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Finding the Source of Nonlinearity in a Process With Plant-Wide Oscillation
Nina F. Thornhill

Abstract—A plant-wide oscillation in a chemical process often
has an impact on product quality and running costs and there is,
thus, a motivation for automated diagnosis of the source of such a
disturbance. This brief describes a method of analyzing data from
routine operation to locate the root cause oscillation in a dynamic
system of interacting control loops and to distinguish it from prop-
agated secondary oscillations. The novel concept is the application
of a nonlinearity index that is strongest at the source. The index is
large for the nonsinusoidal oscillating time trends that are typical
of the output of a control loop with a limit cycle caused by nonlin-
earity. It is sensitive to limit cycles caused both by equipment and
by process nonlinearity. The performance of the index is studied
in detail and default settings for the parameters in the algorithm
are derived so that it can be applied in a large scale setting such
as a refinery or petrochemical plant. Issues arising from artifacts
in the nonlinearity test when applied to strongly cyclic data have
been addressed to provide a robust, reliable and practical method.
The technique is demonstrated with three industrial case studies.

Index Terms—Fault diagnosis, harmonics, limit cycles, nonlin-
earities, spectral analysis, surrogate data, time series.

I. INTRODUCTION

I
T IS important to diagnose and cure oscillations in a con-
trolled process because a system running steadily without

oscillation is more profitable and safer [1]. A feedback control
loop containing a nonlinearity such as a sticking valve often ex-
hibits self-generated and self-sustained limit cycle oscillation
[2]–[4], and many surveys have shown that these oscillations
are a significant industrial problem [5], [6]. The situation is
made worse when the oscillation propagates throughout a dy-
namic system such as a chemical plant where it can become
widespread due to physical coupling and recycles. Rapid de-
termination of the source of a system-wide oscillation allows
maintenance activity to focus on the root cause [7]. This article
presents a method aimed at that objective and presents three in-
dustrial case studies in which the method successfully found the
root cause.

The time trend of measurements from a limit cycle oscilla-
tion is a nonlinear time series, i.e., it cannot be described as the
output of a linear system driven by white noise. A nonlinearity
test from Kantz and Schreiber [8] has been adapted for the de-
tection of limit cycle oscillations and guidelines for its applica-
tion to process data have been devised. The underpinning idea
in root cause diagnosis is that the nonlinearity is greatest at the
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source of the problem. By source is meant a measurement as-
sociated with the single-input–single-output controller that has
been caused to oscillate by a nonlinearity in the loop. Justifica-
tion of that assumption is given in the next section.

The possibility of a nonlinearity test was outlined in an earlier
conference publication [9] and demonstrated in an application
at Eastman Chemical Company [10]. The key advance in this
brief compared with [9] is the exploitation of the cyclic nature
of the measurements to optimize the method. In [10], the focus
was on the solution to a particular industrial application and a
set of parameters was selected for the algorithm but without a
discussion of their optimality. A contribution of this brief is to
give fundamental insights into the method and to extend it to
additional case studies involving the detection of valve, sensor
and process nonlinearities. It gives an in-depth explanation of
how the method works when applied to oscillating disturbances
and the criteria by which the parameters of the algorithm may be
selected. Default parameters are suggested to facilitate routine
application of the method to a large-scale plant.

II. DIAGNOSIS OF NONLINEARITY

A. Nonlinear Time Series Analysis

The waveform in a limit cycle is periodic but nonsinusoidal
and therefore has harmonics. A distinctive characteristic of a
nonlinear time series is the presence of phase coupling which
creates coherence between the frequency bands occupied by the
harmonics such that the phases are nonrandom and form a reg-
ular pattern. Nonlinearity may, thus, be inferred from the pres-
ence of harmonics and phase coupling.

Methods for nonlinearity detection in the time series include
the techniques using surrogate data [8], [11] which have been
used in applications ranging from analysis of EEG recordings
of people with epilepsy [12] to the analysis of X-rays emitted
from a suspected astrophysical black hole [13]. Surrogate data
are times series having the same power spectrum as the time
series under test but with the phase coupling removed by ran-
domization of phases. A key property of the test time series is
compared to that of its surrogates and nonlinearity is diagnosed
if the property is significantly different in the test time series.

