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Abstract
This paper presents a system for image parsing, or la-

beling each pixel in an image with its semantic category,

aimed at achieving broad coverage across hundreds of ob-

ject categories, many of them sparsely sampled. The sys-

tem combines region-level features with per-exemplar slid-

ing window detectors. Per-exemplar detectors are better

suited for our parsing task than traditional bounding box

detectors: they perform well on classes with little training

data and high intra-class variation, and they allow object

masks to be transferred into the test image for pixel-level

segmentation. The proposed system achieves state-of-the-

art accuracy on three challenging datasets, the largest of

which contains 45,676 images and 232 labels.

1. Introduction
This paper addresses the problem of image parsing, or

labeling each pixel in an image with its semantic category.

Our goal is achieving broad coverage – the ability to recog-

nize hundreds or thousands of object classes that commonly

occur in everyday street scenes and indoor environments. A

major challenge in doing this is posed by the non-uniform

statistics of these classes in realistic scene images. A small

number of classes – mainly ones associated with large re-

gions or “stuff,” such as road, sky, trees, buildings, etc. –

constitute the majority of all image pixels and object in-

stances in the dataset. But a much larger number of “thing”

classes – people, cars, dogs, mailboxes, vases, stop signs –

occupy a small percentage of image pixels and have rela-

tively few instances each.

“Stuff” categories have no consistent shape but fairly

consistent texture, so they can be adequately handled by

image parsing systems based on pixel- or region-level fea-

tures [5, 7, 8, 18, 21, 22, 25, 26, 27, 29]. However, these

systems have difficulty with “thing” categories, which are

better characterized by overall shape than local appearance.

In order to improve performance on “things,” a few re-

cent image parsing approaches [1, 10, 12, 14, 16] have at-

tempted to incorporate sliding window detectors. Many of

these approaches rely on detectors like HOG templates [6]

and deformable part-based models (DPMs) [9], which pro-

duce only bounding box hypotheses. However, attempt-

ing to infer a pixel-level segmentation from a bounding

box is a complex and error-prone process. More sophisti-

cated detection frameworks like implicit shape models [17]

and poselets [3] provide a better way to do per-pixel rea-

soning, but they tend to require a lot of extensively anno-

tated positive training examples. None of these schemes are

well suited for handling large numbers of sparsely-sampled

classes with high intra-class variation.

In this paper, we propose an image parsing sys-

tem that integrates region-based cues with the promising

novel framework of per-exemplar detectors or exemplar-

SVMs [19]. Per-exemplar detectors are more appropriate

than traditional sliding window detectors for classes with

few training samples and wide variability. They also meet

our need for pixel-level localization: when a per-exemplar

detector fires on a test image, we can take the segmentation

mask from the corresponding training exemplar and transfer

it into the test image to form a segmentation hypothesis.

The idea of transferring object segmentation masks from

training to test images – either whole or in “fragments” –

has been explored before in the literature – see, e.g., [2,

17, 20]. However, most existing work uses local feature

matches to transfer mask hypotheses, and focuses on one

class at a time. To our knowledge, our approach is the

first to transfer masks using per-exemplar detectors (Mal-

isiewicz et al. [19] suggest this idea, but do not evaluate it

quantitatively) and to output a dense many-category label-

ing, as opposed to a segmentation of a single class.

Our proposed method is outlined in Figure 1. It com-

bines the region-based parser from our earlier work [27]

with a novel parser based on per-exemplar detectors. Each

parser produces a score or data term for each possible la-

bel at each pixel location, and the data terms are combined

using a support vector machine (SVM) to generate the final

labeling. This scheme produces state-of-the-art results on

three challenging datasets: SIFT Flow [18], LM+SUN [27],

and CamVid [5]. In particular, the LM+SUN dataset, with

45,676 images and 232 labels, has the broadest coverage of

any image parsing benchmark to date.

