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Figure1. The detection results of tiny faces in the wild. (a) is the original low-resolution blurry face, (b) is the result of

re-sizing directly by a bi-linear kernel, (c) is the generated image by the super-resolution method, and our result (d) is learned

by the super-resolution (×4 upscaling) and refinement network simultaneously. Best viewed in color and zoomed in.

Abstract

Face detection techniques have been developed for

decades, and one of remaining open challenges is detect-

ing small faces in unconstrained conditions. The reason is

that tiny faces are often lacking detailed information and

blurring. In this paper, we proposed an algorithm to direct-

ly generate a clear high-resolution face from a blurry small

one by adopting a generative adversarial network (GAN).

Toward this end, the basic GAN formulation achieves it by

super-resolving and refining sequentially (e.g. SR-GAN and

cycle-GAN). However, we design a novel network to address

the problem of super-resolving and refining jointly. We also

introduce new training losses to guide the generator net-

work to recover fine details and to promote the discrimina-

tor network to distinguish real vs. fake and face vs. non-face

simultaneously. Extensive experiments on the challenging

dataset WIDER FACE demonstrate the effectiveness of our

proposed method in restoring a clear high-resolution face

from a blurry small one, and show that the detection perfor-

mance outperforms other state-of-the-art methods.

1. Introduction

Face detection is a fundamental and important prob-

lem in computer vision, since it is usually a key step to-

wards many subsequent face-related applications, including

face parsing, face verification, face tagging and retrieval,

etc. Face detection has been widely studied over the past

few decades and numerous accurate and efficient methods

have been proposed for most constrained scenarios. Recen-
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t works focus on faces in uncontrolled settings, which is

much more challenging due to the significant variations in

scale, blur, pose, expressions and illumination. A thorough

survey on face detection methods can be found in [32].

Modern face detectors have achieved impressive results

on the large and medium faces, however, the performance

on small faces is far from satisfactory. The main difficul-

ty for small face (e.g. 10 × 10 pixels) detection is that s-

mall faces lack sufficient detailed information to distinguish

them from the similar background, e.g. regions of partial

faces or hands. Another problem is that modern CNN-based

face detectors use the down-sampled convolutional (con-

v) feature maps with stride 8, 16 or 32 to represent faces,

which lose most spatial information and are too coarse to

describe small faces. To detect small faces, [28] directly

up-samples images using bi-linear operation and exhaus-

tively searches faces on the up-sampled images. Howev-

er, this method will increase the computation cost and the

inference time will increase significantly too. Moreover,

images are often zoomed in with a small upscaling factors

(2× at most) in [28], otherwise, artifacts will be generat-

ed. Besides, [1, 14, 25, 37] use the intermediate conv fea-

ture maps to represent faces at specific scales, which keeps

the balance between the computation burden and the perfor-

mance. However, the shallow but fine-grained intermediate

conv feature maps lack discrimination, which causes many

false positive results. More importantly, these methods take

no care of other challenges, like blur and illumination.

To deal with the nuisances in face detection, we propose

a unified end-to-end convolutional neural network for better

face detection based on the classical generative adversarial

network (GAN) framework. There are two sub-networks in

our detector, a generator network and a discriminator net-

work. In the generator sub-network, a super-resolution net-

work (SRN) is used to up-sample small faces to a fine scale

for finding those tiny faces. Compared to re-sizing by bi-

linear operation, SRN can reduce the artifact and improve

the quality of up-sampled images with a large upscaling fac-

tors (4× in our current implementation), as shown in Figure

1 (b) and (c). However, even with such sophisticated S-

RN, up-sampled images are unsatisfactory (usually blurring

and lacking fine details) due to faces of very low resolutions

(10 × 10 pixels). Therefore, a refinement network (RN) is

proposed to recover some missing details in the up-sampled

images and generate sharp high-resolution images for clas-

sification. In the discriminator sub-network, we introduce a

new loss function that enforces the discriminator network to

distinguish the real/fake face and face/non-face simultane-

ously. The generated images and real images pass through

the discriminator network to JOINTLY distinguish whether

they are real images or generated high-resolution images

and whether they are faces or non-faces. More important-

ly, the classification loss is used to guide the generator to

generate clearer faces for easier classification.

