Finding Two Disjoint Paths Between Two Pairs of Vertices in a Graph

Y. PERL
Bar-Ilan Universty, Ramat-Gan, Israel
AND
Y. SHILOACH
Weizmann Institute of Science, Rehovot, Israel

Abstract

Given a graph $G=(V, E)$ and four vertices s_{1}, t_{1}, s_{2}, and t_{2}, the problem of finding two disjoint paths, P_{1} from s_{1} to t_{1} and P_{2} from s_{2} to t_{2}, is considered This problem may arise as a transportation network problem and in printed carcuits routing The relations between several versions of the problem are discussed Efficient algonthms are given for the following special cases-acychc directed graphs and 3-connected planar and chordal graphs.

key words and phrases: graph algorithms, disjoint paths, pairs of vertices, efficiency of algorithms, connectivity, planar graphs, chordal graphs, acyclic directed graphs, polynomial reductions, transportation networks, routing
cr categories: $525,5.32$

1. Introduction

Given a graph $G=(V, E)$ and four vertices $s_{1}, t_{1}, s_{2}, t_{2} \in V$, we consider the problem of finding two disjoint paths, $P_{1}\left(s_{1}, t_{1}\right)$ from s_{1} to t_{1} and $P_{2}\left(s_{2}, t_{2}\right)$ from s_{2} to t_{2}.
This problem has four versions corresponding to the following cases: G is a directed/ undirected graph and the paths are vertex-disjoint/edge-disjoint. The problem in general is denoted by $P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$ or by $P 2$ when G and $s_{1}, t_{1}, s_{2}, t_{2}$ have already been specified. The letters D and U indicate whether we deal with directed or undirected graphs respectively, while V and E stand for vertex-disjoint and edgedisjoint paths, respectively. For example $D V P 2$ denotes the problem $P 2$ for directed graphs and vertex-disjoint directed paths. We also use the notation $P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$ for the predicate "There exist two disjoint paths in $G, P_{1}\left(s_{1}, t_{1}\right)$ and $P_{2}\left(s_{2}, t_{2}\right)$." $\neg P 2\left(s_{1}\right.$, $\left.t_{1} ; s_{2}, t_{2} ; G\right)$ is the negation of this predicate.

The more general problem of finding $k+1$ pairwise edge (vertex) disjoint paths, k paths between s_{1} and t_{1} and one path between s_{2} and t_{2}, is shown by Even, Itai, and Shamir [1] to be NP-complete. Actually another general problem of finding k pairwise disjoint paths between k pairs of vertices $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$, respectively, is also NP-complete. This can be shown by reduction from the previous problem to the last one where $k+1$ pairwise disjoint paths are required between the $k+1$ pairs of vertices $\left(s_{1}, t_{1}\right),\left(s_{1}, t_{1}\right), \ldots,\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)$.

In Section 2 we present polynomial reductions between several pairs of these four problems, and their relation to connectivity is discussed.

[^0]In Section 3 we solve $D V P 2$ for acyclic directed graphs in $O(|V| \cdot|E|)$ operations.
$U V P 2$ is solved for 3-connected planar graphs and 3-connected chordal graphs in $O(|E|)$ operations in Sections 4 and 5 , respectively.

Itai [6] showed that the problem for a planar or a chordal graph G which is not 3connected can also be solved in $O(|E|)$ operations by reducing the problem into several separate problems for the 3 -connected components of G. He makes use of Hopcroft and Tarjan's algorthm [4] for the decomposition of a graph into 3-connected components in $O(|E|)$ operations.

2. Reductions and Relation to Connectivity

Let $P_{1} \propto P_{2}$ denote that P_{1} is polynomially reducible to P_{2}. For the exact definition of polynomial reducibility, see [7].

Theorem 2.1. $D V P 2 \propto D E P 2$.
Proof Given a directed graph $G=(V, E)$, we define $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows:

$$
V^{\prime}=\cup_{v \in v}\left\{v^{\prime}, v^{\prime \prime}\right\} ; \quad E^{\prime}=\left\{v^{\prime} \rightarrow v^{\prime \prime} \mid v \in V\right\} \cup\left\{u^{\prime \prime} \rightarrow v^{\prime} \mid u \rightarrow v \in E\right\} .
$$

Let $P=\left(v_{1}, \ldots, v_{m}\right)$ be a directed path in G. Its corresponding directed path P^{\prime} in G^{\prime} is $\left(v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime}, v_{2}^{\prime \prime}, \ldots, v_{m}^{\prime}, v_{m}^{\prime \prime}\right)$. One can easily verify that two directed paths P_{1} and P_{2} in G are vertex-disjoint iff P_{1}^{\prime} and P_{2}^{\prime} are edge-disjoint in G^{\prime}. Q.E.D.
Theorem 2.2 DEP2 α DVP2.
Proof. Given are $G=(V, E)$ and $s_{1}, s_{2}, t_{1}, t_{2} \in V$. Add to G a vertex u and 4 edges, $u \rightarrow s_{1}, u \rightarrow s_{2}, t_{1} \rightarrow u, t_{2} \rightarrow u$, obtaining a graph G^{\prime}. Let $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ denote the directed line graph of $G^{\prime}[3]$, and let $a, b, c, d \in V^{\prime \prime}$ correspond to the additional edges of G^{\prime}, respectively. Obviously

$$
D E P 2\left(s_{1}, t_{1}, s_{2}, t_{2} ; G\right) \leftrightarrow D V P 2\left(a, c ; b, d ; G^{\prime \prime}\right)
$$

Q.E.D.