Complete code and results for our system can be found

at http://www.cs.unc.edu/SuperParsing.
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Figure 1. Overview and sample result of our approach. The test image (a) contains a bus – a relatively rare “thing” class. Our region-based parsing system

[27] computes class likelihoods (b) based on superpixel features, and it correctly identifies “stuff” regions like sky, road, and trees, but is not able to get the

bus (c). To find “things” like bus and car, we run per-exemplar detectors [19] on the test image (d) and transfer masks corresponding to detected training

exemplars (e). Since the detectors are not well suited for “stuff,” the result of detector-based parsing (f) is poor. However, combining region-based and

detection-based data terms (g) gives the highest accuracy of all and correctly labels most of the bus and part of the car.

2. Method
This section presents our hybrid image parsing method

as illustrated in Figure 1. Sections 2.1 and 2.2 describe its

region- and detector-based components, and Section 2.3 de-

tails our proposed combination method.

2.1. RegionBased Parsing

For region-based parsing, we use the scalable nonpara-

metric system we have developed earlier [27]. Given a

query image, this system first uses global image descrip-

tors to identify a retrieval set of training images similar to

the query. Then the query is segmented into regions or su-

perpixels; each region is matched to regions in the retrieval

set based on 20 features representing position, shape, color,

and texture and these matches are used to produce a log-

likelihood ratio score L(si, c) for label c at region si:

L(si, c) = log
P (si|c)

P (si|c̄)
=

∑

k

log
P (fk

i |c)

P (fk
i |c̄)

, (1)

where P (fk
i |c) (resp. P (fk

i |c̄)) is the likelihood of feature

type k for region i given class c (resp. all classes but c).

For large-scale datasets with many labels (SIFT Flow

and LM+SUN in our experiments), we obtain the log-

likelihood ratio score based on nonparametric nearest-

neighbor estimates (see [27] for details). For smaller-scale

datasets with few classes (CamVid), we obtain it from the

output of a boosted decision tree classifier. Either way, we

use this score to define our region-based data term ER for

each pixel p and class c:

ER(p, c) = L(sp, c) , (2)

where sp is the region containing p. Figure 1(b) shows the

detector-based data terms for the test image in Figure 1(a).

2.2. DetectorBased Parsing

Following the per-exemplar framework of [19], we train

a per-exemplar detector for each labeled object instance in

our dataset. While it may seem intuitive to only train de-

tectors for “thing” categories, we train them for all cate-

gories, including ones seemingly inappropriate for a slid-

ing window approach, such as “sky.” As our experiments

will demonstrate, this actually yields the best results for the

combined region- and detector-based system. We follow the

detector training procedure of [19], with negative mining

done on all training images that do not contain an object of

the same class. For our largest LM+SUN dataset we only

do negative mining on 1,000 training images most similar

to the positive exemplar’s image (we have found that using

more does not increase the detection accuracy).

At test time, given an image that needs to be parsed, we

first obtain a retrieval set of globally similar training images

as in Section 2.1. Then we run the detectors associated with

the first k instances of each class in that retrieval set (the

instances are ranked in decreasing order of the similarity

of their image to the test image, and different instances in

the same image are ranked arbitrarily). We restrict k purely

to reduce computation; all our experiments use k = 100.

Next, we take all detections that are above a given threshold

td (we use the negative margin or td = −1 as suggested in

[19]). For each detection we project the associated object

mask into the detected bounding box (Figure 2). To com-

pute the detector-based data term ED for a class c and pixel



Figure 2. Computation of the detector-based data term. For each positive

detection (green bounding box) in the test image (middle row) we transfer

the mask (red polygon) from the associated exemplar (top) into the test

image. The data term for “car” (bottom) is obtained by summing all the

masks weighted by their detector responses.

p, we simply take the sum of all detection masks from that

class weighted by their detection scores:

ED(p, c) =
∑

d∈Dp,c

(wd − td) , (3)

where Dp,c is the set of all detections for class c whose

transferred mask overlaps pixel p and wd is the detection

score of d. Figure 1(e) shows some detector-based data

terms for the test image of Figure 1(a).

