
Finding the N Largest Itemsets

Li Shen, Hong Shen, Paul Pritchard & Rodney Topor

School of Computing and Information Technology

Griffith University, Nathan, QLD4111, Australia
EMail: {L.Shen, H.Shen, P.Pritchard, R.Topor}@cit.gu.edu.au

Abstract

The largest itemset in a given collection of transactions £> is the itemset
that occurs most frequently in T>. This paper studies the problem of finding
the A/" largest itemsets, whose solution can be used to generate an appropri-
ate number of interesting itemsets for mining association rules. We present
an efficient algorithm for finding the jV largest itemsets. The algorithm
is implemented and compared with the naive solution using the Apriori
approach. We present experimental results as well as theoretical analysis
showing that our algorithm has a much better performance than the naive
solution. We also analyze the cost of our algorithm and observe that it has
a polynomial time complexity in most cases of practical applications.

1 Introduction

Discovery of association rules is an important problem within the

area of data mining. The problem is introduced by Agrawal et al.

[2], and can be formalized as follows. Let X = {ii, ii, • • •, W be a set
of literals, called items. Let V be a collection of transactions, where

each transaction T has a unique identifier and contains a set of items

such that TCI. We call % item-domain, a set of items an itemset,
and an itemset with 6 items a k-itemset. The support (i.e., support
count in previous studies) of an itemset x in £>, denoted as cr(x/T>),
is the number of transactions containing x in V. An association rule
is an expression x => y, where x, y C I and zfly = 0. The confidence
of x =» y is the ratio of a(x U y/V) to cr(x/D). We use minsup and

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

minconf to denote the user-specified minimum support and confidence

respectively. An itemset x is large (frequent) if a(x/T>] > minsup.

An association rule x => y is strong if x U y is large and ^wp\ •>
minconf. The problem of mining association rules is to find all strong
association rules, which can be divided into two subproblems: (1) find

all large itemsets (called MS-Problem below); (2) find all strong rules

from all large itemsets. Because the second subproblem is relatively

straightforward, all previous studies [1, 2, 7, 8, 9] have emphasized

on developing efficient algorithms for the first subproblem.

In essence, the first subproblem aims to obtain a set of interesting

itemsets. However, by giving only a minsup, users have no idea at
all about how many itemsets will be generated in the result. On one

hand, the result may contain too few itemsets so that users fail to get
enough useful ones. On the other hand, the result may contain too

many itemsets so that most of them are actually uninteresting. This

observation motivates us to study how to generate an appropriate
number of the most interesting itemsets. Given x,y C /, we say

that x is larger than y or y is smaller than x if cr(x/T>) > a(y/V}.

Since users are usually more interested in those itemsets with larger
supports, we propose a new problem (called NL-Problem) as follows:
find the M largest itemsets from a given collection of transactions,

where M is a user-specified number of interesting itemsets.

A naive solution for NL-Problem is to directly extend the existing
algorithms for MS-Problem as follows. Choose a minsup and execute

one of the existing algorithms. If the result contains more than AT

itemsets, choose the jV largest ones from the result and we are done.

Otherwise, execute one of the existing algorithms by using a smaller
minsup repeatedly until the result contains at least M itemsets; then

choose the Af largest ones from the result.

However, the above naive solution is inefficient. First, the so-

lution might repeatedly execute one of the existing algorithms with

multiple different minsups, which results in many redundant or re-
peated operations. Second, the speeds of all the existing algorithms
are related to minsup. The smaller the minsup is, the slower the al-
gorithms are. For very small minsup, these algorithms break down
because they have an exponential worst-case time complexity (in \I\).
To get enough itemsets in the result, the last minsup chosen by the

naive solution tends to be relatively small. Therefore, the naive so-

lution not only often runs slowly, but also is easy to run into the

212

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

exponential bottleneck.

In this paper, we develop an efficient algorithm for NL-Problem,

which is implemented and compared with the naive solution. Both

experimental results and theoretical analysis show that our algorithm

has a much better performance than the naive solution. We present

some preliminary concepts in Section 2; describe our algorithm in
Section 3; present our experimental results as well as algorithm anal-

ysis in Section 4; and conclude the paper in Section 5.