Contributions. To sum up, this paper makes following

three main contributions. (1) A novel unified end-to-end

convolutional neural network architecture for face detection

is proposed, where super-resolution and refinement network

are used to generate real and sharp high-resolution images

and a discriminator network is introduced to classify faces

vs. non-faces. (2) A new loss is introduced to promote the

discriminator network to distinguish the real/fake image and

face/non-face simultaneously. More importantly, the clas-

sification loss is used to guide the generative network to

generate clearer faces for easier classification. (3) Finally,

we demonstrate the effectiveness of our proposed method

in restoring a clear high-resolution face from a blurry small

face, and show that the detection performance outperform-

s other state-of-the-art approaches on the WIDER FACE

dataset, especially on the most challenging Hard subset.

2. Related Work

2.1. Face Detection

As a classic topic, numerous face detection systems have

been proposed during the past decades or so. Existing

face detection methods can be broadly categorized as hand-

crafted feature based methods [24, 29, 30] and CNN-based

methods [34, 2, 14, 25, 37, 1]. However, most of the de-

tection systems based handcrafted features only train a sin-

gle scale model, which is applied to each level of a feature

pyramid, thus increasing the computation cost drastically,

especially for complicated features. Moreover, the limited

representation of handcrafted features restricts the perfor-

mance of detectors, particularly in uncontrolled settings.

Inspired by the great success of Faster RCNN, several

recent works [14, 25, 37] utilized this framework to detec-

t faces and showed impressive performance on the FDDB

benchmark [13]. However, performance drops dramatically

on the more challenging WIDER FACE dataset [31], which

contains a large number of faces with lower resolution. The

main reason for this disparity is that deep conv feature map-

s with lower spatial resolution are used for representation,

which is insufficient for handling small faces [34, 2]. To

overcome this problem, detectors [14, 25, 37] have to up-

sample by re-sizing input images to different scales dur-

ing training and testing, which inevitably increases memory

and computation costs. Furthermore, the re-size method of-

ten generates the images with large structural distortions,

as shown in Figure1 (b). Compared to these methods, our

method exploits the super-resolution and refinement net-

work to generate clear and fine faces with high resolution

(4× up-scaling), as shown in Figure1 (d), and then the dis-

criminator is trained to distinguish faces from input images.
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2.2. Super­resolution and Refinement Network

With the development of deep learning, great improve-

ments have been achieved on super-resolution [5, 6, 15, 26].

However, when obtaining these promising results, there is a

precondition that the down-sampling kernel is known, and

most of these CNN-based super-resolution methods can not

be applied to uncontrolled settings (i.e. in the wild).

There are different refinement networks for differen-

t tasks, and the most similar refinement method to our re-

finement network is the deblur method. Most existing de-

blur methods heavily rely on prior models to solve the ill-

posed problem, and a prior assumes that gradients of natu-

ral images have a heavy-tailed distribution [21, 7]. Recent-

ly, conventional neural networks have also been used to de-

blur the blind image [36, 23, 3]. However, these deblurring

methods still involve explicit kernel estimation, and the re-

covered images usually have significant ringing artifacts if

the estimated kernels are inaccurate.

Although existing super-resolution methods and refine-

ment methods are effective at up-sampling and refining im-

ages respectively, it is not easy to extend to jointly super-

resolving and refining the low-resolution image. [28] pro-

posed a method to simultaneously reconstruct a clear high-

resolution image from a blurry low-resolution input. How-

ever, their blurry low-resolution images are obtained by us-

ing the bicubic interpolation down-sampling and a known

blur kernel from the high-resolution images (i.e. synthetic).

In this paper, we design a novel network to generate a clear

super-resolution face from a small blurry face which is col-

lected from the wild. We would like to note that our work is

the first work trying to jointly super-resolve and refine the

small blurry faces in the wild.

2.3. Generative Adversarial Networks

In the seminal work[8], generative adversarial network

(GAN) is introduced to generate realistic-looking images

from random noises. GANs have achieved impressive re-

sults in image generation [4], image editing [38], represen-

tation learning [18], image annotation [27], image super-

resolving [17] and character transferring [12]. Recently,

GAN has been applied to super-resolution (SRGAN) [17]

and has obtained promising results. Compared to super-

resolution on natural images, face images in the wild are of

arbitrary poses, illumination and blur, so super-resolution

on face images is much more challenging. More impor-

tantly, the high resolution images generated by SRGAN

are blurry and lack fine details especially for low-resolution

faces, which are unfriendly for the face classifier. Toward-

s this end, we design a refinement sub-network to recover

some detailed information. In the discriminator network,

the basic GAN [17, 12, 8] is trained to distinguish the real

and fake high resolution images. To classify faces or non-

faces, we extend the discriminator network to classify the

fake vs. real and face vs. non-face simultaneously. Further-

more, the classification loss is propagated back to the gen-

erator network, and guides generator network to reconstruct

clearer super-resolution images for easier classification.