Theorem 2.3. $\quad U V P 2 \alpha D V P 2$.
Proof. Each undirected edge $u-v$ is replaced by the pair $u \rightarrow v$ and $v \rightarrow u$. Q.E.D.

Theorem 2.4. UEP2 $\alpha U V P 2$.
Proof. If there are two vertex disjoint paths $P_{1}\left(s_{1}, t_{1}\right)$ and $P_{2}\left(s_{2}, t_{2}\right)$ they can be found by a $U V P 2$ algorithm. Let G^{\prime} be the graph obtained from G by adding one vertex v and connectung it by four edges to s_{1}, t_{1}, s_{2}, and t_{2}. If there are two edgedisjoint paths $P_{1}\left(s_{1}, t_{1}\right)$ and $P_{2}\left(s_{2}, t_{2}\right)$ which are not vertex-disjoint, they have a common vertex u

Claim. Such P_{1} and P_{2} exist iff there exists a vertex u in G and four edge-disjoint paths connecting u and v in G^{\prime}.

The proof is trivial.
In order to find P_{1} and P_{2} we choose a vertex u in G and search for four such paths using flow techniques (see, for example, [2]). This process is applied at most $|V|$ tımes. Q.E.D.

Theorems 2.1-2.4 can be summarized by

$$
U E P 2 \propto U V P 2 \propto D V P 2 \equiv D E P 2 .
$$

$P 2$ and Connectivity

Theorem 2.5. If G is a 3-edge-connected undirected graph then UEP2 $\left(s_{1}, t_{1} ; s_{2}, t_{2}\right.$; G) is true for any choice of s_{1}, t_{1}, s_{2}, and t_{2}.

Proof. There exist three edge-disjoint paths $P_{1}\left(s_{1}, t_{1}\right), P_{2}\left(s_{1}, s_{2}\right), P_{3}\left(s_{1}, t_{2}\right)$ in G. (This is a variant of Menger's theorem.) P_{2} and P_{3} form a path $P\left(s_{2}, t_{2}\right)$ which is edgedisjoint to P_{1}. Q.E.D.

The relation between vertex connectivity and UVP2 is discussed in several papers (see [8, 11]). It is shown in [11] that 5 -vertex-connectivity does not assure UVP2. It is
conjectured there that 6 -connectivity and even 4 -connectivity with nonplanarity imply UVP2.

There are similar problems concerning DVP2 and DEP2. One of the most interesting is: What are the minimal values of K_{1} and K_{2} such that vertex strong K_{1}-connectivity implies $D V P 2$ and edge strong K_{2}-connectivity implies $D E P 2$? It is shown in Figure 1 that $K_{1} \geq 3$.

3. Acyclic Directed Graphs

In this section we present an $O(|V| \cdot|E|)$ algorithm solving DVP2 for acyclic directed graphs.

An edge which emanates from t_{1} or t_{2} cannot participate in any solution to $\boldsymbol{P 2}$. Thus we may delete such edges from G and assume t_{1} and t_{2} are sinks in G. For each $v \in V$ define the level $l(v)$ as the length of a longest path emanating from v. $l(v)$ can be efficiently determined by the familiar process of a successive deletion of all the sinks of the graph at a time.
Let $\bar{G}=(\bar{V}, \bar{E})$ be defined by:

$$
\begin{gathered}
\bar{V}=\{\langle u, v\rangle \mid u, v \in V \text { and } u \neq v\}, \\
\bar{E}=\{\langle u, v\rangle \rightarrow\langle u, w\rangle \mid v \rightarrow w \in E \text { and } l(v) \geq l(u)\} \\
\quad \cup\{\langle v, u\rangle \rightarrow\langle w, u\rangle \mid v \rightarrow w \in E \text { and } l(v) \geq l(u)\} .
\end{gathered}
$$

Theorem 3.1. $P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$ if and only if there exists a directed path $P\left(\left\langle s_{1}, s_{2}\right\rangle\right.$, $\left.\left\langle t_{1}, t_{2}\right\rangle\right)$ in \bar{G}.

Proof. The "only if" direction: Let $P_{1}\left(s_{1}, t_{1}\right)$ and $P_{2}\left(s_{2}, t_{2}\right)$ be two disjoint paths in G. The proof is by induction on $L\left(P_{1}\right)+L\left(P_{2}\right)$, i.e. the sum of the lengths of P_{1} and P_{2}. If $L\left(P_{1}\right)+L\left(P_{2}\right)=2$ then $P_{1}=\left(s_{1}, t_{1}\right)$ and $P_{2}=\left(s_{2}, t_{2}\right)$. If $l\left(s_{1}\right) \geq l\left(s_{2}\right)$, set $P=\left(\left(s_{1}, s_{2}\right\rangle\right.$, $\left.\left\langle t_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ in \bar{G}. If $l\left(s_{1}\right)<l\left(s_{2}\right)$ then $P=\left(\left\langle s_{1}, s_{2}\right\rangle,\left(s_{1}, t_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ is the desired path in \bar{G}.