2 Preliminary Concepts

We always use % to denote the item-domain, T> to denote the rele-

vant collection of transactions, M to denote the user-specified number

of desired largest itemsets, and a(x/V] to denote the support of an

itemset x in V. By definition, 0 is always the largest itemset, but we

won't include it in our study because it can't provide users with any
helpful information. Thus, all itemsets mentioned hereafter refer to

nonempty itemsets.
Let x be an itemset. We introduce the rank of x, denoted by

0(x), as follows: 9(x) = |{y | <r(y/T>) > 0(x/T>), 0 C y C I}\ + 1.

We call x a winner if 0(x) < M and a(x/V) > 1, which means that

x is one of the N largest itemsets and x occurs in V at least once.

We don't regard any itemset with support 0 as a winner even if it is

ranked below W, because there is no need to provide users with an

itemset that doesn't occur in V at all.
We use W to denote the set of all winners] and call the support

of the smallest winner the critical support, denoted by crisup. Clearly,
>V exactly contains all itemsets with support exceeding crisup; and
also we have crisup > 1. It is easy to see that |>V| may be different

from A/": (1) if the number of all itemsets occurring in D is less than

AT, |W| will be less than A/"; (2) |>V| may also be greater than N,
as different itemsets may have the same support. The problem of
finding the M largest itemsets is to generate W.

Let x be an itemset. We use Pk(x) to denote the set of all k-

subsets (subsets with size k)ofx. We use Z4 to denote Pi(I) U • • • U
Pk(Z), which means the set of all itemsets with size not greater than
k. Thus, we introduce the k-rank of x, denoted by #&(%), as follows:

Ok(x) = \{y | a(y/V) > 0(x/T>), y G Z4}| + 1. We call x a k-winner
if Ok(x) < AT and a(x/V] > 1, which means that, among all itemsets

213

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

with size not greater than 6, x is one of the M largest ones, and

also x occurs in D at least once. We use Wjt to denote the set of
all k-winners. We define k -critical-support, denoted by fc-crisup, as

follows: if \Wk\ < -A/\ fc-crisup is 1; otherwise, fc-crisup is the support
of the smallest fc-winner. Clearly, W& exactly contains all itemsets

with size not greater than fc and support not less than fc-crisup. We

present some useful properties of the above concepts as follows.

Property 2.1 Let k and i be integers such that 1 < fc < fc + i < \I\.

(1) Given x G %, we have x G Wjt iff a(x/V] > fc-crisup.

(4) 1 < fc-crisup < (fc + %)-crisup.

Proof (1) Straightforward by relevant definitions.

(2) By Wjk_i = Wjb, W/k contains no fc-itemsets. Thus, none of
fc-itemsets has support exceeding fc-crisup. Since any (fc + l)-itemset
is not larger than any of its fc-subsets, we know that none of (fc + 1)-

itemsets has a support exceeding fc-crisup and can become a (fc +

l)-winner. So we have (fc + l)-crisup = fc-crisup and W& = Wk+i-
Likewise, we have Wfc+i = Wk+2 = • • • = W|jj. Since W = Wjj| (by
definition), we have W = Wfc.

(3) Let x G Wfc+i HZYfc- By x G Z4 and Z4 C Mk+i, we have
0k(x) < Ok+i(x)- From x G W^+n we have 0k(x) < Ok+i(%} < W, and
so x G HV Hence, W*+|- HZ4 C Wk-

(4) By fc-crisup > 1 and (fc + i)-crisup > 1, the proof is obvious
for fc-crisup = 1 or i = 0. The following is the proof for fc-crisup > 1
and i > 1. We assume that (fc + i)-crisup < fc-crisup. Thus Wjt+z

contains not only all fc-winners but also at least one itemset with

support (fc + i)-crisup, say x. Since all fc-winners are larger than z,
we have 0j.+,-(ar) > |>V&|. From fc-crisup > 1, we have |V\4| > W, and

so 9k+i(x) > AT, which contradicts that x is a (fc + i)-winner. Hence,
we have (fc + z)-crisup > fc-crisup. D

3 Algorithm

To find all winners, our algorithm makes multiple passes over the
data. In the first pass, we count the supports of all 1-itemsets, se-

lect the A/" largest ones from them to form Wi, and then use Wi to

214

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

generate potential 2-winners with size 2. In each subsequent pass k:

first we count the support for potential ̂ -winners with size k (called

candidates) during the pass over T)\ then select the Af largest ones
from a pool precisely containing supports of all these candidates and

all (k - l)-winners to form W*; finally use W^ to generate potential

(k + l)-winners with size k + 1, which will be used in the next pass.
This process continues until we can't get any potential (fc + l)-winners

with size k + 1, which implies Wk+i = W*. By Property 2.1(2), we

know that the last Wfc exactly contains all winners. We present our

algorithm as follows.

