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1 Introduction

The problem of correct specification of an implied covariance matrix is one of prominent
significance in finance. A most typical situation in practice is when a covariance matrix is
constructed with missing elements being replaced by their estimates obtained by various
ad hoc methods, for example, extrapolation or interpolation of historical data, etc. That
might render such a matrix estimate not positively semidefinite (PSD) and prevent it
from being used in option pricing, risk management or portfolio allocation models.1

The focus of this paper is finding a valid covariance matrix of logarithmic returns in
the foreign exchange (FX) market under distributional assumptions of the Black-Merton-
Scholes (BMS) model. The FX market is beneficially distinct from other financial markets
in providing for a direct way of monitoring violation of no arbitrage conditions. Namely,
for any values of two given FX rates absence of arbitrage may be verified by looking at the
values of the so-called cross-rates. This leads to additional functional (linear) constraints
on the covariance matrix. In particular, when all the cross exchange rates are liquidly
traded, the no-arbitrage assumption implies a structure of the implied covariance matrix
which is fully determined by volatilities of the respective exchange rates (Wystup (2007)).
Violating that structure puts a trader in danger of selling a mispriced trade and cause his
books to bleed the money (Austing (2011)).

The literature on computational finance abounds in methods of correction of invalid
covariance matrix estimates. However, while being generally useful, those methods do
not take into account the specific constraints on matrix elements like those encountered
for the FX market. Moreover, little recognition is given to that fact, that in practice
financial professionals, while working with incorrectly specified covariance matrices, may
restrict themselves to correcting some submatrix of the complete covariance matrix.2 This
is often done when a trader is not interested in the elements of the complete covariance
matrix, outside the given submatrix, as the trade, which the trader is dealing with, does
not explicitly include a reference to those elements. In practice, traders might employ
specifically written ”trader’s tools” to fill-in and update the values of volatilities or
covariances within the data system they use, and only then move on to pricing actual
products. On the one hand, when correction of the submatrix is separated from actual
pricing, making a submatrix of FX rates (used in updating the system data) PSD does
not necessarily imply that the complete covariance matrix (used in pricing) becomes PSD,
which in turn creates opportunities for arbitrage. On the other hand, making a wrongly
specified complete covariance matrix PSD may in some cases be a numerically daunting
task because, as we show below, it will always be singular – the fact that adversely affects
convergence of dual numerical methods, as well as primal-dual algorithms of interior-point
methods, including those used in industry (see, eg Qi and Sun (2006), Todd (2001) and
also Bouev (2012)).

In search for an efficient correction method for a covariance matrix estimate we put
the problem for the FX market in a broader context of finding a symmetric PSD matrix
nearest to the given estimate of the covariance matrix, when a set of affine restrictions

1Using such a matrix in financial modelling might not immediately lead to, for example, negative
prices, but will undoubtedly incorporate possibilities for arbitrage from the very start.

2By such a matrix we henceforth understand a matrix corresponding to the complete set of assets
traded in the market. In the FX case the complete matrix for the given set of currencies will include
all the so-called driving FX rates (ie most liquid, or of primary importance to the trader) and their
corresponding crosses.
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on the resulting matrix must be satisfied. Such a problem will typically be of medium
scale as the size of the matrix to be corrected will hardly be more than 100 × 100. 3 A
number of approaches can be invoked for such matrices, in particular the so-called primal,
interior-point and dual numerical methods. The latter ones, being in fact the most efficient
for the purpose as suggested by recent literature on numerical methods, are not directly
applicable to the problem in the focus of this work, as the specific constraints derived from
no-arbitrage conditions in the FX market (Wystup (2007)) make the problem ill-posed
in the sense that the sufficient condition for strong duality (Slater’s) is not satisfied. We
show, however, that this medium scale problem can always be reduced to an equivalent
but well-posed small-scale problem, which can be solved by various methods in hundredths
of a second. In particular, we suggest a procedure of isometric rescaling of the original
problem down to a new one. The idea is to build an orthogonal projection onto a face of a
PSD cone that contains a feasible set of solutions. Compared to the original problem, the
reduced problem has a number of advantages: more specifically, it satisfies the sufficient
condition for strong duality, it enjoys a significantly reduced dimensionality, and, finally,
the FX market no-arbitrage conditions need no longer be enforced. We prove a one-to-one
correspondence between the solutions of the original and reduced problems, and provide
ample evidence on a superb performance of various numerical methods when applied to
the reduced problem.

The paper is organized as follows. The next section brings in notation. After that,
we introduce the reader to the problem, briefly discuss its origins and provide a short
survey of possible approaches to finding its solution. Section 4 provides more detail on
the distinct structure of the covariance matrix of logarithmic returns in the FX market.
In Section 5 we first state the independence of the original optimization problem from
quotations of FX rates – a result of practical importance. We then move on to state a
well-posed problem equivalent to the original one. That section contains the main result of
the whole work. In Section 6 we briefly describe advantages and disadvantages of existing
numerical methods in the context of the concrete re-formulated problem. In Section 7 we
compare method’s performance in low dimensions. The last few sections are devoted to
generalizations, certain issues of application and conclusions.

3 This is so as usually there are only about 20 currency pairs, actively traded in the market (see TCBS
(2013)).
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2 Notation

Sn, Sn+ Respectively, the linear space of symmetric (n × n)-matrices and the cone
of positive semidefinite matrices in Sn.

||v|| The Euclidean norm of a vector-column v, defined as ||v||2 =
∑

i v
2
i .

||X||n The Frobenius norm of a (n × n)-matrix X, defined as ||X||2n =
trace(XXT ) =

∑
i,j x

2
ij.

X � (�)0 Eigenvalues of matrix X are positive (nonnegative), ie the matrix X is
positive (semi-) definite.

IM The identity (M ×M)-matrix.
Or,s The zero (r × s)-matrix.
PSn+X The orthogonal projection (Higham (1988)) of X ∈ Sn onto Sn+ which equals

X+ =
∑

λi>0 λiqiq
T
i , where qi is the eigenvector corresponding to eigenvalue

λi.
PKX The orthogonal projector of matrix X ∈ Sn onto the affine subspace K.
diag(X) A vector-column of diagonal elements of matrix X.
A[τ, µ] The (r × s)-submatrix of A lying at the intersection of rows τ1, . . . , τr and

columns µ1, . . . , µs. Where τ = {τ1, . . . , τr}, µ = {µ1, . . . , µs} denotes two
sets of distinct positive integers, not exceeding n and m, respectively.

A{τ, µ} The (n×m)-matrix such that A{τ, µ}τiµj = Aτiµj for all 1 ≤ i ≤ r, 1 ≤ j ≤
s, and other elements being equal to zero.

v[τ ] Let v be a n-dimensional row-vector, then v[τ ] denotes a r dimensional
subvector of v, (vτ1 , . . . , vτr).

v{τ} A n-dimensional vector, such that v{τ}τi = vτi for all 1 ≤ i ≤ r, with other
elements equal to zero.

(x, y) The scalar product of vectors x, y ∈ Rn, equals
∑n

i=1 xiyi.

3 The Problem and Its Background

We are interested in finding a valid estimate X of a true covariance matrix of logarithmic
returns in the FX market under assumptions of the BMS model4.5 The no arbitrage
conditions, also known as triangular relationships (see Wystup (2007) and the following
Section), imply a set of functional constraints on the elements of X. Generally, when
first constructed in practice, a given estimate C of the true covariance matrix might not
satisfy that set of functional constraints, nor it has to be PSD by default for the reasons
mentioned in the introduction. In addition, practical considerations might impose even
further constraints on the desired covariance matrix X. Such constraints are often affine
in nature, as happens in problems of matching the implied volatility surface, portfolio
optimization, etc. A typical example is when in building an estimate of the covariance

4The BMS model is invoked here to describe the probability space only, the following discussion is,
however, true for any instantaneous covariance matrix of logarithms of exchange rates under no-arbitrage
assumptions.

5Some market participants may prefer dealing with a correlation matrix rather than a covariance
matrix, for correlations are often readily observable in the market. The problem of finding a valid
covariance matrix estimate X and the problem of finding a valid correlation matrix estimate R go hand
in hand, since R = D−1/2XD−1/2, where D is a diagonal matrix and Dii = Xii, i = 1 . . .M. Thus, X
and R are PSD or non-PSD simultaneously.
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matrix one relies on several volatility estimates representing ”ex-post” volatilities of well-
chosen (eg replicating) portfolios. The resulting valid covariance matrix estimate must
take the volatilities of the portfolios into account. Let, for example, ξ be a random
vector of size M with zero mean, and let F T ξ represent some benchmark well-chosen
portfolio. Suppose the variance of portfolio F T ξ is given and equals b. This implies an
affine restriction on the covariance matrix (see Boyd and Xiao (2005), Malick (2005)):

trace[F T E(ξξT )F ] = trace[(FF T )X] = trace[AX] = b (1)

where A = FF T is a symmetric (M ×M)-matrix.
Another example of an affine restriction is enforcement of conservation of the empirical

total risk, that can be expressed as trace(IM ·X) = trace(C), where IM is the identity
matrix of size M ×M (see Malick (2005)). In general, altering the whole matrix C in a
controlled fashion requires the matrix to satisfy some affine restrictions (see Schöttle and
Werner (2004), Rebonato and Jäckel (2000)).

Taking the above reasoning into consideration, suggests the following problem of find-
ing a valid covariance matrix X in the FX market. Let C be a non-PSD matrix of M
currency pairs for given N currencies. The M currency pairs will contain all the ”driving”
currency pairs of primary interest to the modeller, as well as some, but not necessarily
all crosses.6 The modeller then seeks to



min
1

2
||X − C||2M (2)

X ∈ CMFX (3)

trace(AiX) = bi, 1 ≤ i ≤ keq (4)

trace(Bj X) ≥ dj, 1 ≤ j ≤ kineq (5)

X � 0 (6)

where restriction (3) implies that X is a symmetric matrix consistent with the no
arbitrage condition in the FX market; CMFX is a space of such (M ×M)-matrices (see, in
particular, Theorem 2 below)7; restriction (4) represents a general set of keq affine equality
constraints; restriction (5) represents a general set of kineq affine inequality constraints if
some lower or upper bounds on portfolio variances are specified; and, finally, restriction
(6) implies that X is a PSD matrix.