Assume that $L\left(P_{1}\right)+L\left(P_{2}\right)>2$. Let $P_{1}=\left(s_{1}=v_{1}, \ldots, v_{k}=t_{1}\right)$ and $P_{2}=\left(s_{1}=w_{1}\right.$, $\left.\ldots, w_{m}=t_{2}\right)$. If $l\left(s_{1}\right) \geq l\left(s_{2}\right)$ then $\left\langle s_{1}, s_{2}\right\rangle \rightarrow\left\langle v_{2}, s_{2}\right\rangle$ is the first edge of P. The rest of P is provided by the inductive hypothesis on the paths $P_{1}^{\prime}=\left(v_{2}, \ldots, v_{k}=t_{1}\right)$ and P_{2}. If $l\left(s_{1}\right)$ $<l\left(s_{2}\right)$, the first edge of P is $\left\langle s_{1}, s_{2}\right\rangle \rightarrow\left\langle s_{1}, w_{2}\right\rangle$ while the rest of it is given again by the inductive hypothesis on P_{1} and $P_{2}^{\prime}=\left(w_{2}, \ldots, w_{m}=t_{2}\right)$. This completes the proof of the "only if" direction.

The "if" direction: The proof is by induction on $L(P)$. If $L(P)=2$ then $s_{1} \rightarrow t_{1} \in E$ and $s_{2} \rightarrow t_{2} \in E$ and $P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$ holds.

If $P=\left(\left\langle s_{1}, s_{2}\right\rangle=\left\langle v_{1}, w_{1}\right\rangle, \ldots,\left\langle v_{k}, w_{k}\right\rangle=\left\langle t_{1}, t_{2}\right\rangle\right)$ then $P_{1}=\left(s_{1}=v_{1}, \ldots, v_{k}=t_{1}\right)$ and $P_{2}=\left(s_{2}=w_{1}, \ldots, w_{k}=t_{2}\right)$ are directed paths from s_{1} to t_{1} and from s_{2} to t_{2}, respectively. Note that the definition of \bar{G} implies that for each $1 \leq i<k$, either $v_{i}=$ ν_{i+1} and $w_{1} \neq w_{i+1}$ or $w_{1}=w_{i+1}$ and $\nu_{1} \neq v_{i+1}$. Thus $L\left(P_{1}\right)+L\left(P_{2}\right)=L(P)$. If the first edge of P is $\left\langle s_{1}, s_{2}\right\rangle \rightarrow\left\langle v_{1}, s_{2}\right\rangle$, then $l\left(s_{1}\right) \geq l\left(s_{2}\right)$. By the inductive hypothesis, $P_{1}^{\prime}=\left(v_{2}\right.$, $\left.\ldots, v_{k}=t_{1}\right)$ and P_{2} are disjoint. s_{2} is the first vertex of P_{2} and therefore $l\left(w_{j}\right)<l\left(s_{2}\right)$ for $j=2, \ldots, k$. Since $l\left(s_{1}\right) \geq l\left(s_{2}\right)$ and $s_{1} \neq s_{2}, s_{1} \notin P_{2}$ and therefore P_{1} and P_{2} are disjoint. A symmetric argument applies to the case in which $\left\langle s_{1}, s_{2}\right\rangle \rightarrow\left\langle s_{1}, w_{2}\right\rangle$ is the first edge of P. Q.E.D.

Fig. 1

Algorithmic Aspects Generating the graph \bar{G} and finding a path $P\left(\left\langle s_{1}, s_{2}\right\rangle\right.$, $\left.\left\langle t_{1}, t_{2}\right\rangle\right)$ in \bar{G} takes $O(|\bar{E}|)$ operations. $|\bar{E}| \leq 2(|V|-2)|E|$ since each edge $u \rightarrow v \in E$ yields at most $2(|V|-2)$ edges in \bar{G}, namely the edges of the form $\langle w, u\rangle \rightarrow\langle w, v\rangle$ and $\langle u, w\rangle \rightarrow\langle v, w\rangle$ for $w \in V-\{u, v\}$. Thus $P 2$ can be solved by an $O(|V| \cdot|E|)$ algorithm in terms of the original graph $-G$.

4. Planar 3-Connected Graphs

In this section $P 2$ means UVP2.
Theorem 4.1. Let G be a planar graph. If G has a planar representation such that four vertuces $s_{1}, s_{2}, t_{1}, t_{2}$ are on one face F in this cyclic order, then $\neg P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$.