3. Proposed Method

In this section, we introduce our proposed method in de-

tails. First, we give a brief description on the classical GAN

network. Then, the whole architecture of our method is p-

resented, as shown in Figure 2. Finally, we introduce each

part of our network in details and define the loss function-

s for training the generator network and discriminator net-

work respectively.

3.1. GAN

GAN [8] learns a generative model G via an adversarial

process. It trains a generator network G and a discriminator

network D simultaneously. The training process alternately

optimizes the generator and discriminator, which compete

with each other. The generator G is trained for generating

the samples to fool the discriminator D, and the discrimi-

nator D is trained to distinguish the real image and the fake

image from the generator. The objective function can be

defined as follows:

LGAN (G,D) = Ex∼pdata(x)[logDθ(x)]+

Ez∼pz(z)[log(1−Dθ(Gω(z)))],
(1)

where z is the random noise and x denotes the real data, θ

and ω denote the parameters of G and D respectively. Here,

G tries to minimize the objective function and adversarial D

tries to maximize it as Eq(2):

argmin
G

max
D

LGAN (G,D). (2)

Similar to [8, 17], we further design a generator net-

work GwG
which is optimized in an alternative method a-

long with a discriminator network DθD to solve the small

face super-resolution and classification problem, which is

defined as follows:

argmin
wG

max
θD

E(IHR,y)∼ptrain(IHR,y)[logDθD (I
HR, y)]+

E(ILR,y)∼pG(ILR,y)[log(1−DθD (GwG
(ILR, y)))],

(3)

where ILR denotes face candidates with low-resolution,

IHR represents the face candidates with high-resolution,

and y is the label (i.e. face or non-face). Unlike [8], the in-

put of our generator is low-resolution images rather than the

random noise. Different from [17], we up-sample and refine

the input image simultaneously in the generator network. In

the discriminator network, we distinguish the generated vs.

true high-resolution images and faces vs. non-faces jointly.
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Figure 2. The pipeline of the proposed tiny face detector system. (A) The images are fed into the network; (B) MB-FCN detector is our

baseline, it crops the positive data (i.e. faces) and negative data (i.e. non-faces) from the input images for training the generator network

and the discriminator network, or generates the regions of interest (ROIs) for testing. (C) The positive data and negative data (or ROIs)

are generated by the MB-FCN detector. (D) The generator network is trained to reconstruct a clear super-resolution image (4× upscaling)

from the low-resolution input image, which includes the upsample sub-network and the refinement sub-network. (D) The discriminator

network is the vgg19 architecture with two parallel fc layers, and the first fc layer is to distinguish the natural real images or the generated

super-resolution images and the second one is to classify faces or non-faces.

3.2. Network Architecture

Our generator network includes two components (i.e. up-

sample sub-network and refinement sub-network), and the

first sub-network takes the low-resolution images as the in-

puts and the outputs are the super-resolution images. Since

the blurry small faces lack fine details and due to the in-

fluence of MSE loss Eq(4), the generated super-resolution

faces are usually blurring. So we design the second sub-

network to refine the super-resolution images from the first

sub-network. Furthermore, we add the classification branch

to the discriminator network for the purpose of detection,

which means our discriminator can classify faces and non-

faces as well as distinguish the fake and real images.

Generator network. As shown in Table 1 and Fig-

ure 2, we adopt a deep CNN architecture which has

shown effectiveness for image super-resolution in [17].

There are two fractionally-strided convolutional layers [20]

(i.e. de-convolutional layer) in the network, and each de-

convolutional layer consists of learned kernels which per-

form up-sampling a low-resolution image to a 2× super-

resolution image. In contrast to their network, our genera-

tor network includes refinement sub-network which is also

a deep CNN architecture. Similar to [20], we use the batch-

normalization [11] and rectified linear unit (ReLU) activa-

tion after each convolutional layer except the last layer.

