
Finding Top-k Min-Cost Connected Trees in Databases

Bolin Ding1 Jeffrey Xu Yu1 Shan Wang2 Lu Qin1 Xiao Zhang2 Xuemin Lin3

1 The Chinese University of Hong Kong, China, {blding,yu,lqin}@se.cuhk.edu.hk
2

Key Laboratory of Data Engineering and Knowledge Engineering, MOE of China, Renmin University of China, China,

{swang,zhangxiao}@ruc.edu.cn
3 The University of New South Wales & NICTA, Australia, lxue@cse.unsw.edu.au

Abstract

It is widely realized that the integration of database and
information retrieval techniques will provide users with a
wide range of high quality services. In this paper, we study
processing an l-keyword query, p1, p2, · · · , pl, against a
relational database which can be modeled as a weighted
graph, G(V, E). Here V is a set of nodes (tuples) and E is
a set of edges representing foreign key references between
tuples. Let Vi ⊆ V be a set of nodes that contain the key-
word pi. We study finding top-k minimum cost connected
trees that contain at least one node in every subset Vi, and
denote our problem as GST-k. When k = 1, it is known
as a minimum cost group Steiner tree problem which is NP-
Complete. We observe that the number of keywords, l, is
small, and propose a novel parameterized solution, with l
as a parameter, to find the optimal GST-1, in time complex-
ity O(3ln + 2l((l + log n)n + m)), where n and m are the
numbers of nodes and edges in graph G. Our solution can
handle graphs with a large number of nodes. Our GST-1 so-
lution can be easily extended to support GST-k, which out-
performs the existing GST-k solutions over both weighted
undirected/directed graphs. We conducted extensive exper-
imental studies, and report our finding.

1 Introduction

Over decades, sophisticated database techniques have
been developed to provide users with effective and effi-
cient ways to access structural data managed by DBMS us-
ing SQL. At the same time, due to the rapid growth of
hypertext data available on Web, advanced information re-
trieval techniques have been developed to allow users to
use keyword queries (a set of keywords) to access unstruc-
tured data that users are most likely interested in, using
ranking techniques. It is widely realized that the integra-
tion of information retrieval (IR) and database (DB) tech-
niques will provide users with a wide range of high qual-
ity services [3, 2, 10]. The recent studies on supporting
IR style queries in RDBMS include DBXPlore [1], IR-Style

[17], DISCOVER [18], ObjectRank [4], BANKS-I [6], and
BANKS-II [25]. All consider a RDBMS as a graph where

nodes represent tuples/relations and edges represent foreign
key references among tuples cross relations. And with a
keyword query, users can find the connections among the
tuples stored in relations without the needs of knowing the
relational schema imposed by RDBMS. We show a motiva-
tion example.

Example 1.1: Consider a database for citations among re-
search papers written by authors. Figure 1 (a) shows such a
database with 4 tables: Author, Paper, Paper-Author,
and Citation. The Author table is with an author-id
(AID) and an author name (Name). The Paper table is with
a paper-id (PID) and a title (Title). The Paper-Author

table specifies the relationship between a paper and an au-
thor using paper-id and author-id. PID and AID in the table
Paper-Author are foreign key references to PID and AID

in the Paper table and the Author table, respectively. The
Citation table specifies the citation between two papers,
and both attributes, Cite and Cited, are foreign key refer-
ences to PID in the table Paper.

Weighted Database Graph: This database can be repre-
sented as a database graph in Figure 1 (b). Nodes are tuple
identifiers. Edges represent foreign key references between
two tuples. Nodes and edges are weighted. An edge is more
important if it has a smaller weight. A node that has many
links with others has relative small possibility of having a
close relationship to any of them [4], and thus edges inci-
dent on it have large weights. For simplicity, we only show
edge weights in Figure 1 (b).

Query/Answer: Given a 4-keyword query: Keyword (p1),
Query (p2), DB (p3), and Jim (p4). It tries to find the
possible relationship (foreign key references) among the 4
keywords in the database, and consequently the database
graph. Figure 1 (c) and (d) show 2 possible connected
trees, Tree-1 and Tree-2, as answers, containing all 4
keywords. Tree-1 shows that Jim (a1) writes a paper, t2,
which is cited by two papers, t1 and t3. Here, t1 contains
keyword p1, and t3 contains keywords p2 and p3. Tree-2
shows that Jim (a1) writes a paper t2 which is cited by t3
with keywords p2 and p3, and the author of t3, a2, writes an-
other paper t5 with keywords, p1 and p2. The total weights
on the 2 trees are 10.8 and 15.6. The answer with a smaller
total weight is ranked higher, because it represents stronger

1-4244-0803-2/07/$20.00 ©2007 IEEE. 836

Jim

Robin

a1

a2

NameAID

PaperAuthor

Citation

Title

Keyword Query over Web

Parameterized Complexity

Query Optimization on DB

Efficient IR−Query over DB

Keyword Search on RDBMS

Steiner Problem in DB

Online Cluster Problems
Cited

PID AID

a1

a1

a2

a2

a2

a2

a2

t1

t2

t3

t4

t5

t6

t7

t1 t2

t3 t2

t5 t4

t6 t7

t2

t4

PID

t3

t4

t5

t6

t7

Cite

Paper−Author

(a) Database

2 1.6

2

c1 c2 c3 c4

w3w2w1

1.6

w4 w5 w6 w7

a1 a2

t4t1 t2 t3 t5 t6 t7

1.6 2
1.62

22 1.6 1.6 1.6

1.6 1.6

2.6 2.62.62.62.6

1.6

1.6

(b) Database Graph

1.6

{p3}

{p4}

{p2,p3}

1.6

2

1.6

c1 c2

a1

2

w1

t1 t2 t3
{p1}

2

(c) Tree-1

1.61.6

{p4}

{p1,p2}

c2

a1

2 1.6

w3w1 w5

2.62.61.6

a2

t2 t3 t5
{p3} {p2,p3}

2

(d) Tree-2

Figure 1. A Motivation Example
and more concise relationship among keywords. �

In the literature, the reported approaches that support
keyword queries in RDBMS can be categorized into two
types, relation-based and tuple-based. The relation-based
approaches aim at processing a keyword query with SQL,
by utilizing the schema information in RDBMS. Such sys-
tems include DBXPlore [1], IR-Style [17], and DISCOVER

[18]. On the other hand, the tuple-based approaches aim at
processing a keyword query by utilizing the weights associ-
ated with nodes (tuples) and edges (foreign-key reference)
in a graph. Node/edge weights can be assigned using [7, 4].
With the weighted graph, the tuple-based approaches find
top-k minimum cost connections (trees) among tuples for a
keyword query. Such systems include RIU [22], BANKS-I,
[6], and BANKS-II [25].

It is worth of noting that the relation-based approaches
cannot fully make use of node/edge weights at tuple level
because of SQL. To handle node/edge weights, the tuple-
based approaches assume the existence of a materialized
graph over the database. The memory-consumption of this
materialized graph is small, which we will discuss later.

