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ABSTRACT: Current ab initio structure-prediction methods are sometimes able
to generate families of folds, one of which is native, but are unable to single out
the native one due to imperfections in the folding potentials and an inability to
conduct thorough explorations of the conformational space. To address this issue,
here we describe a method for the detection of statistically significant folds from
a pool of predicted structures. Our approach consists of clustering and averaging
the structures into representative fold families. Using a metric derived from the
root-mean-square distance (RMSD) that is less sensitive to protein size, we
determine whether the simulated structures are clustered in relation to a group of
random structures. The clustering method searches for cluster centers and
iteratively calculates the clusters and their respective centroids. The centroid
interresidue distances are adjusted by minimizing a potential constructed from
the corresponding average distances of the cluster structures. Application of this
method to selected proteins shows that it can detect the best fold family that is
closest to native, along with several other misfolded families. We also describe a
method to obtain substructures. This is useful when the folding simulation fails
to give a total topology prediction but produces common subelements among the
structures. We have created a web server that clusters user submitted structures,
which can be found at http://bioinformatics.danforthcenter.org/services/scar.
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Introduction

T he prediction of protein structures with ab ini-
tio methods depends on two main factors. The

first is the availability of a reliable potential that sin-
gles out the native structure of a given sequence.
The second is the efficient exploration of the con-
formational space guided by the energy landscape.
In the ideal structure prediction scheme, the na-
tive structure corresponds to the potential global
minima. Conformational space can be explored by
using a method such as simulated annealing,1 and
the conformation with the lowest energy should be
the native state. Unfortunately, the problem is that
neither of these factors is fully achievable at the mo-
ment.

Most potentials, ranging from the ones that
describe protein interactions in full atomic de-
tail to those based on reduced geometries with
knowledge-based interactions, can lead to a global
energy minimum that does not correspond to the
native state.2 Additionally, the exploration of the
conformational space becomes increasingly difficult
as the protein size increases, resulting in incorrect
global minima predictions. In general, an ab initio
folding method can lead to a series of structures
that may include partially folded structures, folded
structures not precisely native, or native structures
not at the global energy minimum. This seems
to be the case for ab initio methods such as the
ones presented at the Third Meeting on Critical
Assessment of Techniques for Structure Prediction
(CASP3).3 – 7 It is also the case for a more recently de-
veloped method called the Side Chain Only model
(SICHO),8 on which we focus our attention for con-
venience. As its name suggests, this is a reduced
model that represents each residue by a single bead
in a high-resolution lattice, with interactions corre-
sponding to those between the side chain centers
of mass. The potential is mostly knowledge based
and includes local, pairwise, and multibody inter-
actions. Folding simulations with this model can
yield hundreds of structures, each of which is a low-
energy structure arising from independent folding
trajectories. From these structures, one cannot reli-
ably predict the native fold by choosing the struc-
ture with the lowest energy because the difference in
energies might not be significant enough. Further-
more, it is not immediately evident that the gener-
ated structures are representative, which could be
indicated by the convergence of a significant num-
ber of trajectories to similar topologies. Therefore, a
reliable method that can identify the common folds

is required. We note that these problems are com-
mon to all folding algorithms and are not unique to
the SICHO model.

This problem, on a different low-resolution ab ini-
tio model, was approached using distance geome-
try techniques.6, 9 In distance geometry, a consen-
sus structure is built from the distances between
residues in the given set of predicted protein struc-
tures. When all of the structures are used to de-
termine the distances, a large number of incorrect
conformations can overwhelm the distance geome-
try method, resulting in erroneous predictions. Fur-
thermore, the distance geometry method can fail if
the predicted structures significantly cluster around
more than one topology.

Our approach to this problem consists first in
determining if there are significant similarities be-
tween structures, next finding the similar structure
groups, and then obtaining consensus structures
for the groups. To accomplish this, we use cluster-
ing methods. Consensus folds are obtained for each
cluster by averaging the structures and then, instead
of using distance geometry in the traditional way,
we adjust the interresidue distances by a simple
potential minimization. The potential is built from
the average interresidue distances of the structures
in a cluster. When no significant clusters are found
among the structures, we search for possible sub-
structure clusters. We describe this approach in the
following sections and apply it to structures gen-
erated by the SICHO model using proteins with
known native conformations.

Random Structures:
The Reference State

The first step towards analyzing the resulting
structures of an ab initio folding simulation is to
determine whether there are similarities among
groups of structures. If there are enough similarities
then we can expect structure clusters. Otherwise,
if the structures “look” like a collection of random
conformations, then clusters of correlated structure
are unlikely, and the folding simulation probably
failed. The latter can happen either because the
conformational search is not thorough enough or
because the potential is flawed, or both. Therefore,
to be able to tell when a group of structures cluster,
we must compare them to the reference state of ran-
dom structures.