The up-sampling sub-network first up-samples a low-

resolution image and outputs a 4× super-resolution image,

and this super-resolution image is blurring when the small

faces are far from the cameras or under fast motion. Then,

the refinement sub-network processes the blurring image,

and outputs a clear super-resolution image, which is easier

for the discriminator to classify the faces vs. non-faces.

Discriminator network. We employ VGG19 [22] as our

backbone network in the discriminator, as shown in Table

1. To avoid too many down-sampling operations for the

small blurry faces, we remove the max-pooling from the

“conv5” layer. Moreover, we replace all the fully connected

layer (i.e. fc6, fc7, fc8) with two parallel fully connected

layers fcGAN and fcclc. The input is the super-resolution

image, the output of fcGAN branch is the probability of the

input being a real image, and the output of the fcclc is the

probability of the input being a face.

3.3. Loss Function

We adopt the pixel-wise loss and adversarial loss from

some state-of-the-art approaches [17, 12] to optimize our

generator network. In contrast to [17], we remove the VGG

feature matching loss due to the calculation cost and we in-

troduce the classification loss to drive the generator network

to recover fine details from the blurry small faces.

Pixel-wise loss. The input of our generator network is

the small blurry images instead of random noise [8]. A nat-

ural way to enforce the output of the generator to be close to

the super-resolution ground truth is through the pixel-wise

MSE loss, and it is calculated as Eq(4):

LMSE(w) =
1

N

N∑

i=1

(||G1w1
(ILR

i )− IHR
i ||2+

||G2w2
(G1w1

(ILR
i ))− IHR

i ||2),

(4)

where ILR and IHR denote the small blurry images

and super-resolution images respectively, G1 means up-

sampling sub-network, G2 denotes the refinement sub-

network and w is the parameters of generator network.
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Generator
Discriminator

Up-sample Sub-network Refinement Sub-network

Layer conv
conv

x8
conv

de-

conv

de-

conv
conv conv

conv

x8
conv conv conv conv conv conv conv conv conv fc

Kernel Num. 64 64 64 256 256 3 64 64 64 256 256 3 64 128 256 512 512 2

Kernel Size 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 -

Stride 1 1 1 2 3 1 1 1 1 1 1 1 2 2 2 2 1 -

Table 1. Architecture of the generator and discriminator network. “conv” represents a convolutional layer, “x8” denotes a residual block

which has 8 convolutional layers, “de-conv” means a fractionally-stride convolutional layer, “2x” denotes up-sampling by a factor of 2,

and “fc” indicates a fully connected layer.

However, while achieving less loss between the generated

and the neutral high-resolution image in pixel level, the so-

lution of the MSE optimization problem usually lacks the

high-frequency content which results in perceptual unsatis-

factory images with over-smooth texture. Also, this is one

reason why the generated image is blurry.

Adversarial loss. To achieve more realistic results, we

introduce the adversarial loss [17] to the objective loss, de-

fined as Eq(5):

Ladv =
1

N

N∑

i=1

log(1−Dθ(Gw(I
LR
i ))). (5)

Here, the adversarial loss encourages the network to gen-

erate sharper high-frequency details for trying to fool the

discriminator network. In Eq(5), the Dθ(Gw(I
LR
i )) is the

probability that the reconstruction image Gw(I
LR
i ) is a nat-

ural super-resolution image.

Classification loss. In order to make the reconstructed

images by the generator network easier to classify, we also

introduce the classification loss to the objective loss. Let

{ILR
i , i = 1, 2, . . . , N} and {IHR

i , i = 1, 2, . . . , N} denote

the small blurry images and the high-resolution real natu-

ral images respectively, and {yi, i = 1, 2, . . . , N} represents

the corresponding labels, where yn = 1 or yn = 0 indicates

the image is the face or non-face respectively. The formula-

tion of classification loss is like Eq(6):

Lclc =
1

N

N∑

i=1

( log(yi −Dθ(Gw(I
LR
i )))+

log(yi −Dθ(I
HR
i ))).

(6)

Our classification loss plays two roles, where the first is

to distinguish whether the high-resolution images, includ-

ing both the generated and the natural real high-resolution

images, are faces or non-faces in the discriminator network.