Proof Assume $P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$. Construct a graph G^{\prime} by adding to G a vertex v and 4 edges $\left(v, s_{1}\right),\left(v, s_{2}\right),\left(v, t_{1}\right),\left(v, t_{2}\right)$. The graph G^{\prime} is planar too, since we may place v inside F

The subgraph of G^{\prime} contaning any two disjoint paths $P_{1}\left(s_{1}, t_{1}\right), P_{2}\left(s_{2}, t_{2}\right), F, v$ and its incident edges is contractible to the complete graph K_{5}. (See Figure 2.)

Thus by Kuratowski's theorem (see for example [3]) G^{\prime} is not planar, a contradiction. Q.E.D.

Theorem 4 2. Let G be a planar graph and let $s_{1}, t_{1}, s_{2}, t_{2}$ be four vertices of G. If
(a) the vertices $s_{1}, s_{2}, t_{1}, t_{2}$ are not on one face in this cyclic order in any planar representation of G,
(b) there exist three disjoint paths P_{1}, P_{2}, P_{3} between s_{1} and t_{1} and three disjoint paths Q_{1}, Q_{2}, Q_{3} between s_{2} and t_{2},
then $P 2\left[s_{1}, t_{1} ; s_{2}, t_{2} ; G\right]$
Note that three disjoint paths for each pair are necessary since otherwise s_{1} and $t_{1}\left(s_{2}\right.$ and t_{2}) can disconnect all the Q 's (P 's).

Theorems 4.1 and 42 yield the following theorem.
Theorem 4 3. Let G be a 3-connected planar graph. Then $P 2\left(s_{1}, t_{1}, s_{2}, t_{2} ; G\right)$ uff there exists no planar representation of G in which the vertices $s_{1}, s_{2}, t_{1}, t_{2}$ are on one face in this cyclic order

Proof of Theorem 4.2. We assume to the contrary $\neg P 2$ and conditions (a) and (b) through the following lemmas which establish some order on the paths, which enables us to prove the theorem

Let $P_{1}(u, v)$ and $P_{2}(v, w)$ be two paths. Denote by $P_{1}(u, v) * P_{2}(v, w)$ the path $P(u, w)$ obtained by concatenation of $P_{1}(u, v)$ and $P_{2}(v, w)$

Let u, v belong to a path P; then $P[u ; v]$ denotes the subpath of P between u and v.
Lemma 4.1. We may assume that if for some $1 \leq t, j \leq 3$, (1) $u, v \in Q_{\jmath} \cap P_{\imath}$ and (2) $Q_{[}[u ; v] \cap P_{k}=\varnothing$ for $k \neq i$, then $P_{i}[u ; v]=Q_{j}[u ; v]$.

Proof. Whenever 1 and 2 hold for some $1 \leq \imath, j \leq 3$ but $P_{2}[u ; v] \neq Q_{J}[u ; v]$ we change P_{r} by replacing $P_{[}[u ; v]$ by $Q_{[}[u ; v]$.

Fig 2

Condition 2 implies that the new P_{\imath} is disjoint to P_{k} for $k \neq i$. We still have to prove that this process is finite since, as shown in Figure 6, dealing with such a pair (u, v) may create a new pair (w, z) violating the conditions of the lemma.

A common subpath of P_{\imath} and $Q_{,}$is maximal if it is not a proper subpath of any other common subpath of P_{2} and Q_{3}. (A maximal common subpath may be a single vertex.) The total number of maximal common subpaths of the P_{\imath} and the $Q_{\text {, }}$ is reduced, at least by one, each time such a replacement occurs. Thus, after a finite number of replacements, the lemma holds. Q.E.D.

Henceforth we consider the order of the vertices of each $P_{2}\left(Q_{j}\right)$ with respect to its walk from $s_{1}\left(s_{2}\right)$ to $t_{1}\left(t_{2}\right) . \neg P 2$ implies that every Q, intersects every P_{2}

At least one of the three paths Q_{j} does not contain either s_{1} or t_{1}; assume it is Q_{1}. Assume that Q_{1} intersects the P_{1} for the first time in the order P_{1}, P_{2}, P_{3}; otherwise rename the P_{1}. Let v_{12} and w_{n} denote the first and last vertices on Q_{3} which belong to P_{1}.

Lemma 4.2. The last P-path which intersects Q_{1} is P_{3}.
Proof. Assume the last P-path which intersects Q_{1} is $P_{\imath}, \imath \neq 3$. Then the path

$$
Q_{1}\left[s_{2} ; v_{1,2}\right] * P_{1}\left[v_{1,2} ; w_{1,2}\right] * Q_{1}\left[w_{1,2}, t_{2}\right]
$$

is disjoint to P_{3}-a contradiction to $\neg P 2$. Q.E.D.
Lemma 4.3. Let $v_{1} \in Q_{1} \cap P_{1}, v_{3} \in Q_{1} \cap P_{3}$, then $Q_{1}\left[v_{1}, v_{3}\right]$ intersects P_{2}.
Proof. Assume that $Q_{1}\left[v_{1}, v_{3}\right]$ is disjoint to P_{2}. By Lemma 4.2 $Q_{1}\left[w_{1,3} ; t_{2}\right]$ is disjoint to P_{2}. Thus the path

$$
Q_{1}\left[s_{2} ; v_{1,1}\right] * P_{1}\left[v_{1,1} ; v_{1}\right] * Q_{1}\left[v_{1}, v_{3}\right] * P_{3}\left[v_{3} ; w_{1,3}\right] * Q_{1}\left[w_{1,3} ; t_{2}\right]
$$

is disjoint to $P_{2}-$ a contradiction to $\neg P 2$. Q.E.D.
Lemma 4.4. All the Q_{3} intersect the P_{1} for the first time in the order P_{1}, P_{2}, P_{3}.
Remark. The vertices s_{1} and t_{1} belong to all the P_{1}. In the case where a Q-path passes through s_{1} or t_{1}, it is regarded as intersecting the P_{1} in the order P_{1}, P_{2}, P_{3}.