To this end, we would like to utilize a distance
measure between structures that indicates whether
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these structures look similar or random. The root-
mean-square distance [or RMSD, see eq. (1)] is a
clear and convenient way of measuring the similar-
ity between structures; however, the significance of
its value depends on the size of the structure.10 For
example, a particular RMSD obtained for two large
protein structures that indicates similarity may indi-
cate dissimilarity between two smaller ones. Rather,
it would be preferable to use a universal simi-
larity measure that is zero between two identical
structures and one between random structures, in-
dependent of chain length. One possibility is to
scale the RMSD by its average value between pairs
of randomly selected protein structures of a given
length. This requires a precise expression for the
corresponding RMSD as a function of chain length.
Instead, we define a metric related to the ratio of
the RMSD between two structures to a quantity that
naturally scales with the size of the structures. This
quantity is chosen to have the same average RMSD
as the one for random structures in the long chain
limit.

More specifically, let RMSDαβ be the RMSD be-
tween two conformations α and β, both with N
residues. Also, Erα,i let and Erβ,i be the respective coor-
dinates of the residues at position i, for i = 1, . . . , N,
and with zero average. Without loss of generality,
one set of coordinates per residue (e.g., the α car-
bon coordinates) is used for structure comparisons.
Then, RMSDαβ can be written as

RMSD2
αβ =

1
N

N∑
i= 1

(Erα,i −QErβ,i
)2

= R2
gα + R2

gβ

− 2

( ∑N
i= 1 Erα,i ·QErβ,i√∑N

i= 1 r2
α,i

√∑N
i= 1 r2

β,i

)
RgαRgβ ,

(1)

where Q is the rotation matrix that optimally aligns
the vectors, and Rgα and Rgβ are the radius of gyra-
tion for structures α and β, respectively. The term in
parenthesis is the correlation coefficient between the
aligned structures. The correlation coefficient con-
tains the alignment information and for a random
group of structures, its average should be inde-
pendent of structure size, for long enough chains
beyond any persistence length. This is, in fact, what
we find from actual protein structures. If 〈 〉αβ is the
average over a random ensemble of conformations,
then the correlation coefficient for aligned confor-

mations is asymptotically given by〈 ∑N
i= 1 Erα,i ·QErβ,i√∑N

i= 1 r2
α,i

√∑N
i= 1 r2

β,i

〉
αβ

≈ c. (2)

From calculations on almost 1300 nonhomolo-
gous (with less than 30% sequence identity) random
structures from the protein data bank (PDB), we
have determined the constant to be c ≈ 2.4−1. The
fact that this correlation does not decay to zero
as the chain length increases is the result of the
alignment process. If we replace the correlation co-
efficient in eq. (1) by its average asymptotic value,
the equation gives an estimate of the average RMSD
between two arbitrary structures of given sizes.
From this observation, we define the relative RMSD
(RRMSD) as

RRMSDαβ = RMSDαβ√
R2

gαR2
gβ − 2cRgαRgβ

. (3)

We have found that between similar structures of
equal lengths the RRMSD is less sensitive to small
differences in structure size, but is more discrimi-
nant when the size differences are large. This allows
the RRMSD to differentiate better between similar
and dissimilar structures, in contrast to the RMSD.

The average RRMSD for random structures is not
completely size independent. For smaller random
proteins, the average RRMSD deviates significantly
from unity, as shown in Figure 1. In this plot, the av-
erage and standard deviation of the RRMSD were
obtained for the PDB random structure set. For a
particular sequence length N, a segment of this
length was selected at random from each structure,
given that the total chain length is larger than or
equal to N. The figure shows that the dispersion
and average RRMSD converges shortly after 100
residues. Also shown are multiple-exponential fits
to these curves. The fits show that the slowest de-
cay length is between 30 and 40 residues, indicating
a characteristic length in protein structures caused
by strong biases to form secondary structures. This
conclusion arises after comparing these curves to
similar curves using the ideal and freely jointed
chains for which this characteristic length almost
disappears.

The distribution of RRMSD values is obtained
from the RRMSD between all pairs of conforma-
tions with a given chain length. Figure 2 shows
RRMSD distribution examples for short and long
chain lengths. Notice that for short chains, there is a
small maximum at small RRMSD values, indicating
possible clustering between α-helices or between
β-strands.

JOURNAL OF COMPUTATIONAL CHEMISTRY 341



BETANCOURT AND SKOLNICK

FIGURE 1. Average RRMSD and deviation for polypeptide random structures. The data were obtained from over 1200
nonhomologous protein structures. The solid curves are the fits shown by the formulas.

The RRMSD value allows us to determine when
the similarity between two structures is more sig-
nificant than random. For long enough chains
(N > 100), if the RRMSD between two structures is

near or greater than 1, then they are unlikely to be
correlated. For smaller chains, the average RRMSD
value for random polypeptides decreases, and the
exponential fit shown in Figure 1 must be used.

FIGURE 2. Examples of RRMSD distributions for random polypeptides. The solid line corresponds to polypeptide
chains with 300 residues while the dashed line corresponds to chains with 10 residues. The probability was obtained
by dividing the RRMSD in bins of 0.02. The distribution results from the comparisons between all pairs of structures.
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The level of clustering in a group of structures can
be determined by comparing its RRMSD distribu-
tion to that of a random group of structures. This
is estimated by calculating the RRMSD value that
gives a particular Z-score in each distribution. The
Z-score is defined as the difference between a par-
ticular RRMSD value and the mean divided by the
standard deviation. As a default, we use a Z-score
of −1 for distribution comparisons. For the random
case, the RRMSD value corresponding to a Z-score
of −1 approaches 0.91 as the chain length increases.
If for a given group of structures this RRMSD value
is smaller than the one for the random case, then
cluster formation is likely.