In literature on constrained optimization problem (2) above is often referred to as the
so called SDLS problem (see Malick (2005)) or the LSCAP problem (see Boyd and Xiao
(2005)) or the LSCM problem (see Gao and Sun (2009)). Its geometric interpretation
is computing a (Frobenius norm) projection of C onto the intersection of the half-space,
defined by affine equalities (4) and inequalities (5), and the cone of positive semidefinite
matrices (6). Finding a solution to such a problem has been a focus of extensive research.
The existing approaches could be divided into primal, dual and interior point methods,

6The results of this paper hold for this more general statement of the problem. However, in any
practical situation, whenever it is necessary to update the values of variances or covariances, the modeller
will have to work with a complete covariance matrix. In other words, to avoid introducing arbitrage into
the data system, any correction to variances and covariances of a given set of currency pairs necessitates
a further updating of the covariances of all the crosses, spanned by the given set of currency pairs.

7If C does not immediately belong to CMFX then one first needs to project it onto CMFX as shown in
Corollary 2 to Theorem 2.
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which can also be distinguished by the type of admissible constraints. Here we provide
only a glimpse of relevant work.

Higham (Higham (1988)) described a (Frobenius norm) projector8 on the cone of
positive semidefinite matrices in an optimization problem without imposition of additional
constraints on matrix elements. In the paper by Rebonato and Jaeckel (Rebonato and
Jäckel (2000)), well-known among financial market practitioners, the authors proposed
two methods, one of which is too only applicable to the problem of finding a nearest
correlation matrix without imposition of additional constraints, while the other provides
only a sub-optimal solution to the problem (2). Additional affine equality constraints have
also featured in Higham (Higham (2002)), where the solution is sought via an alternating
projections method with the Dykstra’s correction (Dykstra (1983)).

Problem (2) can also be reformulated as a standard semidefinite-quadratic-linear pro-
gram (SQLP), ie a linear problem with affine equality-inequality constraints, the PSD
cone constraint and some additional quadratic constraints. That would open the door to
using interior point numerical methods, such as, for example, the primal-dual interior-
point algorithm based on the Gauss-Newton approach proposed in Alfakih et al (1999).
An application of similar methods can also be found in Schoettle and Werner (2004), while
Higham (2002), Gao and Sun (2009) welcomed using popular software (such as SEDUMI,
SDPT3 and PENNON), based on interior-point methods, for solving problems of con-
vex and nonconvex nonlinear programming and semidefinite programming. The difficulty
with interior point methods, however, is that they are generally feasible only as long as
the dimension of the problem is not large. Moreover, the methods are not applicable for
problems with affine inequality constraints.

Another way to solve problem (2) is to re-state it as a convex quadratic semidefi-
nite program (QSDP) as in (Toh et al (2007)). They invoke preconditioned symmetric
quasi-minimal residual iterative solver with appropriate preconditioners. That approach
is indeed applicable in larger dimensions but, at the same time, is memory-expensive as
implemented on a PC (see numerical experiments in Gao and Sun (2009)).

Perhaps, the most recent development in the problem of finding a nearest valid corre-
lation or covariance matrix estimate in finance is the use of the so-called dual methods.
These have been employed since the mid 2000s and are capable of properly accounting
for inequality constraints in a natural way. Applied to a singular complete covariance
matrix the methods also allow to substantially reduce the dimensionality of the problem.
Malick (2005) and Boyd and Xiao (2005) proposed using such methods for solving the
original problem (2) almost at the same time. Specifically, in Malick (2005) the use of
a quasi-Newton BFGS method was suggested, while Boyd and Xiao (2005) advocated a
projected gradient method. Building on developments in understanding strongly semis-
mooth matrix-valued functions, a quadratically convergent Newton semismooth method
was introduced in Qi and Sun (2006), while Borsdorf and Higham (2010) suggested some
modifications to it. As the method in Qi and Sun (2006) does not by default allow
inequality constraints, Gao and Sun (2009) proposed another modification, namely a
quadratically convergent inexact smoothing Newton method, applicable to problems with
affine inequality constraints.

The success of any dual method, however, hinges upon the existence of a bounded
dual solution as well as the zero dual gap, which require the dual function to satisfy the
coercivity property (see Rockafellar (1996)). Problem (2) in its original specification for
the market complete with crosses does not, generally, satisfy that property even in the

8However, well-known in statistics.
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simplest case of a (3× 3)-matrix C. That is due to the matrix being singular, which
essentially renders the dual methods impracticable for our purpose.

In order to resolve this challenging issue we shall show that problem (2) can be isomet-
rically reduced to a low dimensional one by getting rid of the zero eigen values introduced
by triangular relationships (see Section 4). The idea of the reduction is in projecting the
original problem on a face of the PSD cone that contains a feasible set. In so doing we
obtain a reduced problem which is a well posed LSCAP or LSCM problem (Wolkowicz
(1981)): 

min 1
2
||P T

11CN−1P11 − Y ||2N−1
trace(P T

1 AiP1 Y ) = bi, 1 ≤ i ≤ keq

trace(P T
1 BjP1 Y ) ≥ dj, 1 ≤ j ≤ kineq

Y � 0

(7)

where CN−1 is a (N − 1 × N − 1)-submatrix of the original matrix estimate C; CN−1
contains variances and covariances for the driving exchange rates, which the modeller is
preoccupied with; matrix P1 and its submatrix P11 depend on the actual choice of the
exchange rates, that ”drive” elements of C (see Theorem 6 below for more detail).

The reduced problem (7) has a number of advantages compared to problem (2), namely

• the matrix estimate featuring in the reduced problem has a significantly lower size;

• the arbitrage conditions in the FX market need no longer be explicitly enforced;

• it satisfies the Slater sufficient condition9 for strong duality in a convex optimization
problem, which allows one to employ the most efficient dual methods for finding a
solution.

Below we shall prove a one to one correspondence between solutions of the reduced
and original optimization problems. Then, we shall show that the reduced problem can be
solved extremely efficiently, practically in hundredths of a second on a standard PC. The
performance of various numerical methods will be demonstrated in numerous numerical
experiments. Before that we, however, describe the specific structure of the FX market
that defines the set of constraints X ∈ CMFX in the original problem (2).

4 The Structure of a FX Covariance Matrix

The FX market is distinct from other financial asset markets in that arbitrage, if exists,
reveals itself and is observable in the values of cross-exchange rates. Thus, the no arbitrage
condition implies restrictions on the exchange rates known as triangular relationships
(Wystup (2007)). To illustrate the main idea we consider a simple example of a market
with three currencies (a so-called triangular FX market), namely USD, EUR and GBP .
All three currency pairs USD/EUR, USD/GBP and GBP/EUR are liquidly traded.
The standard market convention is to quote them as EUR − USD, GBP − USD and
EUR−GBP , respectively. The no arbitrage assumption then yields:

SEUR−USDt = SEUR−GBPt SGBP−USDt

9under standard assumption of linear independence of matrices Ai, 1 ≤ i ≤ keq and matrices Bj , 1 ≤
j ≤ kineq admitting strict feasibility
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where St is the exchange rate for a given pair of currencies at time t.
Let us index the exchange rates by 1, . . . ,M . Then the triangular relationship will, in

general, take the following form

(S
(1)
t )α(S

(2)
t )β(S

(3)
t )γ = 1 (8)

where α, β, γ ∈ {−1, 1}.
In the above example of the triangular FX market, let us assign the USD/EUR pair

index 1, USD/GBP - index 2 and EUR/GBP - index 3. Then it follows that α = 1,
β = −1 and γ = −1.

Equivalently, for logarithms of the exchange rates, equation (8) can be expressed as

α ln(S
(1)
t ) + β ln(S

(2)
t ) + γ ln(S

(3)
t ) = 0 (9)

Consider a FX market with N currencies. We shall assume that all the currency pairs
are quoted according to the market convention. We shall also assume that the assumptions
of the BMS model10 hold, in other words, dynamics of the exchange rates are modeled as
a log-normal martingale under its respective forward measure:

dS
(i)
t = S

(i)
t [µidt+ σidW

(i)
t ] (10)

where i = 1 . . .M, µi is the rate of appreciation, σi is the instantaneous volatility of i-th
exchange rate, M is the number of exchange rates in focus, where, obviously, M ≤ N(N−1)

2
.

Correlations ρi,j and covariances of logarithmic returns are defined by the covariance

matrix with elements cov(ln(S
(i)
t ), ln(S

(j)
t )) = tρi,jσiσj.

Then the covariance matrix of the process {ln(S
(i)
t )}Mi=1 equals t · Σ, where

Σ = (ρi,jσiσj)i,j

is the matrix of instantaneous variances and covariances11.
Consider such a relationship for logarithmic returns α ln(S

(i)
t )+β ln(S

(j)
t )+γ ln(S

(k)
t ) =

0, with α, β, γ ∈ {−1, 1} as before. By computing the covariance of the left hand side
with any other logarithmic return m, and using the linearity property of covariance we
get

α cov(ln(S
(i)
t ), ln(S

(m)
t )) + β cov(ln(S

(j)
t ), ln(S

(m)
t )) + γ cov(ln(S

(k)
t ), ln(S

(m)
t )) = 0 (13)

∀ 1 ≤ m ≤M

10The BMS model is invoked here to describe the probability space only. What follows is, however,
true for any instantaneous covariance matrix of logarithmic returns under no-arbitrage assumptions.

11Its elements off the main diagonal will generally look like

Σi,j =
(−1)δi/j (σ2

i + σ2
j − σ2

i/j)

2
(11)

if the coefficient is for covariance of two currency pairs which have a currency in common, or, alternatively,

Σi,j =
(−1)δi/j (σ2

k − σ2
l − σ2

m + σ2
n)

2
(12)

where δi/j equals ±1 depending on a particular quotation selected. These expressions can easily be
obtained via linear combinations of equations (13), generally, irrespective of M . In other words, matrix
Σ is fully determined by all M =

(
N
2

)
implied volatilities {σ2

i }Mi=1 of log-returns (see Wystup (2001) ).
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Theorem 1. 1. Let N be the number of different currencies represented in the set of M
currency pairs. Assume there is no arbitrage. Then there exists N −1 currency pairs (the
so called driving pairs) which through triangular relationships define exchange rates of all
other M −N + 1 currency pairs.

2.The rank of matrix Σ is no greater than N − 1.

