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Finding the Optimal Pre-set Boundaries for Pairs Trading
Strategy Based on Cointegration Technique

Heni Puspaningrum1, Yan−Xia Lin2 , Chandra Gulati3

School of Mathematics and Applied Statistics

University of Wollongong, Australia

Abstract

Pairs trading is one of the arbitrage strategies that can be used in trading stocks

on the stock market. It incorporates the use of a standard statistical model to

exploit the stocks that are out of equilibrium for short-term time. In determining

which two stocks can be a pair, Banerjee et al. (1993) shows that the cointegration

technique is more effective than correlation criterion for extracting profit potential in

temporary pricing anomalies for share prices driven by common underlying factors.

This paper explores the ways in which the pre-set boundaries chosen to open a

trade can influence the minimum total profit over a specified trading horizon. The

minimum total profit relates to the pre-set minimum profit per trade and the number

of trades during the trading horizon. The higher the pre-set boundaries for opening

trades, the higher the profit per trade but the lower the trade numbers. The opposite

applies for lowering the boundary values. The number of trades over a specified

trading horizon is determined jointly by the average trade duration and the average

inter-trade interval. For any pre-set boundaries, both of these values are estimated

by making an analogy to the mean first-passage time. The aims of this paper are

to develop numerical algorithm to estimate the average trade duration, the average

inter-trade interval, and the average number of trades and then use them to find

the optimal pre-set boundaries that would maximize the minimum total profit for

cointegration error following an AR(1) process.

Keywords: pairs trading, cointegration, integral equation, the mean first-passage

time.

1 Introduction

Pairs trading was first discovered in the early 1980s by the quantitative analyst

Nunzio Tartaglia and a team of physicists, computer scientists and mathematicians,

who did not have a background in finance. Their idea was to develop statistical

1email: hp261@uow.edu.au
2email: yanxia@uow.edu.au
3email: cmg@uow.edu.au
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rules to find ways to perform arbitrage trades, and take the ‘skill’ out of trading

(Gatev et al. 1999, 2006).

Pairs trading works by taking the arbitrage opportunity of temporary anomalies

between related stocks which have long-run equilibrium. When such an event occurs,

one stock will be overvalued relative to the other stock. We can then invest in a

two-stock portfolio (a pair) where the overvalued stock is sold (short position) and

the undervalued stock is bought (long position). The trade is closed out by taking

the opposite position of these stocks after the stocks have settled back into their

long-run relationship. The profit is captured from this short-term discrepancies in

the two stock prices. Since the profit is not depend on the movement of the market,

pairs trading is a market-neutral investment strategy.

According to (Gatev et al.,1999, 2006), it appears that the growing popularity

of the pairs trading strategy may also pose a problem because the opportunities to

trade become much smaller, as many other arbitrageurs are aware of the strategy

and may choose to enter at an earlier point of deviation from the equilibrium. The

profit from the pairs trading strategy in recent times is less than the profit before the

pairs trading strategy is found . However, Gillespie and Ulph (2001), Habak (2002),

and Hong and Susmel (2003) show that significant returns could still be made in

more recent times with the strategy. An extensive discussion of pairs trading can be

found in Gatev et al (1999, 2006), Vidyamurthy (2004), Whistler (2004)and Ehrman

(2006).

In determining which two stocks can be a pair, people commonly choose two

stocks that are highly correlated (see Stone (http://www.investopedia.com), Avery-

Wright (http://compareshares.com.au), Goodboy (http://biz.yahoo.com) and Ehr

man (2006)). However, Banerjee et al. (1993) shows that the cointegration technique

is more effective than correlation for extracting profit potential as the cointegration

relationship guarantees that the two stocks have a long-run stationary relationship.

Gillespie and Ulph (2001), Hong and Susmel (2003), Vidyamurthy (2004) and Her-

lemont (www.yats.com) also suggest this technique. However, no one has developed

pairs trading strategy based on cointegration by quantitatively estimating the aver-

age trade duration, the average inter-trade interval, the average number of trades,

the minimum total profit, and then finding the optimal pre-set boundaries (thresh-

olds) to open the pair trades. The following paragraphs will briefly explain about

these terms and pairs trading base on cointegration.

Substantial literature (see, for example, Fama and French, 1988; Liu et al., 1997;

Narayan, 2005; and references cited therein) confirm that stock prices are character-

ized by a unit root which means the stock prices are I(1) non-stationary time series.

Sometimes an appropriate linear combination of two I(1) non-stationary time series
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could form a stationary time series. If this happens, we say these two I(1) series are

cointegrated. 4

In order to determine whether cointegration exists between two time series there

are two techniques that are generally used: the Engle-Granger two-step approach,

developed by Engle and Granger (1987), and the technique developed by Johansen

(1988). The Engle-Granger approach uses OLS (Ordinary Least Squares) to estimate

the long-run steady-state relationship between the variables in the model, and then

test whether the residual from the equation is stationary or not. Even though it is

quite easy to use, there are some criticisms of this approach, e.g.: (1) this test for

cointegration is likely to have lower power than the alternative tests; (2) its finite

sample estimates of long-run relationships are potentially biased; and (3) inferences

cannot be drawn using standard t-statistics about the significance of the parameters

of the static long-run model (Harris, 1995). To overcome the problems found in

the Engle-Granger approach, the Johansen’s approach uses a vector error-correction

model (VECM) so that all variables can be endogenous. More discussion about

these two methods can be found in Harris (1995). One more advantage of Johansen’s

(1988) technique is that it has become available in a user-friendly software, namely,

PcFiml (version 8), which has been used for running the cointegration analysis in

this paper.