Another method of nonlinearity detection uses higher order
spectra because these are sensitive to certain types of phase
coupling. For instance, the bispectrum [14]–[16] responds to
quadratic phase coupling in a signal such as below in which
the phase of the frequency component at is , but
there is no bispectral response if is a random phase

The bispectrum and the related bicoherence have been used
to detect the presence of nonlinearity in process data [17], [18].
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A potential disadvantage of the bispectrum for detection of non-

linear limit cycle oscillations is that limit cycles may have sym-

metrical waveforms (e.g., a square wave or triangular wave) and

the bispectrum of a symmetrical waveform is zero. Zang and

Howell [19] have investigated the types of limit cycles that are

amendable to bispectrum analysis.

The presence of harmonics in a time series has also been used

successfully for diagnosis of SISO control loop faults [7], [20],

[21]. Finding harmonics requires signal processing to isolate the

spectral frequencies of interest and inspection to confirm that the

frequencies are integer multiples of a fundamental. The inspec-

tion is often undertaken by visual examination of the spectra

and is therefore unsuitable for a large-scale implementation in-

volving several hundred or even a thousand or more plant mea-

surements. Moreover, it is possible that components at the har-

monic frequencies are not phase coupled in which case the har-

monic signature will be a misleading indicator of nonlinearity.

B. Propagation of a Nonlinear Limit Cycle

Repair of a faulty control loop requires that the engineer

knows which control loop should be maintained. In the case of

a plant-wide oscillation, it can be a very difficult problem to

know which loop to work on because the disturbance from a

control loop in a limit cycle typically propagates plant-wide to

cause numerous secondary oscillation in other control loops.

An automated means is therefore needed to determine which

among all the oscillating control loops is the root cause and

which are secondary oscillations. Successful studies have used

the presence of prominent harmonics to distinguish the source

of a limit cycle oscillation from the secondary oscillations in a

distillation column in a refinery [22] and in a pulp and paper

mill [23]. The reason why secondary oscillations have lower

nonlinearity is that as the signal propagates away from its

source it passes through physical processes which give linear

filtering and which generally add noise. (The filter may be

assumed linear if the system is oscillating around a fixed oper-

ating point). Such a filter destroys the phase coherence of the

time trends and often reduces the magnitudes of the harmonics.

Thus, nonlinearity reduces as the disturbance propagates away

from the source and the time trend with the highest nonlinearity

is the best candidate for the root cause. The nonlinearity statistic

to be discussed in Section III can be used for such root-cause

diagnosis.

C. Surrogate Data Analysis

A time series with phase coupling is more structured and

more predictable than a similar time series known as a surro-

gate having the same power spectrum but with random phases

[11]. The spread of values of some statistical property of a group

of surrogate data trends provides a reference distribution against

which the properties of the test time series can be evaluated.

The techniques of surrogate data analysis have been widely

applied for detection of nonlinearity in time series [12], [13]. In

the process area, Aldrich and Barkhuizen [24] detected nonlin-

earity in process data by comparing a singular spectrum analysis

of the test data with those from linear surrogate data. Barnard

et al. [25] showed that identification of systems is possible by

Fig. 1. Test data and typical surrogate. The time trends are mean centered and
scaled to unit standard deviation.

using surrogate methods to classify the data, as well as to vali-

date models derived from these data.

Issues have been identified with the use of surrogate data with

cyclic time series [26], [27]. The surrogate is derived by taking

the discrete Fourier transform (DFT) of the test data, randomiza-

tion of the arguments followed by an inverse DFT. Nonlinearity

testing based on strongly cyclic data can give rise to false de-

tection of nonlinearity because when the time trend is strongly

cyclic then artifacts in the DFT due to end-matching effects in-

fluence the surrogates. A demonstration of the consequences for

strongly cyclic data are demonstrated in this article although in

practical applications the effect was found to have a minimal

impact, as will be discussed later.