Proof. Consider any set of currency pairs where all N currencies {c1, . . . , cN} are repre-
sented. The minimal cardinality of the set is N − 1 and it is attained for the set without
any currency triangles. For instance, c1

c2
, .., c1

cN
. Then, using Ito’s formula (see Chesney

and Elliot, 1995) any other exchange rate will be defined by triangular relationships.

Equation (13), where S
(j)
t and S

(k)
t are two exchange rates from the selected set of

currency pairs, implies that M − N + 1 columns of matrix Σ are linearly dependent on
the columns corresponding to exchange rates from the selected set. Thus rank(Σ) =
N − 1.

For matrix Σ formula (13) can be rewritten as:

αΣi,m + βΣj,m + γΣk,m = 0 1 ≤ m ≤M (14)

Therefore, vector v(ijk) = (v1, . . . , vM) ∈ RM, such that vi = α, vj = β, vk = γ
with other elements being zero is the eigenvector of matrix Σ, corresponding to a zero
eigenvalue. Now, denote the linear span of vectors v(ijk) by NM

FX . Theorem 1 implies that
dim(NM

FX) +N − 1 = M, then there are M −N + 1 linearly independent vectors v(ijk).
Conversely if NM

FX is a subspace of the null-space of a symmetric positive semi-definite
matrix Σ, then tΣ is a valid covariance matrix in the BMS world.

Let St be a random process with components satisfying (10), with µi such that at any
moment t ≥ 0 the equality v(ijk)

(
t(µ− 1

2
diag(Σ))+ln(S0)

)
= 0 holds for all v(ijk) from the

basis of NM
FX . Assume, that the covariances of ln(S

(i)
t ) and ln(S

(j)
t ) for all i, j are given by

matrix tΣ. Then it is enough to show that at any moment of time t > 0 the components
of the process ξt = {ln(S

(i)
t )}Mi=1, satisfy triangular relationships almost surely.

0 = v(ijk)Σv(ijk)
T

= v(ijk)[E(ξtξ
T
t )− E(ξt) · E(ξTt )]v(ijk)

T

= v(ijk)E(ξtξ
T
t )v(ijk)

T

=

= E(v(ijk)ξt)(v
(ijk)ξt)

T = E
[
(v

(ijk)
i ξit + v

(ijk)
j ξjt + v

(ijk)
k ξk)

2
]

Therefore, v
(ijk)
i ξit + v

(ijk)
j ξjt + v

(ijk)
k ξkt = 0 a.s. Thus, we have just proved the following

theorem.

Theorem 2. The following statements are equivalent:
1. Matrix Σ defines an instantaneous covariance matrix in the BMS world.
2. Vectors v(ijk) ∈ NM

FX are the eigenvectors of positive-semidefinite matrix Σ, corre-
sponding to a zero eigenvalue.

Theorem 2 reads that the essence of triangular relationships is in their imposing nec-
essary restrictions (14) on matrix Σ.

Thus, for any matrix to be a valid covariance matrix in the BMS world two conditions
must hold simultaneously: it is PSD and vectors v(ijk) are its eigenvectors corresponding
to the zero eigenvalue. The space of matrices which satisfy only the second condition are
denoted by CMFX (see, eg restriction (3) in (2)). Therefore the set of valid instantaneous
covariance matrices in the BMS world is simply an intersection of the linear space CMFX
and the cone SM+ of PSD matrices.
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The covariance matrix Σ is, in general, not full rank, hence the multivariate normal
distribution of return increments is degenerate and does not have density with respect
to M -dimensional Lebesgue measure. Thus, we can reduce the M -dimensional random
process to no more than a (N − 1)-dimensional one. This can be done using a change of
variables in multiple ways. Here we consider two of them.

The first approach maps the (M × M)-covariance matrix to its (S × S)-submatrix
Σ[τ, τ ] of the index set τ = {τ1, . . . , τs} assigned to the set of currency pairs which
includes driving pairs. Matrix Σ may subsequently be restored from matrix Σ[τ, τ ].

Theorem 3. For any M such that S ≤ M ≤ N(N−1)
2

and any set τ as described above,
there exists a change-of-basis matrix Qτ such that

QτΣ{τ, τ}QT
τ = Σ (15)

Proof. Let (ξ1t , . . . , ξ
M
t ) = ξt be a random M− dimensional process satisfying (10) with

covariance matrix tΣ. Let ξ̃t = ξt{τ}. Let matrix V be the (M ×M)-matrix, whose rows
with indexes k ∈ {1, . . . ,M}\τ are formed by linear independent vectors (v(ijk)), where

i, j ∈ τ and v
(ijk)
k = −1 and other elements being zero.

Consider an (M × M)-matrix Qτ = I{τ, τ} + V, where I is the (M × M)-identity
matrix12.

Then by Theorem 1 the random vector ξt = Qτ ξ̃t
T

and formula (15) follow from the
linear change-of-basis given above.

Unfortunately, such a matrix Qτ is not an orthonormal change of basis, ie it does not
preserve the Frobenius norm. Another, second approach thus may be considered, which
is an isometrical projection in the Frobenius norm.

Theorem 4. There exists the (M ×N − 1)-matrix P1 such that for any (M ×M)-matrix
C ∈ CMFX the following decomposition holds

K = P T
1 CP1 (16)

where K is the (N −1×N −1)-matrix, and, importantly, ||C|| = ||K||. Conversely, given
the matrix K and the matrix P1 one can restore the matrix C by C = P1KP

T
1 .

Proof. Let P be a matrix, which M −N + 1 first columns form an orthonormal basis in
NM
FX , and the last N−1 columns form an orthonormal basis in the orthogonal complement

of NM
FX . Since NM

FX is a subset of the null-space of matrix C, the first M − N + 1 rows
and columns of P TCP contain zeros only.

P TCP =

(
Or,r Or,s

Os,r K

)
, where r = M −N + 1, s = N − 1. (17)

Since matrix P is an orthonormal change of the basis matrix, it does not affect the
eigenvalues of matrix C, in particular any eigenvalue λi, (1 ≤ i ≤ N − 1) of matrix K is
eigenvalue of matrix C and ||C||2M = ||K||2N−1 =

∑
1≤i≤N−1

λ2i .

Denote by P1 the (M × N − 1)-submatrix consisting of the last N − 1 columns of
matrix P , ie

P1 = P [1 . . .M,M −N + 2 . . .M ].

12Obviously, Qτ is invertible.
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Then using (17), P T
1 CP1 = K and, conversely, P1KP

T
1 = C.

Theorem 3 implies that matrix K (from Theorem 4) can be obtained from any sub-
matrix Σ[τ, τ ] of matrix Σ, if the set of indices τ = {τ1, . . . , τs} is assigned to the set of
currency pairs which contains any set of driving pairs.

Corollary 1. For any M such that S ≤M ≤ N(N−1)
2

and any set τ described above there
exist matrices Σ[τ, τ ] and P1[τ, µ] such that:

K = P1[τ, µ]TΣ[τ, τ ]P1[τ, µ] (18)

where µ runs through all the indices from 1 to N − 1.

Proof. Using the notation of the Theorem 3 we obtain:

QτP1 = (I{τ, τ}+ V )P1 = I{τ, τ}P1 + V P1 = I{τ, τ}P1 = P1{τ, µ},

so

K = P T
1 ΣP1 = P T

1 Q
T
τ Σ{τ, τ}QτP1 = P1{τ, µ}TΣ{τ, τ}P1{τ, µ} = P1[τ, µ]TΣ[τ, τ ]P1[τ, µ].

Remark 1. It is important to note the following result. Theorem 3 explicitly, and Corol-
lary 1 implicitly assume positive-semidefiniteness of matrix Σ. However, once proven for
matrices belonging to the intersection of cone SM+ and linear subspace CMFX , the theorem
and the corollary can be extended to the whole space CMFX .

Now let us consider some matrix C that is a candidate for being a valid covariance
matrix. For example, it can be an empirical estimate of the true covariance matrix.

Corollary 2. Let C be a (M ×M)-matrix, then the projection of C onto CMFX equals

PCMFX
(C) = P1(P

T
1 CP1)P

T
1 (19)

Proof. We need to verify that PCMFX
(C) belongs to CMFX and that P 2

CMFX
(C) equals PCMFX

(C)

Both of them follow directly from Theorem 4.

Summarizing the above arguments, matrix C is a valid instantaneous covariance ma-
trix in the BMS world if and only if expression (19) holds as identity

PCMFX
(C) = C

and the corresponding matrix C is PSD. Matrices C and K = P T
1 CP1 are either

PSD or non-PSD simultaneously, so it is sufficient to check the PSD property for a
(N − 1×N − 1)-matrix K.

Thus, we have discussed both the PSD and FX market constraints, that have to be
satisfied for matrix C to be a valid covariance matrix in the BMS world. Now we are
ready to continue with finding a solution to problem (2).
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5 Correctness: An Equivalent Well-Posed Problem

Without loss of generality let us suppose that the given estimate C of the true covariance
matrix satisfies the no-arbitrage conditions in the FX market. Otherwise, using Corollary
2 we can substitute matrix C for the nearest to it matrix PCMFX

(C), which does satisfy the
no arbitrage conditions by construction.

The structure of the covariance matrix definitely depends on the way that currency
pairs are quoted. Since our goal is to find a PSD matrix nearest to the given one, it
is vital to ensure correctness of the problem. Namely, we need to ensure that the PSD
property of matrix C is independent of the chosen quotation.

Theorem 5. The PSD property of matrix C is independent of the chosen quotation.

Proof. see Appendix B.

Assume that the restrictions in problem (2) do not contradict positive semi-definiteness
of the matrix, ie the feasible set is nonempty. Since the problem is a strictly convex opti-
mization problem with a bounded feasible set it has a unique solution X∗ (see Rockafellar
(1996)).

First of all, notice that Theorem 2 implies that restriction X ∈ CMFX is linear. Hence,
it can be rewritten in a general affine form. For example, take vi as any basis vector in
NM
FX , then

trace(GiX) = 0, where M ×M -matrices Gi = vTi vi, i = 1, . . . ,M −N + 1 (20)

Then problem (2) can equivalently be reformulated as

min 1
2
||X − C||2M

trace(GkX) = 0, k = 1, . . . ,M −N + 1

trace(AiX) = bi, 1 ≤ i ≤ keq

trace(Bj X) ≥ dj, 1 ≤ j ≤ kineq

X � 0

(21)

Despite problem (21) being an ordinary strictly convex optimization problem, it does
not satisfy the Slater condition when the size of the matrix exceeds the number of driving
pairs (see Appendix C and also Gao and Sun (2009), Malick (2005)):{

{Ai}, {Gk} are linearly independent

There exists a feasible X0 such that trace(Bj X
0) > dj and X0 � 0

(22)

This is because Theorem 2 implies that in the feasible set any matrix of such a size is
singular.