Structure Clustering Method

The detection of structure groups with similar
conformations requires clustering techniques from
the theory of multivariate analysis.11 There are nu-
merous clustering methods that vary in applicabil-
ity, complexity, and requirements. Here we develop
a clustering algorithm of the partitioning class tai-
lored to our particular problem. The basic elements
are similar to the K-means clustering method.11

K-means is a partitioning method in which the av-
erage of each cluster is computed to optimize the
clusters iteratively. The clusters are optimized by
maximizing the correlation between the members
of each cluster and minimizing the correlation be-
tween members of different clusters.

Overall, our method consists of detecting higher
concentrations of similar structures in a space de-
fined by the RRMSD metric. The clusters are de-
termined from these high concentration regions,
and then the average structure, or centroid, of each
cluster is calculated. The clusters along with their
centroids are refined in an iterative process that
maximizes a cluster packing measure. When two
or more clusters significantly overlap, the best clus-
ter is selected according to a compactness criterion,
and then redundant clusters are eliminated. Finally,
the centroids are optimized by adjusting the aver-
age distance between residues, determined from the
clusters where they come from. Figure 3 shows the
general flowchart of the algorithm. The following
steps describe the algorithm in detail.

1. Compute the RRMSD matrix for all structure
pairs and compute the global cluster cutoff.
The RRMSD values are stored in a matrix
with elements dαβ . A global cluster cutoff, κ ,
is introduced to represent the distance above

FIGURE 3. Flow chart for the structure clustering
method.

which two structures are not likely to be in the
same cluster. By default, it is defined as the av-
erage minus one standard deviation of the
RRMSD distribution for random protein struc-
tures with the same chain length. RRMSD
values smaller than the cutoff represent struc-
tures that are likely to be related. In some
folding simulation strategies, the structures
may be biased towards a selected group of
template structures. The resulting fold predic-
tions may involve variations of some or all of
the structure around the template with rela-
tively smaller changes in RRMSD. The default
selection of κ must be adjusted to the RRMSD
distribution of the structures being clustered.
By trial and error, we found that the optimal
selection of the default κ is the RRMSD value
for two standard deviation above the average
for the distribution of structures being in the
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cluster, whenever this value is smaller than the
initial (from the random structures) κ default
value.

2. Compute the structure packing number for all
structures. The packing number for structure
α is defined as

ζα =
S∑
β

e−2(dαβ/κ)2 for dαβ ≤ κ , (4)

where S is the total number of structures. It
conveys the notion of number and compact-
ness by measuring how many structures β are
close to α, and how close they are. The contri-
bution of a structure β to the sum is 1.0 if β and
α are identical and drops to ≈0.35 if dαβ = κ .
Structures with a large packing number are as-
sumed to be near the center of a cluster.

3. Select the cluster center and members (loop).
The structures are initially arranged in or-
der of decreasing packing number, and the
number of clusters is set to zero. Then, (a) se-
lect the next center as the structure with the
highest structure packing number that does
not belong to any previous cluster. This se-
lection allows the initial identification of the
cluster members from which the cluster cen-
troid can be calculated. By selecting a center
structure not in a previous cluster, the new
cluster should be significantly different from
the previous ones. (b) Compute the local clus-
ter cutoff. This step takes into account the
variability in the cluster’s internal dispersion.
It is computed from

κ2
i =

∑Si
α

∑Si
β>α d2

αβe−2(dαβ/κ)2∑Si
α

∑Si
β>α e−2(dαβ/κ)2

, (5)

where Si is the number of structures in clus-
ter i. The Gaussian weight focuses the atten-
tion on those structures around the center that
are less likely to be randomly related. It can
be thought of as a cluster quality control fac-
tor. (c) Select the cluster members according
to the cluster cutoff. While the global cutoff
eliminates structures that are not likely to be in
the same cluster, the local cutoff selects struc-
tures that are likely to be in the same cluster.
Structures with an RRMSD with respect to
the center structure below the local cutoff are
selected as cluster members. (d) Accept the
cluster if there are enough members. A lower
limit to the number of members in a cluster is
set for efficiency. This number varies with the

total number of available structures. Typically,
we set its value to about 2% of the total num-
ber of structures. (e) Exit the loop if the cluster
is too small or there are no more structures
to cluster. Because the remaining structures
(if any) have smaller packing numbers, it is
safe to assume that they all yield small clus-
ters. The number of clusters at this point has
reached an upper limit. The remainder of the
algorithm could eliminate but will not gener-
ate any new clusters.