In this paper, we focus ourselves on the tuple-based ap-
proaches. Like other tuple-based approaches, we assume
the existence of a node/edge weighted graph G(V, E) in the
main memory. Given a l-keyword query, p1, p2, · · · pl, we
study finding top-k minimum cost connected trees that con-
tain all l keywords at least once in the database graph. We
use GST-1 to denote the minimum cost connected tree, and
GST-k to denote the top-k minimum cost connected trees.
This problem is also well known as finding (top-k) mini-

mum cost group Steiner tree.

Contributions of this paper: (1) We identify the charac-
teristics of the group Steiner tree problem, for l-keyword
query, over the database graph G, where the numbers of
nodes and edges are n and m. The characteristics are: l
is a small number, and G is a sparse graph with a large
number of nodes. In brief, l � log n, and m � n2. (2)
We propose a parameterized solution, with l as a parame-
ter. We can obtain the optimal GST-1 with the worst-case
time complexity O(3ln + 2l((l + log n)n + m)) and space
complexity of O(2ln). Note: this parameterized algorithm
works efficiently on the condition that l is small, and we
are not solving the problem in a general setting where l can
be any large. (3) We extend our solution to find GST-k in a
progress manner. That is, we needn’t compute/sort all group
Steiner trees and then find GST-k. Our approach outper-
forms existing approaches with high quality and efficiency.
(4) Our approach supports undirected graphs as well as di-
rected graphs, with node/edge weights. We can handle the
class of additive cost functions to score group Steiner trees.

Organization: Section 2 gives problem statement and dis-
cusses the characteristics of the problem. Section 3 reviews
the related work. Section 4 provides a new parameterized
solution for GST-1. It is achieved by a dynamic program-
ming with a best-first strategy. We will also discuss how to
extend it for GST-k solutions and show the advantages of
our algorithms. Discussions on undirected/directed graphs,
weight schema supported, and graph maintenance will also
be given at the end of this section. Experimental studies are
given in Section 5. Finally, Section 6 concludes the paper.

2 Problem Statement

Given an RDBMS, DB, upon a relational schema R with
foreign key references. We define a weighted database
graph, G(V, E), where V is the set of tuples (nodes) in DB,
and E is the set of edges. An edge, (u, v) ∈ E, represents a
foreign key reference between two nodes (tuples), u and v,
if u has a foreign key matches the primary key attributes of
v, or v has a foreign key matches the primary key attributes
of u. The graph is an undirected graph if the direction, ei-
ther from foreign key to primary key or from primary key to
foreign key, is not the main concern. Otherwise, the graph
is a directed graph where there are two edges, (u, v) and
(v, u), in E such that (u, v) �= (v, u). Graph G(V, E) is
weighted, with a node-weight wv(v) for every node v ∈ V
and an edge-weight we(e) for every edge e ∈ E, both of
which are non-negative numbers. Below, we use V (G) and
E(G) to denote the set of nodes and the set of edges of the
graph G, respectively. Let n = |V (G)| and m = |E(G)|.

Consider a l-keyword query, i.e. a set of keywords, p1,
· · · , pl, against a database graph G. There is a set of nodes,
denoted Vi (⊆ V (G)), that contain the keyword pi, for

1-4244-0803-2/07/$20.00 ©2007 IEEE. 837

i = 1, · · · , l. We call Vi a group of the keyword pi or
simply a group. Note: a node is a tuple with several at-
tributes, a node contains a keyword if the keyword appears
in any of the attributes of the corresponding tuple, and a
node may contain several keywords. There are l groups, V1,
· · · , Vl. All groups can be obtained with either the symbol-
table techniques [1] or the full text index techniques [18].
Minimum group Steiner tree problem (GST-1): Given a
l-keyword query, to find the minimum cost connected tree
T , such as V (T) ∩ Vi �= ∅ for i = 1, · · · , l. For brevity, the
cost of such a tree T , is given below.

s(T) =
X

e∈E(T)

we(e) (1)

Here, let N(v) be a set of neighbors of v, and |N(v)| be
the size of N(v). We use we in Eq. (2) to weight edges in
an undirected graph.

we((v, u)) = log2(1 + max{|N(v)|, |N(u)|)} (2)

Note: we((v, u)) = we((u, v)). We use Eq. (3) and Eq. (4),
which were used in [25], to weight edges in a directed
graph. In detail, for a foreign key reference from u to v,
the edge weight for (u, v) is given Eq. (3), and the edge
weight for (v, u) is given Eq. (4).

we((u, v)) = 1 (3)

we((v, u)) = log2(1 + Nin(v)) (4)

where Nin(v) is the number of nodes that reference to v.
We will address how to enhance Eq.(1) to handle node
weights as well as edge weights later in Section 4.4.

The semantic captured by Eq.(2)-(4) is that: If a node
has more neighbors, an edge that is incident on it reflects a
weaker relationship between tuples (see Example 1.1).

Top-k group Steiner tree problem (GST-k): Given a
l-keyword query, to find the top-k minimum cost group
Steiner trees, T1, T2,, · · · , Tk, ranked with a cost function,
s, such as s(T1) � s(T2) � · · · � s(Tk).

Example 1.1 shows an example of GST-2.
In this paper, we study finding GST-1 and GST-k, for a

l-keyword query, upon a database graph G, which is con-
structed from r tables, R1, R2, · · · , Rr, in the underneath
DB. Let n and m be the numbers of nodes and edges in G.
The characteristics of our problem are given in Remark 2.1.

Remark 2.1: 1) n is large, because the number of tu-
ples in the corresponding database is large. 2) l is small
(l � log n), say l = 6, because users do not usually use
many keywords to query. 3) m � n2 (database graph G is
sparse), We explain why G is sparse below. Suppose there is
a foreign key reference from relation Ru (with foreign key)
to Rv (with primary key). A tuple in Ru can reference to at
most one tuple in relation Rv, and can reference to at most
r tuples if the database has r relations in total. Therefore,
m ≤ r ·n, since there are n nodes in total. Note: r � n. �

3 Existing Solutions

In the literature, the group Steiner tree problem, or GST-

1, is proved to be NP-Complete [23] by reducing it to mini-
mum set cover problem. Here, the number of groups, l, and
the graph G(V, E) can be any large. The existing reported
studies aim at approximating the minimum cost of GST-1

within bounded performance ratio. Let Tb be a tree found
by an algorithm, and To be the optimal. The performance

ratio is defined as s(Tb)/s(To) (≥ 1). It is also known that
GST-1 is inapproximable within a constant performance ra-
tio by a polynomial algorithm [20]. The lower bound of
performance ratio is O(ln l) [14].

Table 1 shows performance ratio and time complexity
for GST-1 algorithms. Note O(α) is the time needed to find
all-pairs shortest paths in graph. We discuss them in brief
below. The approximation algorithms can be categorized
into three types: spanning and cleanup, d-star Steiner tree,
and i-level tree.