The pairs trading strategy, using a cointegration technique, is briefly introduced

below :

Consider two shares S1 and S2 whose prices are I(1). If the share prices PS1,t and

PS2,t are cointegrated, there exist cointegration coefficients 1 and β corresponding to

PS1,t and PS2,t respectively, such that a cointegration relationship can be constructed

as follows:

PS1,t − βPS2,t = ε∗t , (1)

where ε∗t (the actual cointegration error) is a stationary time series.

Define εt (the adjusted cointegration error) is as follows:

εt = ε∗t − E(ε∗t ), (2)

where εt is also a stationary time series and E(.) means the expectation. The actual

cointegration error ε∗t is adjusted so that the mean of the adjusted cointegration

error E(εt) is zero in order to simplify subsequent analysis.

We have to set an upper-bound U(U > 0) and a lower-bound L(L < 0) before

we apply the pairs trading. The function of these boundaries act as a threshold to

open a trade. Let NS1 and NS2 denote the number of shares S1 and S2 respectively.

Two type of trades, U-trades and L-trades, are considered. For a U-trade, a trade is

4I(1) means the time series is non-stationary but the first difference is stationary.
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opened when the adjusted cointegration error is higher than or equal to the pre-set

upper-bound U by selling NS1 of S1 shares and buying NS2 of S2 shares and then

closing the trade when the adjusted cointegration error is less than or equal to zero.

This is done by buying NS1 of S1 shares and selling NS2 of S2 shares. The opposite

happens for the L-trade, where a trade is opened when the adjusted cointegration

error is less than or equal to the pre-set lower-bound L by buying NS1 of S1 shares

and selling NS2 of S2 shares. The trade is closed when the adjusted cointegration

error is higher than or equal to zero by selling NS1 of S1 shares and buying back

NS2 of S2 shares. It is assumed that the actual cointegration error (ε∗t ) as well as

the adjusted cointegration error (εt) are stationary processes and have symmetric

distributions, so the lengths from the upper-bound U to the mean and from the

lower-bound L to the mean are the same. As a result, the expected number of

U-trades and L-trades are the same. For details, see Lin et al. (2003, 2006).

In our discussion, the following terms will be required.

• Trade duration is the time between opening and closing a U-trade (an L-trade).

• Inter-trade interval is the time between two consecutive U-trades (L-trades)

or the time between closing a U-trade(an L-trade) and then opening the next

U-trade(L-trade). We assume that there is no open trade (neither U-trade nor

L-trade) if the previous trade has not been closed yet.

• Period is the sum of the trade duration and the inter-trade interval for U-trades

(L-trades).

To simplify the discussion in this paper, we subsequently focus mainly on the U-

trade case unless stated otherwise. The expected trade durations and the expected

inter-trade intervals are estimated to determine the expected number of U-trades

over a specified trading horizon. As the expected numbers of U-trades and L-trades

are the same, the expected number of U-trades can be doubled to obtain the expected

number of trades.

Figure 1 shows two cointegrated shares, i.e. Transonic Travel Ltd (TNS) and

Travel.com.au (TVL), and their adjusted cointegration error denoted by eps . Both

are travel companies listed on the Australian Stock Exchange. In this case, TNS is

S1 and TVL is S2. Further description of the cointegration relationship of these two

shares can be found in Section 5. At time t = 5, the adjusted cointegration error

of the two stocks (eps ) is higher than the upper-bound U , so a trade is opened by

selling TNS and buying TVL. At t = 14, eps is less than the eps mean 0 , so the

trade is closed by taking the opposite position. Figure 1 also illustrates an example

of trade duration, inter-trade interval and period.
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Figure 1: Example of two cointegrated shares (TNS and TVL) with E(eps)=0

Lin et al. (2003, 2006) develop a pairs trading strategy based on a cointegration

technique called the cointegration coefficients weighted (CCW) rule. The CCW rule

works by trading the number of S1 and S2 shares as a proportion of cointegration

coefficients to achieve a pre-set minimum profit per trade. The pre-set minimum

profit per trade corresponds to the pre-set boundaries U and L chosen to open

trades. However, they did not discuss the optimality issue on the pre-set boundaries.

Developing a numerical algorithm to calculate the optimal pre-set boundary values

will be the main target of this paper.

We determine the optimality of the pre-set boundary values by maximizing the

minimum total profit (MTP) over a specified trading horizon. The MTP corre-

sponds to the pre-set minimum profit per trade and the number of trades during

the trading horizon. As the derivation of the pre-set minimum profit per trade is

already provided in Lin et al. (2003, 2006), this paper will provide the estimated

number of trades. The number of trades is also influenced by the distance of the

pre-set boundaries from the long-run cointegration equilibrium. The higher the pre-

set boundaries for opening trades, the higher the minimum profit per trade but the

lower the trade numbers. The opposite applies for lowering the boundary values.

The number of trades over a specified trading horizon is determined jointly by

the average trade duration and the average inter-trade interval. For any pre-set

boundaries, both of those values are estimated by making an analogy to the mean

first-passage times for an AR(1) process. This paper applies an integral equation

approach to evaluate the mean first-passage times from Basak and Ho (2004).

The paper is organized as follows. Section 2 gives a brief summary of the trading
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rules to obtain the pre-set minimum profit per trade. In Section 3, we give a brief

description of the mean first-passage time of an AR(1) process using an integral

equation approach and apply the concepts to estimate the average trade duration,

the average inter-trade interval and then the number of trades in the pairs trading

strategy. In Section 4, a numerical algorithm is developed to calculate the optimal

pre-set upper-bound, denoted Uo, that would maximize the minimum total profit.

Section 5 provides two empirical examples, i.e. BHP-RIO and TNS-TVS and the

last section has discussion and a conclusion.

2 Minimum Profit Per Trade

This section will explain how to determine the number of shares of S1 and S2

needed to get the pre-set minimum profit per trade. Using Eqs.(1) and (2), this

paper follows the derivation of the minimum profit per trade as in Lin et al. (2003,

2006). Consider the following assumptions.