As we discuss in the following section, the most efficient numerical methods for solving
convex optimization problems are the so-called Newton-type methods. Generally, they
converge if the Slater condition is satisfied. Since in our case the condition is violated,
problem (21) should be modified in such a way that it becomes well-posed.

In order to resolve this issue, we suggest a procedure of isometric rescaling of the
original problem down to a new one:
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min 1

2
||K − Y ||2N−1

trace(ÂiY ) = bi, 1 ≤ i ≤ keq

trace(B̂jY ) ≥ dj, 1 ≤ j ≤ kineq

Y � 0

(23)

where Âi = P T
1 AiP1, B̂j = P T

1 BjP1, K = P T
1 CP1 and P1 is as given in Theorem 4.

Remark 2. Conversely unreduced problem (21) can be obtained from reduced problem
(23) by multiplication of all matrices K, Âi, B̂j from the left by the matrix P1 and from
the right by the matrix P T

1 and imposing constraints (20). Obviously transitions from the
original problem to the reduced one and back are equivalent in terms of computational
costs involved.

According to Corollary 1 and the Remark 1 matrix K can be written as
P1[τ, µ]TC[τ, τ ]P1[τ, µ], where τ = {τ1, . . . , τS} contains indices assigned to some driv-
ing currency pairs and µ runs through all the indices from 1 to N −1. Therefore, in order
to state problem (23) one only needs to know some submatrix C[τ, τ ], corresponding to
those driving currency pairs marked with {τ1, . . . , τS}.

The following theorem postulating the equivalence of the original and reduced prob-
lems is the main result of this paper.

Theorem 6. For any choice of set τ , containing the indices assigned to driving currency
pairs, solution X∗ to problem (2) and solution Y ∗ to problem (23) are related as:

X∗ = P1Y
∗P T

1

Proof. Since the FX market constraints are linear and both C,X ∈ CMFX , matrix X − C
is also in CMFX . Theorem 4, Corollary 1 and the Remark 1 therein state that the norm of
transformation does not change.

||C −X||2M = ||P T
1 Q

T
τ C{τ, τ}QτP1 − P T

1 XP1||2N−1 =

= ||P1[τ, µ]TC[τ, τ ]P1[τ, µ]− Y ||2N−1 = ||K − Y ||2N−1,

where µ runs through all the indices from 1 to N − 1. The following equalities hold:

trace(ÂiY ) = trace(P T
1 AiP1Y ) = trace(P T

1 AiP1P
T
1 XP1) =

trace(P TAiPP
TXP ) = trace(AiX) = bi.

By analogy, for inequalities we have: trace(B̂jY ) = trace(BjX) ≥ dj.
Therefore the affine constraints of problem (2) correspond to the affine constraints of

problem (23).
Finally, denote the solution to problem (23) by Y ∗. Then, by Theorem 4, the solution

to the initial problem (2) is given by X∗ = P1Y
∗P T

1 .

The principal algorithm of using the Theorem 6 is given below in Appendix D. We
provide an example of use of Theorem 6 in Appendix E, where we implement step by step
the algorithm from the Appendix D for the market data.

14



6 Numerical Methods

In this section we briefly describe existing methods of finding nearest covariance matrix
for different sets of equality and inequality constraints in the context of the re-formulated
problem (23). We start off with the simplest case of no additional affine constraints.

6.1 A problem without additional affine constraints

It is well known (see Higham (1988)) that in the case of no additional constraints the pro-
jector ProjSM+ onto the cone of positive semi-definite matrices gives the optimal solution
to the problem

min
X∈SM+

||X − C||M

This projector simply returns the positive semi-definite part C+ of matrix C and has
the explicit form:

ProjSM+ C = C+ = QΛQ−1

where columns of matrix Q is a set of orthonormal eigenvectors of C corresponding to
eigenvalues λ1, . . . , λM and Λ is a diagonal (M ×M)-matrix with Λii = max{0, λi}.

Considerations above clearly signify that the projector has exactly the same form also
in the case when the FX market constraints (3) are taken into account

ProjSM+ = ProjSM+ ∩CMFX

Thus, this implies that the solution in the case of no additional affine constraints is13

X∗ = C+ = P1K+P
T
1 .

6.2 A general problem

In the case of additional affine constraints

trace(ÂiZ) = bi, i = 1 . . . keq

trace(B̂jZ) ≥ dj, j = 1 . . . kineq

in order to get the solution one needs to invoke a projection onto the intersection K ∩Sn+
of the PSD cone Sn+ and the affine cone K defined by the equalities and the inequalities
above. Generally, however, the explicit expression for this projector is unknown. Thus,
it is necessary to apply numerical methods. A number of researchers has paid a lot of
attention to this very general problem. Methods thereby suggested can be divided into
primal, dual and interior-point ones, as well as split by the types of admissible constraints.

It is not our goal to describe here various methods in detail. A good recent overview
could be found in Malick (Henrion and Malick (2012)). We instead focus only on the
principal differences between the methods, as well as the conditions that have a direct
impact on the speed of convergence of these methods.

13Since for complete FX (M × M)-matrix C we have M = N(N−1)
2 and computational complexity

of eigendecomposition of (n × n)-matrix is more than O(n2), computation of K+ = ProjSN−1
+

K and

two matrix-matrix multiplications is generally more efficient and accurate, than computation of C+ =
ProjSM

+
C.
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6.2.1 A primal algorithm

In order to solve problem (23) Higham suggested using an alternating projection
method with Dykstra’s correction step (see Higham (2002)). Despite its being
designed for the correction of a correlation matrix, it can straightforwardly be modified
for the problem of finding the nearest valid covariance matrix too. The main idea of the
method is rather intuitive and consists in creating an alternating projection onto positive
definite cone Sn+ and an affine hyperplane defined by affine (equality) constraint K.

While the projection on the positive definite cone PSn+ was already described above,
the projection PK(X) onto the set defined by the affine constraints is, in fact, a standard
quadratic programming problem. In the case of equality constraints alone it has an
explicit expression for the solution (Rockafellar (1996)). In order to ensure convergence
of the projection of matrix C to an optimal (not just feasible) point, a so-called Dykstra’s
correction step should be added.

The well-known properties speaking for and/or against the use of this algorithm for
our purpose are:

1. The pros:

(a) It is relatively simple to implement.

(b) It could be applied directly to problem (2).

2. The cons:

(a) It converges linearly14.

(b) If there is at least one affine inequality constraint (5) in the original problem
then the method is not applicable (at least in its original implementation).

For details of algorithm implementation refer to (Higham (2002), Henrion and Malick
(2012)).

6.2.2 Dual algorithms

The dual function θ is computed from the Lagrangian of the problem after minimizing in
primal variable X. After some simplification we shall get

θ(y) = −1

2
||(C +

∑
Aiyi)+||2M + 〈b, y〉+

1

2
||C||2M

Function θ(y) is sufficiently well-behaved, namely it is concave and continuously dif-
ferentiable (see Th3.2 in Malick (2005)). Its gradient mapping ∇θ(y), given by

∇θ(y) =

 b1 − trace (A1 · (C +
∑
Ajyj)+)

...
bk − trace (Am · (C +

∑
Ajyj)+)

 (24)

is globally Lipschitz continuous with the Lipschitz constant equal to 1. Having said that,
it may not have a second derivative, however.

Let Q+ = Rkeq × Rkineq

+ .The dual problem to problem (21) takes the form

14In the sense of an assymptotically exponential decline of the residue.
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{
θ(y)→ max

y ∈ Q+

(25)

To solve problem (25) one needs to solve the equation below (see Eaves (1971))

F (y) = 0 (26)

where F (y) = y−PQ+(y+∇θ(y)). Note that dual variable y just belongs toQ+ ⊂ Rk, while
primal variable X ∈ RM . Therefore it is enough to solve relatively easy k-dimensional dual
problem in the space Rk instead of the M(M−1)

2
dimensional primal problem in the space

SM .
If the problem is well-posed, then there exists a solution y∗ ∈ Q+ to the equation (26).

By Theorem 4.1 from (Malick (2005)), the solution is given by Z∗ = (C +
∑
Aiy

∗
i )+.One

needs the so-called coercivity property, however, to provide for the existence of a
(bounded) solution of dual problem y∗ ∈ Q+. The primal Slater condition (22) implies
this property (see Gao and Sun (2009)). We shall provide more details on that in the
numerical section below, but now we just note that the only difference between various
dual methods is, in fact, in the method of solving equation (26).

For example, Boyd and Xiao (2005) proposed a projected gradient method. This
method is a dual variant of the Dykstra’s correction step algorithm above. For details see
their work as well as Henrion and Malick (2012). The pros and cons of that algorithm
are:

1. The pros:

(a) It is easy to implement (in fact, it can be implemented in less than 10 lines of
pseudocode).

(b) It is readily applicable for the case with inequality affine constraints.

2. The cons:

(a) Its convergence rate is linear.

In Malick (2005) a quasi-Newton BFGS method is proposed to solve the dual
problem (25). For details the reader should refer to the original work as well as Chen
(1995), while here we again just give the pros and cons of the algorithm:

1. The pros:

(a) It is applicable for problems with inequality affine constraints(5).

2. The cons:

(a) It is more expensive in terms of memory use than other methods (see numerical
experiments Section in Gao and Sun (2009)).

(b) In practice it may be difficult to implement when tolerance is rather low (<
10−8).

(c) Its convergence rate is at best quadratic, but in practice is often linear (see Qi
and Sun (2006)).
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Qi and Sun (2006) suggested a quadratically convergent Newton semismooth
method for the case when inequality constraints are not present. The method builds
on strong semismoothness of eigenvalues (see Sun and Sun (2002), Chen et al (2002)) and
a generalization of the Jacobian matrix, namely the Clarke’s generalized Jacobian in the
sense of Sun and Sun (2002). As before, the pros and cons are:

1. The pros:

(a) The algorithm is quadratically convergent.