III. METHOD

A. Overview

The basis of the test is a comparison of the predictability of

the time trend compared to that of its surrogates. Fig. 1 illus-

trates the concept. The top panel is an oscillatory time trend of a

steam flow measurement from a refinery. It has a clearly defined

pattern and a good prediction of where the trend will go after

reaching a given position, for example at one of ringed peaks,

can be achieved by finding similar peaks in the time trend and

observing where the trend went next on those occasions.

The lower panel shows a surrogate of the time trend. By con-

trast to the original time trend the surrogate lacks structure even

though it has the same power spectrum. The removal of phase

coherence has upset the regular pattern of peaks. For instance,

it is hard to anticipate where the trajectory will go next after

emerging from the region highlighted with a circle because there

are no other similar peaks.

Predictability of the time trend relative to the surrogate gives

the basis of a nonlinearity measure. Prediction errors for the sur-

rogates define a reference probability distribution under the null

hypothesis. A nonlinear time series is more predictable than its

surrogates and a prediction error for the test time series smaller

than the mean of the reference distribution by more than three

standard deviations suggests the time trend is nonlinear.
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B. Construction of the Data Matrix

Nonlinear prediction of time series was described by Sug-

ihara and May [28] to distinguish determinism from random

noise, and the field of nonlinear time series analysis and predic-

tion has been reviewed by Schreiber [29]. Rhodes and Morari

[30] gave an early process application of nonlinear prediction

where the emphasis was on modeling of nonlinear systems when

noise corrupts a deterministic signal.

Nonlinear prediction uses a data matrix called an embedding

having columns each of which is a copy of the original data

set delayed by one sampling interval. For instance, a data matrix

with 3 is

Rows of the matrix Y represent time trajectories that are seg-

ments of the original trend. Since the original data formed a con-

tinuous time trend the trajectories in adjacent rows are similar.

They are called near-in-time neighbors. Also, if the time trend is

oscillatory then the trajectories in later rows of Y will be similar

to the earlier rows after one or more complete cycles of oscil-

lation. For instance, if the period of oscillation is 50 samples

per cycle then will be small, where is the 51st

row vector of and is the first. Those rows are called near

neighbors.

C. Calculation of Prediction Error

Predictions are generated from near neighbors. Near-in-time

neighbors are excluded so that the neighbors are only selected

from other cycles in the oscillation. When nearest neighbors

have been identified then those near neighbors are used to make

an step-ahead prediction. For instance, if row vector were

identified as a near neighbor of and if were 3 then

would give a prediction of . A sequence of prediction er-

rors can, thus, be created by subtracting the average of the pre-

dictions of the nearest neighbors from the observed value. The

overall prediction error is the rms value of the prediction error

sequence.

The analysis is noncausal and any element in the time series

may be predicted from both earlier and later values. Fig. 2 il-

lustrates the principle using a time series from the SE Asia re-

finery case study where the embedding dimension is 16 and

the prediction is made 16 steps ahead. The upper panel shows

the 100th row of the data matrix Y which is a full cycle starting

at sample 100, marked with a heavy line. Rows of Y that are

nearest neighbors of that cycle begin at samples 67, 133, 166,

199, and 232 and are also shown as a heavy lines in the lower

panel. The average of the points marked in the lower panel

are then used as a prediction for the value marked .

D. Data Preprocessing

Detection of plant-wide oscillation is now a solved problem

and is starting to be offered by vendors [31], [32]. The periodic

nature of the detected oscillation may be exploited in order to

Fig. 2. Illustration of the nearest neighbor concept. The highlighted cycles in
the lower plot are the five nearest neighbors of the cycle in the upper plot. The
average of the points marked o gives a prediction for the point marked x.

give robust default settings for the parameters. A summary list

is presented here and the detailed reasoning behind the recom-

mendations will be presented in Section IV. With the data pre-

processing steps indicated here the default parameters can be

used for any oscillating time trend.

1) The period of the plant-wide oscillation is determined.