4. Refine clusters (loop). The structure selected
as the cluster center might not be at the cen-
ter of the cluster, so an iterative process of
centroid calculation and cluster member se-
lection is carried out. (a) Obtain the centroid
by averaging the cluster structures (loop). The
average is done by aligning the structures us-
ing the singlular value decomposition method
(SVD),12 as in the RRMSD calculation. The
following steps are taken: (i) select an ini-
tial structure as the centroid; (ii) align a new
structure to the centroid using SVD; (iii) add
the aligned structures in a separate sum and
compute the new centroid from the sum of
structures; and (iv) repeat for all cluster struc-
tures. The centroid is independent (up to ro-
tations) of the order in which the structures
are added. (b) Recalculate the cluster mem-
bers. As the position of the centroids varies,
some new structures can join the cluster while
current ones can leave. In particular, this takes
into account clusters for which their centroid
is not near to any of the structures. The selec-
tion of the cluster members is done as follows:
(i) compute the RRMSD between the centroid
and all structures; and (ii) select cluster struc-
tures with an RRMSD below the cluster cutoff.
(c) Calculate new cluster cutoff. The local clus-
ter cutoff is updated for the new cluster mem-
bers using eq. (5). (d) Compute the cluster
packing number. The cluster packing number
is a similar measure to the structure packing
number, but it takes all cluster structure pairs
into account. It is defined as

ηi = 2
Si − 1

Si∑
α

Si∑
β>α

e−2(dαβ/κi)
2
. (6)

The packing number is used as a measure of
cluster size and tightness. (e) Update the clus-
ter if it is better packed. Accept the refined
cluster if its packing number is larger than
before its refinement; otherwise, keep the pre-
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vious cluster. When the packing number is
maximized, continue to the next cluster.

5. Eliminate redundant clusters. During the clus-
ter refinement process, some clusters become
identical or almost identical. The clusters are
compared and eliminated as follows: (a) com-
pute the RRMSD between the centroids of two
clusters. (b) Decide if the clusters overlap. Two
clusters are defined to overlap if their cen-
troids fall within each other’s cutoffs. That is,
two clusters overlap if the RRMSDij between
the centroids of clusters i and j satisfies the
conditions RRMSDij < κi and RRMSDij < κj.
This criterion is consistent with the initial se-
lection of cluster centers (see step 3a). How-
ever, it allows for one cluster to be contained
within another, as long as the smaller cluster
does not include the centroid of the larger one.
(c) If two clusters overlap, delete the cluster
with the smallest packing density. From the
packing number, we define the packing den-
sity as

ρi ≡ ηi

Si
. (7)

The packing density is exclusively a measure
of cluster tightness. Note that while in step 4e
we optimized the cluster size and tightness,
here we select the tighter clusters only. (d) Re-
peat for every pair of clusters.

6. Refine centroids. The centroids obtained from
the clustering process capture the global
geometry of the clustered structures. How-
ever, due to variations in the structure align-
ments, the details can be averaged out. To re-
cover structural fidelity, we adjust the distance
between residues to approach the average val-
ues in the cluster structures. This is achieved
through the following potential minimization
procedure. (a) For all the structures in a cluster,
compute the average and the dispersion of the
distances between each pair of residues. We let
the average distances between residues i and j
be 1ij and the dispersion be σij. (b) Construct
harmonic potentials for each pair of residues
from the average distances and dispersions.
The potential between residues i and j is de-
fined as

Vij ≡ 1
2

(|Eri − Erj| −1ij)2

σ 2
ij

. (8)

Within each cluster, highly conserved dis-
tances have a larger “spring” constant (1/σ 2

ij )
than more variable ones. (c) Minimize the po-

tential using the centroid as the initial condi-
tion. The total distance constraint potential

V =
∑
i, j>i

Vij (9)

is minimized using the conjugate gradients
method.12 The resulting structure is the de-
sired representative structure of the cluster.

At the algorithm output, one obtains the refined
centroid for each cluster and the structures for each
cluster. Cluster quality can be assessed from the
average RRMSD among structures, the cluster cut-
off, and their packing density. To ensure consistency
with physical constraints, a final step can be in-
cluded that consists of the reconstruction of the
atomic details. To the distance constraint potential,
several terms describing the bonded constraints and
excluded volume can be added. A final centroid
refinement can be achieved by minimizing this po-
tential. We have found that this additional step does
not significant modify the centroid’s geometry, al-
though it eliminates obvious structural errors (such
as residue overlaps) produced by the structure av-
eraging procedure. We do not discuss this final step
here.

Examples of Structure Clustering

As an example, we consider the folding simula-
tions carried out with the SICHO folding algorithm8

on the ribosomal binding protein (1ctf). This is a
short monomeric protein (68 residues) for which
the structure can be predicted reasonably well with
the SICHO model. The folding simulations con-
sidered in this example resulted in 430 minimum
energy structures from independent annealing tra-
jectories.

The prediction results can be summarized in a
plot describing the correlation between the struc-
ture’s energy (in units of the model special poten-
tial) and the RMSD to the native structure described
in the protein data bank (PDB). This plot is shown in
Figure 4. The simulations yield an optimal predic-
tion at 3.58 Å from the actual native conformation.
However, it is evident that this structure cannot
be identified from the lowest energy structure. In
fact, there are 66 structures with lower energy than
the one with the optimal RMSD. The lack of a
strong correlation in these simulations, particularly
at small RMSD values, is indicative of the folding
model’s inadequacy to identify the native confor-
mation as the lowest energy structure. The difficulty
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FIGURE 4. Energy and native RMSD correlation for the 1ctf folding simulations. Each point represents one of
430 structures.

in this case arises both from defects in the poten-
tial as well as the search scheme. Nevertheless, the
appearance of small RMSD structures indicates that
native-like conformations are being generated, al-
though at a somewhat higher energy.