1. The two share price series are cointegrated over the relevant time period.

2. Long (buy) and short (sell) positions always apply to the same shares in the

share-pair.

3. Short sales are permitted or possible through a broker and there is no interest

charged for the short sales and no cost for trading.

4. β > 0

Assumptions 1 and 2 are fairly non-controversial. The others assumptions are

applied to simplify the analysis. To support the fourth assumption, we have exam-

ined seven share pairs ( ANZ-ADB, ABC-HAN, ABC-BLD, CCL-CHB, HAN-RIN,

BHP-RIO, and TNS-TVL)5 from the Australian Stock Exchange using daily data

for 2004 (www.finance.yahoo.com.au) and find that the β’s for those cointegrated

shares were positive.

2.1 U-trades

Consider two cointegrated shares, S1 and S2 as in Eq.(1). By using Assumption 1,

we can conclude that

5ANZ Banking Group Ltd (ANZ), Adelaide Bank (ADB), Adelaide Brighton (ABC), Boral Ltd
(BLD), BHP Billiton Ltd (BHP), Coca-cola Amatil (CCL), Coca-cola Hellenic (CHB), Hanson Plc
(HAN), Rinker Group Ltd (RIN), Rio Tinto Ltd (RIO), Transonic Travel (TNS), Travel.com.au
(TVL)
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• When εt ≥ U , the price of one unit share S1 is higher than or equal to the

price of β unit shares S2, relative to their equilibrium relationship. In other

words, S1 is overvalued while S2 is undervalued, relative to their equilibrium

relationship. A trade is opened at this time. Let to represent the time of

opening a trade position.

• If εt ≤ 0, the price of one unit share S1 is less than or equal the price of β

unit shares S2, relative to their equilibrium relationship. In other words, S1 is

under-valued while S2 is over-valued according to their equilibrium relation-

ship. The trade is closed at this time. Let tc represent the time of closing out

a trade position.

When the adjusted cointegration error is higher than or equal to the pre-set

upper-bound U at time to, a trade is opened by selling NS1 of S1 shares at time to

for NS1PS1,t0 dollars and buying NS2 of S2 at time to for NS2PS2,to dollars.

When the adjusted cointegration error has settled back to its mean at time tc,

the positions are closed out by simultaneously selling the long position shares for

NS2PS2,tc dollars and buying back the NS1 of S1 shares for NS1PS1,tc dollars.

Profit per trade will be

P = NS2(PS2,tc − PS2,to) + NS1(PS1,to − PS1,tc). (3)

According to the CCW rule as in Lin et al. (2003, 2006), if the weight of NS2

and NS1 are chosen as a proportion of the cointegration coefficients, i.e. NS1 = 1

and NS2 = β, the minimum profit per trade can be determined as follows: 6

P = NS2(PS2,tc − PS2,to) + NS1(PS1,to − PS1,tc)

= β[PS2,tc − PS2,to ] + [PS1,to − PS1,tc ]

= β[PS2,tc − PS2,to ] + [(εto + E(ε∗t ) + βPS2,to)− (εtc + E(ε∗t ) + βPS2,tc)]

= (εto − εtc) ≥ U. (4)

Thus, by trading the shares with the weight as a proportion of the cointegration

coefficients, the profit per trade is at least U dollars.

2.2 L-trades

For an L-trade, the pre-set lower-bound L can be set to be −U . So, a trade is

opened when εt ≤ −U by selling S2 and buying S1.

6For simplicity, fractional share holdings are permitted
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Profit per trade will be:

P = NS2(PS2,to − PS2,tc) + NS1(PS1,tc − PS1,to). (5)

Analogous to the derivation of minimum profit per trade for an U-trade, let

NS2 = β and NS1 = 1. Thus,

P = β[PS2,to − PS2,tc ] + [PS1,tc − PS1,to ]

= β[PS2,to − PS2,tc ] + [(εtc + E(ε∗t ) + βPS2,tc)− (εto + E(ε∗t ) + βPS2,to)]

= (εtc − εto) ≥ U. (6)

So, trading 1 unit share S1 and β unit shares S2, either in U-trades or L-trades

would make a minimum profit per trade as much as U . However, for L-trades we

need to borrow some money because with εt negative at opening time means that

the income from the short sales (selling β unit shares S2) is insufficient to buy 1

unit share S1.

3 Mean First-passage Time of an AR(1) Process

and Pairs Trading

As a stationary process, the actual cointegration error (ε∗t ) as well as the adjusted

cointegration error (εt) may follow linear stationary processes (e.g.: White noise,

Autoregressive, Moving average, and Autoregressive-Moving Average processes),

non-linear stationary processes or other stationary processes. We have examined

seven share pairs ( ANZ-ADB, ABC-HAN, ABC-BLD, CCL-CHB, HAN-RIN, BHP-

RIO, and TNS-TVL) from the Australian Stock Exchange using daily data for 2004

(www.finance.yahoo.com.au). All of these share pairs produce cointegration error

with AR(1) processes. Elliott (2005) and Herlemont (www.yats.com) also suggested

AR(1) processes for modeling pairs trading, but they used the Ornstein-Uhlenbeck

process which is the continuous-time counterpart of an AR(1) process to estimate

the optimal boundaries. However, due to the complexity of stochastic analysis in

the Ornstein-Uhlenbeck process, their results are difficult to be applied in practical

situation. Therefore, in this paper we focus on an AR(1) process and use an integral

equation approach from Basak and Ho (2004) which is more practicable than the

Ornstein-Uhlenbeck process .