Note that the full training framework of [19] includes

computationally intensive calibration and contextual pool-

ing procedures that are meant to make scores of different

per-exemplar detectors more consistent. In our implemen-

tation, we have found these steps to be unnecessary, as they

are at least partially superceded by the combined region-

and detector-based inference scheme described next.

2.3. SVM Combination and MRF Smoothing

Once we run the parsing systems of Sections 2.1 and 2.2

on a test image, for each pixel p and each class c we end

up with two data terms, ER(p, c) and ED(p, c), as defined

by eqs. (2) and (3). For a dataset with C classes, concate-

nating these values gives us a 2C-dimensional feature vec-

tor at each pixel. Next, we train C one-vs-all SVMs, each

of which takes as input the 2C-dimensional feature vectors

and returns final per-pixel scores for a given class c.

Training data for each SVM is generated by running

region- and detector-based parsing on the entire training set

using a leave-one-out method: for each training image a re-

trieval set of similar training images is obtained, regions are

matched to generate ER(p, c), and the per-exemplar detec-

tors from the retrieval set are run to generate ED(p, c). Un-

fortunately, the resulting amount of data is huge: our largest

dataset has over nine billion pixels, which would require 30

terabytes of storage. To make SVM training feasible, we

must subsample the data – a tricky task given the unbal-

anced class frequencies in our many-category datasets.

We could subsample the data uniformly (i.e., reduce the

number of points by a fixed factor without regard to class

labels). This preserves the relative class frequencies, but

in practice it heavily biases the classifier towards the more

common classes. Conversely, subsampling the data so that

each class has a roughly equal number of points produces a

bias towards the rare classes. We have found that combining

these two schemes in a 2:1 ratio achieves a good trade-off on

all our datasets. That is, we obtain 67% of the training data

by uniform sampling and 33% by even per-class sampling.

We train all SVMs on 250,000 points – using more did not

significantly improve performance for any of our setups.

For training one-vs-all SVMs, we normalize each feature

dimension by its standard deviation and use fivefold cross-

validation to find the regularization constant. Another im-

portant aspect of the implementation is the choice of the

SVM kernel. As will be shown in Section 3, the linear ker-

nel already does quite well, but we can obtain further im-

provements with the RBF kernel. Since it is infeasible to

train a nonlinear SVM with the RBF kernel on our largest

dataset, we approximate it by training a linear SVM on top

of the random Fourier feature embedding [23]. We set the

dimensionality of the embedding to 4,000 and find the ker-

nel bandwidth using fivefold cross-validation. Experiments

on our two smaller datasets confirm the quality of the ap-

proximation (Table 2).

The resulting SVMs produce C responses at each pixel.

Let ESVM(pi, ci) denote the response of the SVM for class

ci at pixel pi. To obtain the final labeling, we can simply

take the highest-scoring label at each pixel, but this pro-

duces noisy results. We smooth the labels with an MRF

energy function similar to [18, 25] defined over the field of

pixel labels c:

J(c) =
∑

pi∈I

max[0,M − ESVM(pi, ci)]

+λ
∑

(pi,pj)∈ǫ

Esmooth(ci, cj) ,
(4)

where I is the set of all pixels in the image, ǫ is the set

of adjacent pixels, M is the highest expected value of the

SVM response (about 10 on our data), λ is a smoothing

constant (we set λ = 16), and Esmooth(ci, cj) imposes a

penalty when two adjacent pixels (pi, pj) are similar but are

assigned different labels (ci, cj) (see eq. (8) in [18]). We

perform MRF inference using α-expansion [4, 15].