Spanning and Cleanup: This technique was inspired by
the minimum spanning tree algorithm. It spans a tree Tv

from an arbitrary vertex v in one group step-by-step until it
covers at least one node in every group, and then achieves a
low score tree by cleaning up the redundant vertices.

d-Star Tree or i-Level Tree: The two methods are based
on a metric closure, G+, which is a complete graph of a
graph G where V (G+) = V (G), and the weight of each
edge (u, v) in G+ is equal to the weight-sum on the shortest
path from u to v in G. A d-star tree in graph G+ is a rooted
subtree with depth at most d. A d-star Steiner tree is a d-star
tree containing at least one node from each group Vi (1 ≤
i ≤ l). In [16], Helvig et al. consider a general case, and
use optimal d-star Steiner tree in G+ to approximate Steiner
tree in G. In [5], Bateman et al. consider a special case
d = 2. In [8], Charikar et al. proposed an approximation
algorithm based on i-level tree, which is a similar concept
in a directed graph as d-star tree.

Above, we discussed the solutions to GST-1. As also
pointed in [22], all the algorithms [19, 5, 16, 8, 23] can
not be directly used to compute GST-k, because they all
need to compute/sort all group Steiner trees, in order to find
the minimum cost GST-k. They cannot terminate any early
and report GST-k in a progress manner [22]. Below, we in-
troduce two existing approaches for GST-k, RIU [22], and
BANKS-I [6] and its successor BANKS-II [25].

RIU (Retrieve Information Unit [22]) adopted the spanning
and cleanup strategy as given in [19] to find GST-k incre-
mentally. [22] proposed two spanning strategies, namely,
minimum edge-based strategy and balanced MST strategy.
We denote the former and the latter as RIU-E and RIU-T,
respectively. RIU-E achieves high efficiency but with worse
performance ratio, whereas RIU-T achieves better perfor-
mance ratio at the expenses of low efficiency.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 838

GST-1 Algorithms Methodology Performance Ratio Time Complexity Time Complexity with Fixed l

Reich and Widmayer [23] Spanning and Cleanup unbounded O(l · (m + n log n)) O(m + n log n)
Ihler et al. [19] Spanning and Cleanup O(l) O(l · n · (m + n log n)) O(n · (m + n log n))

Bateman et al. [5] 2-Star Tree O((1 + ln l
2) · √l) O(α + n2 · l2 log l) O(α + n2)

Helvig et al. [16] d-Star Tree O(2d · (2 + ln(2l))l−1 · d√
l) O(α + (n · l)d) O(α + nd)

Charikar et al. [8] i-Level Tree O(i(i − 1)l1/i) O(ni · l2i) O(ni)

RIU [22] Spanning and Cleanup O(l) O(l · n · (m + n log n)) O(n · (m + n log n))

BANKS-I [6], BANKS-II [25] 1-Star Tree O(l) O(n2 log n + n · m) O(n2 log n + n · m)

This paper Dynamic Programming 1 (optimal) O(3ln + 2l((l + log n)n + m)) O(n log n + m)

Table 1. Approximation and Time Complexity of GST-1 Solutions

BANKS-I [6] and BANKS-II [25] studied GST-k over a
weighted directed graph. The techniques used can sup-
port undirected graphs as well. Both adopted the d-star
tree strategy [16]. In brief, the GST-1 found by BANKS-I

and BANKS-II is a tree constructed by combining shortest-
paths from the leaves to the root in G, each of which is
an edge in metric closure G+. So they actually used the
1-star tree on G+ to approximate GST-1. Moreover, they
used the shortest path strategy to approximate GST-k, un-
der a hypothesis that GST-k are also obtained by combining
shortest-paths form leaves to the root. The main difference
between BANKS-I and BANKS-II is that BANKS-I uses
backward expanding search [6] and BANKS-II uses bidi-
rectional expansion [25] to improve the efficiency. The bidi-
rectional expansion technique reduces the size search space.
But in many cases, BANKS-II produces a low-quality per-
formance ratio than that of BANKS-I, because bidirectional
expansion may miss some shortest paths.

Linear programming: [9, 15] studied linear programming
for approximate GST-1, which is difficult to be used for han-
dling large data graphs.

It is important to note that all the bounds about perfor-
mance ratio listed in Table 1 are for GST-1. It is difficult to
determine the theoretical bounds of performance ratio for
the k-th minimum cost group Steiner tree when k > 1.

4 A New Parameterized Solution

All the reported works deal with GST-1 (or GST-k) for
an approximate solution in a general setting where all n, m
and l can be any large. Let’s reconsider the characteristics
of the problem of l-keyword query processing: n is large,
m � n2, and l is small (l � log n) (Remark 2.1). So in
the time complexity given in Table 1, the l components are
less important (l � log n), but the n components are very
important, even more important than the m components
(m � n2). Regarding the n components (for fixed l), the
time complexity of all the algorithms [19, 5, 16, 8, 9, 15] is
at least O(n2), which makes them difficult to be efficiently
applied to a large graph G with millions of nodes. The ex-
emption is [23], but its performance ratio is unbounded. In
this section, we propose a parameterized algorithm using l
as a parameter. We find the optimal solution (performance

ratio=1) of GST-1 in time O(3ln + 2l((l + log n)n + m)),
treating input size, l, m and n, differently. Our solution can
be easily extended to solve GST-k.

The theory of parameterized complexity is formally pre-
sented in [12]. The fixed-parameter tractability [12] for a
problem of size n, with respect to a parameter l, means it
can be solved in time O(f(l)g(n)), where f(l) can be any
function (like 2l or ll) but g(n) must be polynomial. Such
an algorithm is called parameterized algorithm. In this pa-
per, we treat the number of keywords, l, as a parameter. To
our best knowledge, the minimum Steiner tree problem, as a
special case of the group Steiner tree problem, i.e. |Vi| = 1,
1 ≤ i ≤ l, was proved to be fixed-parameter tractable in
[13]. Our work presented here is the first to prove that the
group Steiner tree problem is fixed-parameter tractable.

Our parameterized algorithm is based on dynamic pro-
gramming because of GST-1’s optimal substructure [11].

Given a l keyword query against a database graph G. Let
P be the entire set of keywords P = {p1, p2, · · · , pl}. We
use p, p1 and p2 to denote a non-empty subset of P such
as p,p1,p2 ⊆ P.

4.1 Naive Dynamic Programming

We give a dynamic programming solution by taking the
heights, h, of trees as stages, and find the optimal GST-1

by expanding the trees with heights h = 0, 1, 2, · · · , un-
til the GST-1 is found. The optimal GST-1 for a subset of
keywords p, with a certain height h, is found from the op-
timal solutions to GST-1, for subsets of keywords p1, such
as p1 ⊆ p, with heights ≤ h.

Let T (v,p, h) be a tree with minimum cost rooted at
node v, with height ≤ h, containing a non-empty set of
keywords p. Every single node v in G containing a non-
empty set of keywords, p (⊆ P), is a rooted tree with zero
height, h = 0. We denote it T (v,p, 0). Such a tree does not
have any edges, and therefore the cost of the tree T (v,p, 0)
is zero (refer to Eq. (1)) as given below.