This section will provide steps to obtain an estimation of the number of trades

over a specified trading horizon. Firstly, we will give a brief summary of the mean

first-passage time of AR(1) process using an integral equation approach from Basak

and Ho (2004). Secondly, a numerical scheme is provided to calculate the mean first-

passage time of an AR(1) process using an integral equation approach. Thirdly, the
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average trade duration and the average inter-trades interval are estimated using

an analogy of the mean first-passage time. Fourthly, the number of trades over a

specified trading horizon is approximated using the average trade duration and the

average inter-trade interval.

3.1 The mean first-passage time of an AR(1) process using

an integral equation approach

Consider an AR(1) process:

Yt = φYt−1 + ξt, (7)

where −1 < φ < 1 and ξt ∼ i.i.d N(0, σ2
ξ ).

The first-passage time Ta,b(y0) is defined as

Ta,b(y0) = inf{t : Yt > b or Yt < a|a ≤ Y0 = y0 ≤ b} (8)

Particularly,

Ta(y0) = Ta,∞(y0) = inf{t : Yt < a|Y0 = y0 ≥ a} (9)

and

Tb(y0) = T−∞,b(y0) = inf{t : Yt > b|b ≥ Y0 = y0} (10)

E(Ta,b(y0)), E(Ta(y0)), and E(Tb(y0)) denote the mean first-passage time of

Ta,b(y0), Ta(y0), and Tb(y0) respectively. Basak and Ho (2004) derive the mean

first-passage time of an AR(1) process using an integral equation approach.

We define a discrete-time real-valued Markov process {Yt} on a probability space

{Ω,F ,P} with stationary continuous transition density f(y|x), continuous in both

x and y. The term f(y|x) denotes the transition density of reaching y at the next

step given that the present state is x. Suppose that Y0 = y0 ∈ [a, b]. The mean

first-passage time over interval [a, b] of an AR(1) process, starting at initial state

y0 ∈ [a, b], is given by

E(Ta,b(y0)) =
∫ b

a
E(Ta,b(u))f(u|y0)du + 1. (11)

For an AR(1) process in Eq.(7), f(u|y0) will be a normal distribution with mean

φy0 and variance σ2
ξ . Thus,

E(Ta,b(y0)) =
1√

2πσξ

∫ b

a
E(Ta,b(u)) exp

(
−(u− φy0)

2

2σ2
ξ

)
du + 1. (12)

Details of the derivation can be found in Basak and Ho (2004). The integral

equation in Eq.(12) is a Fredholm type of the second kind and can be solved numer-

ically using the Nystrom method (Atkinson, 1997) as in the next subsection.
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3.2 Numerical scheme

If we want to calculate E(Tb(y0)), that is, the mean first-passage time over a given

level b of an AR(1) process starting at initial state y0, it can be computed by adding

a lower boundary a first. Since E(Ta,b(y0)) converges monotonically to E(Tb(y0)) as

a → −∞, the approximation of E(Tb(y0)) can be obtained by evaluating E(Ta,b(y0))

as a → −∞ instead.

Consider E(Ta,b(y0)) as in Eq.(12). Now, define h = (b − a)/n, where n is the

number of partitions in [a, b] and h is the length of each partition.

Using the trapezoid integration rule (Atkinson, 1997):

∫ b

a
f(u)du ≈ h

2
[w0f(u0) + w1f(u1) + · · ·+ wn−1f(un−1) + wnf(un)] , (13)

where u0 = a, ui = a + ih, un = b, i = 1, . . . , n and the weights wi for the corre-

sponding nodes are

wi =





1, for i = 0 and i = n

2, for others

Thus, the integral term in Eq.(12) can be approximated by

∫ b

a
E(Ta,b(u)) exp

(
−(u− φy0)

2

2σ2
ξ

)
du ≈ h

2

n∑

j=0

wjE(Ta,b(uj)) exp

(
−(uj − φy0)

2

2σ2
ξ

)
,

(14)

.

Let En(Ta,b(y0)) denote the approximation of E(Ta,b(y0)) using n partitions.

Thus, the expectation in Eq.(12) using n partitions can be estimated by

En(Ta,b(y0)) ≈ h

2
√

2πσξ

n∑

j=0

wjEn(Ta,b(uj)) exp

(
−(uj − φy0)

2

2σ2
ξ

)
+ 1. (15)

Set y0 as ui for i = 0, 1, . . . , n and reformulate Eq.(15) as follows

En(Ta,b(ui))−
n∑

j=0

h

2
√

2πσξ

wjEn(Ta,b(uj)) exp

(
−(uj − φui)

2

2σ2
ξ

)
= 1, (16)

and then solve the following linear equations in (17) to obtain an approximation of

En(Ta,b(uj)).




1−K(u0, u0) −K(u0, u1) . . . −K(u0, un)

−K(u1, u0) 1−K(u1, u1) . . . −K(u1, un)
...

...
...

...

−K(un, u0) −K(un, u1) . . . 1−K(un, un)







En(Ta,b(u0))

En(Ta,b(u1))
...

En(Ta,b(un))




=




1

1
...

1




(17)
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Table 1: Mean first-passage time of level 0, given y0 = 1.5 for y(t) in (7)

σ2
ξ φ Integral equation Simulation

0.5 3.9181 (b = 5, n= 50) 3.9419

0.49 0 2 (b = 5, n = 50) 1.9918

-0.5 1.2329 (b=5, n= 50) 1.2341

0.5 3.5401 (b = 7, n= 70) 3.5571

1 0 2 (b = 7, n = 70) 2.0055

-0.5 1.3666 (b=7, n= 70) 1.3636

0.5 3.0467 (b = 14, n= 140) 3.0512

4 0 2 (b = 14, n = 140) 1.9959

-0.5 1.5626 (b=14, n= 140) 1.5725

where

K(ui, uj) =
h

2
√

2πσξ

wj exp

(
−(uj − φui)

2

2σ2
ξ

)
.