Algorithm 3.1 Find the M largest itemsets.

Input: (1) X, item-domain; (2) %>, a collection of transactions over
X; (3) A/*, a user-specified number of desired largest itemsets.

Output: W, the set of all winners.

(1) Let Q be a priority-queue with A/" elements that are all equal to 1;
(2) C\ — the set of all 1-itemsets;
(3) for (k = 1; Ck ± 0; * + +) do begin
(4) count supports for all c's in C&; //Count supports by a pass over T>
(5) Ar-crisup = Crisup-gen(Q, C&); //Calculate fc-crisup
(6) Lk = {c £ Ck | <T(c/T>) > &-crisup }; //Obtain k-winners with size k
(7) Hk = Lk U {c € Wfe_i | <r(c/T>) > Ar-crisup }; //Get all k-winners
(8) C/j+i = Candidate-gen (LA;); //Generate potential (k -f l)-winners
(9) end
(10) W = W^_i;

(11) function Candidate-gen(L/c: a set of fc-itemsets)
(12) Ck+i = {x(Jy\x,y£Lk}C] Pk+i (%); //Join
(13) for every c £ Ck+i do
(14) if Pk(c) g Lk then delete c from C^+i; //Prune
(15) ret urn Ck+1;

(16) function Crisup-gen(Q: a priority-queue, C%: candidate set)
(17) for every c £ Ck do begin
(18) Let q be one of the smallest elements in Q\
(19) if <r(c/T>) > q then delete q from Q and insert (r(c/T>) into Q;

//Maintain the property that Q stores the A/" largest supports found so far
(20) end
(21) return the smallest support in Q;

Now we explain the main procedure of Algorithm 3.1. First, the

algorithm initializes a priority-queue Q at line 1, and Q will be used

215

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

later for calculating fc-crisup. We use C& to store a superset of all

k-winners with size k, called candidate set, and so the algorithm lets
C\ contain all 1-itemsets at line 2. Then the algorithm enters the for

loop at lines 3-9, where each iteration k consists of five phases. First,
the supports of candidates in C& are counted by a pass over T> at line

4. A hash tree (refer to [1]) is used to store C& so that this procedure

of support-counting can be accelerated. Second, the algorithm calls
Crisup-gen function (described below) at line 5 to calculate fc-crisup.

Third, at line 6, it selects all elements in C& whose supports are not

less than 6-crisup to get L&, the set of all ̂-winners with size k. The

completeness of this phase is guaranteed by the inductive assumption
that Ck is a superset of all ̂-winners with size k. Fourth, at line 7,

the algorithm generates Wk based on Property 2.1(3). Finally, it uses

Lk and Candidate-gen function (describe below) to generate Cfc+i,

which is a superset of all (k + l)-winners with size k + 1 and will be
used in the next iteration. The above loop continues until C& = 0,
which implies W^-i = W&. Thus, by Property 2.1(2), the algorithm

generates W = Wfc-i at line 10.

The Candidate-gen function uses L*, the set of all ̂-winners with

size &, to generate C&+i, a superset of all (k + l)-winners with size
k + 1. The procedure is the same as Apriori Candidate Generation in

[1]. First, in the join step at line 12, we join Lk with Lk to get

Next, in the prune step at lines 13-14, we delete all itemsets c £
such that some fc-subset of c is not in Lk> Now we need to show that

Cfc+i is a superset of all (k + l)-winners with size k + 1. Let x be

a (k + l)-winners with size k + 1, i.e., x G W&+1 H %+i(jQ. Thus,
it will be enough to prove that Pk(x) C Lk- By Property 2.1(1)(4),
we have a(x/V] > (k + l)-crisup > fc-crisup. Since any itemset is not

larger than any of its subsets, we have a(y/T>) > a(x/V] > fc-crisup

and so y £ Lk, for all y G %(%)• Thus, we have Pk(x] C L^.