T (v,p, 0) = 0 (5)

Here, the left side is the tree, and the right side is the cost
of the tree that appears on the left. Note T (v, ∅, 0) = ∞. In
general, the (minimum) cost of T (v,p, h), for any h > 0,

1-4244-0803-2/07/$20.00 ©2007 IEEE. 839

h
u

v
T(v,p,h)

p

T(u,p,h−1)

(a) Tree Grow (Tg)

h

v

v

v

T(v,p,h)

p

p

T(v,p ,h)

T(v,p ,h)

p

2

1

1

2

(b) Tree Merge (Tm)

Figure 2. Optimal Substructure

is given below in Eq. (6).

T (v,p, h) = min{Tg(v,p, h), Tm(v,p, h), T (v,p, h − 1)}
(6)

where

Tg(v, p, h) = min
u∈N(v)

{(v, u) ⊕ T (u, p, h − 1)} (7)

Tm(v, p1 ∪ p2, h) = min
p1∩p2=∅

{T (v, p1, h) ⊕ T (v, p2, h)}(8)

Here ⊕ is an operation to merge two trees into a new
tree, and N(v) is a set of neighbors of v such as N(v) =
{u | (v, u) ∈ E(G)} in the database graph G. As a special
case, if v contains some additional keywords p′, then the
left side of Eq.(7) should be Tg(v,p ∪ p′, h). We explain
Eq. (6)-(8) below.

In Eq. (6), T (v,p, h) is constructed from either
Tg(v,p, h) or Tm(v,p, h). The last term in Eq. (6) is
to explicitly state that T (v,p, h) is the tree with the min-
imum cost among all T (v,p, h′) for h′ ≤ h. If the
cost of Tg(v,p, h) is minimum, T (v,p, h) is constructed
as Tg(v,p, h). Otherwise, T (v,p, h) is constructed as
Tm(v,p, h). Tg(v,p, h) is for a case, called tree grow,
as illustrated in Figure 2 (a), where the degree of the root
is 1; Tm(v,p, h) is for another case, called tree merge,
as illustrated in Figure 2 (b), where a tree is constructed
from the merge of other two trees. Note there are pos-
sible different trees rooted at v which can be grown (or
merged) to T (v,p, h) (or T (v,p1 ∪ p2, h)). Eq. (7)-(8)
request that the cost, s(T (v,p, h − 1)) + we(v, u) (or
s(T (v,p1, h)) + s(T (v,p2, h))), is minimized if there are
alternatives to construct the same tree.

Theorem 4.1: Given an edge-weighted undirected graph
G, and a set of l keywords, P = {p1, p2, · · · , pl}. Let Vi ⊆
V be a group where v ∈ Vi contains pi, for i = 1, · · · , l.
The optimal GST-1 can be computed using Eq. (5) – Eq. (8)
by examining heights h = 0, 1, 2, · · · , dia(G), for all v ∈
V (G) and p ⊆ P. (dia(G) is defined as G’s diameter). �

Theorem 4.1 can be proved by the induction on h and |p|.
The optimal substructure holds as specified in Eq. (5)-(8).
One more point need be clarified: Consider Eq. (7) using
Figure 2(a). The node v may appear in the tree T (u,p, h−
1), and thus (v, u) ⊕ T (u,p, h− 1) contains v twice in the

Algorithm 1 DPH-1

input: database graph G, the set of keywords P, and groups

V1, · · · , Vl

output: GST-1
1: let H be the graph diameter for G;

2: h ← 0;

3: compute T (v,p, 0) for every v ∈ V (G) that contains any

keywords in P (Eq. (5));

4: while h < H do
5: h ← h + 1;

6: for each v ∈ V (G) do
7: T ← {T (v,p, h − 1)};

8: for all possible p, compute Tg(v,p, h) from its neigh-

bors (Eq. (7)), and insert them into T ;

9: compute all possible Tm(v,p1 ∪ p2, h) from two trees

in T (Eq. (8)); and insert the new trees into T ;

10: T (v,p, h) ← minimum cost tree rooted at v and containing

p in T (Eq. (6));

11: sort the costs for all T (v,P, h), for v ∈ V (G);

12: return T (v,P, h) with minimum cost;

1 111

v5 v6

v7 v8

v9
11

4 4 44 4 4

v4v3v2v1

(a) Graph G

1 111
v1 v3 v4

v9

v7 v8

v6v5

v2

44

1 1

(b) Optimal GST-1

Figure 3. An Example

computing process. But if so, there definitely exists a tree
rooted at v which contains v only once with a smaller cost.
Therefore, a node appears only once in the resulting tree
T (v,p, h). It is similar for Eq. (8) and Figure 2(b).

The naive dynamic programming algorithm, for GST-1,
is outlined in Algorithm 1, called DPH-1. It is a straightfor-
ward implementation of Eq. (5)-(8).

Example 4.1: A database graph with edge weights is shown
in Figure 3 (a). Given a 4-keyword query: p1, p2, p3,
p4. Suppose the four nodes, v1, v2, v3, and v4, contain
p1, p2, p3, and p4, respectively. The optimal GST-1 with
cost 14 is shown in Figure 3 (b). Figure 4 (a)-(c) show
the intermediate results based on DPH-1 when h = 0, 1, 2,
and Figure 4 (d) shows the final result. Note: by employ-
ing 1-star tree technique, BANKS-I/II can only find the tree
(v9(v7(v1v2))(v8(v3v4))) with cost 18 as GST-1 answer.

�

Time/Space Complexity: A straightforward implementa-
tion of DPH-1 consumes time O(3ln2 + 2lnm) and space
O(2ln2). To reduce the time complexity to promised
O(3ln + 2l((l + log n)n + m)) and to reduce the space
complexity to O(2ln), we propose DPBF-1 in Section 4.2,
based on DPH-1.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 840

v1 v2 v3 v4

(a) h = 0

1 1
v3 v4

v6

11
v1 v2

v5

v3v1 v2

44

v7

4 4

v4

v8

(b) h = 1

1 111
v1 v2 v3

v7

4 4

v8

v5 v6

v4

(c) h = 2

1 111
v1 v3 v4

v9
v7 v8

v6v5

v2

44

1 1

(d) h = 3

Figure 4. A Naive DP Solution: DPH-1

4.2 A New Best-First DP Solution

The algorithm DPH-1 (Algorithm 1) shows the main idea
of dynamic programming algorithm with which the optimal
GST-1 can be computed. The main problem of DPH-1 is
that it cannot determine whether the current smallest cost
tree, T (v,P, h), containing all keywords P, is the optimal,
until h = H = dia(G) = O(n).

In this section, we present a novel dynamic programming
solution with a best-first strategy. First, it does not rely on
parameter height h. Second, it ensures the optimal GST-1

is the first T (v,P) found containing all keywords. In other
words, with the best-first strategy, the algorithm can termi-
nate when it finds a connected tree containing all keywords.

Eq. (5) – Eq. (8), with height h, are rewritten to Eq. (9)
– Eq. (12), without height h, respectively. In brief, T (v,p)
is a tree with minimum cost, rooted at v, containing a set of
keywords p ⊆ P. Below, Eq. (9) shows that the primitive
trees, T (v,p), which is single node tree, rooted at v, and
contains keyword set p in v, are with a zero cost.