2. The cons:

(a) It is not suitable for problems with inequality affine constraints (5).

(b) It requires strong non-degeneracy of the constraints for quadratic convergence.

Borsdorf and Higham put forward a number of modifications to the previous method
to increase its performance (see Borsdorf and Higham (2010)). Finally, in Gao and Sun
(2009) a quadratically convergent inexact smoothing Newton method is considered.
The main idea is smoothing the function F by functions G(ε, y), G(ε, y)→ F (y), ε→ 0,

and solving a smoothed-nonsmooth system of equations

[
ε

G(ε, y)

]
= 0.

The algorithm advantages and disadvantages are as follows:

1. The pros:

(a) It is quadratically convergent.

(b) It is applicable for problems with inequality affine constraints (5).

2. The cons:

(a) It requires strong non-degeneracy of the constraints for quadratic convergence.

6.3 Interior-point algorithms

In general, two approaches can be followed as far as the interior-point methods are con-
cerned.

A standard approach
Mathematically, problem (23) can be equivalently re-stated (see Higham (2002), Gao

and Sun (2009)) as a linear optimization problem with affine equality and inequality con-
straints, quadratic constraints, and PSD cone constraints by pushing down the objective
function with an additional variable t as follows:

min t

trace(AiX) = bi, 1 ≤ i ≤ keq

trace(BjX) ≥ dj, 1 ≤ j ≤ kineq

t+ 1 ≥
√

(t− 1)2 + 2||X − C||2

X � 0
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Then this problem can readily be passed over to many SDP solvers that use interior-
point methods and are implemented in well-developed and publicly available software
such as SeDuMi (Sturm (1999)) or SDPT3 (Toh et al (2007)). Unfortunately, standard
primal-dual interior-point methods are prohibitively expensive in terms of memory usage
and time required to find a solution. The reason is that at each iteration a linear system of
equations of dimension more than 1

2
M2 needs to be solved to find the direction of search

at the following step. All in all, the pros and cons are:

1. The pros:

(a) A publicly available software can be used.

2. The cons:

(a) The methods are computationally inefficient and applicable for low-dimensional
problems only15.

An alternative approach
In Toh et al (2007) the authors proposed a primal-dual path-following Mehrotra-type

predictor-corrector method. They solved the linear system of equations determining the
search direction at the next step in a much more efficient way using a preconditioned sym-
metric quasi-minimal residual (PSQMR) iterative solver with appropriately constructed
preconditioners. Their method’s pros and cons are:

1. The pros:

(a) Its implementation is publicly available.

(b) For large-scale matrices it can compete with latest dual methods in terms of
speed and efficiency.

2. The cons:

(a) It is inapplicable for problems with inequality affine constraints (5).

(b) In our experiments (see below) the method demonstrated relatively low toler-
ance.

(c) The stopping criteria for this method are conditional, ie tolerance will depend
on the matrix size.

7 Comparison of Methods in Solving Small-Scale

Problems

This section is devoted to comparison of different algorithms, producing a solution to (2)
and (23). Despite there being a general consensus in literature on superior performance
of Newton-type methods in solving large scale problems (see the references below), to our
knowledge no comparison has still been drawn for relative efficiency of numerical methods
in solving small and medium scale problems. At the same time, Theorem 6 above shows

15Generally, for matrices of size less than 80× 80 on a standard PC.
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that the problem of finding a nearest valid estimate of the covariance matrix in the FX
market with N − 1 ≤ M ≤ N(N−1)

2
currency pairs can be reduced to a low-dimensional

problem of size N−1. Since the overall number of currencies in the world is about 200, of
which about 20 currencies are liquidly traded (see, eg TCBS (2013)), the reduced problem
is usually a low-dimensional one. It is then interesting to ascertain quantitatively the gains
of scaling the problem down. First, however, we would like to look at the original problem
(2) and illustrate the consequences of lack of coercivity in it.

7.1 Solving the initial (unreduced) problem

From the previous section we know that the unreduced problem (2) can be directly tackled
by primal methods16. Those, on the one hand, are less efficient than dual methods17, and,
on the other hand, converge rather slowly (at a linear rate). That becomes a serious
shortcoming when dimensionality of the problem becomes too high. Moreover, some
primal methods (like the alternating projections algorithm with Dykstra’s correction used
below) are capable of working only with a certain type of additional constraint, eg equality
constraints. The more advanced dual methods, however, despite having been developed
more recently are not duly applicable to the unreduced problem. Since the function θ(y)
is not coercive, the finite solution of the equation (26) does not exist (see Appendix C for
more detail).

This observation implies that in order to improve on the performance of numerical
methods in tackling the problem typical of the FX market, one has to either reduce the
dimensionality of the optimization problem, or transform the problem in such a way that it
starts to satisfy the coercivity condition. In an ideal world both things would be achieved
at once. That would inter alia open the door to using dual algorithms.

7.2 Solving the reduced problem

Thereby problem (2) should be scaled down. Obviously, one would want to see the
effect of such a transformation of the original problem into the reduced form as well as
the computational costs involved. We shall now demonstrate these using a number of
numerical methods mentioned above.

7.2.1 Comparing method’s performance

Formula (23) and Remark 2 show the relationship between the original unreduced and
reduced problems. By relying on its premise, without loss of generality one can simply
start working with matrices of size N −1×N −1 and obtaining unreduced problem when
necessary.

We start by randomly generating non-PSD matrices. We consider here markets with
N = 5, 7, 13 and 21 currencies. For each market we generate 100 matrices, which implies
400 matrices in total. Each matrix has elements from [−1, 1] and is generated under
(conditional) uniform distribution with 30% of eigenvalues being less than -0.001.

16As well as primal realization of interior point methods, but it is considered to be less efficient than
interior point methods invoking primal-dual path following algorithms mentioned above, see for example,
Todd (2001), therefore we don’t consider them here.

17At least Newton-type methods, see convincing numerical experiments in Gao and Sun (2009) and Qi
(2013).
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To keep things simpler, assume for the moment that there are no inequality constraints
at all.18

No inequality constraints. As regards the number of the additional affine equality
constraints we, somewhat arbitrarily, choose it to be a quarter of the number of the degrees
of freedom which any optimization problem of the type we consider here will have. In
particular, that number of the degrees of freedom in a symmetric (N − 1 × N − 1)-
matrix equals 1

2
N(N − 1). Thus, specifying more than 1

2
N(N − 1) independent equality

constraints will imply emptiness of the feasible set. Hence, we shall consider problems
with keq = 1

8
N(N − 1) equality constraints that is a quarter of total number of degrees of

freedom (which we believe is a realistic scenario in practical applications of the methods19).
For equality constraints

trace(AiX) = bi, 1 ≤ i ≤ keq,

we take Ai to be a random symmetric (N−1×N−1)-matrix consisting of zeros and ones.
All such matrices are chosen to be linearly independent. The numbers bi are chosen at
random in such a way that on average 30% change of elements cij of matrix C is needed
to satisfy these constraints.

In order to test the feasibility of the problem with given constraints we employ the
algorithm suggested by Henrion and Malick (2007). The idea of the algorithm, is that in
case of infeasibility, one can check Farkas’ lemma, ie find numerically Farkas’ dual vector.
If the problem turns out to be infeasible, we generate new constraints. In general, knowing
in advance which constraints enjoy the condition of constraint nondegeneracy (ie the
sufficient condition for quadratic convergence of Newton-type methods) is very difficult.
This is because the validity of the condition often becomes clear only a posteriori, when
the solution to the maximization problem itself has been found ((Gao and Sun, 2009, p.
18), formula (54)). In the tests that we discuss here we came across the issue only a few
times.

All the tests were coded in a 32-bit version of MATLAB R2011b and run on a Windows
7 desktop powered by Intel Core 2 Duo CPU of 3.00 GHz, with 6.0 GB of RAM.

The results of performance testing for the case with affine equality constraints alone
are provided in Table 1 from Appendix A.

First of all it presents results for an unreduced problem (ie for unreduced (N(N−1)
2
×

N(N−1)
2

)-matrix) obtained as in Remark 2. The only algorithm capable of solving the
unreduced problem is the primal alternating projections method with Dykstra’s correction
step (referred as dykstra). Since transitions from the original problem to the reduced
one and back are equivalent in terms of computational costs involved, we simply measure
the time required to convert the reduced problem to unreduced one.

For the reduced problem we test for the following methods: Boyd and Xiao (2005)
projected gradient method (referred to as PGM in the table), Malick (2005) quasi-Newton
method (referred to as BFGS), the Newton semismooth method by Qi and Sun (2006)(re-
ferred to as newt), the modified version of the Newton semismooth method by Borsdorf

18Of the algorithms considered previously the only one capable of solving the initial (unreduced) prob-
lem is the primal alternating projections method with Dykstra’s correction step. It can handle only
equality constraints. Thus, considering the case without inequality constraints renders possible the direct
comparison of the method’s performance in solving the initial and reduced problems. For more details
see this section below.

19As well such choice gives no ”low number of constraints” advantage for the dual methods
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and Higham (2010) (referred to as newt bh), the infeasible path-following algorithm im-
plemented by Tütüncü et al (2003)) in the SDPT3 solver20, and, finally, the inexact
interior-point method of the same authors implemented in the QSDP solver21. The PGM
method was implemented as in (Boyd and Xiao (2005)), the Newton semismooth method
was modified for general affine constraints on the basis of the source code provided by
Qi and Sun (2006)22. For the quasi Newton method we used the implementation of the
BFGS method for the dual problem, written by Henrion and Malick (2007).

The primal alternating projections method applied for the reduced problem is omitted
since it is actually the PGM23 for the dual problem with step size 1 (see Henrion and
Malick (2012), Gao and Sun (2009)).

Also we do not present results for the inexact smoothing Newton method (referred
below as newt gs), since its performance, in the case of experiments with equality con-
straints only, seems coincide with performance of the Newton semismooth method.

We stop the run of dual algorithms24 when Res = ||∇θ(y)|| < tol, with tol = 10−8.
As for QSDP and SDPT3 solvers it should be noted that the residue used there is un-
fortunately relative rather than an absolute one (see Tütüncü et al (2003), Toh et al
(2007)). As a result, given the same tolerance, the answer is usually less accurate than in
the case of other methods. Therefore following Gao and Sun (2009) we use lower values
of tolerance and put to stop those solvers when the relative gap (see Toh (2007)) was less
than 10−9. As for the other settings, we used the default parameter values. For primal
alternating projections method with Dykstra’s correction step we used relative stopping
condition, that was initially suggested in Higham (2002)25

||Xk −Xk−1||
||Xk||

≤ tol = 10−8

where Xk stands for a matrix obtained at the k-th step. We find that this criterion gives
in fact similar level of accuracy as the one used in QSDP and SDPT3 solvers.