3. Evaluation

3.1. Datasets

The first dataset in our experiments, SIFT Flow [18],

consists of outdoor scenes. It has 2,488 training images, 200

test images, and 33 labels. For this dataset, we use retrieval

set size of 200. Our second dataset, LM+SUN [27], was

collected from the SUN dataset [28] and LabelMe [24]. It

contains 45,676 images (21,182 indoor and 24,494 outdoor)



SIFT Flow LM+Sun CamVid

Per-Pixel Per-Class Per-Pixel Per-Class Per-Pixel Per-Class

Detector ML 65.1 25.8 33.0 14.1 61.2 45.5

Detector SVM 62.5 25.4 46.1 12.0 61.4 47.0

Detector SVM MRF 71.1 26.7 52.5 11.3 63.8 47.3

Region ML 74.1 30.2 51.5 7.5 82.7 51.2

Region SVM 75.0 35.9 56.3 6.7 81.4 55.7

Region SVM MRF 77.7 32.8 58.3 5.9 83.5 55.7

Region + Thing SVM 74.4 36.9 58.5 14.1 82.4 60.0

Region + Thing SVM MRF 77.5 35.7 60.0 12.9 84.2 59.5

Combined SVM 75.6 41.1 59.6 15.5 82.3 62.1

Combined SVM MRF 78.6 39.2 61.4 15.2 84.0 62.2

Table 1. Comparison of different data terms. All SVMs use the approximate RBF embedding. Detector ML and Region ML directly assign the highest-

scoring label at each pixel based on the respective data terms, while Detector SVM and Region SVM use SVM outputs trained on the individual data terms.

Region + Thing uses the SVM trained on the full region data term and the subset of the detector data term corresponding to “thing” classes.

SIFT Flow LM+Sun CamVid

Per-Pixel Per-Class Per-Pixel Per-Class Per-Pixel Per-Class

Linear 75.4 40.0 57.2 16.6 82.4 60.7

Linear MRF 77.5 40.2 59.5 15.9 83.8 60.7

Approx. RBF 75.6 41.1 59.6 15.5 82.3 62.1

Approx. RBF MRF 78.6 39.2 61.4 15.2 83.9 62.5

Exact RBF 75.4 41.6 N/A N/A 82.3 61.9

Exact RBF MRF 77.6 42.0 N/A N/A 84.0 62.2

Table 2. Comparison of different SVM kernels. The RBF kernel has a slight edge over the linear kernel, and the approximate RBF embedding of [23] has

comparable performance to the exact nonlinear RBF. Note that training the exact RBF on the largest LM+SUN dataset was computationally infeasible.

and 232 labels. We use the split of [27], which consists of

45,176 training and 500 test images. Since this is a much

larger dataset, we set the retrieval set size to 800.

Our third dataset, CamVid [5], consists of video se-

quences taken from a moving vehicle and densely labeled at

1Hz with 11 class labels. It is much smaller – a total of 701

labeled frames split into 468 training and 233 testing. While

CamVid is not our target dataset type, we use it for compar-

ison with a number of recent approaches [5, 10, 16, 26, 29].

Unlike SIFT Flow and LM+SUN, CamVid does not have

object polygons, only per-pixel labels. For training detec-

tors, we fit a bounding box and a segmentation mask to

each connected component of the same label type. Thus,

if multiple object instances (e.g., cars) overlap, they are

treated as one exemplar. Following our earlier work [27],

we segment the video using the method of Grundmann et

al. [11], and use boosted decision tree classifiers instead

of nonparametric likelihood estimates. To obtain training

data for the SVM, we compute the responses of the boosted

decision tree classifiers on the same images on which they

were trained (we have found this to work better than cross-

validation on this dataset). We do not enforce any spatio-

temporal consistency in the final labeling (in [27], enforc-

ing consistency produced more visually pleasing results but

had little effect on the numbers).

On all datasets, we report the overall per-pixel rate (per-

cent of test set pixels correctly labeled), which is dominated

by the most common classes, as well as the average of per-

class rates, which is dominated by the rarer classes.