Proof. The claim is true for Q_{1} by definition We prove it for Q_{2}. The proof for Q_{3} is similar.

Assume that P_{2} is the first P_{1} which intersects Q_{2}. We first show that $Q_{1}\left[w_{1,2} ; t_{2}\right]$ is disjoint to P_{1}. Assume there exists a vertex x such that $x \in Q_{1}\left[w_{1,2} ; t_{2}\right] \cap P_{1}$. Lemma 4.2 implies that there exists a vertex y such that $y \in Q_{1}\left[x ; t_{2}\right] \cap P_{3}$. Lemma 4.3 implies that $Q_{1}[x ; y] \cap P_{2} \neq \varnothing$, contradicting the defintion of $w_{1,2}$. Thus $Q_{1}\left[w_{1,2} ; t_{2}\right] \cap P_{1}=\varnothing$.

Thus the path,

$$
Q_{2}\left[s_{2} ; v_{2,2}\right] * P_{2}\left[v_{2,2} ; w_{1,2}\right] * Q_{1}\left[w_{1,2} ; t_{2}\right]
$$

is disjoint to $P_{1}-$ a contradiction to $\neg P 2$.
Similarly, it can be shown that P_{3} is not the first P_{1} which intersects Q_{2}. Thus the first P_{2} which intersects Q_{2} is P_{1}. In a sımilar way we can show that P_{2} is the second P-path which intersects Q_{2}, completing the proof. Q.E.D.

Lemma 4.5. Lemmas 4.2 and 4.3 are valid for every Q_{0}.
Proof. Implied immediately by Lemma 4.4.
We choose now a planar representation of G such that P_{2} is inside the region R which is bounded by P_{1} and P_{3} (see Figure 3). We assume that the order of $v_{3,1}$ on P_{1} is $v_{1,1}, v_{2,1}, v_{3,1}$ (otherwise renumber the Q_{3}).

Lemma 4.6. The vertices s_{2} and t_{2} are either outside R or on tts boundary.
Proof, Assume that s_{2} is inside R. (The proof for t_{2} is symmetric.) s_{2} is inside the region bounded by P_{1} and P_{2} since all the Q_{j} intersect P_{1} first (Lemma 4.4).

Consider the cycle

$$
C=Q_{1}\left[s_{2} ; v_{1,1}\right] * P_{1}\left[v_{1,1} ; s_{1}\right] * P_{3} * P_{1}\left[t_{1} ; v_{3,1}\right] * Q_{3}\left[v_{3,1} ; s_{2}\right]
$$

(heavy lines in Figure 3). We show that $C \cap Q_{2}\left[\nu_{2,1} ; v_{2,2}\right]=\varnothing$.
Lemma 4.4 implies that $P_{3} \cap Q_{2}\left[v_{2,1} ; v_{2,2}\right]=\varnothing$.
Assume that there exists a vertex $u \in P_{1}\left[v_{1,1} ; s_{1}\right] \cap Q_{2}\left[v_{2,1} ; v_{2,2}\right] . v_{2,2}$ is the first

intersection of Q_{2} with $P_{2} \cup P_{3}$. Since u precedes $v_{2,2}$ on Q_{2}, Lemma 4.1 implies that $\left.Q_{2}\left[v_{2,1} ; u\right]=P_{1}{ }^{3} v 2,1_{+} u\right]$. Thus $v_{1,1} \in Q_{1} \cap Q_{2}$, a contradiction. Therefore $P_{1}\left[v_{1,1} ; s_{1}\right] \cap$ $Q_{2}\left[v_{2,1} ; v_{2,2}\right]=\varnothing$. Similarly $P_{1}\left[t_{1} ; v_{3,1}\right] \cap Q_{2}\left[v_{2,1} ; v_{2,2}\right]=\varnothing$. Hence $C \cap Q_{2}\left[v_{2,1} ; v_{2,2}\right]=$ \varnothing. But $v_{2,1}$ and $v_{2,2}$ are outside and inside the region bounded by C, respectively. Thus $C \cap Q_{2}\left[v_{2,1} ; v_{2,2}\right] \neq \varnothing$-a contradiction. Q.E.D.

Lemma 4.7. The vertices $w_{1,1} ; w_{2,1} ; w_{3,1}$ are in this order on P_{1}, for $i=2$, 3. (See Figure 4.)

