, the sampling algorithm will terminate
after at most

m=
98
ε2 log

8|Hi |
δ

(51)

database queries (but usually much earlier).

Proof. The algorithm terminates in step 3 whenE
(

i, δ
2|H|
)
≤ ε

2. The utility functions of Theorem 8

are bounded between zero and one. Hence, we can assume thatε≤ 1 since otherwise the algorithm
might just returnn arbitrarily poor hypotheses and still meet the requirements of Theorem 4. This
means that the algorithm cannot exit untilE(m, δ

2|Hi |)≤ 1
2 (or n hypotheses have been returned). For

E(m, δ
2|Hi |) to be 1

2 or less, each of the three terms in Equation 33 has to be below 1. Note that if

ε < 1 thenε2 < ε. We can therefore boundE(m,δ) as in Equation 53.

E(m,δ) =
(

1
2m

log
4
δ

) 3
2

+3

(
1

2m
log

4
δ

)
+3

√
1

2m
log

4
δ

(52)

< 7

√
1

2m
log

4
δ

(53)

Now we will show thatE(m,δ) lies below ε
2 whenm reaches the bound described in Equation 51.

We insert the sample bound into the exit criterion in Equation 54. The log-terms rule out each other
and the result isε2 as desired.

E

(
98
ε2 log

8|H|
δ

,
δ

2|H|
)

< 7

√√√√ 1

2
(

98
ε2 log 8|H|

δ

) log
4(
δ

2|H|
) (54)

≤ 7

√
ε2

4·49
=

ε
2

(55)

This completes the proof.

4.4 Functions Based on the Binomial Test

The Binomial test heuristic (Kl¨osgen, 1992) is based on elementary considerations. Suppose that
the probabilityp is really equal top0 (i.e.,the corresponding subgroup is really uninteresting). How
likely is it, that the subgroup with generalityg displays a frequency of ˆp on the sampleQ with
a greater difference|p̂− p0|? For large|Q| × g, (p̂− p0) is governed by the normal distribution
with mean value of zero and variance at most1

2
√

m. The probability density function of the normal

distribution is monotonic, and so the resulting confidence is order-equivalent to
√

m(p− p0) (m
being the support) which is factor equivalent to

√
g(p− p0). Several variants of this utility function

have been used.

Theorem 10 Let

1. f(h) =
√

g(p− p0) and f̂ (h,Q) =
√

ĝ(p̂− p0) or

2. f(h) =
√

g|p− p0| and f̂ (h,Q) =
√

ĝ|p̂− p0| or

846



FINDING PATTERNS IN A DATABASE BY USING SEQUENTIAL SAMPLING

3. f(h) =
√

g1
c ∑c

i=1 |pi − p0i | and f̂ (h,Q) =
√

ĝ1
c ∑c

i=1 |p̂i − p0i |.

Then Pr[| f̂ (h,Qm)− f (h)| ≤ E(m,δ)]≥ 1−δ when

smallm : E(m,δ) = 2

√
1

2m
log

4
δ

+ 4

√
1

2m
log

4
δ

+
(

1
2m

log
4
δ

) 3
4

(56)

largem : E(m,δ) =

√
z1− δ

4

2
√

m
+

z1− δ
4

2
√

m
+
( z1− δ

4

2
√

m

)3/2

(57)

Eh(m,δ) =
√

sgz1− δ
4
+spz1− δ

4
+
√

sgz1− δ
4
spz1− δ

4
(58)

Proof. (10.1) In Equation 59, we insert Equation 56 into Equation 1 (the definition ofE(m,δ)). We
refer to the union bound in Equation 61 and exploit that

√
g≤ 1 andp− p0≤ 1. As usual, we factor

the right hand side of the inequality in Equation 62 and use the union bound in Equation 63. Now
in Equation 64 we weaken the inequality a little. Note that4

√
x≥

√√
x−y wheny > 0. Hence,

subtracting the lengthy term in Equation 64 decreases the probability of the inequality (which we
want to bound from above). The reason why we subtract this term is that we want to apply the
binomial equation and factor

√
g+ ε−√g. We do this in the following steps 65 and 66 which are

perhaps a little hard to check without a computer algebra system. Adding
√

g and taking both sides
of the inequality to the square leads to Equation 67, the Chernoff inequality leads to the desired
result ofδ.

Pr[| f̂ (h,Qm)− f (h)|> E(m,δ)]

= Pr

[
|
√

ĝ(p̂− p0)−√g(p− p0)|> 2

√
1

2m
log

4
δ

+ 4

√
1

2m
log

4
δ

+
(

1
2m

log
4
δ

) 3
4

]
(59)

= Pr
[√

ĝ(p̂− p0)−√g(p− p0) >
2
√

E + 4
√

E +E
3
4

]
+Pr

[√
ĝ(p̂− p0)−√g(p− p0) <− 2

√
E− 4

√
E−E

3
4

]
(60)

≤ Pr
[√

ĝ(p̂− p0)−√g(p− p0) >
√

g
√

E +(p− p0)
4
√

E+E
3
4

]
+Pr

[√
ĝ(p̂− p0)−√g(p− p0) <−√g

√
E− (p− p0)