The other role is to promote the generator network to recon-

struct sharper images.

Objective function. Based on above analysis, we in-

corporate the adversarial loss Eq(5) and classification loss

Eq(6) into the pixel-wise MSE loss Eq(4). The GAN net-

work can be trained by the objective function Eq(7):

max
θ

min
w

1

N

N∑

i=1

α(log(1−Dθ(Gw(I
LR
i ))) + logDθ(I

HR
i ))

+ (||G1w1
(ILR

i )− IHR
i ||2 + ||G2w2

(G1w1
(ILR

i ))− IHR
i ||2)

+ β(log(yi −Dθ(Gw(I
LR
i ))) + log(yi −Dθ(I

HR
i ))),

(7)

where α and β are trade-off weights.

For better gradient behavior, we optimize the objective

function in an alternative way as in [17, 12, 10] and modify

the loss function of generator G and the discriminator D as:

min
w

1

N

N∑

i=1

α log(1−Dθ(Gw(I
LR
i )))+

(||G1w1
(ILR

i )− IHR
i ||2 + ||G2w2

(G1w1
(ILR

i ))− IHR
i ||2)+

β log(yi −Dθ(Gw(I
LR
i ))),

(8)

and

min
θ

1

N

N∑

i=1

−((log(1−Dθ(Gw(I
LR
i ))) + logDθ(I

HR
i ))+

(log(yi −Dθ(Gw(I
LR
i ))) + log(yi −Dθ(I

HR
i )))).

(9)

The loss function of generator G in Eq(8) consists of ad-

versarial loss Eq(5), MSE loss Eq(4) and classification loss

Eq(6), which enforce the reconstructed images to be sim-

ilar to the real natural high-resolution image on the high-

frequency details, pixel, and semantic level respectively.

The loss function of discriminator D in Eq(9) introduces the

classification loss to classify whether the high-resolution

images are faces or non-faces, which is parallel to the ba-

sic formulation of GAN [8] to distinguish whether the high-

resolution images are fake or real. By introducing the classi-

fication loss, the recovered images from generator are more

realistic than the results optimized by the adversarial loss

and MSE loss. Further ablation analysis on the influence of

each loss function is presented in Section 4.3.

4. Experiments

In this section, we experimentally validate our pro-

posed method on two public face detection benchmarks (i.e.
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WIDER FACE [31] and FDDB [13]). First, we conduct

an ablation experiment to prove the effectiveness of GAN.

Then, we give a detailed analysis on the importance of each

loss in the generator and discriminator network. Finally, our

proposed face detector is evaluated on both of these public

benchmarks, while comparing the performance against oth-

er state-of-the-art approaches.

4.1. Training and Validation Datasets

We use a recently released large-scale face detection

benchmark, the WIDER FACE dataset [31]. It contains

32,203 images, which are selected from the publicly avail-

able WIDER dataset. 40%/10%/50% of the data is random-

ly selected for training, validation, and testing, respective-

ly. Images in WIDER FACE are categorized into 61 so-

cial event classes, which have much more diversities and

are closer to the real-world scenario. Therefore, we use this

dataset for training and validating the proposed generator

and discriminator networks.

The WIDER FACE dataset is divided into three subsets,

Easy, Medium, and Hard, based on the heights of the ground

truth faces. The Easy/Medium/Hard subsets contain faces

with heights larger than 50/30/10 pixels respectively. Com-

pared to the Medium subset, the Hard one contains many

faces with a height between 10−30 pixels. As expected, it

is quite challenging to achieve good detection performance

on the Hard subset.

4.2. Implementation Details

In the generator network, we set the trade-off weights

α = 0.001 and β = 0.01. During training, we use the Adam

optimizer [16] with momentum term β1 = 0.9. The genera-

tor network is trained from scratch and the weights in each

layer are initialized with a zero-mean Gaussian distribu-

tion with standard deviation 0.02, and biases are initialized

with 0. To avoid undesirable local optima, we first train an

MSE-based SR network to initialize the generator network.

For the discriminator network, we employ the VGG19 [22]

model pre-trained on ImageNet as our backbone network

and we replace all the fc layers with two parallel fc lay-

ers. The fc layers are initialized by a zero-mean Gaussian

distribution with standard deviation 0.1, and all biases are

initialized with 0.