Proof. We first prove the lemma for $i=3$. The vertices $v_{1,1}, v_{2,1}, v_{3,1}$ are in this order on P_{1}. Let us prove that $Q_{[}\left[\nu_{0,1} ; w_{3,3}\right]$ is inside R (the region bounded by P_{1} and $\left.P_{3}\right)$. If $\boldsymbol{Q}_{j}\left[v_{j, 1} ; \boldsymbol{w}_{, 3}\right]$ leaves R through a vertex of $P_{1}\left(P_{3}\right)$ then it cannot enter R again either through $P_{1}\left(P_{3}\right)$ or through $P_{3}\left(P_{1}\right)$, by Lemmas 4.1 and 4.5 , respectively.

Let G^{\prime} denote the planar subgraph of G contained in R (including the boundary). The boundary of R is the external face of G^{\prime}. Since the paths $Q_{j}\left[v_{j, 1} ; w_{j, 3}\right]$ and $Q_{k}\left[v_{k, 1}\right.$; $w_{k, 3}$], $1 \leq j<k \leq 3$, are disjoint, the case $i=3$ is implied by Theorem 4.1.

A similar argument shows that if $w_{1,3}, w_{2,3}$, and $w_{3,3}$ are in this order on P_{3} then $w_{1,2}$, $\boldsymbol{w}_{2,2}$, and $\boldsymbol{w}_{3,2}$ are in this order on P_{2}. This proves the case $l=2$. Q.E.D.

The lemmas above enable us to complete the proof of Theorem 4.2. By Lemma 4.6, s_{2} and t_{2} are either outside R or on its boundary and by Lemma 4.7 the vertices $v_{1,1} ; v_{2,1} ; v_{3,1}$ and $w_{1,3} ; w_{2,3} ; w_{3,3}$ are in this order on P_{1} and P_{3}, respectively.

Consider the four following paths (see Figure 4):

$$
\begin{aligned}
& I_{1}=Q_{1}\left[s_{2} ; v_{1,1}\right] * P_{1}\left[v_{1,1} ; s_{1}\right], \quad I_{2}=P_{3}\left[s_{1} ; w_{1,3}\right] * Q_{1}\left[w_{1,3} ; t_{2}\right], \\
& I_{3}=Q_{3}\left[t_{2} ; w_{3,3}\right] * P_{3}\left[w_{3,3} ; t_{1}\right], \quad I_{4}=P_{1}\left[t_{1} ; v_{3,1}\right] * Q_{3}\left[v_{3,1} ; s_{2}\right] .
\end{aligned}
$$

Note that if s_{2} is on P_{1}, then $Q_{1}\left[s_{2} ; v_{1,1}\right]$ and $Q_{3}\left[\nu_{3,1} ; s_{2}\right]$ are empty.
The cycle $I_{1} * I_{2} * I_{3} * I_{4}$ encloses a region denoted by F. Let

$$
\begin{array}{ll}
J_{1}=I_{1} * I_{4}-\left\{s_{1}, t_{1}\right\}, & J_{2}=I_{2} * I_{3}-\left\{s_{1}, t_{1}\right\}, \\
J_{3}=I_{1} * I_{2}-\left\{s_{2}, t_{2}\right\}, & J_{4}=I_{3} * I_{4}-\left\{s_{2}, t_{2}\right\} .
\end{array}
$$

(see Figures 4 and 5).
The vertices $s_{1}, s_{2}, t_{1}, t_{2}$ are on the boundary of F in this cyclic order. Thus by assumption a of the theorem, the exterior of F is not a face of G. Hence, at least one of the following cases occurs.

Case 1 (2). There exist $u \in J_{1}\left(J_{3}\right), v \in J_{2}\left(J_{4}\right)$ and a path $R(u, v)$; all of its vertices except u and v are outside of F. In the first case the path $Q\left(s_{2}, t_{2}\right)=J_{1}\left[s_{2} ; u\right] * R(u, v) *$ $J_{2}\left[v ; t_{2}\right]$ is disjoint to P_{2}, which is inside F (see Figure 5(a)).

In case 2 let $P\left(s_{1}, t_{1}\right)=J_{3}\left[s_{1} ; u\right] * R(u, v) * J_{4}\left[v, t_{1}\right]$ and let $Q\left(s_{2}, t_{2}\right)=Q_{2}\left[s_{2} ; v_{2,2}\right] *$ $P_{2}\left[v_{2,2} ; w_{2,2}\right] * Q_{2}\left[w_{2,2} ; t_{2}\right]$ (see Figure $5(b)$).

Fig. 5

Similar arguments to those which were used to show that $P_{1}\left[v_{1,1} ; s_{1}\right] \cap Q_{2}\left[v_{2,1} ; v_{2,2}\right]=$ \varnothing in the proof of Lemma 4.6 can be used here to show that $P \cap Q_{2}\left[s_{2} ; v_{2,2}\right]=\varnothing$. Lemma 4.7 (for $i=2$) implies that $w_{2,2} \neq s_{1}, t_{1}$ and therefore $P \cap P_{2}\left[\nu_{2,2} ; w_{2,2}\right]=\varnothing$. It follows directly from Lemma 4.5 and the definition of $w_{2,2}$ that $P \cap Q_{2}\left[w_{2,2} ; t_{2}\right]=\varnothing$. Thus $P \cap \bar{Q}=\varnothing$. Hence, in both cases $P 2$ is true -a contradiction. Q.E.D.