4
√

E−E
3
4

]
(61)

≤ Pr
[√

ĝ(p̂− p0) >
(√

g+ 4
√

E
)(

p− p0 +
√

E
)]

+Pr
[√

ĝ(p̂− p0) <
(√

g− 4
√

E
)(

p− p0−
√

E
)]

(62)

≤ Pr
[
|√ĝ−√g|> 4

√
E
]
+Pr

[
|p̂− p|>

√
E
]

(63)

≤ Pr

[
|
√

ĝ−√g|>
√
√

E−2

(√
g2 +g

√
E−

√
g2

)]
+2exp

{
−2m

1
2m

log
4
δ

}
(64)

= 2Pr


√ĝ−√g >

√
2g+

√
E−2

√
g
(

g+
√

E
)+

δ
2

(65)
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= 2Pr


√ĝ−√g >

√
g+

√
1

2m
log

4
δ
−√g


+

δ
2

(66)

= 2Pr

[
ĝ−g >

√
1

2m
log

4
δ

]
+

δ
2

= δ (67)

Now we still need to prove the normal approximations (Equations 57 and 58). As usual, we
would like Equation 57 to be a special case of Equation 58 with the standard deviations bounded
from above. Equation 68 confirms that this is the case sincesp,g ≤ 1

2
√

m.

√
sgz1− δ

4
+spz1− δ

4
+
√

sgz1− δ
4
spz1− δ

4
≤

√
z1− δ

4

2
√

m
−

z1− δ
4

2
√

m
+

√
z1− δ

4

2
√

m

z1− δ
4

2
√

m
(68)

This derivation is quite analogous to the previous one. We multiply the terms on the right hand
side by factor which are less or equal to one (Equation 70) and then factor the right hand side
(Equation 71). We subtract a small number fromsgz1− δ

4
in Equation 72 and factor

√
ĝ−√g in

Equation 73 and Equation 74. Basic manipulations and the Chernoff inequality complete the proof
in Equation 76.

Pr[| f̂ (h,Qm)− f (h)|> E(m,δ)]

≤ Pr

[√
ĝ(p̂− p0)−√g(p− p0) >

√
sgz1− δ

4
+spz1− δ

4
+
√

sgz1− δ
4
spz1− δ

4

]

+Pr

[√
ĝ(p̂− p0)−√g(p− p0) <−

√
sgz1− δ

4
−spz1− δ

4
−
√

sgz1− δ
4
spz1− δ

4

]
(69)

≤ Pr

[√
ĝ(p̂− p0)−√g(p− p0) > (p− p0)

√
sgz1− δ

4
+
√

gspz1− δ
4
+spz1− δ

4

√
sgz1− δ

4

]
(70)

+Pr

[√
ĝ(p̂− p0)−√g(p− p0) <−(p− p0)

√
sgz1− δ

4
−√gspz1− δ

4
−spz1− δ

4

√
sgz1− δ

4

]

≤ Pr

[√
ĝ(p̂− p0) >

(√
g+
√

sgz1− δ
4

)(
p− p0 +spz1− δ

4

)]

+Pr

[√
ĝ(p̂− p0) <

(√
g−
√

sgz1− δ
4

)(
p− p0−spz1− δ

4

)]
(71)

≤ Pr

[
|
√

ĝ−√g|>
√

sgz1− δ
4

]
+Pr

[
|p̂− p|> spz1− δ

4

]
(72)

≤ Pr

[
|
√

ĝ−√g|>
√

sgz1− δ
4
−2
(√

g2 +gsgz1− δ
4
+
√

g2
)]

+
δ
2

(73)

≤ Pr


|√ĝ−√g|>

√
2g+sgz1− δ

4
−2

√(
g(g+sgz1− δ

4
)
)+

δ
2

(74)
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≤ Pr

[
|
√

ĝ−√g|>
√

g+sgz1− δ
4
−√g

]
+

δ
2

(75)

≤ Pr
[
|ĝ−g|> sgz1− δ

4

]
+

δ
2

= δ (76)

This completes the proof for Theorem (10.1). The proofs of cases (10.2) and (10.2) are analogous;
instead ofp we need to estimate|p− p0| and 1

c ∑i=1(pi − p0i ), respectively. Both random variables
are bounded between zero and one and so all our previous arguments apply. This completes the
proof of Theorem 10.

Theorem 11 For all functions f(h) covered by Theorem 10, the sampling algorithm will terminate
after at most

m=
648
ε2 log

8|Hi|
δ

(77)

database queries (but usually much earlier).

Proof. The middle term of Equation 57 dominates the expression since, forε ≤ 1 it is true that
4
√

ε≥√
ε≥ ε 3

4 . Hence, Equation 78 provides us with an easier bound.

2

√
1

2m
log

4
δ

+ 4

√
1

2m
log

4
δ

+
(

1
2m

log
4
δ

) 3
4

≤ 3 4

√
1

2m
log

4
δ

(78)

The algorithm terminates in step 3 whenE(m, δ
2|H| ) ≤ ε

2. Considering the sample bound in
Equation 77, Equation 79 proves that this is the case with guarantee. Note that, since we bounded
the confidence interval quite loosely, we expect the algorithm to terminate considerably earlier.