Our baseline MB-FCN detector is based on ResNet50

network [9], which is pre-trained on ImageNet. All hyper-

parameters of the MB-FCN detector are the same as [1]. For

training our generator and discriminator network, we crop

face samples and non-face samples from WIDER FACE

[31] training set with our baseline detector. The correspond-

ing low-resolution images are generated by down-sampling

the high-resolution images using the bicubic interpolation

with a factor 4. During testing, 600 regions of interest

(ROIs) are cropped and these ROIs are fed to our GAN net-

Method Easy Medium Hard

Baseline[1] 0.932 0.922 0.858

w/o Refinement Network 0.940 0.929 0.863

w/o adv loss 0.935 0.925 0.867

w/o clc loss 0.936 0.927 0.865

Ours(Baseline+MES+adv+clc) 0.944 0.933 0.873

Table 2. Performance of the baseline model trained with and with-

out GAN, refinement network, adversarial loss and classification

loss on the WIDER FACE invalidation set. “adv” denotes ad-

versarial loss Eq(5), “clc” represents classification loss Eq(6) and

“MES” means pixel-wise loss Eq(4).

work to give the final detection performance.

All the GAN variants are trained with first 3 epochs at a

learning rate of 10−4 and another 3 epochs at a lower learn-

ing rate of 10−5. We alternately update the generator and

discriminator network, which is equivalent to k = 1 as in

[8]. Our implementation is based on tensorflow, and all the

experiments are done on an NVIDIA TITAN X GPU.

4.3. Ablation Studies

We first compare our proposed method with the base-

line detector to prove the effectiveness of GAN. Moreover,

we perform the ablation study by removing the refinement

network to validate the effectiveness of refinement network.

Finally, to validate the contribution of each loss, including

adversarial loss and classification loss in the loss function

of generator network, we also conduct ablation studies by

cumulatively adding each of them to the pixel-wise loss.

Influence of the GAN. Table 2 (the 1st and the 5th row)

shows the detection performance (AP) of the baseline de-

tector and our method on WIDER FACE validation set. Our

baseline detector is a multi-branch RPN face detector with

skip connection of feature maps, and please refer to [1]for

more detailed information . From Table 2 we observe that

the performance of our detector outperforms the baseline

detector by a large margin (1.5% in AP) on the Hard subset.

The reason is that the baseline detector performs the down-

sampling operations (i.e. convolution with stride 2) on the

small faces. The small faces themselves contain limited in-

formation, and the majority of the detailed information will

be lost after several convolutional operations. For exam-

ple, the input is a 16×16 face, and the result is 1×1 on the

C4 feature map and nothing is reserved on the C5 feature

map. Based on those limited features, it is normal to get the

poor detection performance. In contrast, our method first

learns a super-resolution image and then refines it, which

solves the problem that the original small blurry faces lack

detailed information and blurring simultaneously. Based on

the super-resolution images with fine details, the boosting

of the detection performance is inevitable.

Influence of the refinement network. From Table 2
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Figure 3. On the WIDER FACE validation set, we compare our method with several state-of-the-art methods: MSCNN[31], MTTCNN[33],

CMS-RCNN[37], HR[10], SSH[19], SFD[35]. The average precision (AP) is reported in the legend. Best viewed in color.

(the 2nd and 5th row), we see that the AP performance

increases by 1% on the Hard subset by adding the refine-

ment sub-network to the generator network. Interestingly,

the performances of Easy and Medium subset also have an

improvement (0.4%). We visualize the reconstructed faces

from the generator network and find that our refinement net-

work can reduce the influence of illumination and blur as

shown in Figure 4. In some cases, the baseline detector fails

to detect the faces if those faces are heavily blurred or illu-

minated. However, our method reduces influence of such

attributions and can find these faces successfully. Here, we

would like to note that our framework is not specific and

any off-the-shelf face detectors can be used as our baseline.

Influence of the adversarial loss. From Table 2 (the

3rd and 5th row), we see that the AP performance drops by

about 1% without the adversarial loss. The reason is that

the generated images derived by pixel-wise loss and clas-

sification loss are over smooth. Upon close inspecting the

generated images, we find that the fine details around eyes

are of low quality. Since these details are not important fea-

tures for the discriminator, the generator can still fool the

discriminator when making mistakes in this region. To en-

courage the generator to restore the high-quality images, we

include the adversarial loss in our generator loss function.