2) The number of samples per cycle is adjusted to be

no more than 25. The time trends are subsampled if

necessary.

3) The number of cycles of oscillation in the data set should

be at least 12 for a reliable nonlinearity estimate.

4) The selected data are end-matched to find a subset of the

data containing an integer number of full cycles. The algo-

rithm and other issues associated with end-matching are

explained in detail in Section IV-F.

5) The end-matched data are mean centered and scaled to

unit standard deviation. The sequence de-

notes end-matched and preprocessed data in the following

sections.

E. Surrogate Data

Surrogate data are derived from the preprocessed and end-

matched time trend. Surrogate data have the same power spec-

trum as the time trend under test. The magnitudes of the DFT

are the same in both cases but the arguments of the DFT of the

surrogate data set are randomized. Thus, if the DFT in frequency

channel is

then the DFT of the surrogate is

where is a phase selected from a uniform random distribution

in the range . The aliased frequency channels

above the Nyquist sampling frequency have the opposite phase

added. If the number of samples is even and if the frequency
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channels are indexed as 1 to the Nyquist frequency is in

channel and the alias of the th frequency channel is

channel . Then

and to

If is odd

and to ceil

where ceil is the rounded-up integer value of .

Finally, the surrogate data set is created from the inverse

Fourier transform of the phase randomized DFT.

F. Nonlinearity Test

The nonlinearity test requires the determination of mean

square prediction errors of surrogates. The statistical dis-

tribution of those errors gives a reference distribution. If the

test data prediction error lies on the lower tail of the reference

distribution then the test signal is more predictable and non-

linearity is diagnosed using the following statistic based on a

three-sigma test

where is the mean square error of the test data, is

the mean of the reference distribution and its standard

deviation. If then nonlinearity is inferred in the time

series. Larger values of are interpreted as meaning the time

series has more nonlinearity, those with are taken to be

linear.

It is possible for the test to give small negative values of .

Negative values in the range are not statistically

significant and arise from the stochastic nature of the test. Re-

sults giving do not arise at all because the surrogate

sequences which have no phase coherence are always less pre-

dictable than a nonlinear time series with phase coherence.

G. Algorithm Summary

Step 1) Form the embedded matrix from a preprocessed and

end matched subset of the test data

Step 2) For each row of Y find the indexes

of nearest neighbor rows having the

smallest values of subject to a near-in-time

neighbor exclusion constraint .

Step 3) Find the sum of squared prediction errors for the test

data

Step 4) Create surrogate prediction errors by ap-

plying steps 1 through 3 to surrogate data sets.

TABLE I
SUGGESTED DEFAULT VALUES FOR PARAMETERS

Step 5) Calculate the nonlinearity from

IV. DEFAULT PARAMETER VALUES

A. Default Parameter Values

Empirical studies have been carried out to ascertain the sen-

sitivity of the nonlinearity index to the parameters of the al-

gorithm. Reliable results have been achieved using the default

values shown in Table I. The floor function in the third row

indicates that for noninteger values of then is set to the

rounded-down integer value of .

The next subsections explore each one of these recommen-

dations showing why they were selected. The time trends from

Fig. 3. were used for the evaluation (they are from the indus-

trial case study in Section V-B). Fig. 3 shows mean centered

data normalized to unit standard deviation while the spectra are

scaled to the same maximum peak height.

The time series of the first three measurements are nonlinear

because they are close to the root cause. Their spectra have har-

monics and the phase patterns are not random. The last two are

far from the root cause and are linear. The data have an os-

cillation period of 16.7 sampling intervals and the conditions

used were varied around default values of 12

16 8 and 50.

B. Number of Samples Per Cycle

It is practical to limit the number of samples per cycle .

There is a tradeoff between the number of samples needed to

properly define the shape of a nonsinusoidal oscillation on the

one hand and the speed of the computation on the other. The

algorithm requires a distance measure to be ascertained between

every pair of rows in the embedded matrix and the time taken

for the computation increases as , where is the

total number of samples in the time trend. Therefore the number

of samples per cycle and the number of cycles cannot be

increased arbitrarily. Data sets of 200 samples 8.2

24 and 418 samples ( 16.7 and 25) gave successful

results in the industrial case studies reported in Section V.