E

(
648
ε2 log

8|H|
δ

,
δ

2|H|
)

< 3 4

√√√√ 1

2
(

648
ε2 log 8|H|

δ

) log
4(
δ

2|H|
) (79)

≤ 3
4

√
ε2

16·81
=

ε
2

(80)

This completes the proof.

4.5 Negative Results

Several independent impurity criteria have led to utility functions that are factor-equivalent to
f (h) = g

1−g(p− p0)2; e.g.,Gini diversity index and twoing criterion (Breiman et al., 1984), and
the chi-square test (Piatetski-Shapiro, 1991). Note that it is also order-equivalent to the utility mea-
sure used in Inferrule (Uthurusamy et al., 1991). Unfortunately, this utility function is not bounded
and a few examples that have not been included in the sample can impose dramatic changes on the
values of this function. This motivates our negative result.

Theorem 12 There is no algorithm that satisfies Theorem 4 when f(h) = g
1−g(p− p0)2.
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Proof. We need to show that̂f (h,Qm)− f (h) is unbounded for any finitem. This is easy since
g+ε

1−(g+ε) − g
1−g goes to infinity wheng approaches 1 or 1− ε (Equation 81).

g+ ε
1− (g+ ε)

− g
1−g

=
ε

(g+ ε−1)(g−1)
(81)

This implies that, even after an arbitrarily large sample has been observed (that is smaller than the
whole database), the utility of a hypothesis with respect to the sample can be arbitrarily far from
the true utility. But one may argue that demandingf̂ (h,Q) to be within an additive constantε is
overly restricted. However, the picture does not change when we requiref̂ (h,Q) only to be within
a multiplicative constant, sinceg+ε

1−(g+ε)/
g

1−g goes to infinity wheng+ ε approach 1 org approaches
zero (Equation 82).

g+ ε
1− (g+ ε)

/
g

1−g
=

(g+ ε)(1−g)
g(1−g− ε)

(82)

This means that no sample suffices to boundf̂ (h,Qm)− f (h) with high confidence when a particular
f̂ (h,Qm) is measured. When a sampling algorithm uses all but very few database transactions as
sample, then the few remaining examples may still impose huge changes onf̂ (h,Qm) which renders
the use of sampling algorithms prohibitive. This completes the proof.

5. Experiments

In our experiments, we want to study the order of magnitude of examples which are required by our
algorithm for realistic tasks. Furthermore, we want to measure how much of an improvement our
sequential sampling algorithm achieves over a static sampling algorithm that determines the sample
size with worst-case bounds.

We implemented a simple subgroup discovery algorithm. Hypotheses consist of conjunctions
of up tok attribute value tests. For discrete attributes, we allow tests for any of the possible values
(e.g.,“color=green”); we discretize all continuous attributes and allow for testing whether the value
of such attributes lies in an interval (e.g.,“size∈ [2.3,5.8]”).

We also implemented a non-sequential sampling algorithm in order to quantify the relative ben-
efit of sequential sampling. The non-sequential algorithm determines a sample sizeM like our
algorithm does in step 2, but using the full available error probabilityδ rather than onlyδ

2. Hence,
the non-sequential sampling algorithm has a lower worst-case sample size than the sequential one
but never exits or returns any hypothesis before that worst-case sample bound has been reached.
Sequential and non-sequential sampling algorithm use the same normal approximation and come
with identical guarantees on the quality of the returned solution.

For the first set of experiments, we used a database of 14,000 fruit juice purchase transactions.
Each transaction is described by 29 attributes which specify properties of the purchased juice as well
as attributes of the customer (e.g.,age and job). The task is to identify subgroups of customers that
differ from the overall average with respect to their preference for cans, recyclable bottles, or non-
recyclable bottles. For this problem, we studied hypothesis spaces of size 288 (k= 1, hypotheses test
one attribute for a particular value), 37,717 (k = 2, conjunctions of two tests), and 3,013,794 (k = 3,
conjunctions of three tests). Sinceδ has only a minor (logarithmic) influence on the resulting sample
size, all results presented in Figure 1 were obtained withδ = 0.1. We varied the utility function;
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the target attribute has three possible values, so we used the utility functionsf1 = g1
3 ∑3

i=1 |pi− p0i |,
f2 = g2 1

3 ∑3
i=1 |pi − p0i |, and f3 =

√
g1

3 ∑3
i=1 |pi − p0i |.