All that matters for a practitioner in algorithm’s performance is the time that CPU
is engaged (Time, measured in seconds (s) or milliseconds (ms)) and the algorithm’s
residual (Res). However, time is closely linked to the number of iterations (iter) needed
for the method to converge for the given tolerance parameter. However it is less dependent
on particular implementation. Due to restrictions on space imposed by the format of the
article we present here only the median figures. Nevertheless, they give the reader a
complete idea of the comparative performance of the algorithms.

In the Table 1 in Appendix A, the median values of Time, Res and Iter obtained
in our experiments are shown. Also it shows matrix sizes on which tests were carried
on (unred.size for unreduced problem and red.size for reduced problem) as well
as median time in milliseconds (referred as conv.time) needed for each problem to be

20The SDPT3 solver is availbale at http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
21The QSDP solver is availbale at http://www.math.nus.edu.sg/ mattohkc/qsdp.html
22See http://www.math.nus.edu.sg/ matsundf
23under relevant constraints considered here
24The BFGS method uses inexact line search for finding appropriate step size. While the step size

must satisfy the so called weak Wolfe’s condition. To verify this condition numerically, we used the same
settings as in Henrion and Malick (2007). Nevertheless in some cases this condition was violated and the
method terminated earlier, namely, when Res reached values of the order 10−7. In these cases, we were
leaving the result unchanged, although note that in the case of using this algorithm for finding solution
with higher accuracy, line search may require more fine-tuned parameters.

25 || · || here stands for the matrix 1-norm
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scaled from unreduced to reduced form (or vice versa). The column restr. stands for
the number of equality constraints used for the problem of each size.

An important observation from (see Appendix A, Table 1) is that solving of unreduced
problem is inefficient as compared with any dual method once number of currencies N is
greater then 9 or 10. Since primal alternating projections method applied for the reduced
problem is actually the PGM method to see the effect of transformation of the original
problem into the reduced form it is instructive to compare firstly these two methods. For
example, dykstra takes on average more than 3 minutes to solve 210× 210 problem (ie
N= 21) while PGM needed about half of a second to solve its reduced 20 × 20 version.
Time needed to convert one problem into another (conv.time)), is less then one tenth of
a second!

Importantly, our numerical results show that after scaling the problem down some
of the methods show even higher performance than PGM. Of course, for small-scale
problems (N < 7) the PGM algorithm outperforms the others thanks to low initialization
costs and low step complexity for small N (see Boyd and Xiao (2005)). As N increases,
however, PGM requires a growing number of iterations to converge. For problems of larger
sizes Newton methods start to outperform other methods. The reason is a quadratic
rate of convergence of Newton methods in a certain neighborhood of the solution. The
BFGS method demonstrates the same performance for low-dimensional problems as the
Newton methods, and is slightly outperformed by them for larger matrix sizes. This is
consistent with the results of (Qi and Sun (2006); Gao and Sun (2009)). The performance
of newton bh is similar to the performance of newt. mostly because the problems we
consider in (see Appendix A, Table 1) are too small.26 The benefits of using the Newton-
type methods (and the differences between them) are more evident when the size of the
matrices used in calculations increases (see below). We find that the SDPT3 solver as well
as the QSDP solver work pretty well, but it seems that high initialization costs suppress
their performance for the low scale problems.

Adding inequality constraints In the Table 2 in Appendix A, we present results
for reduced problems with additional inequality constraints. Following the scheme above
we consider 0.35 · N(N−1)

2
constraints, where as above there are 0.25 · N(N−1)

2
equality

constraints, and additionally there are 0.10 · N(N−1)
2

inequality constraints. For inequality
constraints

trace(BjX) = dj, 1 ≤ j ≤ kineq

we take Bj random symmetric (N − 1×N − 1)-matrix consisting of zeros and ones and
minus ones, but not necessary linearly independent. The numbers dj are chosen at random
in the same way as for equality constraints.

In Table 2 in Appendix A we present results for the Newton smoothing method by Gao
and Sun (2009) and the PGM method by Boyd and Xiao (2005) carried out on the same
sample of 300 random matrices, as for equality constrained cases. The results support
conclusion derived for equality constrained methods. If sizes of matrices (ie the number
of currency pairs) are less than 6 or 7 PGM method slightly outperforms the Newton
smoothing method ( newt gs). For problems of larger sizes Newton methods start to
outperform PGM.

26We implemented the Newton semismooth method with a minres solver, a modified line searcher and
a Jacobi preconditioner as suggested by Borsdorf anf Higham ( Borsdorf and Higham (2010)). Contrary
to them, however, we did not modify the eigenvalue solver. All in all, we do not think that this adversely
affects the outcome at the problem scale we are dealing with.
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Specifics of the problem of finding the valid covariance matrix for FX-market implies
that while initial problem is medium scaled one, the reduced problem is usually low-
dimensional. However, most authors of algorithms tested their methods with medium and
large-scale problems, presenting no numerical experiments with low dimensional matrices.
In order to fill this gap and to ensure that our experiments are inline with the results
obtained by authors of algorithms we proceed with some more numerical experiments. In
the tests above the number of constraints was proportional to the number of the degrees
of freedom, while testing their algorithms Gao and Sun (2009), Qi (2013), Borsdorf and
Higham (2010) proceeded somewhat differently. For a (n×n)-matrix they considered c ·n
of constraints for some c > 0. Also they considered slightly higher values of tolerance.

Following Gao and Sun (2009), (see Example 5.9) we test all the methods with equality
constraints on the diagonal of the matrix X: xii = a+ (1−a)ω, i = 1 . . . N where a = 0.1
and ω is a randomly generated number in [0, 1]. Additionally for equality constrained
methods we impose N − 1 restrictions of the type xij = 0, where i = 1 . . . N − 1 and j > i
chosen at random. For inequality constrained methods we also impose N − 1 additional
restrictions xij ≤ 0.1, where i = 1 . . . N − 1 and j > i chosen at random. Also, following
Gao and Sun (2009) and Qi and Sun (2006), we set the level of tolerance equals 10−6 for
dual methods and 10−7 for interior point methods27.

Our tests were carried out on 300 random matrices with coefficients in [−1, 1] of sizes
20× 20, 50× 50, 100× 100 generated under (conditional) uniform distribution with 30%
of eigenvalues being less than -0.001.

In the Table 3 in Appendix A, we report our numerical experience with PGM, BFGS,
Newton Semismooth, algorithms as well as QSDP and SDPT3 solvers on equality con-
strained problems. It demonstrates clearly that Newton-type methods (BFGS, Newton
Semismooth) outperform the alternating projection method as well as QSDP and SDPT3
solvers. The modified Newton Semismooth method (newt bh) looks beneficial in compar-
ison with the original Newton Semismooth (newt.) as matrix size increases.

In the Table 4 in Appendix A, we report our numerical experience with PGM and
Smoothing Newton algorithms on problems with both equality and inequality constraints.
As expected Smoothing Newton algorithm outperforms PGM for medium-scaled prob-
lems.

8 A Remark on the Choice of Norm

The modeller who is to employ the method suggested in this work in practice will most
often face the following two extreme situations, which imply two different choices of the
norm when solving problem (2). In particular, she can be interested in correcting either
the matrix of drivers of size N−1, or the complete covariance matrix, i.e. the one including
both the drivers and the crosses, of size N(N−1)

2
. In the former case, the modeller would not

in fact be interested in what happens after correction with the elements of the complete
covariance matrix located beyond the principal submatrix lying at the intersection of rows
and columns with indices of selected driving pairs. It then may turn out that after the
correction some elements of the complete matrix are significantly off their market values,
which is by default acceptable as the focus of the modeller is the principal submatrix
of drivers. In that case the norm ‖·‖2M in Theorem 6 will be chosen with M = N − 1.

27Performance of general purpose solver (QSDP) was taken into consideration only by Gao and Sun
(2009)

24



When the focus of attention is the complete covariance matrix, however, the modeller
would want by design to have some control over elements beyond the principal matrix
of drivers. Hence, the norm ‖·‖2M in Theorem 6 will be chosen with M > (N − 1),

or, in fact in most situations with M = N(N−1)
2

. After isometrically scaling down the
initial matrices in both limiting cases28, and solving the resulting optimization problems,
the modeller will have obtained a well-behaved matrices of size N − 1, from which the
complete covariance matrices will be restored using the no-arbitrage equations (triangular
relationships). However, obviously, the two solutions will generally differ as one will have
been obtained in norm ‖·‖2N−1, and the other - in norm ‖·‖2N(N−1)

2

. This is important to

keep in mind when implementing the method in practice. For consistency between many
possible solutions we recommend using norm ‖·‖2N(N−1)

2

always, regardless of the primary

focus of the modeller.

9 Generalizations and Applications

In this part we provide some generalizations to the proposed method of finding a valid
covariance matrix that might be useful in practice.

9.1 Weighted problems

First of all, instead of the original problem one may need to solve its weighted version:

min 1
2
||X − C||2W

X ∈ CMFX
trace(AiX) = bi, 1 ≤ i ≤ keq

trace(Bj X) ≥ dj, 1 ≤ j ≤ kineq

X � 0

(27)

where W ∈ SM is a positive definite matrix of weights and for any B ∈ SM

||B||W = ||W 1/2BW 1/2||M
The main reason one might want to consider a weighted version of the model is a

necessity to adjust covariances of different currency pairs individually. Namely, the matrix
coefficients with larger weights would be adjusted less. To take a hypothetical example, in
practice one can generally be more confident about the value of the estimate of covariance
between EUR−USD and GBP−USD than about the value of the estimate of covariance
between BWP − JPY and AUD − RUB, as the former couple is traded more liquidly
then the latter. To take this into account, one can assign the pairs different weights as
appropriate. More similar reasons are mentioned in Grubisic and Pietersz (2005), Higham
(2002) and Rebonato (2005).