It would be infeasible to operate with fewer than seven sam-

ples per cycle because harmonics would not be satisfactorily

captured. With 7, any third harmonic present is sampled at
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Fig. 3. Time trends and spectra of the data used for detailed evaluation.

2.33 samples per cycle which just meets the Nyquist criterion of

two samples per cycle. The reason for focusing the recommen-

dation on the third harmonic is that it is the most prominent har-

monic in symmetrical oscillations having square or triangular

waveforms.

C. Embedding Dimension and Prediction Horizon

Fig. 4(a) shows the effect of changing and . They were

kept equal to each other and both were varied together. The

threshold of nonlinearity 1 is also shown in the plot

(horizontal dashed line) as well as the 16 default for

the data set (vertical dashed line). Once becomes larger than

half a cycle of the oscillation, in this case when , the re-

sults for the nonlinearity index become quite steady while for

small values of the index falls toward the 1 threshold.

An aim of the work presented here is to give reliable default

values that are easy to determine. Determination of the period

of oscillation is becoming a standard component of controller

performance tools [31], [32]. Therefore the recommendation to

set floor is robust because it is in the steady region of

Fig. 4(a) and is easy to implement because is already known.

Fig. 4. Effects of parameters of the algorithm on the calculated nonlinearity
index. The vertical dashed lines in (a)–(c) show the recommended default
values.

The poor performance with small values of arises because

of the phenomenon of false near neighbors [33], especially when

the time trends have high frequency features or noise. The upper

panel in Fig. 5 shows an example of what can happen when the

embedding dimension is small, in this case 2. The rows of

the Y matrix starting at sample 159 comprises just two samples,

159 and 160, shown as small square symbols. Near neighbors

are shown in the lower panel, these are two-sample segments

of the time trend whose values are similar to samples 159 and

160. However, some of them are false neighbors because they

are not from matching parts of the trend. The average of the

points marked are used as a prediction for the value marked

, but some of them such sample 223 which is based on a false

neighbor are not accurate.

D. Number of Cycles and Near Neighbors

Fig. 4(b) shows a plot of the number of cycles of oscillation

presented for analysis versus the nonlinearity value.
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Fig. 5. Illustration of false near neighbors when E = 2. The samples at 221
and 222 are similar to those at 159 and 160 but are from a different part of the
cycle. A prediction of sample 161 based on sample 223 will be inaccurate.

The value of the nonlinearity statistic fluctuates up and down

but when the number of cycles becomes too few the results start

to become unreliable. For instance, when more than twelve cy-

cles are used in the analysis then tag 33 is consistently and cor-

rectly reported as nonlinear but when fewer than 12 cycles are

present its nonlinearity index and that of other tags drops to-

ward the 1 threshold. On the basis of these examples it

seems necessary to use 12 cycles of oscillation or more. The

nonlinearity index becomes consistent if this condition applies

because the ranking order of the tags is maintained, for instance

Fig. 4(b) shows that tag 34 consistently has the highest nonlin-

earity index if .

Fig. 4(c) fixes the number of cycles of oscillation at 12 and

varies , the number of near neighbors used for prediction. The

results are quite steady over a wide range of values of al-

though some of the tags with nonlinearity show a drop toward

the 1 threshold for large . A recommended value for can

be based on the number of cycles of oscillation. From common

sense reasoning, it is sensible to make sure that number of near

neighbors is smaller than the number of cycles because each

near neighbor is one whole cycle if the recommenda-

tion is adopted. Given that one or two cycles may be lost during

end-matching a conservative choice is 8 when the number

of cycles is 12. The same conservative reasoning suggests that

for other cases should never be greater than and in prac-

tice it has been found quite satisfactory to just set the value to

8.