Figure 1 shows the sample size of the non-sequential algorithm as well as the sample size re-
quired before the sequential algorithm returned the first (out of ten) hypothesis and the sample size
that the sequential algorithm required to return the last (tenth) hypothesis and terminate. In every
single experiment that we run, the sequential sampling algorithm terminated significantly earlier
than the non-sequential one, even though the latter possesses a lower worst-case sample bound.
As ε becomes small, the relative benefit of sequential sampling can reach orders of magnitude.
Consider, for instance, the linear utility function andk = 1,ε = .1,δ = .1. We can return the first
hypothesis after 9,800 examples whereas the non-sequential algorithm returns the solution only af-
ter 565,290 examples. The sample size of the sequential algorithm is still reasonable fork = 3 and
we expect it not to grow too fast for larger values as the worst-case bound is logarithmic in|H| –
i.e., linear ink.
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Figure 1: Sample sizes for the juice purchases database. (a)f = g|p− p0|, k = 1, δ = .1; (b) k = 2;
(c) k = 3; (d) f = g2|p− p0|, k = 1, δ = .1; (e)k = 2; (f) f =

√
g|p− p0|, k = 1, δ = .1

For the second set of experiments, we used the data provided for the KDD cup 1998. The data
contains 95,412 records that describe mailings by a veterans organization. Each record contains 481
attributes describing one recipient of a previous mailing. The target fields note whether the person
responded and how high his donation to the organization was. Our task was to find large subgroups
of recipients that were particularly likely (or unlikely) to respond (we used the attribute “TargetB”
as target and deleted “TargetD”). We discretized all numeric attributes (using five discrete values);
our hypothesis space consists of all 4492 attribute value tests.

Figure 2 displays the sample sizes that our sequential sampling algorithm, as well as the non-
sequential sampling algorithm that comes with exactly the same guarantee regarding the quality of
the solutions required. Note that we use a logarithmic (log10) scale on they axis. Although it is fair
to say that this is a large-scale problem, the sample sizes used by the sequential sampling algorithm
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are in a reasonable range for all three studied utility functions. Less than 10,000 examples are
required whenε is as small as 0.002 for f = g|p− p0| and f = g2|p− p0| and whenε is 0.05 for
f =

√
g|p− p0|.

The relative benefit of sequential over non-sequential sampling is quite significant. For instance,
in Figure 2a (ε = 0.002) the non-sequential algorithm requires over 107 examples (of course, much
more than are available) whereas the sequential one needs still less than 104.
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Figure 2: Required sample sizes (log-scale) for the KDD cup data of 1998. (a)f = g|p− p0|, k = 1,
δ = .1; (b) f = g2|p− p0|, (c) f =

√
g|p− p0|.

6. Discussion and Related Results

Learning algorithms that require a number of examples which can be guaranteed to suffice for
finding a nearly optimal hypothesis even in the worst case have early on been criticized as being
impractical. Sequential learning techniques have been known in statistics for some time (Dodge and
Romig, 1929, Wald, 1947, Ghosh et al., 1997). Maron, Moore, & Lee (Maron and Moore, 1994,
Moore and Lee, 1994) have introduced sequential sampling techniques into the machine learning
context by proposing the “Hoeffding Race” algorithm that combines loop-reversal with adaptive
Hoeffding bounds. A general scheme for sequential local search with instance-averaging utility
functions has been proposed by Greiner (1996).

Sampling techniques are particularly needed in the context of knowledge discovery in databases
where often much more data are available than can be processed. A non-sequential sampling algo-
rithm for KDD has been presented by Toivonen (1996); a sequential algorithm by Domingo et al.
(1998, 1999). For the special case of decision trees, the algorithm of Hulten and Domingos (2000)
samples a database and finds a hypothesis that is similar to the one that C4.5 would have obtained.

A preliminary version of the algorithm presented in this paper has been discussed by Scheffer
and Wrobel (2000). This preliminary algorithm, however, did not use utility confidence bounds
and its empirical behavior was less favorable than the behavior of the algorithm presented here.
Our algorithm was inspired by the local searching algorithm of Greiner (1996) but differs from it
in a number of ways. The most important difference is that we refer to utility confidence bounds
which makes it possible to handle all utility functions that can be estimated with bounded error even
though they may not be an average across all instances.

In classification learning, error probabilities are clearly the dominating utility criterion. This
is probably the reason why all sampling algorithms that have been studied so far are restricted to
instance averaging utility functions. In many areas of machine learning and knowledge discovery
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(such as association rule and subgroup discovery), instance averaging utility functions are clearly
inappropriate. The sampling algorithm of Domingo et al. (1999) allows for utility criteria which
are a function (with bounded derivative) of an average over the instances. This, too, does not cover
popular utility functions (such asg|p− p0|) which depend on two averages (g and|p− p0|) across
the instances. Our algorithm is more general and works for all utility criteria for which a confidence
interval can be found. We presented a list of instantiations for the most popular utility functions for
knowledge discovery tasks and showed that there is no solution for one function. Another minor
difference between our algorithm and the one of Domingo et al. (1999) is that (when the utility
confidence bound vanishes) our algorithm can be guaranteed to terminatewith certainty(not just
high probability) when it has reached a worst-case sample size bound.

So far, learning and discovery algorithms return the best hypothesis or all hypotheses over a
certain utility threshold. Often, in particular in the context of knowledge discovery tasks, a user
is interested in being provided with a number of the best hypotheses. Our algorithm returns then
approximately best hypotheses.