3.2. Experiments

First, we analyze the contributions of individual compo-

nents of our system. In particular, one may wonder whether

the power of our approach truly lies in combining detector-

and region-based cues, or whether most of our performance

gain comes from the extra layers of SVM and MRF infer-

ence. Table 1 shows the performance of various combi-

nations of region- and detector-based data terms with and

without SVM training, with and without MRF smoothing.

The region-based data term obtains higher per-pixel accu-

racy than the detector-based one on all three datasets, and

higher per-class accuracy on SIFT Flow and CamVid. On

the LM+SUN dataset, which has the largest number of rare

“thing” classes, the detector-based data term actually ob-

tains higher per-class accuracy than the region-based one.

While the SVM can sometimes improve performance when

applied to the individual data terms, applying it to their

combination gives by far the biggest and most consistent

improvements. As observed in [27], MRF inference further

raises the per-pixel rate, but often lowers the per-class rate

by smoothing away some of the smaller objects.

Because part of our motivation for incorporating detec-

tors is to improve performance on the “thing” classes, we

want to know what will happen if we train detectors only

on “things” – if detectors are completely inappropriate for

“stuff,” then not using them on “stuff” may improve accu-

racy, not to mention speed up the system considerably. The

“Region + Thing” section of Table 1 shows the performance

of the SVM trained on the full region-based data term and

the subset of the detector-based data term corresponding
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Figure 3. Classification rates of individual classes (ordered from most to least frequent) on the SIFT Flow dataset for region-based, detector-based, and

combined parsing. All results include SVM and MRF smoothing.
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Figure 4. Classification rates of the most common individual classes (ordered from most to least frequent) on the LM+SUN dataset for region-based,

detector-based, and combined parsing. All results include SVM and MRF smoothing.

SIFT Flow Per-Pixel Per-Class

Ours: Combined MRF 78.6 39.2

Tighe and Lazebnik [27] 77.0 30.1

Liu et al. [18] 76.7 N/A

Farabet et al. [8] 78.5 29.6

Farabet et al. [8] balanced 74.2 46.0

Eigen and Fergus [7] 77.1 32.5

Myeong et al. [22] 77.1 32.3

Table 3. Comparison to state-of-the-art on the SIFT Flow dataset.

LM+SUN Per-Pixel Per-Class

Ours: Combined MRF 61.4 15.2

Outdoor Images 65.5 15.3

Indoor Images 46.3 12.2

Tighe and Lazebnik [27] 54.9 7.1

Outdoor Images 60.8 7.7

Indoor Images 32.1 4.8

Table 4. Comparison to [27] on the LM+SUN dataset with results broken

down by outdoor and indoor test images.

only to “thing” classes (specified manually). Interestingly,

the results for this setup are weaker than those of the full

combined system using both “thing” and “stuff” detectors.

Next, Table 2 compares SVMs with the linear kernel, ap-

proximate RBF embedding [23], and exact nonlinear RBF.

The linear kernel may be a better choice if speed is a con-

cern, but the approximate and exact RBF are able to boost

performance by 1-2%. All subsequent figures and tables

will report only the SVM results with the approximate RBF.

Figures 3 and 4 show the per-class rates of our system on

the most common classes in the SIFT Flow and LM+SUN

datasets, respectively. As expected, adding detectors signif-

icantly improves many “thing” classes (including car, sign,

and balcony) but also some “stuff” classes (road, sea, side-

walk, fence). Figure 5 gives a close-up look at our perfor-

mance on many small object categories, and Figure 6 shows

several parsing examples on the LM+SUN dataset.