The reason why the nonlinearity tests gives less reliable re-

sults for large when the number of cycles is fixed at 12 is that

the useful near neighbors run out. For instance, if 20 and if

the data set has twelve cycles then any one cycle has eleven near

neighbors that are closely matching cycles starting at the same

position in the oscillation, like those in Fig. 2. The remaining

near neighbors will have to be selected from other rows of the

embedded matrix and will not be such good matches.

E. Assessment of Variability of the Index

Fig. 4(d) shows the variability in the nonlinearity index as

the data subset is varied. Each time trend had 512 points. The

data set was divided into seven overlapping subsets each having

12 cycles of oscillation. The first subset comprised samples 1

to 202, the second was 50 to 252, and so on. Fig. 4(d) shows

that different parts of the data trend exhibit varying amounts

of nonlinearity. It is noted, however, that the same conclusion

about the tag with the highest nonlinearity applies regardless

of the data subset. Tag 1 (34) has the highest nonlinearity right

across the board, tags 13 and 33 are next highest and 19 and 25

have little nonlinearity.

The white dots in Fig. 4(d) show the effect of varying the

number of surrogates. Since it is a statistical test there must be

enough surrogates to properly define the reference distribution.

The difference between the results from 50 surrogates (black di-

amonds) and 250 surrogates (white circles) is about overall

and is less than the variability caused by the data subset. It is

therefore concluded that 50 surrogates are enough.

F. End-Matching Step

1) End-Matching Criterion: Surrogate data analysis re-

quires a subset of the data such that the starting gradient and

value match well to the final gradient and value. Hegger, et

al. [34] recommend finding a subset of the nonmatched data

(denoted by samples ) with samples starting at and

ending at which minimizes the sum of the normalized

discontinuities between the initial and end values

and the initial and end gradients, where

with being the mean of the sequence .

The end matching procedure is modified for use with an oscil-

lating signal as recommended in [26] to avoid the artifacts due to

spectral leakage described in the next section. End matching of

an oscillating time trend as described previously creates a time

trend where the last value is the first sample of another cycle.

An end matched sequence which contains an exact number of

cycles is derived from the sequence

by omitting the last sample.

2) False-Positive Results With Strongly Cyclic Data: It is

known that calculation of reliable surrogates can be problem-

atical for regular and smooth cyclic time series. Unless care is

taken with the end matching the test may give false positive re-

sults and report nonlinearity for a linear time series.

The reason for the false positive results is the phenomenon of

spectral leakage in the DFT caused by the use of a finite length

data sequence. Fig. 6 illustrates the effect of spectral leakage.

The upper panel shows the DFT of a sine wave having eight

samples per cycle when the total data length is an exact mul-

tiple of the period, in this case exactly eight cycles. The DFT is

zero in all frequency channels expect the one at 0.125

corresponding to the frequency of the oscillation. By contrast,
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Fig. 6. Illustration of the importance of end matching. For a strongly cyclic time trend the data set should be an exact number of cycles of oscillation otherwise
the Fourier transform will give spectral leakage into adjacent frequency channels.

the lower panel shows the DFT when the total data length is a

complete number of cycles minus one sample. It has a nonzero

magnitude in frequency channels adjacent to the channel con-

taining the main spectral peak. A phase randomized surrogate

derived from the DFT in the lower panel therefore contains fre-

quencies that were not present in the original signal and will,

thus, be less predictable than the original sine wave giving a

false indication of nonlinearity. The true surrogate of a sine wave

is a phase shifted sine wave at the same frequency and is equally

predictable.

It is therefore necessary to take special precautions when ana-

lyzing cyclic time series. Stam et al. [26] used the end-matching

step that ensures the data length of the time series is an exact

multiple of the period of the cycle to avoid false nonlinearity de-

tection. Small and Tse [27] proposed the calculation of special

constrained surrogates that pay particular attention to frequen-

cies in the data set having periods longer than the period of the

strong cycles. That solution is not applicable to industrial data

where the nonlinearity of interest is distortion of the periodic

waveform, however.