Examples of numerical results for some AR(1) processes are provided in Table

1. We compare the results using an integral equation approach and simulation.

For given σ2
ξ , φ, and y0 = 1.5, the mean first-passage time of level zero, using an

integral equation approach, is calculated. We use different b and n in order to make

the length of partition h the same for each case. The results show that h = 0.1

is enough to get results similar to the simulation. For simulation, we generate an

AR(1) process as in Eq.(7) for given σ2
ξ , and φ. Using the initial state y0 = 1.5,

the time needed for the process to cross zero for the first time is calculated. The

simulation is repeated 1000 times and then we calculate the average. The table

shows that the simulation results confirm the results from the integral equation

approach.

3.3 Trade durations and inter-trade intervals

Consider the adjusted cointegration error and assume that εt in Eq.(2) follows an

AR(1) process, i.e:

εt = φεt−1 + at, where at ∼ i.i.d N(0, σ2
a). (18)

As explained in Section 1, the trade duration is the time between opening and

closing a trade. For a U-trade, a trade is opened when εt is higher than or equal to

the pre-set upper-bound U and it is closed when εt is less than or equal to 0 which

is the mean of the adjusted cointegration error. Suppose εt is at U , so a U-trade is

11



opened. To calculate the expected trade duration, we would like to know the time

needed on average for εt to pass 0 for the first time. Thus, calculating the expected

trade duration is the same as calculating the mean first-passage time for εt to pass

0 for the first time, given the initial value is U . Let TDU denote the expected

trade duration corresponding to the pre-set upper-bound U . Using Eq.(12), TDU is

defined as follows:

TDU := E(T0,∞(U)) = lim
b→∞

1√
2πσa

∫ b

0
E(T0,b(s)) exp

(
−(s− φU)2

2σ2
a

)
ds + 1. (19)

As for trade duration, the inter-trade interval is the waiting time needed to open

a trade after the previous trade is closed. For a U-trade, if there is an open U-trade

while εt is at 0 during trading, the trade has to be closed. To calculate the expected

inter-trade interval, we would like to know the time needed on average for εt to pass

the pre-set upper-bound U for the first time, so we can open a U-trade again. Thus,

calculating the expected inter-trade interval is the same as calculating the mean

first-passage time for εt to pass U given the initial value is 0. Let IU denote the

expected inter-trade interval for the pre-set upper-bound U .

IU := E(T−∞,U(0)) = lim
−b→−∞

1√
2πσa

∫ U

−b
E(T−b,U(s)) exp

(
− s2

2σ2
a

)
ds + 1. (20)

3.4 Number of trades over a trading horizon

The expected number of U-trades E(NUT ) and the expected number of periods

corresponding to U-trades E(NUP ) over a time horizon [0,T] are defined as follow:

E(NUT ) =
∞∑

k=1

kP (NUT = k)

and

E(NUP ) =
∞∑

k=1

kP (NUP = k)

.

In this subsection, we want to derive the expected number of U-trades E(NUT )

over a specified trading horizon. However, it is difficult to evaluate the exact value

of E(NUT ). Thus, a possible range of values of E(NUT ) is provided.

As explained in Section 1, periodU is defined as the sum of the trade duration

and the inter-trade interval for U-trades. Thus, the expected periodU is given by,

E(periodU) = TDU + IU .

First, we will evaluate the expected number of periodU ’s E(NUP ) in the time

horizon [0,T] as it has a direct connection to the trade duration and the inter-trade

12



interval. Then, the relationship of NUT and NUP will be used to obtain a possible

range of values of E(NUT ).

Let periodUi denote the length of the period corresponding to the ith U-trade.

Thus,

T ≥ E




NUP∑

i=1

(PeriodUi)


 =

∞∑

k=1

[
k∑

i=1

E(PeriodUi)

]
P (NUP = k). (21)

Since the period depends on the distribution of εt, which is a stationary time

series, E(periodUi) will be the same for all i. Thus, E(periodUi) = E(periodU) and

T ≥ E(periodU)
∞∑

k=1

kP (NUP = k) = E(periodU)E(NUP ). (22)

Thus,

E(NUP ) ≤ T

E(periodU)
=

T

TDU + IU

. (23)

As for the derivation that leads to (23),

T < E




NUP +1∑

i=0

(periodUi)


 = E(PeriodU)E(NUP + 1), (24)

giving

E(NUP ) >
T

E(PeriodU)
− 1 =

T

TDU + IU

− 1. (25)

Thus,
T

TDU + IU

≥ E(NUP ) >
T

TDU + IU

− 1. (26)

However, the relationship between number of U-trades (NUT ), and number of

periodU ’s (NUP ) is NUT = NUP or NUT = NUP + 1.

Thus,

T

TDU + IU

+ 1 ≥ E(NUP ) + 1 ≥ E(NUT ) ≥ E(NUP ) >
T

TDU + IU

− 1. (27)

Table 2 shows the estimation of the number of U-trades over T = 1000 ob-

servations for some AR(1) processes using the theory presented above. We use

N̂UT = 1000
TDU+IU

− 1 to estimate the expected number of U-trades within [0,T]. The

average trade duration for U-trades TDU and the average inter-trade interval for

U-trades IU are calculated using the integral equation approach.