We use a priority-queue Q to help the calculation of fc-crisup. Q

is always maintained to store the Af largest supports found currently.
Thus, the initial value of Q should contain the A/" minimum supports
that are all equal to 1, and this initialization of Q has been done at
line 1 of the main procedure. Then, in each iteration k of the main

procedure, Q is updated once (line 5), after the new candidates in
Ck have obtained their supports. The Crisup-gen function is used to
update Q. Before calling Crisup-gen(Q,Ck), Q stores the N largest

supports among all those of itemsets in Kk-i- It is obvious that the

216

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

work done by lines 17-20 is to update Q such that Q stores the M

largest supports among all those of itemsets in Z4-i UCt. Since C& is

a superset of all ̂-winners with size k, %-i UC&isa superset of all

^-winners. Thus, currently, the smallest support in Q equals fc-crisup
and also Q stores the J\f largest supports among all those of itemsets

in Uk- Finally, the Crisup-gen function returns the value of fc-crisup

at line 21.
The priority-queue Q can be implemented by several ways. In

our implementation of Algorithm 3.1, we use a heap structure (refer
to [4] for details) to implement Q such that line 18 can be completed

in time O(l) and line 19 in time O(logW). Thus the execute time of

Crisup-gen(Q,C&) is in the order of O(|C&| * log W).

4 Performance Study

We study the performance of Algorithm 3.1. For comparison, we use

Apriori introduced in [1] to implement the naive solution (Naive for

short) mentioned in Section 1, as Apriori is one of the best known
algorithms for finding all itemsets with support exceeding minsup.

4.1 Experimental Results

To assess the performances of Algorithm 3.1 and Naive, we performed

several experiments on a SUN ULTRA-1 workstation with 64 MB

main memory running Sun OS 5.5. The synthetic datasets used in
our experiments were generated by a tool described in [1]. We use the
same notation Tx.Iy.Dz to denote a dataset in which x is the average
transaction size, y is the average size of a maximal potentially large

itemset and z is the number of transactions. We refer the reader to
[1] for more details on the dataset generation.

To keep the comparison fair, we implemented all the algorithms

using the same basic data structures. Moreover, in our implemen-
tation of Naive, we call Apriori repeatedly with a sequence of <
minsupi, minsupj-J, minsupi-2£, > until the result contains at

least M itemsets. To keep the execution time of Naive as minimum
as possible, we implemented an incremental version of Apriori: in the
fc-th call of Apriori, our implementation did not count those itemsets

whose supports had already been obtained.
Figure 1 shows the experimental results for four synthetic datasets

T5.I2.D100K, T10.I4.D100K, T20.I4.D100K and T20.I6.D100K to

217

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Naive(0.04«) -«
Niive(0.06%) -<

200 300 400 300 600 700 #00 900 1000

Niive<0.04%) -*
N«ive(0.06%) H
Algorithm 3.1 <

50 100 200 300 700 800 900 1000 50 100 200 300 400 500 600 700 800 900 1000The daired nuiriber of winners

Figure 1: Performance Comparison of Algorithm 3.1 and Naive

compare the performances of Algorithm 3.1 and Naive. In the fig-

ure, Naive(0.04%) refers to the execution of Naive using minsupj =
2.5%* [D\ and 5 = 0.04%* |£>|; Naive(0.06%) refers to the execution
of Naive using minsupj = 2.5%*|£>| and S = 0.06%*|£>|. We observe
that Algorithm 3.1 outperforms both executions of Naive for all J\Ts,

by factors mainly ranging from 2 to 5.

Actually, the speed of Naive is largely dependent on two required
parameters: minsup^ and 5. For a small minsup^ or a large 5, Naive
could complete by calling Apriori very few times, but the execution

of the last Apriori might take quite long time because the last minsup

tends to be very small. In contrast, for a large minsup^ and a small

5, Naive could complete every Apriori within reasonable time, but
it may contain considerable tradeoff for calling Apriori many times

because the sequence of < minsupi, minsupj-^, minsupi-25, >
might be relatively long so that crisup can be reached in the end. So,
how to set a reasonable sequence of decreasing minsups to accelerate
Naive seems to be an interesting problem for future study. With this

observation, we also did many other experiments using a wide range

of values of minsupj and S on Naive, and found that some executions
are similar to the above two but most of them are far slower. In those

cases, Algorithm 3.1 outperforms Naive further more.

218

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

4.2 Theoretical Analysis

We now analyze theoretically why Algorithm 3.1 outperforms Naive.