3) Application to Industrial Data: Experimental laboratory

data will give problems of the type outlined previously when the

experimental system is driven by a cyclic source such as a labo-

ratory signal generator. This is termed in the literature a “strong

cyclic component.” Industrial data, however, even when cyclic

do not often suffer from the problems described previously be-

cause the cyclic behavior is not normally “strong.” Although

they might be readily detectable the cycles are normally not

completely regular and the spectral power in the test signal is al-

ready is spread across several frequency channels. For instance,

in Fig. 7 showing oscillatory data from a separation column the

time trend labeled AC1 has two shorter cycles at around sam-

ples 230 to 250. The effects of spectral leakage in the DFT are

less severe in this signal because a wider range of frequency

channels are already occupied. Therefore the surrogates more

accurately represent the real signals than in the case of strong

cyclic data.

Table II shows nonlinearity calculations for AC1 and a pure

sine wave of the same period of oscillation as the average of

AC1. The correct result for the sine wave is , a result

Fig. 7. Time trends from industrial study No 1. Nonlinearity indexes greater
than one are shown on the right.

TABLE II
EFFECT OF END MATCHING ON FALSE-POSITIVE RESULTS

which is achieved when the subset of the data is an exact number

of cycles of oscillation. If the subset is longer or shorter, even

by one sample, there is a false nonlinearity detection because of

spectral leakage contaminating the surrogates. By contrast, the

industrial data such as AC1 with its less regular cycles are not

sensitive to minor variations in the end-match. No false non-

linearity was detected for the industrial data even when mis-

matched at the ends by one or two samples.
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Fig. 8. Process schematic for industrial study No 1. Loops PC1 and PC2 (not
shown) are the upstream and downstream pressures.

V. INDUSTRIAL CASE STUDIES

A. Unit-Wide Oscillation Caused by a Sensor Fault

Fig. 8 shows a separation column courtesy of a BP refinery.

The sampling interval was 20 s and the controller errors show

the presence of a unit-wide oscillation in FC1, TC1, and AC1

with a period of 21 sampling intervals or 7 min. Measurements

from upstream and downstream pressure controllers PC1 and

PC2 also show evidence of the same oscillation along with other

disturbances and noise.

It is known that the cause of the oscillation was a faulty steam

sensor in the steam flow loop FC1. It was an orifice plate flow

meter but there was no weep-hole in the plate. Condensate col-

lected on the upstream side until it reached a critical level when

the accumulated liquid would periodically clear itself by si-

phoning through the orifice. The challenge for nonlinearity de-

tection is to identify FC1 as the source of the unit-wide oscilla-

tion. The average oscillation period was 21 samples and the set-

tings for the algorithm were therefore chosen as: 21

and 8. A data set comprising 500 samples and 24 cycles of

oscillation was used.

Fig. 7 plots mean centered time trends of controller errors

normalized to unit standard deviation. The nonlinearity indexes

are presented at the right-hand side. The only nonlinearity index

greater than 1 was that of FC1. Therefore the nonlinearity anal-

ysis has correctly identified the steam flow control loop causing

the unit-wide oscillation.

B. Plant-Wide Oscillation Caused by a Valve Fault

Fig. 9 shows an outline schematic of a hydrogen reformer

from a SE Asian refinery and the mean centered normalized

controller errors (1-min samples) are presented in Fig. 10. The

measurements from this plant have been discussed before [35]

where the main disturbance was shown by spectral principal

component analysis to be a 16.7-min oscillation in the reformer

and pressure swing absorption (PSA) unit.

The exact root cause was not communicated although it

has been emphasized that it is a valve fault and pressure cycle

swings of the PSA unit were not the cause. The aim of the

analysis is to determine which of the oscillating measurements

is closest to the root cause. The average oscillation period was

16.7 samples, the settings for the algorithm were therefore

Fig. 9. Process schematic for industrial study No 2.

Fig. 10. Time trends from industrial study No 2. Nonlinearity indexes greater
than one are shown on the right.

16 and 8. A data set comprising 25 cycles of

oscillation was used.