Table 3 compares our combined system to a number of

state-of-the-art approaches on the SIFT Flow dataset. We

outperform them, in many cases beating the average per-

class rate by up to 10% while maintaining or exceeding the

per-pixel rates. The one exception is the system of Farabet

et al. [8] when tuned for balanced per-class rates, but their

per-pixel rate is much lower than ours in this case. When

their system is tuned to a per-pixel rate similar to ours, their

average per-class rate drops significantly below ours.

On LM+SUN, which has an order of magnitude more

images and labels than SIFT Flow, the only previously re-

ported results are from our earlier region-based system [27].

As Table 4 shows, by augmenting the region-based term

with a novel detector-based data term and SVM inference,

we are able to raise the per-pixel rate from 54.9% to 61.4%

and the per-class rate from 7.1% to 15.2%.

Table 5 compares our per-class rates on the CamVid

dataset to a number of recent methods. When compared

to our region-based system [27], we improve performance

for every class except for building and sky, towards which

the region-based parser seems to be overly biased. Further-

more, we match the state-of-the-art method of Ladicky et

al. [16], which incorporates DPM detectors, bounding box

segmentation, and a complex CRF model. Figure 7 shows

the output of our system on example CamVid images.

3.3. Running Time

Finally, we examine the computational requirements of

our system on our largest dataset, LM+SUN, by timing our

MATLAB implementation (feature extraction and file I/O

excluded) on a six-core 3.4 GHz Intel Xeon processor with

48 GB of RAM. There are a total of 354,592 objects in the

training set, and we train a per-exemplar detector for each

of them. The average training time per detector is 472.3

seconds; training all of them would require 1,938 days on a

single CPU, but we do it on a 512-node cluster in approxi-



fire hydrant 249 / 3  93.7% motorbike 551 / 17  83.7% flower 1759 / 27  63.7% license plate 852 / 26  59.5%

manhole 390 / 11  50.8% faucet 425 / 8  46.4% lamp 2055 / 28  39.5% bicycle 692 / 21  34.3%

sofa 1188 / 17  30.8% torso 2357 / 36  30.1% coffee maker 252 / 6  26.2% screen 1752 / 35  22.9%

van 840 / 26  21.7% vase 780 / 16  16.5% chair 7762 / 143  13.7% boat 1311 / 14  7.6%

Figure 5. Examples of “thing” classes on LM+SUN. For each class we show a crop of an image, the SVM combined output, and the smoothed final result.

The caption for each class shows: (# of training instances of that class) / (# of test instances) (per-pixel rate on the test set)%. Best viewed in color.
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Ours: Combined MRF 83.1 73.5 94.6 78.1 48 96 58.6 32.8 5.3 71.2 45.9 62.5 83.9

Tighe and Lazebnik [27] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3

Brostow et al. [5] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1

Sturgess et al. [26] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8

Zhang et al. [29] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1

Floros et al. [10] 80.4 76.1 96.1 86.7 20.4 95.1 47.1 47.3 8.3 79.1 19.5 59.6 83.2

Ladicky et al. [16] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8

Table 5. Comparison to state of the art on the CamVid dataset.

mately four days. Leave-one-out parsing of the training set

(see below for average region- and detector-based parsing

times per image) takes 939 hours on a single CPU, or about

two hours on the cluster. Next, training a set of 232 one-

vs-all SVMs takes a total of one hour on a single machine

for the linear SVM and ten hours for the approximate RBF.

Note that the respective feature dimensionalities are 464 and

4,000; this nearly tenfold dimensionality increase accounts

for the tenfold increase in running time. Tuning the SVM

parameters by fivefold cross-validation on the cluster only

increases the training time by a factor of two.

At test time, the region-based parsing takes an average

of 27.5 seconds per image. The detector-based parser runs

an average of 4,842 detectors per image in 47.4 seconds

total. The final combination (SVM testing) step takes an

average of 8.9 seconds for the linear kernel and 124 seconds

for the approximate RBF (once again, the tenfold increase

in feature dimensionality and the overhead of computing the

embedding account for the increase in running time). MRF

inference takes only 6.8 seconds per image.