The approach that we pursue differs from the (PAC-style) worst-case approach by requiring
smaller samples in all cases that are distinct from the worst case (in which all hypotheses are equally
good). Instead of operating with smaller samples, it is also possible to work with a fixed-size
sample but guarantee a higher quality of the solution if the observed situation differs from this
worst case. This is the general idea of shell decomposition bounds (Haussler et al., 1996, Langford
and McAllester, 2000) and self-bounding learning algorithms (Freund, 1998).

Although we have discussed our algorithm only in the context of knowledge discovery tasks,
it should be noted that the problem which we address is relevant in a much wider context. A
learning agent that actively collects data and searches for a hypothesis (perhaps a control policy)
which maximizes its utility function has to decide at which point no further improvement can be
achieved by collecting more data. The utility function of an intelligent agent will generally be more
complicated than an average over the observations. Our sequential sampling algorithm provides a
framework for solving such problems.

As it is stated here, the GSS algorithm represents all considered hypotheses explicitly. It can
therefore only be applied practically when the hypothesis space is relatively small. This is the case
for most knowledge discovery tasks. The space of all association rules or subgroups over a certain
number of attributes (which grows singly exponential in the number of monomials allowed) is much
smaller than, for instance, the space of all decision trees (growing doubly exponential).

For large hypothesis spaces such as decision trees, it is possible to define a generating function
that can enumerate all hypotheses although they do not fit into the main memory. Based on the
GSS algorithm presented here, Scheffer and Wrobel (2002) have developed a constant memory
algorithm that provides identical guarantees but uses only constant memory, independent of the size
of the hypothesis space.

By giving worst-case bounds on the sample size (and proving that there is no sampling algorithm
for some utility functions) our results also give an indication as to which of the many utility functions
appear preferable from a sampling point of view.
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Appendix A. Appendix: Proof of Theorem 4

In order to simplify writing the proof, we first introduce a few symbolic abbreviations and remind
you of the meaning of the few others that we have already introduced (Table 2). Note that due to
our notation, we haveG = Gi f in .

Table 2: Symbols used in the proof of Theorem 4
ni value ofn before iterationi
H hypothesis space to be searched
Hi hypotheses under consideration in iterationi of 3
H∗

i theni best-looking hypotheses in iterationi of 3
H∗

i the remainder (Hi\H∗)
G solutions returned by the algorithm
Gi solutions before iterationi
Ri hypotheses removed iterationi
h in arithmetic expressions: short forf (h,D)
ĥ(i) in arithmetic expressions: short forf̂ (h,Qi)
imax value ofi when leaving loop 3
i f in index used to denote sets after step 4

Further note that sinceH0 = H, and due to the fact that hypotheses only ever get moved from
Hi to Gi+1 (“output”) or toRi+1 (“delete”), we have

∀i ∈ {1, . . . , i f in} : H = Gi ∪Hi ∪Ri (83)

The proof is carried out by inductively showing that the following three loop invariants hold for
all i ∈ {1, . . . , i f in}:

(I1) ∀g∈Gi∀r ∈ Ri : g≥ r− ε

(I2) ∀r ∈ Ri∃∗h′1, . . . ,h′ni
∈ Hi : h′j ≥ r∀ j ∈ {1, . . . ,ni}

(I3) ∀g∈Gi¬∃∗h′1, . . . ,h′ni+1 ∈ Hi : h′j > g+ ε∀ j ∈ {1, . . . ,ni +1}
which is equivalent to
∀g∈Gi∀h′1, . . . ,h

′
ni+1 ∈ Hi∃ j ∈ {1, . . . ,ni +1} : g≥ h′j − ε.

In the invariant conditions,∃∗ was used to denote “there exist distinct”.
We will for now assume that in the course of executing loop 3, we never seriously misestimate

any hypothesis (and will later bound the probability that this assumption is actually false):

(A1) ∀h∈ H∀i ∈ {1, . . . , imax} :| ĥ(i)−h |≤ Eh(i, δ
2M|Hi |)
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M is the sample-independent worst-case bound.
We will also assume that in selecting the final outputs in step 4, we will not err so as to violate

our guarantee (and later quantify how likely this is to be the case):

(A2) If E(imax,
δ

2|Himax|)≤
ε
2 then∀h∈ H∗

imax
∀h′ ∈ H∗

imax
: h≥ h′ − ε.

Note that for the purpose of the proof, we will consider only the case where during each loop
iteration, only one of 3(e)i or 3(e)ii is executed for a single hypothesis. Since in the algorithm,H∗

is redetermined whenever one of those steps is carried out, the version considered here is equivalent
(but might consume more samples). We are now ready for our inductive proof.

Base case:i = 1
SinceG1 = /0 andR1 = /0, I1, I2 and I3 are trivially true.

Inductive Step: i → i +1
We discuss this case by case depending on what happens during stepi.

Case (1)A hypothesish is output in step 3(e)i, i.e.,

Gi+1 := Gi ∪{h},Hi+1 := Hi\{h},ni+1 := ni −1,Ri+1 := Ri (84)

From the algorithm, we know:

ĥ(i) ≥ Eh

(
i,

δ
2M|Hi|

)
+maxh′∈H∗

i

{
ĥ′(i) +Eh′(i,

δ
2M|Hi|)

}
− ε (85)

In the following, since we are always dealing with stepi and sampleQi, we will drop the superscript
(i), and abbreviateni asn. We will further abbreviate(i, δ

2M|Hi |) as(·), so Equation 85 becomes
Equation 86.