THE ALGORITHM

The algorthm actually follows the lines of Theorem 41 and the proof of Theorem 42
1 If $s_{1}, s_{2}, t_{1}, t_{2}$ are on the same face F of G in this cyclic order, then $\neg P 2$, stop
2 Find three disjoint paths $P_{i}\left(s_{1}, t_{1}\right)$ and three disjoint paths $Q_{f}\left(s_{2}, t_{2}\right)$
3. Change the P_{i} such that if $u, v \in Q_{j} \cap P_{1}$ and $Q_{i}[u, v]-\{u, v\} \cap P_{k}=\varnothing$ for $k=1,2,3$, then $P_{i}[u ; v]=$ $Q_{j}[u, v]$ (see Lemma 4 1) A linear implementation of this step is given later
4. Scan each of the Q_{j} checking the following conditions
a Q_{j} intersects every P_{t}
b. All the Q_{3} intersect the P_{2}, for the first time, in the same order (say, P_{1}, P_{2}, P_{3})
c P_{3} is the last P-path intersected by Q_{j}
d If $u \in P_{1} \cap Q_{j}, v \in P_{3} \cap Q_{3}$, then $Q_{f}[u, v]$ intersects P_{2}
In case any of these conditions is violated, construct two disjoint paths $P\left(s_{1}, t_{1}\right)$ and $Q\left(s_{2}, t_{2}\right)$ according to the proof of the appropriate lemma (one of $42,43,44,45$) While scanning the Q_{j}, determine the vertices $v_{f, i}, w_{j, 1}$
5 If there exists a path $Q\left(s_{2}, t_{2}\right)$ in $G-P_{2}$, stop. The desired paths are Q and $P_{2}\left(G-P_{2}\right.$ is obtaned by removing the vertices of P_{2} from G)
6 Let $Q\left(s_{2}, t_{2}\right)=Q_{2}\left[s_{2}, v_{2,2}\right] * P_{2}\left[v_{2,2}, w_{2,2}\right] * Q_{2}\left[w_{2,2}, t_{2}\right]$ Find a path $P\left(s_{1}, t_{1}\right)$ in $G-Q$ The desired paths are Q and P

The validity of steps 5 and 6 can be easily derived from the end of the proof of Theorem 4.2.

The Complexity of the Algorithm. We prove now that the algorithm is linear. We assume that G is planar and its faces are given. Anyway, this is the output of the linear planarity testing algorithm of Hopcroft and Tarjan [5, 10]. Steps 1, 4, 5, and 6 are obviously linear. Step 2 is performed by applying flow techniques [2]. It is linear since only three augmenting paths are required for finding three disjoint paths.

A straightforward implementation of step 3 requires $O\left(n^{2}\right)$ operations. In the following we give a linear implementation of it which yields the linearity of the whole algorithm.

This implementation and its linearity proof are technically complicated and are not given in a full detailed form. However, an exact formal implementation and linearity proof can be derived from this description quite easily.

A Linear Implementation of Step 3
Definition. A vertex $v \in V$ is a cross vertex if it is etther an end vertex of a maximal
common subpath (defined in the proof of Lemma 4.1) or s_{2} or t_{2}. Henceforth we consider each $Q_{i}\left(s_{2}, t_{2}\right)$ as going from left to right (s_{2} is leftmost).

With every cross vertex on Q_{j}, we associate a left pointer and a right pointer to the closest cross vertices on Q_{j} to its left and right, respectively.

There are two types of pointers. A pointer from u to v is a continuous pointer if u and v are end vertices of the same maximal common subpath. Otherwise it is a jumping pointer (see Figure 6).

If a couple of cross vertices $u, v \in Q_{3} \cap P_{1}$ are pointing one to the other by jumping pointers, then $Q_{[}[u ; v] \cap P_{k}=\varnothing$ for $k \neq i$. Thus $P_{i}[u ; v]$ should be replaced by $Q_{,}[u ;$ v]. Such a couple u, v is a candidate couple and it is stored in a replacement list.

A general scheme of the implementation of step 3 is as follows:
1 (Intialızation.) While scanning the $Q_{\text {, }}$, set the pointers of the cross vertices and put candidate couples into the replacement list.
2. Take a candidate couple (u, v) out of the replacement list. If there is no such couple - stop
3. If u and v do not belong to the same P_{f}, return to 2 .

4 Scan $P[u ; v]$ from u to v, excluding u and v Let w denote the current vertex in this scanning
5. Delete w from P_{i}.
6. If w is a cross vertex, then connect left (w) and nght (w) through the approprate pointers. (w is no longer a cross vertex) In the case where left (w) and right (w) belong to the same P_{i}, (left (w), right (w)) is added to the replacement list In the case where left (w) (right (w)) is a contmuous pointer, then the next current vertex in the scanning of $P[u ; v]$ is left (w) (right (w))
7 Change right (u) and left (v) into continuous pointers If left (u) or right (v) are continuous pointers, update the pointers appropriately.