Influence of the classification loss. From Table 2 (the

4th and 5th row), we see that the AP performance increases

by about 1% with the classification loss. This is because the

classification loss promotes the generator to recover the fine

details for easier classification. We find that the generated

faces have clearer contour when adding the classification

loss. We think the contour information may be the most im-

portant evidence for the discriminator to classify face/non-

face when faces are too small and heavily blurred.

4.4. Comparison with the State­of­the­Art

We compare our proposed method with state-of-the-art

methods on two public face detection benchmarks (i.e.

Figure 4. Some examples of the clear faces generated by our gen-

erator network from the blurry ones. The top row shows the s-

mall faces influenced by blur and illumination, and the bottom

row shows the clearer faces generated by our method. The low-

resolution images in the top row are re-sized for visualization.

WIDER FACE [31] and FDDB [13]).

Evaluation on WIDER FACE. We compare the our

method with the state-of-the-art face detectors [31, 33, 37,

10, 19, 35]. Figure 3 shows the performance on WIDER

FACE validation set. From Figure 3, we see that our method

achieves the highest performance (i.e. 87.3%) on the Hard

subset, outperforming the state-of-the-art face detector by

more than 2%. Compared to these CNN-based methods,

the boosting of our performance mainly comes from three

contributions: (1) our up-sampling sub-network in the gen-

erator learns a super-resolution image, which reduces too

much information loss caused by down-sampling while im-

plementing convolution operations on small faces; (2) the

refinement sub-network in the generator learns finer details

and reconstructs clearer images. Based on the clear super-

resolution images, it is easier for the discriminator to classi-

fy faces or non-faces than depending on the low-resolution

blurry images; (3) the classification loss Eq(6) promotes the

generator to learn a clearer face contour for easier classifi-

cation. Furthermore, we also get the highest performance

(94.4%/93.3%) on the Easy/Medium subset, outperforming

the state-of-the-art face detector by 0.7% and 0.9% respec-

tively. This is because some big faces are heavily influenced

by illumination and blur, as shown in Figure 4. As a result,
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Figure 5. Qualitative detection results of our proposed method. Green bounding boxes are ground truth annotations and red bounding boxes

are the results from our method. Best seen on the computer, in color and zoomed in.

Figure 6. On the FDDB dataset, we compare our method against

many state-of-the-art methods. The precision rate with 500 false

positives is reported. Best viewed in color and zoomed in.

CNN-based methods fail to detect these faces. However,

our method alleviates the influence of these attributions and

finds these faces successfully.

Evaluation on FDDB.We follow the standard metrics

(i.e. precision at specific false positive rates) of the FDDB

[13] and use this metric to compare with other methods.

There are many unlabeled faces in FDDB, making precision

not accurate at small false positive rates. Hence, we report

the precision rate at 500 false positives. Our face detector

achieves a superior performance (0.973) over all other state-

of-the-art face detectors except SFD [35] detector, as shown

in Figure 6. We would like to note that the performance of

SFD [35] is achieved after manually adding 238 unlabeled

faces on the test set. However, we test our model on the

original labeled test set. Under such an unfair condition,

our method still gets the comparable performance, which

further proves the effectiveness of our method.

4.5. Qualitative Results

In Figure 5, we show some detection results generated

by our proposed method. It can be found that our face de-

tector successfully finds almost all the faces, even though

some faces are very small and blurred. However, Figure 5

also shows some failure cases including some false positive

results. These results indicate that more progress is need-

ed to further improve the small face detection performance.

Future work will address this problem by adding the context

to detecting these more challenging small faces.

5. Conclusion

In this paper, we propose a new method by using GAN

to find small faces in the wild. In the generator network,

we design a novel network to directly generate a clear

super-resolution image from a blurry small one, and our

up-sampling sub-network and refinement sub-network are

trained in an end-to-end way. Moreover, we introduce

an extra classification branch to the discriminator network,

which can distinguish the fake/real and face/non-face simul-

taneously. Furthermore, the classification loss is brought to

generator network to restore a clearer super-resolution im-

age. Extensive experiments on WIDER FACE and FDDB

demonstrate the substantial improvements of our method

in the Hard subset, as well as in the Easy/Medium subset,

when compared to previous state-of-the-art face detectors.
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