Table 3 shows the simulation results of the number of U-trades as a compari-

son to the theoretical results in Table 2. 1000 observations are generated from the

model described in Eq.(18) for each simulation and each simulation is independently

13



Table 2: Estimation of the number of U-trades using an integral equation approach

with U = 1.5

φ σ2
a TDU IU N̂UT = 1000

TDU+IU
− 1

0.49 3.9181 40.6074 21.459

0.5 1 3.5401 14.6006 54.125

4 3.0469 5.5679 115.079

0.49 1.2329 32.6253 28.535

-0.5 1 1.3666 10.523 83.1071

4 1.5626 3.6220 191.879

Table 3: Simulated number of trades for an AR(1) process using T = 1000 observa-

tions and U = 1.5

φ σ2
a TDU IU NUT simulation N̂UT = 1000

TDU+IU
− 1

0.49 4.054(0.585) 42.801(12.340) 21.725(5.277) 20.342

0.5 1 3.780(0.308) 15.153(1.838) 52.650(5.226) 51.817

4 3.407(0.255) 6.254(0.466) 103.000(6.421) 102.508

0.49 1.170(0.084) 28.958(4.760) 32.025(5.091) 32.191

-0.5 1 1.242(0.072) 9.206(0.952) 95.175(8.311) 94.706

4 1.385(0.051) 3.030(0.151) 225.500(8.741) 225.500
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repeated 40 times. The values in parentheses are the standard deviations. In cal-

culating the trade duration for each simulation, we start to open a trade when εt

exceeds U . In calculating the inter-trade interval, the trade is closed when εt goes

below zero. This is done because in the simulation, εt is a discrete time process.

Thus, it is hard to obtain the exact time for εt at U and 0. We calculate the average

trade duration TDU , the average inter-trade interval IU and the number of U-trades

NUT for each simulation. At the end of all 40 repeated simulations, we calculate the

mean of TDU , IU and NUT from all simulations as well as the standard deviations.

Furthermore, the last column shows the number of trades using N̂UT = 1000
TDU+IU

− 1.

From Table 3, we can conclude that if we can estimate the average of trading dura-

tion and the average of intra-trade interval correctly, the formula N̂UT = 1000
TDU+IU

−1

can be used to estimate the number of U-trades.

Comparing the number of U-trades results in Tables 2 and 3, we see that for

φ = 0.5, the estimates of the number of U-trades using the integral equation are

higher than those given by the simulation results. The opposite happens if φ = −0.5.

The difference is due to a slight difference in the framework underpinning the theory

of integral equations and that for simulation from real data.

4 Minimum Total Profit and the Optimal Pre-set

Upper-bound

This section will combine the pre-set minimum profit per trade from Section 2

and the number of U-trades from Section 3 to define minimum total profit (MTP)

over the time horizon [0,T]. The optimal pre-set upper-bound, denoted by Uo, is

determined by maximizing the MTP.

Let TPU denote the total profit from U-trades within the time horizon [0,T] for

a pre-set upper-bound U . Thus,

TPU =
NUT∑

i

( Profit from the ith U-trade).

Using Eqs.(4) and (27),

Profit per trade ≥ U

and

E(NUT ) ≥ T

TDU + IU

− 1.
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Table 4: Numerical results in determining optimal U

φ = −0.8 φ = −0.5 φ = −0.2

σ2
a MTP (Uo) Uo MTP (Uo) Uo MTP (Uo) Uo

0.25 91.7097 0.59 77.0414 0.5 66.4935 0.47

0.49 128.3609 0.83 107.8254 0.7 93.0673 0.65

1 183.3448 1.19 154.0117 1 132.9287 0.93

2.25 274.9967 1.78 230.9996 1.49 199.3710 1.4

4 366.6515 2.37 307.9922 1.99 265.8216 1.86

≈ 1.2σa ≈ σa ≈ 0.93σa

≈ 0.72σε ≈ 0.87σε ≈ 0.91σε

φ = 0.2 φ = 0.5 φ = 0.8

σ2
a MTP (Uo) Uo MTP (Uo) Uo MTP (Uo) Uo

0.25 55.1798 0.47 46.7138 0.53 34.7004 0.7

0.49 77.219 0.66 65.3655 0.74 48.5545 0.97

1 110.2877 0.95 93.3549 1.05 69.3438 1.39

2.25 165.4104 1.42 140.0095 1.58 103.9991 2.09

4 220.5361 1.89 186.6704 2.1 138.6582 2.78

≈ 0.95σa ≈ 1.05σa ≈ 1.4σa

≈ 0.93σε ≈ 0.91σε ≈ 0.84σε
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Define the minimum total profit with the time horizon [0,T] by

MTP (U) :=
(

T

TDU + IU

− 1
)

U.7 (28)

Then, considering all U ∈ [0, b], the optimal pre-set upper-bound Uo is chosen

such that MTP (Uo) takes the maximum at that Uo. In practice, the value of b is set

up as 5σε because εt is a stationary process, and the probability that |εt| is greater

than 5σε is close to zero.8

The numerical algorithm to calculate the optimal pre-set upper-bound U is as

follows:

1. Set up the value of b as 5σε.

2. Decide a sequence of pre-set upper-bounds Ui, where Ui = i × 0.01, and i =

0, . . . , b/0.01.

3. For each Ui,

(a) calculate E(T0,b(Ui)) as the trade duration (TDUi
) using Eq.(19).

(b) calculate E(T−b,Ui
(0)) as the inter-trade interval (IUi

) using Eq.(20).

(c) calculate MTP (Ui) =
(

T
TDUi

+IUi
− 1

)
Ui .

4. Find Uo ∈ {Ui} such that MTP (Uo) is the maximum .

Examples of numerical results from some AR(1) processes are shown in Table 4.

We use the model of an AR(1) process described in Eq.(18) and T = 1000. The table

shows that for a given φ, Uo increases as σa increases. The last two rows of each φ

show the approximation of Uo as a proportion of σa and σε. Those approximations

can be used as a general rule in choosing Uo. For example if we have the adjusted

cointegration error εt with an AR(1) process and the φ is -0.5 or 0.5, quickly we can

choose Uo = σa.

The MTP can be used as a criteria to determine whether the stock pairs are

worth to be traded. If we have limited funding to trade stocks in the market, and

we have identified several stock pairs, we can choose the stock pair that give the

maximum MTP.