The nonlinearity indexes are shown on the right-hand side of

Fig. 10 where the largest nonlinearity index is for tag 34. There-

fore the flow measured by tag 34 is identified as the physical root

cause and the means of propagation of the oscillation is distur-

bance to the offgas recycle to the reformer.

Tag 25 is upstream yet it was still influenced by the oscilla-

tion [35]. The means of propagation from the root of the dis-

turbance in the PSA unit to tag 25 is thought to be that tag 25

is waste gas recycled from another unit to which the oscillation

has propagated. That Tag 25 is very far from the root cause is

clear because its time trend shows no nonlinearity.
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Fig. 11. Process schematic for industrial study No 3.

Fig. 12. Time trends from industrial study No 3. Nonlinearity indexes greater
than one are shown on the right for samples 261–460 in the oscillatory episode.
No nonlinearity was detected before sample 250 in any tag.

The question arises whether multiple sources of nonlinearity

can be isolated by the proposed method. It is possible to detect

multiple sources if the disturbances have different characteris-

tics such as a different oscillation frequency. A cluster of tags

oscillating at the same frequency is assumed to be a plant-wide

disturbance with a single root cause. For instance, the tags in

Fig. 10 share a 16.7-min oscillation. In [35], a second plant-wide

disturbance with a different oscillation period was also reported.

It was investigated separately and found to be an external dis-

turbance originating in another unit.

C. Plant-Wide Oscillation Caused by Process Nonlinearity

Fig. 11 shows an outline schematic of the solvent recycle in

a gas purification system, courtesy of BP Chemicals. The sol-

vent absorbs a component from a mixed gas process stream in

column 1. The absorbed gas is stripped out in column 2 and the

regenerated solvent recycles to column 1.

Fig. 12 shows mean centered and normalized time trends

from several measurements in the two columns and the chal-

lenge was to identify the source of an oscillation that periodi-

cally bursts into life, an example of which can be seen starting

at sample 250. The prevailing hypothesis was that the oscillation

was due to foaming in column 1 because addition of antifoam

would stop the oscillation. A successful analysis of this data set

should therefore to point to column 1 as the source of oscil-

lation and rule out a competing hypothesis that the oscillation

was driven by the steam utility system through the steam valve

in TC2.

The nonlinearity results at the right-hand side of Fig. 12 are

from the episode of upset operation, samples 261 to 460. The

downward sloping linear trend in DPI1 was removed before

analysis. The greatest nonlinearity was in Tag LC1 in column 1.

The likely mechanism for generation of the oscillation is a peri-

odic buildup and breakdown of foam in column 1 that affects the

level sensor LC1, the differential pressure DPI1 and exit temper-

ature TI1. The propagation of the oscillatory disturbance is from

its root cause in column 1 to the top of column 2. Tag TC2 (the

column 2 temperature controller) participates in the disturbance

but its nonlinearity is not high so the steam system is ruled out

as the root cause. The reason that TC2 has nonlinearity while

TI2 (solvent stream temperature) shows no nonlinearity is be-

cause TC2 is affected by variations in the unmeasured flow rate

of solvent into column 2 as well as by its temperature. Many

other measurements in the recycle path are upset by the oscil-

lating disturbance but no others had any nonlinearity.

This example shows that the nonlinearity index can locate the

root causes of a limit cycle caused by process nonlinearity as

well as cases where sensors or actuators in control loops cause

limit cycling.

VI. CONCLUSION

Plant-wide oscillations in a system of interacting control

loops often originate from a self-sustained limit cycle oscil-

lation in just one control loop. Such a disturbance propagates

to other parts of the plant and causes secondary oscillation.

This brief has presented a method for locating the root cause

of a plant-wide oscillation using a nonlinearity test based on

the relative predictability of test data and surrogate data. The

performance of the procedure was analyzed as key parameters

in the algorithm varied, and default parameters were specified

so that the test can be applied to new data sets.



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 3, MAY 2005 443

The method was demonstrated using three industrial case

studies having a sensor fault, a valve fault and a process non-

linearity caused by hydrodynamic instability. The nonlinearity

test located the root cause in all three cases.
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