All the methods considered above can easily be generalized for the case of a W -
weighted norm. In some algorithms such a modification has already been implemented

28In case M = N − 1 rescaling is just multiplication by identity matrices and therefore leaves problem
unchanged.
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(QSDP, SDPT3). In others it can straightforwardly be incorporated by change of vari-
ables:

Cnew = W 1/2CW 1/229

Anewi = W 1/2CW 1/2

As before the problem can be reduced to size (N − 1×N − 1) via change of basis
P new = W 1/2P , where P is given by Theorem 4.

Since for the market with M = N(N−1)
2

liquidly traded exchange rates the covariance
matrix is completely determined by the rate implied volatilities (see, eg Wystup (2007)
or Bouev (2012)), it is especially interesting to consider the so-called H-weighted problem
with diagonal matrix H. The minimization function for such a problem takes the form:

min
1

2
||X − C||2H = trace

(
H2 ◦ (X − C) · (X − C)T

)
(28)

where ◦ is Hadamart product B ◦D = (bijdij). This approach weighs variances only and
makes their choice intuitive and comfortable. To our knowledge, there is still no reliable (ie
globally convergent and fast) method for solving such a problem, unfortunately. Research
by Qi (2013), Qi and Sun (2011), Toh et al (2007) illustrates some algorithms already
developed.

9.2 Positively definite matrices

In finance in general and in portfolio theory in particular, one often needs a strictly positive
definite covariance matrix. The reason is that the procedure of finding an optimal portfolio
needs the covariance matrix to be invertible (and, moreover, well-conditioned, see Kwan
(2010)).

Unfortunately, the covariance matrix in the FX market is usually singular, except for
the case of a (N − 1×N − 1)-covariance (sub)matrix of driving pairs30. In fact market
practitioners often work with even smaller submatrices of the covariance matrix of driving
pairs (Kwan (2010)). In order to obtain a well-conditioned covariance submatrices one can
use the following trick (see Malick (2005), Qi and Sun (2006)). For the reduced problem
additional constraint Y � αIN−1 is considered

min 1
2
||Y −K||2N−1

Y � αIN−1

trace(Âi Y ) = bi, 1 ≤ i ≤ keq

trace(B̂j Y ) ≥ dj, 1 ≤ j ≤ kineq

Y � 0

where K, Âi and B̂j are as in (23). Coefficient α guarantees that the required matrix be
not less than a positive diagonal matrix. This problem can be reduced to the standard one
by subtracting matrix αIN−1 at the beginning. Then the problem can be solved via any
numerical method. In the end the matrix Y ∗ is obtained by adding matrix αIN−1 to the
output matrix (see Qi and Sun (2006) for details). Finally the correct covariance matrix
X∗ with well-conditioned pricipal submatrices of drivers is obtained by X∗ = P1Y

∗P T
1 .

29The use of matrix W is similar to introducing a vector of importance weights in the literature on the
intrinsic currency framework (see, e.g., Golts, 2010).

30As well as its principal submatrices.
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9.3 Correlation matrices

This article has primarily focused on FX covariance matrices. However, in stress test-
ing (Qi and Sun (2010)) and some other applications often a correlation matrix is more
preferable. The FX market constraints for such matrices are nonlinear, so the optimiza-
tion problem needs to be re-stated. The solution of such problem is generally unknown.
However, in case of a (N−1×N−1)-matrix corresponding to currency drivers, the matrix
is free of any additional FX market constraints, so any method considered in this paper or
other methods adapted to such problem (see Qi and Sun (2010)) could be applied without
change.

9.4 Homotheticity

Finally we mention here that the problem is homothetic. That is for any T > 0 one can
multiply both the initial matrix C and the vector of affine constraints b by T , and then
solve the resulting modified problem. The solution to the initial problem will then be
recovered by dividing by T the solution to the modified problem. The benefit of such an
approach is that by choosing T large enough one may solve the problem in single precision
arithmetics and avoid numeric singularities.

10 Conclusion

In this paper we considered the problem of finding a valid covariance matrix in the FX
market. The standard no-arbitrage assumption implies additional linear constraints on
such matrices, which automatically makes the null space of such matrices non-empty. As a
result, one cannot just take a given, non-PSD estimate of the covariance matrix for driving
currency pairs and their crosses, plug it into the standard optimization problem and solve
it by applying the most advanced numerical methods developed recently (namely, the dual
algorithms). The reason is that such a problem is not well-posed while the PSD-solution is
not strictly feasible. In order to deal with this issue, we described a low-dimensional face
of the PSD cone that contains the feasible set. After projecting the initial problem onto
this face, we come out with a reduced problem, which turns out to be well posed and of a
smaller scale. As the reduced problem was solved, the solution to the initial problem can
be uniquely recovered in one step. We ran numerous numerical experiments to compare
performance of different algorithms in solving the reduced problem and to demonstrate
the advantages of dealing with the reduced problem as opposed to the original one. The
smaller scale of the reduced problem implies that effectively any numerical method can
be applied to find its solution. We find that Newton-type methods start to outperform
other methods as soon as the dimension of the problem increases. We mentioned some
generalizations that must be considered in stress testing and mean-variance portfolio
theory. Our findings are up-to-date and ready for use by market practitioners.

11 Appendix

Appendix A: Numerical experiment results
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Table 1: Comparison of unreduced and reduced problem: equality constraints

Unreduced problem Reduced problem

N restr. unred.size Med.val dykstra conv.time (ms) red. size Med.val PGM bfgs newt. newt. bh SDTP3 QSDP

Time (ms) 8 Time (ms) 5 11.5 6 7.5 149 510

5 keq=2 10x10 Iter 25.5 <1 4x4 Iter 32 8 3 3 12 14

Res 7.07E-09 Res 7.98E-09 -9.12E-09 2.99E-11 2.01E-11 6.05E-10 7.07E-10

Time (ms) 37 Time (ms) 12 15 8 11 152.5 901.5

7 keq=5 21x21 Iter 46 2 6x6 Iter 60 13 4 4 12 15

Res 8.71E-09 Res 8.79E-09 -1.90E-07 1.02E-11 9.66E-13 9.83E-10 1.15E-09

Time (ms) 1700 Time (ms) 51 23 20 18 178 2102.5

13 keq=19 78x78 Iter 104 6 12x12 Iter 108 23 6 5 13 16

Res 9.53E-09 Res 9.57E-09 -3.82E-08 7.10E-11 6.04E-12 2.06E-09 4.13E-09

Time (ms) 209 788 Time (ms) 685.5 39 71.5 32 301.5 2239

21 keq=52 210x210 Iter 638 63 20x20 Iter 556 33 7 7 13 16

Res 9.9E-09 Res 9.88E-09 -9.7E-09 1.72E-10 1.09E-11 3.4E-09 7.13E-09
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Table 2: Comparison of algorithms with equality and inequality constraints

Method Med. val.

N=5
red.size =4x4
keq=2
kineq=1

N=7
red.size=6x6
keq=5
kineq=2

N=13
red.size=12x12
keq=19
kineq=8

N=21
red.size=20x20
keq=52
kineq=21

Time(ms) 6 17.5 322.5 4277.5

PGM Iter 36 79 569 2638

Res 8.17E-09 9.19E-09 9.93E-09 9.99E-09

Time(ms) 14 16 24 35

newt. gs Iter 7 8 10 11

Res 1.56E-09 1.68E-09 1.98E-09 1.52E-09

Table 3: Comparison of algorithms for small and medium-scaled problems: equality con-
straints

mat.size, restr. Med.val PGM bfgs newt. newt. bh SDTP3 QSDP

Time(s) 0.0635 0.1441 0.0295 0.0485 0.2625 2.395

20x20 Iter 57 28 5 5 11 12

keq=39 Res 9.38E-07 5.75E-08 1.85E-09 2.68E-09 5.44E-07 4.63E-06

Time(s) 0.8400 0.1603 0.1815 0.066 3.5165 2.8745

50x50 Iter 97 33 5 5 12 13

keq=99 Res 9.43E-07 1.51E-08 1.08E-07 3.68E-10 2.21E-06 2.52E-05

Time(s) 6.1055 0.7389 1.3445 0.3090 73.5335 5.1740

100x100 Iter 119 22 6 5 13 13

keq=199 Res 9.69E-07 3.37E-09 7.7E-11 1.08E-08 5.84E-06 8.63E-05

Table 4: Comparison of algorithms for small and medium-scaled problems: equality and
inequality constraints

size=20x20
keq=20, kineq=19

size=50x50
keq=50, kineq=49

size= 100x100
keq=100, kineq=99

Time(s) 0.2455 3.2385 30.4515

PGM Iter 252 422.5 632.5

Res 9.83E-07 9.84E-07 9.88E-07

Time(s) 0.0235 0.041 0.0905

newt. gs Iter 9 9 10

Res 7.81E-10 3.29E-09 1.23E-09
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Appendix B: Quotation independence

As in the main text, ξt = (ln(S
(1)
t ), . . . , ln(S

(M)
t )).

Denote by ξ the normally distributed random vector ξ1. Therefore the instantaneous
covariance matrix Σ equals E(ξ − Eξ)T (ξ − Eξ). The change of quotation order for the
i-th currency pair implies the change of sign for the i-th element of random vector ξ.
Hence, the new random vector ζ can be obtained by multiplying the random vector ξ by
the unitary matrix U

(ζ1, . . . , ζM)T = U · (ξ1, . . . , ξM)T

where U is a diagonal (M ×M)-matrix satisfying Ujj = 1, j 6= i, and Uii = −1. Thereby
the covariance matrix of vector ζ :

Σζ = E
(
ζ − E(ζ)

)T (
ζ − E(ζ)

)
= U Σξ U

−1

Using the Remark 1, Cζ = U Cξ U
−1 for any estimate covariance matrices in different

quotations Cξ, Cζ .
The PSD property of any estimate covariance matrix Cξ is invariant under quotation

change. Namely, the characteristic polynomial of matrix Cξ is invariant under multipli-
cation by matrix U and its inverse:

det(Cζ − λI) = det(U Cξ U
−1 − λI) = det(U−1(U Cξ U

−1 − λI)U) =

det(Cξ − U−1 λI U) = det(Cξ − λI)

Appendix C: Violating the coercivity property

Let us for simplicity assume that there are no inequailty constraints and consider dual
problem (25) that would be the target of application of dual methods. Since it is a max-
imization problem with a concave objective function the coercivity property of function
θ(·), namely θ(y)→ −∞ as ||y|| → ∞, is of great importance. If the problem satisfies this
property then the problem has no duality gap (Rockafellar (1996)). Then the solution to
the primal problem can easily be obtained via

Z∗ = (C +

keq∑
i=1

Aiy
∗
i )+ (29)

If, however, the problem does not possess that property then (29) holds in the limit
at best for some divergent sequences yki :

Z∗ = lim
||yk||→∞

(C +

keq∑
i=1

Aiy
k
i )+ (30)

Unreduced problem (2) does not satisfy the coercivity property even for the (3× 3)-
matrices consistent with the no arbitrage condition in the FX market. For illustration,
consider an example of the FX market spanned by three currencies. Suppose the ad-
ditional constraints in the initial problem imply that variances of the first and second
exchange rates must stritcly be equal to c1 and c2, correspondingly. The space NM

FX is
one dimensional by Theorem 2, and vector v = (1,−1, 1)T belongs to that space. Then by
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(20) the constraint X ∈ CMFX is equivalent to trace(GX) = 0, G = vvT . The constraints
on the variances are trace(A1X) = c1 and trace(A2X) = c2, where A1 and A2 are the
matrices with A1(1, 1) = 1 and A2(2, 2) = 1, and other elements being equal to zero.