Representative conformations, including the
native-like one, can be identified if there is signifi-
cant clustering around them. In Figure 5, we show
the RRMSD distribution for the 1ctf structures
under consideration and the distribution of a
random group of polypeptide segments with the
same length as 1ctf. It is clear that there is significant
clustering between the structures, as indicated by
the lower RRMSD values in relation to the random
ones. The RRMSD for 1ctf at the average value of
the distribution minus one standard deviation is
0.62, which is less than that of a random structure
with 68 residues, or 0.79. Therefore, we can be
confident that the folding simulations significantly
converged to at least one representative structure,
and the clustering analysis can produce meaningful
results.

The clustering analysis of the example results in
three distinctive clusters. The main properties of
these clusters are listed in Table I. For the three
clusters, the average RRMSD is significantly smaller
than the global cutoff (a difference of about 0.3
smaller), indicating that the structures within them

are well correlated. Not indicated in the table is
that none of the clusters have structures in common.
There is one dominant cluster with more structures
(125) than the other two (55 and 33). This cluster has
the lowest energy of the three clusters.

The correspondence of the centroids to the native
structure is described in Table II. The native struc-
ture corresponds to centroid 2, which has the second
highest packing density. In terms of the RMSD, cen-
troid 2 is as close to the native structure (3.55 Å) as
the best-input structure (3.58 Å). The cluster corre-
sponding to centroid 1 contains most of the lowest
energy structures. The centroid conformations are
shown in Figure 6. Note that they consist mainly of
different global arrangements of mostly similar sec-
ondary structure elements.

In addition to 1ctf, we applied the clustering
algorithm to simulations of 25 other monomeric
proteins (1aba, 1bbhA, 1c5a, 1cewI, 1cis, 1ego, 1fas,
1fc2C, 1ftz, 1gb1, 1gpt, 1hom, 1ife, 1lea, 1mba, 1poh,
1pou, 1shaA, 1stfI, 1tlk, 256bA, 2azaA, 2pcy, 2sarA,
5fd1). In an attempt to make a fair comparison,
we compare the best of the three lowest energy
centroids against the best of the three lowest en-
ergy (unrelated) structures. On average, the best
centroids are almost 1 Å closer to the native struc-
ture than the best lowest energy structure. In three
cases (1ego, 1poh, 1lea) the best lowest energy struc-
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FIGURE 5. RRMSD distributions for the 1ctf folding simulation. The dashed line corresponds to random polypeptides
of the same length as 1ctf.

tures were between 0.5 to 1.0 Å better than the
best centroids. In one case (1ego), the best RMSD
structure corresponds to the lowest energy struc-
ture, and is significantly different from the rest of the
structures. Therefore, clustering for this structure is
bound to fail. On the other hand, four centroids
(1fc2C, 2azaA, 1ife, 1gpt) were better by approxi-
mately 3 Å than the best low-energy structures, and
seven others between 0.5 and 1.5 Å better than the
best low-energy structures.

For comparison, we repeated the centroid deter-
mination using the popular complete-linkage hier-
archical clustering method.11 In this case, the same
metric (RRMSD) was used, and the centroids were
calculated after the clusters were determined. One

property of the hierarchical approach is that the
number of clusters is more sensitive to the selection
of the RRMSD cutoff value. In this case, we found
optimal to use a cutoff corresponding to one stan-
dard deviation above the mean of the RRMSD dis-
tribution for the structures being clustered, which
roughly corresponded to a value of ≈1.1. In the
complete-linkage case, this cutoff means that no
two structures in a cluster are farther apart than
about 1.1 RRMSD. For many of the proteins con-
sidered, the centroids obtained from this approach
were significantly similar to the ones obtained from
our partitioning approach. This is indicative of well-
defined clusters that can be obtained from various
methods. As far as the RMSD to the native struc-

TABLE I.
Cluster Properties for the 1ctf Simulated Structures.

i 〈Energy〉 Si ρi κi 〈RRMSD〉 〈RMSD〉

1 −463.14 125 0.44 0.46 0.51 5.66 Å
2 −455.58 33 0.44 0.53 0.51 5.68 Å
3 −449.77 55 0.40 0.54 0.54 6.05 Å

〈Energy〉 is the average energy of all the structures in the cluster. Si is the number of structures in a cluster. ρi is the packing density.
κi is the cluster cutoff. 〈RRMSD〉 and 〈RMSD〉 are the average RRMSD and RMSD, respectively, between each cluster structures.
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TABLE II.
Comparisons of 1ctf Cluster Centroids with the PDB
Structure.

i RRMSD RMSD DRMSD

1 0.95 10.60 Å 5.06 Å
2 0.32 3.55 Å 2.69 Å
3 0.82 9.21 Å 4.96 Å

The columns correspond to the relative, standard, and dis-
tance RMSD.

ture determines the adequacy of the method, we
again compare the best three centroids by using
both clustering methods. On average, the results
for the hierarchical method yielded structures al-
most 1 Å farther (6.9 vs. 6.0 Å) away from the
native structure than our partitioning approach.
Only in a few cases were the centroids from the
hierarchical approach significantly better than the
centroids from the partitioning approach. We con-
clude that the cluster refinement process in our
partitioning approach improves the quality of the
clusters and centroids, and yields more native like
centroids.