ĥ≥ Eh(·)+maxh′∈H∗ [ĥ′+Eh′(·)]− ε (86)

Now let h′′ ∈ H∗. We can rearrange Equation 86 by adding paired terms in Equation 87.

ĥ+h−h ≥ h′′ −h′′+Eh(·)+maxh′∈H∗ [ĥ′+Eh′(·)]− ε (87)

⇔ h ≥ h′′+Eh(·)− (ĥ−h)+maxh′∈H∗ [ĥ′+Eh′(·)]−h′′ − ε (88)

Now, since certainlymaxh′∈H∗ [ĥ′+Eh′(·)]≥ ĥ′′+Eh′′(·) for all h′′ ∈H∗, we can derive Equation 89

h ≥ h′′+Eh(·)− (ĥ−h)+ ĥ′′+Eh′′(·)−h′′ − ε (89)

⇔ h ≥ h′′+Eh(·)− (ĥ−h)+Eh′′(·)− (h′′ − ĥ′′)− ε (90)

According to (A1),ĥ−h≤ Eh(·), andh′′ − ĥ′′ ≤ Eh′′(·), so Equation 91 must hold.

h≥ h′′ − ε for all h′′ ∈ H∗ (91)

We can now show the three invariant conditions.
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Show (I1) By inductive assumption (I1),∀g∈Gi∀r ∈Ri : g≥ r−ε. Now, sinceGi+1 := Gi ∪{h},
we have to show that Equation 92 holds.

∀r ∈ Ri+1 : h≥ r− ε (92)

So consider any particularr ∈ Ri+1. SinceRi+1 = Ri, r ∈ Ri, from inductive assumption (I2), we
know that Equation 93 holds.

∃∗h′1, . . . ,h′ni
∈Hi : h′j ≥ r ∀ j ∈ {1, . . . ,ni} (93)

Note thath is from H∗, thus two cases can arise1. If all the h′j are inH∗, since|H∗|= ni , one of
them, sayh′j1, is equal toh, so we can show (92) immediately from (93), as in Equation 97.

h = h′j1 ≥ r ≥ r− ε (97)

Otherwise, one of theh′j , sayh′j2, must be fromH∗; in Equation 98, we use (91) and (93) to show
Equation 92.

h≥ h′j2− ε≥ r− ε (98)

N.B., it would not have been sufficient for (I2) (and step 3(e)ii) to guaranteeh′j ≥ r− ε, since then
in (98) we would arrive ath≥ r−2ε, which would not maintain (I1).

Show (I2) Since (I2) holds by inductive assumption in stepi, Equation 99 follows.

∀r ∈ Ri∃∗h′1, . . . ,h′ni
∈ Hi : h′j ≥ r ∀ j ∈ {1, . . . ,ni} (99)

Furthermore, asRi+1 = Ri and we have removed only one hypothesis (Hi+1 := Hi\{h}), we know
eachr can have “lost” at most one of itsh′j , so Equation 100 must hold. Sinceni+1 = ni −1, this
implies Equation 101.

∀r ∈Ri+1∃∗h′1, . . . ,h′ni−1 ∈ Hi+1 : h′j ≥ r ∀ j ∈ {1, . . . ,ni −1} (100)

⇒ ∀r ∈Ri+1∃∗h′1, . . . ,h′ni+1
∈ Hi+1 : h′j ≥ r ∀ j ∈ {1, . . . ,ni+1} (101)

Show (I3) By inductive assumption, (I3) holds for allg∈Gi, and sinceGi+1 := Gi ∪{h}, we only
have to show that Equation 102 holds.

¬∃∗h′1, . . . ,h′ni+1+1 ∈ Hi+1 : h′j > h+ ε ∀ j ∈ {1, . . . ,ni+1 +1} (102)

From (91) we know thath≥ h′′ −ε⇔ h′′ ≤ h+ε ∀h′′ ∈H∗, so anyh′j to violate Equation 102 could
only come fromH∗ which is of sizeni = ni+1 +1. However, since alsoh∈ H∗, there are onlyni+1

candidates left, proving Equation 102.

1. Note (86) alone is not enough to guarantee thath is in H∗, since even ifh∈H∗ were true, we would have

ĥ > Eh(·)+maxh′∈H∗ [ĥ′+Eh′(·)]− ε (94)

⇒ ĥ > Eh(·)+ ĥ+Eh(·)− ε (95)

⇔ Eh(·) <
ε
2

(96)

which cannot be excluded.
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Case (2)A hypothesish is removed in step 3(e)ii,i.e., the statements of Equation 103 are executed.

Gi+1 := Gi,Hi+1 := Hi\{h},Ri+1 := Ri ∪{h},ni+1 := ni (103)

From the algorithm, we know that Equation 104 must hold.

ĥ(i) ≤minh′∈H∗
i

{
ĥ′(i)−Eh′

(
i,

δ
2M|Hi|

)}
−Eh

(
i,

δ
2M|Hi|

)
(104)

Analogously to the previous case, we will abbreviate Equation 104 as Equation 105.