In theory, the best case of finding W is to call Apriori with min-

sup=crisup because of no redundant computation in this case. Ac-

tually, the execution of Algorithm 3.1 is very close to this best case,

though it has the following two extra costs: (1) the cost of finding
fc-crisup in the fc-th iteration: as we have mentioned in Section 3,

it takes O(|C&| * log M) time to obtain fc-crisup by calling Crisup-
gen(Q,C&) in our implementation; (2) the cost of counting supports
for extra candidates: a fc-itemset x is an extra candidate iff some

(k - l)-subset of x is not a winner but all (k - l)-subsets of x are

(k - l)-winners. Compared with the cost of counting supports for all
candidates in C% by a pass over Z> in the fc-th iteration, the first cost

of O(\Ck\ * log AT) is trivial due to N < \V\. Moreover, we observe
that most of itemsets with large supports have relatively small sizes

because any itemset is not larger than any of its subsets. Thus, usu-

ally, no big difference exists between crisup and any of fc-crisups, which

implies that the number of extra candidates is often bounded and the
second cost is not expensive. Thus, the execution of Algorithm 3.1
is almost the same as the above best case. For Naive, however, it is

very hard to meet the best case, as Naive has no effective method

but guessing and testing on finding crisup. Therefore, Algorithm 3.1

has a much better performance than Naive.
Another drawback of Naive is that it not only has an exponential

worst-case time complexity, but also is quite easy to run into this
bottleneck because the last minsup chosen by Naive tends to be very
small so that its result can contains enough itemsets. However, from

the following analysis, we can see that Algorithm 3.1 has a polynomial
time complexity at most cases, especially in practical applications.

Lemma 4.1 Let Xk be a set of k-itemsets and Xk+i be a set of

(k + I)-itemsets, where 1 < k < \I\. //Uaex*+i

Proof Let Y = {a U b \ a, 6 e % n+i = Y fl %+i(%), Z =
{a U {&} | a G X*, b G I}, and Zk+i = Z H P*+i(Z). First, we have

l̂ +i| < M < |X&| * |X&| and |Z&+i| < |Z| < |%t| % |Z|. Next, by
Yk+i C Z, we get ̂ +1 C Z*+i. Thus we have |y*+i| < \Zk+i\ <

\Xk\ * \I\. Then, by UaeX,+i%W G X^ we have Xk+i C
Hence, |X&+i| < |}%+i| <

219

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Since the main cost of Algorithm 3.1 is the cost of counting sup-

ports for all candidates and \V\ is fixed, it will be enough to just

estimate the size of C, where C denotes the set of all candidates

generated in Algorithm 3.1.
We assume that M& is the number of itemsets with support equal

to fc-crisup and size not greater than &, where 1 < k < |J|, and M

is the maximum of all MI ~ M|j|. Thus, we have |V\4| = AT +

Mk - 1 < M + M. In Algorithm 3.1, C& denotes the candidate

set generated in the fc-th iteration, and L& denotes the set of all k-

winners with size k by selecting from C& using 6-crisup. Thus we

have \Lk\ < |Wfc| < M + M. Since C&+i is generated by using Lk

such that UaeCfc+i ̂ fc(tt) G £fc> by Lemma 4.1, we have |Cfc+i| <
min{|L*|, |J|) * \Lk\ < mm{(M+M), \1\} * (M+M).

Assume that Ci,C2, • • -,Cn are all candidate sets generated in
Algorithm 3.1. Thus there is at least one winner x whose size is not

less than n - 1, i.e., \x\ > n - 1, because otherwise Cn couldn't be
generated. Furthermore, all subsets of x are winners, and 2^' is the

number of all subsets of %, hence we have 2^1 < |>V|j|| < A/" + M,
and so n - 1 < \x\ < \og(M + M).

Now we can estimate the size of C: \C\ — |C*i| + | U&E[2,n]̂ &| —

l%l + ECf |C&+i| < |%| + (7% - 1)* min{(W + M), |%|} * (Af + M)
< \I\ + log(M + M)* min{(W + M), \I\} * (M + M). Thus, the
number of all candidates generated in Algorithm 3.1 is in the order
ofO(log(Af + M)* min{(.V+M),|Z|}*(Af+M)). Hence, the time
complexity of Algorithm 3.1 is polynomial for bounded Af and M.

In practical applications, users are usually interested only in a
limited number of largest itemsets so that AT is limited, which implies
that 1-crisup ~ |Z|-crisup are relatively high. Thus, MI ~ M|j| are
often very limited because it is easy to see that the number of itemsets

sharing the same support equal to a fixed and relatively high value

can not be large in most cases. As a result, M is limited. Therefore,

in practice, Algorithm 3.1 usually runs in polynomial time.