FIGURE 6. Centroids for 1ctf folding simulations.
Structure (2) is the one closer to the actual native
structure.

Substructure Determination

When the folding simulations fail to yield struc-
tures that cluster, it is possible that some common
(and perhaps correct) folded substructural elements
are present. In some cases, correct substructures
fold before the global structure folds and the rate-
determining step is the assembly of the substruc-
tural elements. It is also possible that the native state
of a protein contains highly mobile segments that
fail to fold to a definite structure, but it also con-
tains other stable parts that do fold correctly. In such
cases, it would be useful to detect folded substruc-
tures in the form of secondary or super-secondary
structural motifs.

Ideally, we would like to find the residues that
form consistent substructures and their resulting
substructures by using clustering techniques. In
general, this can be a very complicated problem be-
cause we would need to compare all the structures
formed by all possible combinations of residues. In-
stead of searching for substructures in structural
space, we search for them in residue space. In this
space, the metric is a measure of how consistent the
residue positions are in relation to each other. With
this approach, a substructure can be identified by
clustering the residues with relative positions that
are significantly conserved.

More specifically, the metric that we use in
residue space is defined as

Dij ≡
√∑

α

(|Erαi −Erαj| −1ij
)2 (10)

for two residues i and j, where the sum runs over
all structures in a given group of structures and 1ij

is the corresponding average distance. In this space,
two residues i and j are considered to be in the same
position (at zero distance Dij) when their structure
space distance |Erαi−Erαj| is constant within the struc-
ture group.

In principle, some substructures could be com-
mon to all structures, while others could be present
only in some total-structure clusters. Note that, to
avoid confusion, we are now referring to the struc-
ture clusters described in the previous section as
being total-structure clusters. Therefore, the struc-
tures used in residue clustering are chosen either to
detect global substructures or local ones. For detect-
ing global substructures, a “super” cluster is created
by combining all total-structure clusters. The struc-
tures that do not cluster are discarded as statistical
noise. Each total-structure cluster (global or local)
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FIGURE 7. Flow chart for the substructure clustering.

defines a particular metric Dij for which the sub-
structures are obtained.

The clustering method derived previously is not
easily applicable in residue space. Therefore, we use
the more generally applicable method of average-
linkage hierarchical clustering.11 A flow chart with
the algorithm general steps is shown in Figure 7.
In a hierarchical clustering method, larger clusters
are gradually formed by merging smaller clusters.
The process starts with as many clusters as there
are residues, i.e., each residue is initially a cluster.
The initial distance between each cluster is set to
the distance between their corresponding residues
(i.e., Dij). This distance is used as the criteria for
merging clusters in a series of steps. In each step, the
closest pair of clusters is determined and combined
into a single larger cluster, resulting in a reduction
of the total number of clusters. For this process to
be repeated, the distance between the newly formed
cluster and the other clusters must be determined.
In average-linkage clustering, the distance between
two clusters is calculated by averaging the distance
Dij between all the members of one cluster with all
the members of the other. The process of merging
clusters is repeated until the minimum distance be-
tween clusters reaches a desired cutoff value. This
method is relatively easy to implement, but the
clusters formed can be more sensitive to metric
fluctuations. The average-linkage method produces
substructure clusters for which the average distance
between any two residues in a cluster is smaller than
or equal to a given threshold. This threshold can
be set to correspond to the approximate fluctuating
error one would allow for the position of residues
within a structure. For example, if one wishes to de-

termine the substructures to residue resolution, the
threshold may be in the neighborhood of 3.8 Å. Al-
ternately, the threshold can be set to vary according
to the distribution of Dij values between all residues.
In particular, setting the threshold to the distribu-
tion average results in substructures of significant
size. This choice is convenient in that it self-adjusts
to the fluctuations of the cluster structures, although
it can generate substructures with significant fluctu-
ations.

The resulting residue clusters are used to con-
struct the substructures by analogy to the centroid
calculations of the total-structure clusters. The co-
ordinates of these residues are aligned using SVD,
independently of the remaining residues, and their
average is computed. When the total structure fails
to cluster significantly, the substructure averages
should give a better representation of the substruc-
tures. The advantage is that only residues with
consistent positions are being aligned and the fluc-
tuations are reduced.

To test the substructure determination method,
we analyze the folding simulations of one monomer
of the cochaperonin GroES. This monomer con-
sists of 97 residues and has a mobile loop between
residues 17 and 32.13 The structure of this loop is
stabilized in the presence of the GroES companion,
GroEL. Therefore, at best, only part of this struc-
ture can be predicted by folding simulations of the
monomer in isolation.

The folding simulations generated 858 structures
from which two major clusters were obtained. The
average RRMSD for both clusters is approximately
0.85, indicating that the global structures are close to
random. The RRMSD between the centroids and the
native GroES structure in the GroES/GroEL com-
plex is 0.99 and 1.01 for the centroids. Evidently,
there is no global correspondence between the pre-
dicted structures and the known GroES structure.