5 Empirical examples

This section will investigate the application of the above pairs trading strategy.

Since we do not apply real pairs trading in the stock market, we use empirical data

7We adopt the notation MTP (U) since the Minimum Total Profit is a function of U .
8σε is the standard deviation of εt
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available in the internet (www.finance.yahoo.com.au). The empirical data is divided

into two parts, namely in-sample data and out-sample data. The in-sample data is

assigned as training period where we analysis the cointegration relationship and then

determine the optimal pre-set optimal boundaries Uo and Lo. The out-sample data

is assigned as trading period. The out-sample data is assumed still hold the same

cointegration relationship with the in-sample data, so the pairs trading strategy can

be applied to the out-sample data using the optimal pre-set optimal boundaries Uo

and Lo obtained from the in-sample data.

There is no standard rule to choose how long the training period (in-sample data)

and trading period (out-sample data) needed. However, the training period needs to

be long enough so that we can determine that a cointegration relationship actually

exists, but not so long that it is obsolete for the trading period. For trading period,

it needs to be long enough to have opportunities to open and close trades and test

the strategy, but it can not too long because it is possible that the cointegration

relationship between the two stocks may change. We use 12-month training period

and 6-month trading period with daily data as these periods correspond with the

other study by Gatev et al.(1999, 2006), Gillespie and Ulph (2001) and Habak

(2002).

This paper give two specific illustrations, BHP-RIO and TNS-TVL on the Aus-

tralian Stock Exchange (ASX). The stocks of BHP-RIO and TNS-TVL are coin-

tegrated and the cointegration error can be fitted with the AR(1) model. We use

PcFiml (Doornik and Hendry, 1997) and PcGive (Hendry and Doornik, 1996) soft-

wares to analyze the cointegration relationship of the data.

From the in-sample data, knowing that BHP-RIO and TNS-TVL are cointe-

grated and the cointegration error are AR(1) processes, the values of φ and σa can

be estimated. The algorithm in Section 4 is applied to obtain the estimates of the

optimal pre-set upper-bound Uo, the number of U-trades, the expected of trade du-

ration and the estimates of the minimum total profits from U-trades for each pair

of shares. As we have explained before, the number of trades and the minimum

total profits, produced by the algorithm in Section 4 ,are for U-trades during the

time horizon [0,T] only. As the εt from those share pairs are stationary processes

and have symmetric distributions, in considering the L-trades, we can simply take

the total number of trades and the total profit to be double the results from the

algorithm above and the estimate of the optimal pre-set lower-bound is Lo = −Uo.

After we obtained the estimates of the optimal pre-set boundaries Uo and Lo,

the pairs trading strategy is applied to the in-sample data to obtain the actual

number of trades, total profits and the averages of the trade durations. If the

adjusted cointegration error, εt, is above or at Uo a U-trade is opened by selling one
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unit share S1 and buying β unit shares S2 and then close the trade by doing the

opposite position when εt is below or at zero. We can also open an L-trade when εt

is below Lo = −Uo by buying 1 unit share S1 and selling β unit shares S2 and then

it is closed by doing the opposite position when εt is above or at zero. In the case

of BHP-RIO, BHP is assigned as S1 and RIO is S2 while in the case of TNS-TVL,

TNS is S1 and TVL is S2. There is no opening trade when the previous trade has

not been closed. We can compare the theoretical results and the actual results from

the in sample data whether the share pair is worth enough to be traded.

Using the optimal pre-set boundaries Uo and Lo as well as the cointegration

relationship from the in-sample data, we apply the pairs trading strategy to the

out-sample data. We calculate the profit and trade duration from each trade (U-

trades as well as L-trades) and at the end, the total number of trades, the total

profits and the averages of the trade durations are also calculated. The results from

the out-sample data show whether the pairs trading strategy still works or not.

5.1 BHP-RIO

BHP Billiton and Rio Tinto are major operators in the mining sector. Both have

diversified mining resources in Australia, as well as other countries, that define them

as blue-chip stocks in the ASX.

This paper uses the daily closing price of the two stocks from 2 January 2004

to 30 December 2004 as in-sample data and 3 January 2005 to 30 June 2005 as

out-sample data. From the in-sample data, cointegration relationship of the two

stocks is obtained as follows:

BHPt − 0.61248RIOt = ε∗t , (29)

and the adjusted cointegration error

εt = ε∗t − 7.3884, (30)

and then fit εt as an AR(1) process as follows:

εt = 0.8994εt−1 + at, (31)

where σε = 0.6479.

Using the in-sample data i.e. T = 251 observations from 2 January 2004 to 30

December 2004 , and letting φ = 0.8994 and σa =
√

1− φ2σε = 0.2055, we obtain

the following estimates from the numerical algorithm in Section 4:

1. optimal pre-set upper-bound Uo = 0.81 and lower-bound Lo = -0.81,
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2. total Number of trades (U-trades + L-trades) = 16.00,

3. minimum Total Profit (U-trades + L-trades)= 0.81× 16 = $12.96,

4. expected trade duration = 13.74 days,

5. 1 trade (either a U-trade or an L-trade) per 15.70 days.

The above results are the estimation from the theory using the in-sample data.

We also want to know the results when the pairs strategy explained in Section 2 is

applied to the in-sample data and using Uo = 0.81 and Lo = -0.81. We obtain the

following actual results:

1. number of trades (U-trades + L-trades)= 9,

2. total profit (U-trades + L-trades)= $ 10.23 ,

3. average profit per trade = $1.14,

4. average trade duration = 11.91 days,

5. on average, 1 trade (either a U-trade or an L-trade) per 27.9 days.