T (v,p) = 0 (9)

Note T (v, ∅) = ∞. Like Eq. (6), Eq. (10) shows the general
case for a tree with more than one nodes.

T (v,p) = min(Tg(v,p), Tm(v,p)) (10)

where Tg(v,p) = min
u∈N(v)

{(v, u) ⊕ T (u,p)} (11)

Tm(v,p1 ∪ p2) = min
p1∩p2=∅

{T (v,p1) ⊕ T (v,p2)} (12)

We omit further explanation because they share high
similarity with Eq. (5)-(8). The only difference is that they
do not specify height h. Again, we can prove the following
theorem by the induction on |p|. The optimal substructure
holds here too.

Theorem 4.2: Given an edge-weighted undirected graph
G, and a set of l keywords, P = {p1, p2, · · · , pl}. Let
Vi ⊆ V be a group where v ∈ Vi contains pi, for i =
1, · · · , l. The optimal GST-1 can be computed using Eq. (9)
– Eq. (12) by examining for all v ∈ V (G) and p ⊆ P. �

Algorithm 2 DPBF-1

input: database graph G, the set of keywords P, and groups

V1, · · · , Vl

output: GST-1
1: Let QT be a priority queue sorted in the increasing order of

costs of trees;

2: QT ← ∅;

3: for each v ∈ V (G) do
4: if v contains keywords p then
5: enqueue T (v,p) into QT ;

6: while QT �= ∅ do
7: dequeue QT to T (v,p);

8: return T (v,p) if p = P;

9: for each u ∈ N(v) do
10: if T (v,p) ⊕ (v, u) < T (u,p) then
11: T (u,p) ← T (v,p) ⊕ (v, u);

12: update QT with the new T (u,p);

13: p1 ← p;

14: for each p2 s.t. p1 ∩ p2 = ∅ do
15: if T (v,p1) ⊕ T (v,p2) < T (v,p1 ∪ p2) then
16: T (v,p1 ∪ p2) ← T (v,p1) ⊕ T (v,p2);

17: update QT with the new T (v,p1 ∪ p2);

4.2.1 Efficient Algorithm

Based on (9)-(12), we outline the best-first strategy dynamic
programming algorithm, called DPBF-1, in Algorithm 2.

In DPBF-1, for simplicity and brevity, we use T (v,p)
for the tree structure and its cost. Recall in Eq. (9) –
Eq. (12), the left side is the tree whereas the right side is the
cost of the tree. We will also make it clear in due course.

DPBF-1 maintains trees in a priority queue QT , by the
increasing order of costs of trees. The smallest cost tree is
maintained at the top of the queue QT . The queue is ma-
nipulated with three operators: Enqueue, Dequeue, and Up-

date. Enqueue inserts a tree T (v,p) into the queue QT and
QT is updated to maintain the increasing order of costs of
trees. Dequeue remove the top tree T (v,p) in QT . Update

operation first enqueues T (v,p) if it does not exist in QT ,
and update QT to maintain the increasing order of costs.

Remark 4.3: Let T (v,p) be the tree at the top of QT . It
is important to know that T (v,p) is with the minimum cost
among all trees rooted at v, containing the same set of key-
words p. Because tree grow and tree merge can only get
trees with larger costs. Eq. (10) is ensured by QT . �

Initialization and Outline: In DPBF-1, it first initializes
QT to be empty (line 2). In line 3-5, it enqueues T (v,p)
into QT if node v contains a subset of keywords p (⊆ P)
(Eq. (9)). While the queue QT is non-empty, in line 6-17,
the algorithm repeats to dequeue/enqueue in the attempt to
make all trees grow/merge individually to reach GST-1. It
dequeues the top tree T (v,p) from QT , which is with the
smallest cost in all trees in QT . Note: T (v,p) is rooted at

1-4244-0803-2/07/$20.00 ©2007 IEEE. 841

v1 v2 v3 v4
(a)

v1

v5

1

v2

v5

1

v3

v6

1

v4

v6

1 4

v7

v1

4

v7

v2

4

v8

v3

4

v8

v4
(b)

v5

1

v1 v2

1

v3

1

v6

v4

1

(c)

1 1

v7

4
v5

1 1
v6

4

v8

v1 v2 v3 v4v1

4

v7

v2

4

v7

v3

4

v8

v4

4

v8

(d)

v1 v2

v7

v3 v4

v8

4 4 4 4

(e)

v3

1

v4

1
v6

4

v81
v9

1

v2

1

v7

4
v5

1

v1

v9

(f)

1

v1 v2

1

4
v5

1

v3

1

v4

1
v6

4

v9
1 v8v7

(g)

Figure 5. A Best-First DP Solution: DPBF-1

node v. If T (v,p) contains the entire set of keywords P
(p = P), the algorithm will return T (v,p) and terminate
(line 8: T (v,p) is optimal here because of Remark 4.3).

Tree Grow: In line 9-12, the algorithm considers the neigh-
bors, u, of the node v, which is the root of the tree T (v,p)
just dequeued. It attempts to reduce the cost of trees rooted
at u, by utilizing the cost information associated with the
keywords p that T (v,p) has. Here, a neighbor u ∈ N(v)
may or may not contain keywords. First consider the case
when u does not contain any keywords: In line 10, it checks
if the tree T (v,p) ⊕ (v, u) has a smaller cost than T (u,p).
If yes, the tree T (u,p) will be updated to T (v,p) ⊕ (u, v),
and the cost of T (u,p) becomes smaller. Note T (u,p) may
or may not exist in QT . If not, T (u,p) = T (v,p)⊕(u, v) is
enqueued into QT . Then QT will be updated. In both cases,
QT ensures the increasing order of costs. The case when u
does contain some keywords p′ is similar. The line 9-12
handles the case of tree grow (Eq. (11)).

Tree Merge: The case of tree merge (Eq. (12)) is handled
in line 13-17. There are many trees rooted at the same node
v containing different subsets of keywords, p1, p2, the al-
gorithm considers every possible disjoint pair of p1 and p2,
and tries to reduce the cost of T (v,p1 ∪ p2). In line 15,
it checks if the tree T (v,p1) ⊕ T (v,p2) has a smaller cost
than T (v,p1∪p2). If yes, the tree T (v,p1∪p2) will be up-
dated to T (v,p1)⊕T (v,p2), and the cost of T (v,p1∪p2)
becomes smaller. Note T (v,p1 ∪p2) may or may not exist
in QT . If not, T (v,p1 ∪ p2) = T (v,p1) ⊕ T (v,p2) is en-
queued into QT . Then QT will be updated. In both cases,
QT ensures the increasing order of costs.

Example 4.2: We explain DPBF-1 (Algorithm 2) with the
same database graph in Figure 3 and keywords as Example
4.1. Recall the a 4-keyword query {p1, p2, p3, p4}. And 4
nodes, v1, v2, v3, and v4, contain the four distinctive key-
words, p1, p2, p3, and p4, respectively.