To determine the substructures, the cluster cut-
off value was set according to the distribution of
distances. For the global cluster, the default cutoff
resulted in a value of 4.7 Å, indicating significant
fluctuations. The properties of the resulting sub-
structures for the combined total-structure clusters
are summarized in Table III. The substructures con-
tain between 11 and 36 consecutive residues. Note
that in general, the residues are not necessarily con-
secutive. The second column shows the average
RRMSD between substructures in the clusters. Be-
cause of the relatively small number of residues,
we show the average RRMSD divided by its ran-
dom value in column 3. Despite the large fluctua-
tions among the structures in total-structure clus-
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TABLE III.
Substructure Properties for the Combined Clusters in the GroES Simulations.

Residues 〈RRMSD〉 〈RRMSD〉/RRMSDo RRMSD RMSD DRMSD

1–16 0.58 0.88 0.34 3.69 Å 2.40 Å
17–33 0.47 0.70 0.75 8.63 Å 9.41 Å
34–50 0.48 0.72 0.35 4.66 Å 2.41 Å
51–61 0.41 0.68 0.40 4.00 Å 1.13 Å
62–97 0.65 0.80 0.86 11.17 Å 7.37 Å

The combined clusters were obtained by combining the structures of the two total-structure clusters (184 total structures). The
average of the distance distribution criteria was used in the selection of the substructure clusters cutoff, resulting in a cutoff value
of 4.71 Å. The average RRMSD values are computed between the substructures in each substructure cluster. The last three columns
are in relation to the known GroES structure, in the GroES/GroEL complex.

ters, most substructure clusters contain correlated
structures.

The last three columns of Table III show the com-
parison to the corresponding portions of the known
GroES structure. The geometries for both cases are
shown in Figures 8 and 9. Figure 8 corresponds to
the structures with the smallest average RRMSD
values, and Figure 9 to the ones with the largest av-
erage RRMSD values. Interestingly, the mobile loop
is singled out by the substructure analysis, as shown
in Figure 8a. Not surprisingly, the mobile loop pre-
diction is unrelated to the native one. However, the
folding simulations did not show significant struc-
ture fluctuations for the loop in comparison to the
other substructures, as indicated by the average

RRMSD. Nevertheless, the other two substructures
with small average RRMSD (Figs. 8b and c) are
generally similar to their native counterparts. The
predicted substructures with the largest average
RRMSD values (Fig. 9) are also similar, to some ex-
tent, to the native ones. Figure 9a corresponds to the
substructure with the smallest RRMSD despite com-
ing from a cluster with considerable fluctuations.
The substructures shown in Figure 9b resemble a
β-hairpin. The predicted substructure is compara-
ble to the mirror image of the native one, with
the exception that the contacting residues between
strands are shifted in relation to each other.

The substructures analysis applied to the struc-
tures of a particular total-structure cluster results

FIGURE 8. Substructures of lower 〈RRMSD〉. The light (left) and dark (right) substructures correspond to the native
GroES and clustered substructures, respectively.
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FIGURE 9. Substructures of higher 〈RRMSD〉. The light
(left) and dark (right) substructures correspond to the
native and clustered substructures, respectively.

in similar structures to the ones obtained by us-
ing the combined total-structure cluster. In some
total-structure clusters, the substructures are better
correlated, as indicated by smaller average RRMSD
values between them. In others, the substructures
are just a combination of the substructures obtained
from the combined clusters. In general, the sub-
structures in total-structure clusters can be different
from the one in the combined clusters.

World Wide Web Structure
Clustering Server

We have created a World Wide Web (WWW)
structure-clustering server that can be presently
reached at http://bioinformatics.danforthcenter.
org/services/scar. There, a user can submit a group
of structures and obtain, via e-mail, the results of the
structure and substructure clustering analysis. The
calculation of the clustering algorithm is carried out
in our local machines dedicated as public WWW
servers.

The algorithm requires a few parameters, most
of which are adequately selected from the default
values. The first set of input parameters describes
the structure file formats. The structure coordinates
can be given either in PDB format or in the SICHO
format8 (see the Web page for details). Examples
for both formats are shown in the server. Only a

single atom representation of the residues is used
for clustering calculations. The second set of input
parameters allows changing the clustering default
options. When the structure files consist of a series
of structures from independent folding simulation
trajectories, the user can specify how to select the
structures from these files. The options are the mini-
mum energy structure, the structures obtained from
clustering the trajectory file (see the concluding re-
marks sections), or the particular structure indicated
by the user. The user must also specify the global
cluster cutoff, and for substructures analysis, the
residue cluster cutoff. The last input section consists
of the submission of the structures. These can be
submitted in a number of different file compression
formats.

Concluding Remarks

In this work, we have developed a method for an-
alyzing the results of ab initio structure predictions
and for extracting the significant folds, from where
the native state could be obtained. The procedure
consists in three parts. First, the variety of structures
resulting from the folding simulations are compared
to a reference state of random structures to deter-
mine if the simulations were successful in generat-
ing significant folds. To this end we introduced the
relative RMSD, which provides a general measure
of similarity between structures. Second, we clus-
ter the simulated structures and find their average
structures, representing the significant folds. Finally,
we analyze the common substructures (or protein
domains) appearing in the folded structures, which
can be useful when the global fold fails to cluster.