Comparing the estimation results from the theory and the actual results from the

in-sample data show that the actual number of trades and the actual total profit are

less than the estimation. However, we still get some profit and we always observe the

profit per trade is higher than 0.81 dollars which is the optimal pre-set upper-bound

Uo (the average profit per trade = $1.14).

We also want investigate whether the pairs trading strategy using the out-sample

data will also produce profit. Assume that the out sample data (T = 124 observa-

tions) still follows the models in Eqs.(29) and (31), so we can apply the same pair

strategy and apply Uo = 0.81 and Lo = −0.81 as for the in-sample data. From the

out-sample data, we obtain

1. number of trades (U-trades + L-trades): 4,

2. total profit (U-trades + L-trades): $ 4.77 ,

3. average profit per trade = $1.19,

4. average trade duration = 22.75 days,

5. on average, 1 trade (either a U-trade or an L-trade) per 31 days.
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Comparing the trading results from the in-sample data and the out-sample data,

the results are not too different (notice that the number of observations of the out-

sample data is half of the in- sample data). The significant different from the both

results is the average trade duration. However, from the out sample data we still

always obtain profit per trade which is higher than 0.81 dollars (the average profit

per trade = $1.19).

5.2 TNS-TVL

Transonic Travel Ltd (TNS) and Travel.com.au (TVL) are travel companies listed

on the ASX. In this study we consider the daily closing price of the two stocks

from 2 January 2004 to 30 December 2004 as in-sample data and from 3 January

2005 to 30 June 2005 as out-sample data. From the in-sample data, we obtain the

cointegration relationship of the two stocks to be:

TNSt − 0.26659TV Lt = ε∗t , (32)

with the adjusted cointegration error

εt = ε∗t − 15.43, (33)

and we fit εt as an AR(1) process as follows:

εt = 0.9465εt−1 + at, (34)

where σε = 1.256258.

With the indicated 251 days in-sample data, and φ = 0.9465 and σa =
√

1− φ2σε,

we obtain the following estimates from the numerical algorithm in Section 4:

1. optimal upper-bound Uo = 1.00 and lower-bound Lo = -1.00,

2. number of trades (U-trades + L-trades)= 10.91,

3. minimum Total Profit (U-trades + L-trades)= 1× 10.91 = $10.91,

4. expected trade duration = 18.00 days,

5. 1 trade (either a U-trade or an L-trade) per 18.42 days.

Analogous to the BHP-RIO case, we apply the pairs strategy explained in Section

2 for the in-sample data with Uo = 1.00 and Lo = -1.00, and we obtain the actual

results:

1. number of trades (U-trades + L-trades)= 7,
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2. total profit (U-trades + L-trades)= $ 13.49 ,

3. average profit per trade = $1.93,

4. average trade duration = 19.71 days.

5. on average, 1 trade (either a U-trade or an L-trade) per 35.85 days.

and from the out sample data (T = 124 observations), we obtain:

1. number of trades (U-trades + L-trades)= 2,

2. total profit (U-trades + L-trades)= $ 3.68 ,

3. average profit per trade = $1.84,

4. average trade duration = 32.5 days,

5. on average, 1 trade (either a U-trade or an L-trade) per 62 days.

From the TNS-TVL case, we see that the actual results for total profit and trade

duration from the in-sample data are not too different with the estimation results

from the theory, and even the actual total profit is significantly higher than the

estimate. Furthermore, we always get a profit which is higher than 1 dollar from

each trade (the average profit per trade = $1.93 and $1.84 from in-sample data and

out-sample data respectively ). However, the results from out-sample data are not

quite good as we have only 2 trades and the the average trading duration is quite

high (about 1 month). Perhaps, this result reflects that the out sample data does

not quite follow the models in Eq.(32).

6 Conclusion

In this paper we have given a methodology to choose the optimal pre-set boundaries

for pairs trading strategy based on cointegration technique and give a quantitative

method to evaluate the average trade duration, the average inter-trade interval, and

the average number of trades. The optimality in term of maximizing the minimum

total profit over the specified trading horizon is developed by combining cointegra-

tion technique, the cointegration coefficient weighted rule, and the mean first-passage

time using an integral equation approach.

The pairs trading strategy is applied to empirical data from two pair samples:

BHP-RIO and TNS-TVL. Even though from the BHP-RIO case we can not obtain

results as high as projected, we always obtain a profit per trade higher than the

optimal pre-set upper-bound Uo. The actual total profit from both pair cases are
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quite similar to the estimates. For the TNS-TVL case, the results from the out

sample data are not quite good. Perhaps, these results are due to the out sample

data not quite following the models developed from the in sample data. Adjustment

to the model may need to be made when using out sample data.

The above strategy can be extended if we set the minimum profit per trade as the

minimum profit required (Pr), for example to meet the trading cost. We can trade

NS1 = bPr

U
c of S1 shares and NS2 = bβ Pr

U
c of S2 shares to obtain the minimum profit

per trading to be at least Pr. If we want to restrict the money invested in the trade

to amount of I, we trade NS1 = b I
(PS1,to+βPS2,to )

c of S1 and NS2 = bβ I
(PS1,to+βPS2,to )

c
of S2 when we open a trade and then will get minimum profit per trade of UNS1.

9

We are aware that in large groups of stocks, the cointegrated stocks may not

follow the assumptions given in this paper. For example, the cointegration relation-

ship may disappear in the future, or the cointegration error may not be symmetric

or may not an AR(1) process. Whether the technique displayed in this paper works

or not only relies on two conditions:(1) within the in-sample data, there is a lin-

ear combination of stocks to form an AR(1) series, (2) such relationship does not

significantly change in the trading period (out-sample data). Further investigations

are warranted to explore different assumptions. In this paper we have established a

framework that may be applied for a cointegrated stock pair with AR(1) cointegra-

tion error.
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