As shown in Figure 5 (a), after line 3-5 of DPBF-

1, QT maintains four trees, T (v1, {p1}), T (v2, {p2}),
T (v3, {p3}), and T (v4, {p4}). Their costs are zero, because
they do not have edges (Eq. (9)). Figure 5 (b) shows QT af-
ter the first 4 iterations of the while statement in DPBF-1.
Here, all 4 trees in Figure 5 (a) are dequeued, and 8 new
trees are enqueued into QT based on the case of tree-grow.
Their costs are 1, 1, 1, 1, 4, 4, 4, and 4. Figure 5 (c) shows
the first two trees of QT after the next 4 iterations of the
while statement. They are enqueued into QT based on the
case of tree merge, after the first 4 trees in QT (Figure 5 (b))
are dequeued. The costs of the trees in Figure 5 (c) are both
2, so they are ranked as the first two in QT . Figure 5 (d)
shows the first 6 trees in QT after the next 2 iterations. Here,
the first 4 trees in Figure 5 (d) are the 5-th to 8-th trees in
Figure 5 (b), and the last trees in Figure 5 (d) are newly con-
structed from the 2 trees in 5 (c) based on the case of tree
grow. Figure 5 (e) shows the trees constructed from the first
4 trees in QT (Figure 5 (d)) in the next 4 iterations based
on the case of tree merge. But they are not enqueued into
QT , because they have higher costs than the 5-th and 6-th
trees in Figure 5 (d). Note: they share the same roots and
contain the same keywords. Figure 5 (f)-(g) show the rest
iterations based on tree grow and tree merge, respectively.
The optimal GST-1 is shown in Figure 5 (g). �

4.2.2 Time/Space Complexities

We analyze the complexity of DPBF-1 in this subsection.

Time Complexity: Let T (v,p) be the minimum cost for
a tree rooted at every v ∈ V (G) containing a subset of
keywords, p ⊆ P where l = |P|. There are totally n
nodes, and 2l subsets of P. So the length of QT will be at
most 2ln. Note: any T (v,p) will be enqueued/dequeued
into/from QT at most once in DPBF-1. With Fibonacci
Heap [11], the cost for enqueue/update and dequeue are
O(1) and O(log 2ln), respectively. The total cost for the de-
queue is O(2ln(l+log n)), for all 2ln number of T (v,p)’s.

Eq. (11) is computed in line 9-12 to minimize T (u,p),
where u ∈ N(v), using the information of T (v,p). The to-
tal number of possible u is bounded by O(|N(v)|) where
|N(v)| is the number of neighbors of v (line 9). The
total number of comparisons in line 10 is bounded by
O(2lΣv∈V |N(v)|) = O(2lm). QT need be updated (in
time O(1)), if a smaller cost for T (u,p) is found in line 10.
So the total time needed for line 9-12 is O(2lm).

Eq. (12) is computed in line 13-17 to minimize T (u,p1∪
p2). for every pair of non-empty disjoint p1 and p1. Let p1

be p of T (v,p) dequeued in this iteration. With T (v,p1) in
hand, it enumerates T (v,p2). If a lower cost of T (v,p1 ∪
p2) is found (line 15), QT is updated. The total number
of possible p2 is bounded by O(2l−|p1|), so the number of
comparisons in line 15 is bounded by O(n

∑l
i=0

(
l
i

)
2l−i) =

O(3ln). Because the time needed by an update of QT is

1-4244-0803-2/07/$20.00 ©2007 IEEE. 842

O(1), the total time needed for line 13-17 is O(3ln).
So the time complexity is O(3ln+2l((l+log n)n+m)).

Space Complexity: T (v,p) represents a subtree in G. But,
we do not need to store the whole tree in memory. We only
need to record the edge (v, u) from which Tg(v,p) is con-
structed, and record p1 and p2 with which Tm(v,p1∪p2) is
constructed. T (v,p) can be reconstructed recursively when
needed. Therefore, the space needed for T (v,p) is bounded
by O(1), and the total space required to store T (v,p) if
bounded by O(2ln). The maximum size of QT is also
bounded by O(2ln). So the space complexity is O(2ln).

4.3 Finding GST-k

To compute GST-k, we propose algorithm DPBF-k, by
just replacing line 8 in DPBF-1 with:

if p = P then
output T (v,p); i ← i + 1;

terminate if i = k;

Here, i is initialized as 0. DPBF-k reports approximate
answers for GST-k where k > 1, but the first one, T1 is
promised to be optimal. Moreover, due to the nature that
the smallest cost tree is always kept at the top of the prior-
ity queue QT in DPBF-1, we can find T1, T2, ... Tk in the
increasing order of cost, i.e. s(T1) � s(T2) � · · · � s(Tk),
for GST-k. So no sorting is needed. The time complexity
and space complexity for solving GST-k is the same as to
solving GST-1, because the worst case for solving GST-1 is
to search all possible trees which is the same as for GST-k.

4.4 Discussions

Handling Directed Graph: Our algorithm can compute
GST-k over a directed graph as well as undirected graphs
as shown in our experimental studies. The only place that
we need to change for dealing with directed graph is the
treatment of neighbors in algorithm DPBF-1/k. To han-
dle a directed graph G, N(v) needs be refined as N(v) =
{u | (v, u) ∈ E(G)}, where E(G) is a set of ordered pairs.

Graph Size and Graph Maintenance: As other tuple-
based approaches [6, 25], we assume the existence of a
materialized database graph G(V, E) in memory. For each
node and edge in G, we only maintain the IDs of relevant
tuples in the main memory, and based on Remark 2.1, G
is sparse. So the memory consumption for the materialized
database graph G is small. Consider a real database graph
G for DBLP in year 2004 [21]. The number of nodes is
n = 1900K, and the number of edges is m = 5400K. The
memory for the materialized graph G is less than 34MB.

Moreover, the database graph can be maintained dynam-
ically using two additional hash structures, a node-hash Hv

and an edge-hash He. The point is: when database is up-
dated, the materialized database graph in the memory can
be also updated with nearly zero cost.
Cost Functions: Suppose the database graph G is a
node/edge-weighted graph. Let wv(v) and we(e) be a node-
weight and edge-weight for a node v, and an edge e in
G. DPBF-1/k can support any additive cost function s′(T)
in the form shown in Eq. (13)-(15), and any nonnegative
weights wv(v) and we(e).

s′(T) = (1 − λ) · s′v(T) + λ · s′e(T). (13)

Here, the total costs for nodes and edges, s′v(T) and s′e(T),
must be additive. And λ ∈ [0, 1]. For example,

s′v(T) =
X

v∈V (T)∩V
wv(v) (14)

s′e(T) =
X

e∈E(T)

we(e) (15)

Here, s′v(T) is the total node weight of those nodes in T
that also appear in V , where V is the set of nodes in G
that contain at least a keyword. And s′e(T) is the total edge
weight in T . Note Eq. (1) is a special case of Eq. (13) with
λ = 1. Handling node-weight in GST-1 (or GST-k) does
not increase the complexity, as can be sensed in the discus-
sions in Section 4.1. Node weights can be assigned using
the approaches given in [7, 4].