The relative RMSD allow us to compare struc-
tures by an almost universal (size independent)
scale. In this scale, two structures with an RRMSD
of one are uncorrelated, regardless of structure
size. The measure is also useful for detecting sig-
nificant correlations among a group of predicted
protein structures obtained from ab initio folding
simulations. The RRMSD distribution for random
polypeptides converges to a universal curve with
a mean of 1.0 and a standard deviation of ap-
proximately 0.09. This convergence is significantly
attained for chains of more than 100 residues. By
comparing the distribution of RRMSD values of the
predicted structures to those of a random group of
polypeptides, we can determine whether the simu-
lation was adequate or if it requires a better sam-
pling of the conformational space. If the simulation
is adequate, the structures can be grouped into rep-
resentative clusters.
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There are several benefits to clustering simulated
structures. One is that it narrows down the predic-
tions, from hundreds or thousands, to just a few
characteristic structures. We have found that there
are much better chances of finding the optimal fold
between this small group of structures than from
a similar number of the lowest energy structures.
Optionally, other types of scoring functions or po-
tentials can be used among this set of structures to
identify the native one. Another benefit of clustering
is that, whenever the native structure is known, it al-
lows for the detection of typical incorrect folds that
can be used to analyze and improve the potential.

The clustering method we have developed
proves to be very successful in detecting signifi-
cant structures. The use of structure averaging in the
clustering algorithm serves a dual purpose. First,
it allows for a better and more robust determina-
tion of the clusters. This is in contrast to popular
hierarchical clustering methods, which, to maintain
generality, may not take advantage of a system’s
special properties. Second, the centroids produce
the global consensus topology of a cluster that is
used as the initial structure in the distance refine-
ment optimization. A feature of our method is that
it allows clusters to overlap. In this way, structures
that are a combination of more than one character-
istic structure can belong to several clusters. There-
fore, the selection of the structures in a cluster does
not depend on other clusters and their construction
is more independent and robust. Another feature of
the clustering method is that the cutoff that deter-
mines the cluster size is locally adjustable for each
cluster. If the cutoff was determined globally in-
stead, there is a possibility that a large cluster (in
the RRMSD sense) is truncated while, on the other
hand, more than one small cluster can be combined
into a single cluster. The results show that the clus-
ter cutoffs vary from one cluster to another, possibly
indicating size fluctuations of the basin boundaries
around the clusters in the energy landscape. The
packing density ρ, defined by eqs. (6) and (7), seems
to be a useful quantity in classifying the quality of
a cluster, as long as the cluster is significant in size.
For the cases studied, the native structure is among
the clusters with the highest ρ values, although this
result probably depends on the fidelity of the po-
tential and the prediction methods. Note that it is
important to cluster structures that come from sta-
tistically independent simulations. Otherwise, the
clustering method will only detect artificial correla-
tions. In some minimization techniques, the folding
trajectories will include both artificial and relevant
correlations. For this case, we cluster the structures

in each trajectory and then cluster the resulting cen-
troids of all trajectories.

As in many partitioning clustering methods, our
method maximizes the correlation between ele-
ments in a cluster and minimizes the correlation
between elements of different clusters. The correla-
tion between elements in a cluster is captured by
the packing number and packing density, eqs. (4)
and (7), respectively. These are direct measures of
the dispersion errors in each cluster. The minimiza-
tion of correlations between different clusters is
obtained from the overlap condition. It states that
the distance between two centroids must be larger
than the dispersion for each of the corresponding
clusters.

Using substructure cluster analysis, we are able
to detect well-defined substructures even when the
total structures fail to cluster. The substructures are
in the form of secondary and some time super-
secondary structures, depending on the quality of
the total cluster. One of the purposes of the substruc-
ture cluster analysis was to detect the substructures
of proteins with globally fluctuating or unstable
domains. As an example, we analyzed the substruc-
tures of the folding simulations of GroES, which has
been determined by NMR studies to have an un-
stable domain.13 In this case, our clustering analysis
was able to detect the unstable domain even though
the folding algorithm did not label the domain as
unstable, as indicated by the consistency of the sub-
structure (low average RRMSD) in relation to the
other substructures. In our analysis, we studied the
substructures for the structures belonging to each
individual total-structure clusters, and to the com-
bined cluster formed by the union of the individual
clusters. We found in this case that there were no
significant differences between the individual and
combined cluster substructures. This is a reflection
of the folding simulations, showing that the differ-
ences of the various substructures lie mostly in the
rearrangements of substructures. That is, the global
topology has relatively small effects on the substruc-
tures. In general, whenever the total structures fail
to cluster, the quality of the substructures averaged
individually is superior to the one appearing in the
total-structure centroids.

Clustering in residue space, with the constraint
of selecting structures from total-structure clusters,
is an effective way of finding the substructures.
The average-linkage hierarchical method seems ad-
equate enough for this purpose. Nevertheless, the
boundaries and size of the substructures are some-
what arbitrary, and a refinement of the substructure
clusters could improve the results.
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