ĥ≤minh′∈H∗ [ĥ′ −Eh′(·)]−Eh(·) (105)

We now proceed in a similar fashion as in Equations 87 to 91. So leth′′ ∈ H∗, and rearrange
Equation 105 by adding paired terms in Equation 106.

ĥ+h−h ≤ h′′ −h′′+minh′∈H∗ [ĥ′ −Eh′(·)]−Eh(·) (106)

⇔ h ≤ h′′+(h− ĥ)−Eh(·)+minh′∈H∗ [ĥ′ −Eh′(·)]−h′′ (107)

Now, since certainlyminh′∈H∗ [ĥ′ −Eh′(·)]≤ ĥ′′ −Eh′′(·) for all h′′ ∈ H∗, Equations 108 and 109 are
equivalent.

h ≤ h′′+(h− ĥ)−Eh(·)+ ĥ′′ −Eh′′ −h′′ (108)

⇔ h ≤ h′′+(h− ĥ)−Eh(·)+ (ĥ′′ −h′′)−Eh′′ (109)

If (A1) is assumed true, thenh− ĥ≤ Eh(·), andĥ′′ −h′′ ≤ Eh′′, so Equation 110 must be true.

h≤ h′′ for all h′′ ∈ H∗ (110)

We can now show the three invariant conditions.

Show (I1) SinceGi+1 := Gi , by inductive assumption (I1) we have Equation 111.

∀g∈Gi+1 ∀r ∈ Ri : g≥ r− ε (111)

SinceRi+1 = Ri ∪{h}, we only need to show that Equation 112 is true.

∀g∈Gi+1 g≥ h− ε (112)

Note thath∈ H∗, since due to Equation 105,h∈ H∗ would imply thatEh(·) ≤ 0, as demonstrated
in Equations 113 to 116. However,Eh(·) > 0 for all h and all arguments ofEh(·) which means that
h∈H∗ and thus|H∗ ∪{h}|= ni +1.

ĥ ≤ minh′∈H∗ [ĥ′ −Eh′(·)]−Eh(·) (113)

⇒ ĥ ≤ ĥ−Eh(·)−Eh(·) (114)

⇔ 0 ≤ −2Eh(·) (115)

⇔ Eh(·) ≤ 0 (116)

By inductive assumption (I3) we have Equation 117 for allg∈Gi+1.

∀g∈Gi+1 = Gi ∀h′1, . . . ,h
′
ni+1 ∈ Hi∃ j ∈ {1, . . . ,ni +1} : g≥ h′j − ε (117)

From Equation 117, we can conclude that for one hypothesis out ofH∗ ∪ {h}, call it h′, it must be
true thatg≥ h′ − ε. If h′ = h, this shows Equation 112 immediately; if not, thenh′ ∈ H∗, so from
Equation 110 it follows thatg≥ h′ − ε≥ h− ε.
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Show (I2) SinceRi+1 = Ri ∪{h}, let us first show Equation 118.

∃∗h′1, . . . ,h′ni+1
∈ Hi+1 : h′j ≥ h ∀ j ∈ {1, . . . ,ni +1} (118)

Now sinceHi+1 = Hi\{h} andh /∈ H∗, we know thatH∗ ⊆ Hi+1. Since|H∗| = ni = ni+1, and due
to (110), we can simply chooseh′1, . . . ,h

′
ni+1

to beH∗, thus showing (118). Then considerr ∈Ri . By
inductive assumption, sinceni = ni+1, we have Equation 119.

∃∗h′1, . . . ,h′ni+1
∈ Hi : h′j ≥ r ∀ j ∈ {1, . . . ,ni+1} (119)

If none of theh′j is equal toh, we know they are all inHi+1 also. If one of them, sayhj1 is equal to
h, we know from Equation 119 thathj1 ≥ r ⇔ h≥ r, so we can again useH∗ in place of theh′j , and
(I2) is true for allr ∈ Ri also, and thus forRi+1, as required.

Show (I3) By inductive assumption (I3), and sinceGi+1 = Gi ,ni+1 = ni , Equation 120 must be
satisfied.

∀g∈Gi+1¬∃∗h′1, . . . ,h′ni+1+1 ∈ Hi : h′j > g+ ε ∀ j ∈ {1, . . . ,ni+1 +1} (120)

Now, sinceHi+1 = Hi\{h}, surely such offending sets ofh′j do not exist inHi+1 either. This shows
that the statement of Equation 121 is true.

(I1), (I2), and (I3) are true whenever we exit the loop. (121)

Let imax be the index reached at this point. We now show that (I1), (I2), and (I3) continue to hold
when the algorithm exits,i.e.,after step 4.

Case 3a We exit the loop becausenimax = 0 is true. Then step 4 leaves everything unchanged, so
(I1), (I2), and (I3) continue to hold.

Case 3b We exit the loop because|Himax|= nimax is true. Then step 4 moves all ofHimax to Gi f in , as
described in Equation 122.