5 Experimental Studies

We conducted extensive experimental studies to compare
our parameterized solution, DPBF, with four algorithms,
namely, BANKS-I [6], BANKS-II [25], RIU-E [22], and
RIU-T [22]. We implemented all algorithms using C++.
We used the default values of the parameters in the exist-
ing work, and tuned the parameters to get the better results,
when needed.

We report our findings, using the total edge-weight of a
tree as the cost (Eq. (1)), over undirected/directed graphs.
All algorithms use the same weight scheme. Due to space
limit, we do not report the tests on node/edge-weighted
graphs, because they show the similarity with those on
edge-weighted graphs. We do not report our DPH-1, be-
cause DPBF outperforms DPH-1. We do not compare our
results with the work in [19, 5, 16, 8, 9, 15], because their
time complexity is higher than O(n2), which make them
difficult to handle large database graphs.

We conducted all tests on a 3.4GHz CPU and 2G mem-
ory PC running XP. For each test, we selected at least 20
keyword queries, and report Processing Time (msec), Mem-

ory Consumption (in terms of the number of nodes), and
Cost (the total edge-weight), on average.

We used two real datasets, DBLP [21] and MDB [24]. The
database schema of DBLP is outlined in Figure 1 (a). DBLP

1-4244-0803-2/07/$20.00 ©2007 IEEE. 843

10

40

160

640

2560

10240

100 300 500 700 900 1100 1300 1500 1700 1900

T
im

e
 (

m
s
e

c
)

Number of Nodes

BANKS-I
BANKS-II

DPBF
RIU-E

(a) Time

40000

80000

160000

320000

640000

1.28e+06

100 300 500 700 900 11001300150017001900

M
e

m
o

ry
 (

N
o

.
o

f
N

o
d

e
s
)

Number of Nodes

BANKS-I
BANKS-II

DPBF
RIU-E

(b) Memory

20

40

60

80

100

120

100 300 500 700 900 1100 1300 1500 1700 1900

C
o

s
t

Number of Nodes

BANKS-I
BANKS-II

DPBF
RIU-E

(c) Cost

Figure 6. Scalability over Undirected Graphs

100

200

400

800

1600

3200

6400

12800

25600

100 300 500 700 900 1100 1300 1500 1700 1900

T
im

e
 (

m
s
e

c
)

Number of Nodes

BANKS-I
BANKS-II

DPBF

(a) Time

10000

20000

40000

80000

160000

320000

640000

1.28e+06

100 300 500 700 900 11001300150017001900

M
e

m
o

ry
 (

N
o

.
o

f
N

o
d

e
s
)

Number of Nodes

BANKS-I
BANKS-II

DPBF

(b) Memory

2

4

6

8

10

12

14

16

18

20

100 300 500 700 900 1100 1300 1500 1700 1900

C
o

s
t

Number of Nodes

BANKS-I
BANKS-II

DPBF

(c) Cost

Figure 7. Scalability over Directed Graphs

consists of 1, 900K records for research papers archived up
to year 2004. MDB consists of 1 million records for a movie
recommendation system. It contains of 2,811,983 ratings
entered by 72,916 users for 1,628 different movies.

Exp-1 (Scalability): We first conducted a scalability test,
because it is critical whether an algorithm can compute
GST-1 for a large graph. We divide DBLP into 10 datasets,
namely, 100K (up to 1982), 300K (up to 1987), 500K (up
to 1993), 700K (up to 1996), 900K (up to 1997), 1100K (up
to 1999), 1300K (up to 2000), 1500K (up to 2001), 1700K
(up to 2002), and 1900K (up to 2004). We construct 10
edge-weighted undirected/directed graphs correspondingly,
and then randomly select 20 4-keyword queries.

Results of tests on 10 undirected graphs are shown in
Figure 6, RIU-E is the best in terms of processing time
and is the worst in terms of cost, because it uses a sim-
ple heuristics to select edges when expanding. On the other
hand, BANKS-I is the worst in terms of processing time
but computes GST-1 with a small average cost, which is
very close to the optimal. BANKS-II significantly improves
the efficiency of BANKS-I, but produces a larger average
cost. Overall, our DPBF finds the optimal GST-1, and out-
performs BANKS-I and BANKS-II in terms of processing
time. As shown in Figure 6 (b), our DPBF consumes less
memory than that of BANKS-I.

Results of tests on 10 directed graphs are shown in Fig-
ure 7. DPBF finds the optimal GST-1, and outperforms
BANKS-I/II. We do not report RIU-E in Figure 7, because
of its large average cost obtained (see Figure 6).

We do not include RIU-T in Figure 6-7, because it con-
sumes much more processing time and memory than others
to compute GST-1 when the graph is large. For 300K, RIU-

T takes more than 5 minutes for a 4-keyword query.
In the following experiments, we use the dataset 500K

to test other settings, which is in favor of BANKS-I, be-
cause the processing time of BANKS-I increases signifi-

1

10

100

1000

10000

2 3 4 5 6

T
im

e
 (

m
s
e

c
)

Number of Keywords

BANKS-I
BANKS-II

DPBF
RIU-E

(a) Time

10000

100000

1e+06

2 3 4 5 6

M
e

m
o

ry
 (

N
o

.
o

f
N

o
d

e
s
)

Number of Keywords

BANKS-I
BANKS-II

DPBF
RIU-E

(b) Memory

0

50

100

2 3 4 5 6

C
o

s
t

Number of Keywords

BANKS-I
BANKS-II

DPBF
RIU-E

(c) Cost

Figure 8. Varying l (Undirected Graph)

10

100

1000

1 3 5 10 20 40

T
im

e
 (

m
s
e

c
)

k

BANKS-I
BANKS-II

DPBF
RIU-E

(a) Time

100000

200000

400000

800000

1 3 5 10 20 40

M
e

m
o

ry
 (

N
o

.
o

f
N

o
d

e
s
)

k

BANKS-I
BANKS-II

DPBF
RIU-E

(b) Memory

0

40

80

120

160

1 3 5 10 20 40

C
o

s
t

k

BANKS-I
BANKS-II

DPBF
RIU-E

(c) Cost

Figure 9. Varying k (Undirected Graph)

cantly, when the number of nodes is large. We do not report
our finding for the edge-weighted directed graph, because
they show the similar results as those for undirected graphs.

Exp-2 (Keywords): We vary the number of keywords l,
from 2 to 6, to compute GST-1. For each l value, we
randomly generate 100 queries to test. Results are shown
in Figure 8. DPBF finds the optimal GST-1, and outper-
forms BANKS-I, BANKS-II and RIU-E in terms of cost.
As shown in Figure 8, the processing time of DPBF is not
significantly affected by l value, except a jump from l = 2
to 3. It is because, when l = 2, GST-1 becomes the shortest
path problem, can be solved by DPBF efficiently. Afterward
processing time does not increase much while l increases.
It indicates that our DPBF can support most user keyword
queries when l is of a reasonable number.