5 Conclusions

We have proposed a new problem: finding the J\f largest itemsets,
whose solution can be used to efficiently generate a set of interesting
itemsets for mining association rules. We have presented an efficient

algorithm, Algorithm 3.1, for solving this problem. Algorithm 3.1

220

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

has been implemented and compared with the naive solution using

Apriori approach. We have presented experimental results as well

as theoretical analysis showing that our algorithm has a much better

performance than the naive solution. We have also analyzed the cost

of Algorithm 3.1 and found that it usually has a polynomial time

complexity in practice.

Finding a set of interesting itemsets is the main task of mining

association rules. Previous study suggested obtaining them by using

minsup. However, an unsuitable choice of minsup might make all
the existing algorithms either obtain too many or too few interesting

itemsets or run into the exponential-time bottleneck. So we have
proposed an alternative method of obtaining interesting itemsets by

generating the top M ones, which can overcome the above drawback.

Furthermore, we can also use both Af and minsup to generate

interesting itemsets, which induces a closely related problem: find-
ing the W largest itemsets with support exceeding minsup. A slightly

modification of Algorithm 3.1 can solve this problem efficiently, by
initializing Q (used for calculating 6-crisup) to be a priority-queue

with M elements that are all equal to minsup instead of 1, please

refer to Section 3 for details.

We observe that finding interesting patterns by using a user-

specified size of the result AT or a combination of AT and some thresh-
old is also applicable to the following problems: mining generalized

association rules [5, 10, 11], mining path traversal patterns [3], min-
ing sequential patterns [12], and even data mining theoretic issue [6].

We are currently working on efficient solutions for these problems.

Acknowledgment

Special thanks to Ms Ling Cheng for her helpful implementation and
experiment on Algorithm 3.1 and the naive solution using Apriori.

References

[1] Agrawal R., Mannila H., Srikant R., Toivonen H. & Verkamo
A.I., Fast Discovery of Association Rules, Advances in Knowledge

Discovery and Data Mining, pp. 307-328, AAAI/MIT Press, 1996.

221

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[2] Agrawal R., Imielinski T. & Swami A., Mining Associations be-

tween Sets of Items in Massive Databases, Proc. of ACM SIG-

MOD Int. Conf., Washington B.C., pp. 207-216, May 1993.

[3] Chen M.S., Park J.S. & Yu P.S., Data Mining for Path Traversal

Patterns in a Web Environment, 1996 IEEE Proc. of 16th ICDCS.

[4] Gormen T.H., Leiserson C.E. & Rivest R.L., Introduction to Al-

gorithms, Cambridge, Mass/MIT Press; NY:McGraw-Hill, 1989.

[5] Han J. & Fu Y., Discovery of Multiple-level Association Rules
from Large Databases, Proc. of the 21st VLDB Int. Conf., Zurich,

Switzerland, 1995.

[6] Mannila H. & Toivonen H., Levelwise Search and Borders of

Theories in Knowledge Discovery, Report C-1997-8, University
of Helsinki, Department of Computer Science, 1997.

[7] Mannila H., Toivonen H. & Verkamo A.I., Efficient algorithms

for discovering association rules, AAAI Workshop on Knowledge
Discovery in Databases, pp. 181-192, July 1994.

[8] Park J.S., Chen M.S. & Yu P.S., An Effective Hash-Based Algo-

rithm for Mining Association Rules, Proc. of ACM-SIGMOD Int.

Conf., San Jose, CA, pp. 175-186, May 1995.

[9] Savasere A., Omiecinski E. & Navathe S., An Efficient Algorithm
for Mining Association Rules in Large Databases, Proc. of the
21st VLDB Conference, pp. 432-444, Zurich, Switzerland, 1995.

[10] Srikant R. & Agrawal R., Mining Quantitative Association Rules
in Large Relational Tables, Proc. of ACM SIGMOD Int. Conf.,
Montreal, Canada, June 1996.

[11] Srikant R. & Agrawal R., Mining Generalized Association Rules,
Proc. of the 21st VLDB Conf., Zurich, Switzerland, pp. 407-419,

1995.

[12] Srikant R. & Agrawal R., Mining Sequential Patterns: General-
izations and Performance Improvements, Proc. of the 5th EDBT

Int. Conf., Avignon, France, March 1996.

222

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