Gi f in := Gimax∪Himax,Hi f in := /0,Ri f in := Rimax,ni f in = 0 (122)

Show I1 The argument is essentially identical to case 1/I1. Since (I1) is true when exiting the
loop, andRi f in = Rimax, we only have to show Equation 123.

∀h∈ Himax ∀r ∈Rimax : h≥ r− ε (123)

So consider any particularh∈ Himax, r ∈ Rimax. From (I2), we know that Equation 124 holds.

∃∗h′1, . . . ,h′nimax
∈ Himax : h′j ≥ r ∀ j ∈ {1, . . . ,nimax} (124)

But since|Himax|= nimax, h must be among thehj , which shows Equation 123.

Show I2 Sinceni f in = 0, (I2) is trivially true.

Show I3 SinceHi f in = /0, (I3) is trivially true.
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Case 3c We exit the loop whenE(i, δ
2|Himax|) ≤

ε
2. Then after step 4, the conditions displayed in

Equation 125 hold.

Gi f in := Gimax∪H∗
imax

,Hi f in := H∗
imax

,Ri f in := Rimax,ni f in = 0 (125)

So if we assume (A2) to be true, we can conclude that Equation 126 is true.

∀h∈ H∗
imax

∀h′ ∈ H∗
imax

: h≥ h′ − ε (126)

Show I1 (I1) is true for allg ∈ Gimax by Equation 121, and true forH∗
imax

according to Equation
126, so it is true forGi f in .

Show I2 Trivially true sinceni f in = 0.

Show I3 Sinceni f in = 0, we need to show the condition of Equation 127.

∀g∈Gi f in = Gimax∪H∗
imax

; ∀h∈ Hi f in = H∗
imax

: g≥ h− ε (127)

Equation 127 again is true due to Equation 126. Thus (I1), (I2), and (I3) are true when the algorithm
exits.

We are now ready to show that indeed the guarantee of our theorem holds. From (I1), we know
that Equation 128 holds.

∀g∈Gi f in¬∃r ∈Ri f in : r > g+ ε (128)

From (I3), we know that∀g∈Gi f in¬∃h′ ∈ Hi f in : h′ > g+ ε. Since according to Equation 83,Ri f in ∪
Hi f in = H\Gi f in , this shows the guarantee of our theorem.

Now we are left with quantifying the probability that (A1) or (A2) are false, which together
must be at mostδ.

The risk of (A1) being false is quantified by the following lemma.

Lemma 13 With confidence at least1− δ
2, there is no time step i (1≤ i ≤ M) and no hypothesis

h∈H such that| f̂ (h,Qi)− f (h)|> Eh(i, δ
2M|Hi |).

Proof. First note that the loop (step 3.) will be executed at mostM times: Since for alli,
|Hi| ≤ |H|, thus δ

2M|Hi | ≥ δ
2M|H| . From the definition ofE(m,δ), Equation 129 follows.

∀0 < δ1 ≤ δ2 < 1, ∀m∈ IN : E(m,δ1)≥ E(m,δ2) (129)

Thus, Equation 130 shows that the algorithms stops wheni = M at the latest.

Eh

(
M,

δ
2M|H|

)
≤ ε

2
⇒ Eh

(
M,

δ
2M|Hi|

)
≤ ε

2
(130)

Using this, in Equations 131 and 132, we refer to the union bound. In Equation 133, we apply
the definition ofE(m,δ). Equation 133 completes the proof.
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Pr

[
∃i,∃h∈Hi : | f̂ (h,Qi)− f (h)|> Eh

(
i,

δ
2M|Hi|

)]

≤
M

∑
i=1

Pr

[
∃h∈Hi : | f̂ (h,Qi)− f (h)|> Eh

(
i,

δ
2M|Hi|

)]
(131)

≤
M

∑
i=1

|Hi |Pr

[
| f̂ (h,Qi)− f (h)|> Eh

(
i,

δ
2M|Hi|

)]
(132)

<
M

∑
i=1

|Hi | δ
2M|Hi| =

δ
2

(133)

Now consider (A2).

Lemma 14 For any integer imax > 0, if E(imax,
δ

2|Himax|) ≤
ε
2 then with probability1− δ

2, Equation
134 holds.

∀h∈ H∗
imax

∀h′ ∈ H∗
imax

: h≥ h′ − ε (134)

Proof. If h∈ H∗
imax

andh′ ∈ H∗
imax

, thenĥ≥ ĥ′. If nonetheless Equation 134 is true, we must have
estimated at least one of the two hypotheses wrong by more thanε

2. We can bound the probability
of this as follows. Equation 135 follows from the definition ofM in step 2 of the algorithm. We
refer to the union bound in Equation 136 and to the definition ofE(m,δ) (Equation 1) in Equation
136.

Pr
[
∃h∈ Himax : ĥ−h >

ε
2

]
≤ Pr

[
∃h∈ Himax : ĥ−h> E

(
imax,

δ
2|Himax|

)]
(135)

≤ |Himax|Pr

[
ĥ−h > E

(
imax,

δ
2|Hm|

)]
≤ δ

2
(136)

This completes the proof of Lemma 14 and thereby the proof of Theorem 4.
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