We also test l-keyword queries of different keyword pat-
terns (keywords are with low/medial/high frequency). It is
found that, with low frequency keywords, the average cost
is higher than those with high frequency keywords, and the
processing time is longer. It is because that with low fre-
quency keywords, the probability of obtaining a large GST-

1 is high. In Figure 8, the 100 queries are selected uniformly
from different patterns.

Exp-3 (GST-k): We test GST-k, using the same 100
randomly-generated 4-keyword queries, that we used in
Exp-2. We vary k from 1, 3,... to 40, and report our results
in Figure 9. From Figure 9 (a), all algorithms to be tested
can compute GST-k in a progressive manner, and the pro-
cessing time is not much more than computing GST-1. Our
DPBF outperforms the others in terms of cost, and DPBF

outperforms BANKS-I/II in terms of processing time.

Exp-4 (MDB(Directed Graph)): We test MDB dataset [24]
as an edge-weighted directed graph. We first vary the num-
ber of keywords, l, from 2 to 6, using 100 randomly gener-
ated l-keyword queries, for each l. The results are shown in
Figure 10. Then, we fixed l = 4, and randomly generated

1-4244-0803-2/07/$20.00 ©2007 IEEE. 844

40

160

640

2560

2 3 4 5 6

T
im

e
 (

m
s
e

c
)

Number of Keywords

BANKS-I
BANKS-II

DPBF

(a) Time

15000

30000

60000

120000

240000

2 3 4 5 6

M
e

m
o

ry
 (

N
o

.
o

f
N

o
d

e
s
)

Number of Keywords

BANKS-I
BANKS-II

DPBF

(b) Memory

0

2

4

6

8

2 3 4 5 6

C
o

s
t

Number of Keywords

BANKS-I
BANKS-II

DPBF

(c) Cost

Figure 10. Varying l (MDB)

100

200

400

800

1600

3200

1 3 5 10 20 40

T
im

e
 (

m
s
e

c
)

k

BANKS-I
BANKS-II

DPBF

(a) Time

10000

20000

40000

80000

160000

320000

1 3 5 10 20 40

M
e

m
o

ry
 (

N
o

.
o

f
N

o
d

e
s
)

k

BANKS-I
BANKS-II

DPBF

(b) Memory

0

2

4

6

8

1 3 5 10 20 40

C
o

s
t

k

BANKS-I
BANKS-II

DPBF

(c) Cost

Figure 11. Varying k (MDB)

100 4-keyword queries to test GST-k, for k = 1, 3, ...40.
The results are shown in Figure 11. We obtain similar re-
sults. Our DPBF outperforms the others in terms of both
cost and processing time.

6 Conclusion

In this paper, we studied finding top-k minimum cost
group Steiner trees, denoted GST-k, for l-keyword queries,
in a relational database which can be modeled as a graph G,
with n nodes and m edges. We observed that l is small, and
proposed a new novel parameterized solution to find the op-
timal GST-1 with time complexity O(3ln+2l((l+log n)n+
m)) and space complexity O(2l · n). We conducted exten-
sive studies over large undirected/directed graphs, and con-
firmed that our algorithm can obtain the optimal GST-1 with
high efficiency, and achieve high quality (low performance
ratio) and high efficiency for computing GST-k.

Acknowledgment: This work was supported by a grant
of the Research Grants Council of the Hong Kong SAR,
China (No. 418206), ARC discovery grant (DP0666428),
UNSW FRG (RGP, PS08709), and the Research Grants of
NSFC (No. 60473069, 60496325).

References

[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A sys-

tem for keyword-based search over relational databases. In

Proc. of ICDE’02, 2002.

[2] S. Amer-Yahia, P. Case, T. Rölleke, J. Shanmugasundaram,

and G. Weikum. Report on the db/ir panel at SIGMOD 2005.

SIGMOD Record, 34(4), 2005.

[3] R. Baeza-Yates and M. Consens. The continued saga of DB-

IR integration. In Proc. of VLDB’04 (tutorial), 2004.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec-

trank: Authority-based keyword search in databases. In

Proc. of VLDB’04, 2004.

[5] C. D. Bateman, C. S. Helvig, G. Robins, and A. Zelikovsky.

Provably good routing tree construction with multi-port ter-

minals. In Proc. of ISPD’97, 1997.

[6] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and

S. Sudarshan. Keyword searching and browsing in databases

using banks. In Proc. of ICDE’02, 2002.

[7] S. Brin and L. Page. The anatomy of a large-scale hyper-

textual web search engine. Computer Networks, 30(1-7),

1998.

[8] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel,

S. Guha, and M. Li. Approximation algorithms for directed

steiner problems. Journal of Algorithms, 33(1), 1999.

[9] M. Charikar, C. Chekuri, A. Goel, and S. Guha. Rounding

via trees: Deterministic approximation algorithms for group

steiner trees and k-median. In Proc. of STOC’98, 1998.

[10] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrat-

ing DB and IR techniques: What is the sound of one hand

clapping? In Proc. of CIDR’05, 2005.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivesi, and Clifford.

Introduction to Algorithm (2nd Edition). The MIT Press,

USA, 2001.

[12] R. G. Downey and M. R. Fellows. Parameterized Complex-

ity. Springer, 1999.

[13] S. Dreyfus and R. Wagner. The steiner problem in graphs.

Networks, 1(1), 1972.

[14] U. Feige. A threshold of ln n for approximating set cover.

Journal of ACM, 45(4), 1998.

[15] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic ap-

proximation algorithm for the group steiner tree problem. In

Proc. of SODA’98, 1998.

[16] C. Helvig, B. Robins, and A. Zelikovsky. Improved approx-

imation bounds for the group steiner problem. Networks,

37(1), 2001.

[17] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient

IR-style keyword search over relational databases. In Proc.

of VLDB’03, 2003.

[18] V. Hristidis and Y. Papakonstantinou. DISCOVER: Key-

word search in relational databases. In Proc. of VLDB’02,

2002.

[19] E. Ihler. Bounds on the quality of approximate solutions to

the group steiner problem. In Proc. of WG’90, 1990.

[20] E. Ihler. The complexity of approximating the class steiner

tree problem. Technical report of Institut fur Informatik,

Universitat Freiburg, 1991.

[21] M. Ley. DBLP: Computer Science Bibliography. http:
//dblp.uni-trier.de/xml/.

[22] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Query relax-

ation by structure and semantics for retrieval of logical web

documents. IEEE Trans. Knowl. Data Eng., 14(4), 2002.

[23] G. Reich and P. Widmayer. Beyond steiner’s problem: A

vlsi oriented generalization. In Proc. of WG’89, 1989.

[24] J. Riedl and J. Konstan. MoveLens. http://www.cs.
umn.edu/Research/GroupLens.

[25] K. Varun, P. Shashank, C. Soumen, S. Sudarshan, D. Rushi,

and K. Hrishikesh. Bidirectional expansion for keyword

search on graph databases. In Proc. of VLDB’05, 2005.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 845