The coercivity property (see Qi and Sun (2006) sect.4.2 or Qi (2013) Proposition 2.1)
implies that matrix y1 ·G+y2 ·A1+y3 ·A2 is not negative semi-definite for any y1, y2, y3 ∈ R
such that y2c1 + y3c2 ≥ 0. Set y1 = −1, y2 = y3 = 0, then this condition is violated since
matrix −G is negative semi-definite.

From a computational point of view, lack of coercivity implies bad behavior of all
the dual algorithms. For illustration we consider the Newton semismooth and PGM
algorithms. In the Table 5 (see Appendix A, Table 5) we report performance of the
algorithms for two unreduced problems, size 3× 3 and 78× 78 for two levels of tolerance
equal to 10−3 and 10−8. For both problems there is linear FX market constraint (3) as
well as two affine equality constraints x11 = 1 and x22 = 1. Then using (20) we rewrite
problem (2) as problem (21) with kFX = M − N + 1 general linear constraints and two
general affine constraints trace(A1X) = 1 and trace(A2X) = 1, where A1 and A2 are the
(M×M)-matrices with A1(1, 1) = 1, A2(2, 2) = 1, and other elements being equal to zero.
In addition to time, the number of iterations31 and the residual, we also report the value
of the norm of the dual solution at the last iteration as well as its accuracy evaluated as
the distance to the ”exact” solution. This ”exact” solution was obtained by the (primal)
alternating projections algorithm with Dykstra’s correction with the tolerance parameter
equal to 10−14. One can see that as the tol parameter decreases from 10−3 to 10−8 the
value of the norm of the dual solution increases dramatically. Despite the fact that the
solution obtained by dual methods does ”tend” to the ”exact” solution, the rate of
convergence seems to be extremely low whereas the number of iterations is very high.
That points to convergence in the limit at best as in (30) above.

Appendix D: The principle of the reduction: the algorithm

1. Select any N − 1 driving pairs among M currency pairs under consideration. Let
their indexes be τ1, . . . , τN−1. Construct M −N + 1 triangular relations, expressing
the remaining M −N + 1 spot exchange rates;

2. For j = 1 to M −N + 1

(a) Using triangular relations, as shown below the formulae (14), construct a M−
dimensional vector-column vj in {−1, 0, 1}M

3. Construct a (M ×M −N + 1)-matrix V whose columns are vectors v1, . . . , vM−N+1;

4. Compute the (M ×N − 1)-matrix P1 in three steps. First compute (M ×N − 1)-
matrix S with the j-th column given by

S(:, j) := ej − V (V TV )−1V T ej j = 1 . . . N − 1

where ej is the M dimensional vector-column with τj component being equal to one
and other components being equal to zero. Next, apply Gram-Schmidt process to
columns of S:

31 * means that an algorithm reaches the set maximum number of iterations before the accuracy is
achieved
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Table 5: Solving unreduced problem with primal and dual methods

Tol Method Time Iter Res norm of dual accuracy

Case 1: N = 3,M = 3, keq = 2, kFX = 1

Solution with primal method:
tol=E-14 dykstra 0.019 4 7.6E-16 NaN 0

Solution with dual methods:
tol=E-03 newt. 0.136 20 0.000709 62.5417 0.029172

PGM 1.257 8718 0.001 45.85299 0.040065
tol=E-08 newt. 0.173 35 1.75E-10 567184.1 3.38E-06

PGM 14.402 100000* 0.000197 104.8872 0.017908

Case 2: N = 13,M = 78, keq = 2, kFX = 66
Solution with primal method:

tol=E-14 dykstra 0.811 59 7.54E-15 NaN 0

Solution with dual methods:
tol=E-03 newt. 0.998 29 0.000814 3628.239 0.607694

PGM 1217 100000* 0.003334 1511.924 1.312189

tol=E-08 newt. 28.191 41 0.000475 322679.2 0.000921
PGM 1236 100000* 0.001353 694.0605 0.29836

P1(:, j) := S(:, j)−
j−1∑
k=1

S(:, j)TP1(:, k)

||S(:, k)||2
S(:, k)

and finally normalize the result P1(:, j) := P1(:,j)
||P1(:,j)||2 ;

5. Set K = P T
1 CP1, Âi = P T

1 AiP1 for 1 ≤ i ≤ keq, B̂l = P T
1 BlP1 for 1 ≤ l ≤ kineq;

6. Obtain the solution Y ∗ of the problem (22) by any recommended method;

7. The solution X∗ of the problem (2) is given by X∗ = P1Y
∗P T

1 .

Appendix E: Numerical example

In this section we present an example of the step-by-step realization of our algorithm for
a small-scale problem. We start from selecting random values of the implied volatilities of
four currencies(EUR, GBP, USD and JPY) cross-rates. This data is presented in Table 6.
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Table 6: Input volatilities

Quotation Impl. Vol. in % Impl. Var

EURJPY 9.70% 0.00940900
EURGBP 7.40% 0.00547600
EURUSD 15.70% 0.02464900
GBPJPY 9.60% 0.00921600
USDJPY 9.80% 0.00960400
GBPUSD 8.70% 0.00756900

The corresponding matrix C is presented below32:
0.00940900 0.00283450 0.01222700 0.00657450 −0.00281800 0.00939250
0.00283450 0.00547600 0.01127800 −0.00264150 −0.00844350 0.00580200
0.01222700 0.01127800 0.02464900 0.00094900 −0.01242200 0.01337100
0.00657450 −0.00264150 0.00094900 0.00921600 0.00562550 0.00359050
−0.00281800 −0.00844350 −0.01242200 0.00562550 0.00960400 −0.00397850

0.00939250 0.00580200 0.01337100 0.00359050 −0.00397850 0.00756900


Its minimal eigenvalue λmin equals −0.0027 and therefore matrix C is non PSD.
Initial volatility of EUR−USD equals 15.7%. We assume that trader wants to enforce

a constraint (for example, for stress-testing purposes) for the corrected matrix: volatility
of EUR−USD should equal to 0.12 = 12%. The corresponding variance should equal to
0.0144.

Therefore we consider the following initial problem:
min 1

2
||X − C||26

X ∈ C 6
FX

trace(AX) = 0.0144

X � 0

where A3,3 = 1 and the other components of matrix A are equal to zero.
According to the Theorem 6 we can isometrically reduce this 6× 6 problem to 3 × 3

problem. To do this we need to construct the matrix P1 from Theorem 6. The matrix P1

columns are orthonormal basis vectors of orthogonal complement of the space N 6
FX . The

space N 6
FX is given by (linearly independent) eigenvectors v(ijk). Since

EUR

JPY
·
(EUR
GBP

)−1
·
(GBP
JPY

)−1
= 1

EUR

JPY
·
(EUR
USD

)−1
·
(USD
JPY

)−1
= 1

EUR

GBP
·
(EUR
USD

)−1
· GBP
USD

= 1

these eigenvectors can be taken as follows

32The covariance coefficients are implied from the volatilities based on equations (11) and (12).
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1
−1

0
−1

0
0




1
0
−1

0
−1

0




0
1
−1

0
0
1


The matrix P1 could be taken as follows

0.70710678 0.00000000 0.00000000
0.35355339 0.61237244 0.00000000
0.35355339 0.20412415 0.57735027
0.35355339 −0.61237244 0.00000000
0.35355339 −0.20412415 −0.57735027
0.00000000 −0.40824829 0.57735027


The reduced matrix K = P T

1 CP1 equals 0.01881800 −0.00431858 0.01995314
−0.00431858 0.01331667 0.01254384

0.01995314 0.01254384 0.03378833


The corresponding constraints matrix Â = P T

1 AP1 equals 0.12500000 0.07216878 0.20412415
0.07216878 0.04166667 0.11785113
0.20412415 0.11785113 0.33333333


By Theorem 6 the initial problem is equivalent to the following one:

min 1
2
||Y −K||23

trace(Â Y ) = 0.0144

Y � 0

We find the solution of this problem using dual method by Boyd and Xiao (2005). Its
solution Y ∗ equals  0.01476531 −0.00625943 0.01069353

−0.00625943 0.01257461 0.00686846
0.01069353 0.00686846 0.02084801


Using formula X∗ = P1Y

∗P T
1 we obtain the solution X∗ of the initial problem. It

equals


0.00738265 0.00098092 0.00715347 0.00640174 0.00022918 0.00617256
0.00098092 0.00385073 0.00622172 −0.00286982 −0.00524081 0.00237099
0.00715347 0.00622172 0.01440000 0.00093175 −0.00724653 0.00817828
0.00640174 −0.00286982 0.00093175 0.00927156 0.00546999 0.00380156
0.00022918 −0.00524081 −0.00724653 0.00546999 0.00747571 −0.00200572
0.00617256 0.00237099 0.00817828 0.00380156 −0.00200572 0.00580728


Answer, presented in the input data format is:
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Table 7: Output volatilities

Quotation Impl. Vol. in % Impl. Var

EURJPY 8.59% 0.00738265
EURGBP 6.21% 0.00385073
EURUSD 12.00% 0.01440000
GBPJPY 9.63% 0.00927156
USDJPY 8.65% 0.00747571
GBPUSD 7.62% 0.00580728
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