4. Discussion

Our current system achieves very promising results, but

at a considerable computational cost. Reducing this cost is

an important future research direction. To speed up training

of per-exemplar detectors, we plan to try the whitened HOG

method of Hariharan et al. [13]. At test time, we would like

to to reduce the number of detectors that need to be run per

image. As shown in Table 1, doing this naively, e.g., by run-

ning only “thing” detectors, lowers the accuracy. Instead,

we want to develop methods for dynamically selecting de-

tectors for each test image based on context. Also, SVM

testing with the approximate RBF embedding imposes a

heavy overhead in our current implementation. However,

this is a nuisance that can be resolved with better choice of

embedding dimensionality and more optimized code.

Ultimately, we want our system to function on open uni-

verse datasets, such as LabelMe [24], that are constantly

evolving and do not have a pre-defined list of classes of in-

terest. The region-based component of our system [27] al-

ready has this property. In principle, per-exemplar detectors

are also compatible with the open-universe setting, since

they can be trained independently as new exemplars come

in. Our SVM combination step is the only one that relies

on batch offline training (including leave-one-out parsing of

the entire training set). In the future, we plan to investigate

online methods for this step.
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Figure 6. Example results on the LM+SUN dataset (best viewed in color). First column: query image (top) and ground truth (bottom). Second through

fourth columns: region-based data term (top), detector-based data term (middle), and SVM combination (bottom) for three selected class labels. Fifth

column: region-based parsing results (top) and detector-based parsing results (bottom) without SVM or MRF smoothing. Right-most column: smoothed

combined output. The example in (a) has strong detector responses for both “car” and “taxi,” and the SVM suppresses the former in favor of the latter. In

(b), the system correctly identifies the wheels of the cars and the headlight of the left car. In (c), the detectors correctly identify the wall and most of the

bed. Note that the region-based parser alone mislabels most of the bed as “sea”; the detector-based parser does much better but still mislabels part of the

bed as “mountain.” In this example, the detector-based parser also finds two pictures and a lamp that do not survive in the final output. In (d), our system

successfully finds the toilet. Note that both the region- and detector-based data terms assign very high likelihood of “plate” to the toilet bowl, but the SVM

suppresses “plate” in favor of “toilet.”
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Figure 7. Example results on the CamVid dataset. The region- and detector-based results are shown without SVM or MRF smoothing; the final output has

both. Notice how the detectors are able to complete the car in (a) and (b). In (c) we are able to correctly parse a number of pedestrians and signs.
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[16] L. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr.

What, where and how many? Combining object detectors and CRFs.

In ECCV, 2010. 1, 4, 5, 6

[17] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with

interleaved categorization and segmentation. IJCV, 77(13):259289,

2008. 1

[18] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via

label transfer. PAMI, 33(12):2368–2382, June 2011. 1, 3, 5

[19] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-

SVMs for object detection and beyond. In ICCV, 2011. 1, 2, 3

[20] M. Marszałek and C. Schmid. Accurate object recognition with

shape masks. IJCV, 97(2):191–209, 2012. 1

[21] D. Munoz, J. A. Bagnell, and M. Hebert. Stacked hierarchical label-

ing. In ECCV, pages 57–70, 2010. 1

[22] H. J. Myeong, Y. Chang, and K. M. Lee. Learning object relation-

ships via graph-based context model. CVPR, June 2012. 1, 5

[23] A. Rahimi and B. Recht. Random features for large-scale kernel

machines. In NIPS, 2007. 3, 4, 5

[24] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. La-

belMe: a database and web-based tool for image annotation. IJCV,

77(1-3):157–173, 2008. 3, 6

[25] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint

appearance, shape and context modeling for multi-class object recog-

nition and segmentation. In ECCV, 2006. 1, 3

[26] P. Sturgess, K. Alahari, L. Ladický, and P. H. S. Torr. Combining
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