Step 3 is required since a couple which was put into the replacement list may cease being a candidate couple because of changes of the P_{r}. The couples (u, v) and (x, y) in Figure 6 are put into the replacement list at step 1. If we treat (u, v) first, then (x, y) is not a candidate couple anymore.

We give now the main arguments for a linearity proof of this implementation. It is easy to see that the initialization is linear. A vertex of P_{2} which is not in any of the Q_{3} is treated at most once (step 5), since after its deletion from P_{1} it would never enter any of the P_{k} (only vertices of the Q, may enter the P_{k}).

Vertices of the Q, which are not cross vertices are not treated after the initialization. A cross vertex w is treated only if it belongs to $P_{i}[u ; v]$ for some couple (u, v) in the replacement list. If $\boldsymbol{w} \neq \boldsymbol{u}, \boldsymbol{v}$ it ceases from being a cross vertex and the number of cross

-a continuous pointer
 --- a jumping pointer

vertices is reduced by one. Although treating u and v may not reduce the number of cross vertices it always reduces the number of maximal common subpaths, which does not exceed n. The treatment of a single cross vertex requires a constant number of operations. Thus, the whole implementation is linear.

5. Chordal Graphs

An undirected graph $G=(V, E)$ is chordal if every cycle of length $n \geqq 4$ has a chord, i.e. an edge between two of its nonadjacent vertices. For applications of chordal graphs see [9].

A set $S \subset V$ is a separating set if the deletion of the vertices of S from G yields an unconnected graph. A separating set S is minimal if there is no separating proper subset of S. A path is minimal if there is no edge between nonadjacent vertices of it.

Theorem 5.1. Every minimal separating set in a chordal graph is a clique. (See [9].)
Theorem 5.2. If G is a 3-connected chordal graph, UVP $2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$ holds for any four vertices s_{1}, t_{1}, s_{2}, and t_{2}.

Proof. Assume $\neg U V P 2\left(s_{1}, t_{1} ; s_{2}, t_{2} ; G\right)$. Let $P\left(s_{1}, t_{1}\right)$ be a minimal path which neither passes through s_{2} nor through t_{2}. (There exists such a path since G is 3 connected.) The vertices of P form a separating set S between s_{2} and t_{2}. Let $S^{\prime} \subseteq S$ be a minimal separating set between s_{2} and $t_{2} \cdot\left|S^{\prime}\right| \geq 3$ since G is 3 -connected. By Theorem $5.1 S^{\prime}$ is a clique - a contradiction to the minımality of P. Q.E.D.

Theorem 5.2 suggests a simple algorithm to find disjoint paths $P_{1}\left(s_{1}, t_{1}\right)$ and $P_{2}\left(s_{2}, t_{2}\right)$ in a 3-connected chordal graph G.

THE ALGORITHM

1. Find a shortest path $P_{1}\left(s_{1}, t_{1}\right)$ in $G-\left\{s_{2}, t_{2}\right\}$
2. Find a path $P_{2}\left(s_{2}, t_{2}\right)$ in $G-P_{1}$.

The validity of the algorithm is easily derived from the proof of Theorem 5.2. The algorithm requires $O(|E|)$ operations.

REFERENCES

1. Even, S, Itai, A., and Shamir, A On the complexity of time-table and multicommodity flow problems SIAM J Comptng. 5 (1976), 691-703
2 Even, S, and Taruan, RE. Network flow and testing graph connectivity SIAM J. Compmg. 4 (1975), 507-518.
2. Harary, F Graph Theory Addison-Wesley, Reading, Mass, 1972.

4 Hopcroft, J E, and Tarjan, R E. Dividing a graph into triconnected components SIAMJ Comping. 2 (1973), 135-158
5. Hopcroft, J E., and Tarjan, R Efficient planarity testing J ACM 21, 4 (Oct 1974), 549-568.

6 Itai, A. Private communication
7. Karp, R M Reducibilty among combinatonal problems In Complexity of Computer Computations, R E. Miller and J W Thatcher, Eds, Plenum Press, New York, 1970, pp. 85-104.
8 Larman, D.G., and Mani, P On the existence of certain configurations within graphs and the 1 skeleton of polytopes Proc. London Math Soc. 20 (1970), 144-160.
9. Ross, D.J. Triangulated graphs and the elımination process J Math. Anal. Appl. 32 (1970), 597-609.

10 Tarian, R An efficient plananty algorithm. STAN-CS-244-71, Comptr. Sci Dept., Stanford U., Stanford, Calif., Nov 1971.
11 Watkins, M On the existence of certain disjoint arcs in graphs Duke Math. I 35 (1968), 321-346
received december 1976; revised june 1977

[^0]: Authors' addresses Y Perl, Department of Mathematics and Computer Scrence, Bar-llan University, Ramat-Gan, Israel, Y. Shloach, Computer Science Department, Stanford University, Stanford, CA 94305.

