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Abstract

Animals produce vocalizations that range in com-

plexity from a single repeated call to hundreds

of unique vocal elements patterned in sequences

unfolding over hours. Characterizing complex

vocalizations can require considerable effort and

a deep intuition about each species’ vocal behav-

ior. Even with a great deal of experience, human

characterizations of animal communication can be

affected by human perceptual biases. We present

a set of computational methods for projecting an-

imal vocalizations into low dimensional latent

representational spaces that are directly learned

from the spectrograms of vocal signals. We apply

these methods to diverse datasets from over 20

species, including humans, bats, songbirds, mice,

cetaceans, and nonhuman primates. Latent projec-

tions uncover complex features of data in visually

intuitive and quantifiable ways, enabling high-

powered comparative analyses of unbiased acous-

tic features. We introduce methods for analyzing

vocalizations as both discrete sequences and as

continuous latent variables. Each method can

be used to disentangle complex spectro-temporal

structure and observe long-timescale organization

in communication.

1. Introduction

Vocal communication is a common social behavior among

many species, in which acoustic signals are transmitted

from sender to receiver to convey information such as iden-

tity, individual fitness, or the presence of danger. Across

diverse fields, a set of shared research questions seeks to un-

cover the structure and mechanism of vocal communication:

What information is carried within signals? How are sig-

nals produced and perceived? How does the communicative
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transmission of information affect fitness and reproductive

success? Many methods are available to address these ques-

tions quantitatively, most of which are founded on underly-

ing principles of abstraction and characterization of ’units’

in the vocal time series (Kershenbaum et al., 2016). For

example, segmentation of birdsong into temporally discrete

elements followed by clustering into discrete categories

has played a crucial role in understanding syntactic struc-

ture in birdsong (Kershenbaum et al., 2016; Berwick et al.,

2011; Sainburg et al., 2019; Katahira et al., 2013; Markowitz

et al., 2013; Cody et al., 2016; Hedley, 2016; Koumura &

Okanoya, 2016; Gentner & Hulse, 1998).

The characterization and abstraction of vocal communica-

tion signals remains both an art and a science. In a recent

survey, Kershenbaum et. al., (2016) outline four common

steps used in many analyses to abstract and describe vocal

sequences: (1) the collection of data, (2) segmentation of

vocalizations into units, (3) characterization of sequences,

and (4) identification of meaning. A number of heuristics

guide these steps, but it is largely up to the experimenter to

determine which heuristics to apply and how. This applica-

tion typically requires expert-level knowledge, which in turn

can be difficult and time-consuming to acquire, and often

unique to the structure of each species’ vocal repertoire. For

instance, what constitutes a ’unit’ of humpback whale song?

Do these units generalize to other species? Should they?

When such intuitions are available they should be consid-

ered, of course, but they are generally rare in comparison to

the wide range of communication signals observed naturally.

As a result, communication remains understudied in most

of the thousands of vocally communicating species. Even

in well-documented model species, characterizations of vo-

calizations are often influenced by human perceptual and

cognitive biases (Suzuki et al., 2006; Tyack, 1998; Janik,

1999; Kershenbaum et al., 2016). We explore a class of

unsupervised, computational, machine learning techniques

that avoid many of the foregoing limitations, and provide

an alternative method to characterize vocal communication

signals. Machine learning methods are designed to capture

statistical patterns in complex datasets and have flourished

in many domains (LeCun et al., 2015; Bengio et al., 2013;

Radford et al., 2015; Becht et al., 2019; Brown & De Bivort,

2018; Becht et al., 2019). These techniques are therefore
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Treat data as points in a
high-dimensional space

Build a graph of the
relationships between points

Embed the points in a
low-dimensional space

Find an embedding that
preserves the structure of the graph

Figure 1. Graph-based dimensionality reduction. Current non-linear dimensionality reduction algorithms like TSNE, UMAP, and ISOMAP

work by building a graph representing the relationships between high-dimensional data points, projecting those data points into a low-

dimensional space, and then finds and embedding that retains the structure of the graph. This figure is for visualization, the spectrograms

do not actually correspond to the points in the 3D space.

well suited to quantitatively investigate complex statistical

structure in vocal repertoires that otherwise rely upon expert

intuitions. In this paper, we demonstrate the utility of unsu-

pervised latent models, statistical models that learn latent

(compressed) representations of complex data, in describing

animal communication.

1.1. Latent models of acoustic communication

Dimensionality reduction refers to the compression of high-

dimensional data into a smaller number of dimensions,

while retaining the structure and variance present in the

original high-dimensional data. Each point in the high-

dimensional input space can be projected into the lower-

dimensional ‘latent’ feature space, and dimensions of the

latent space can be thought of as features of the dataset.

Animal vocalizations are good targets for dimensionality re-

duction. They appear naturally as sound pressure waveforms

with rich, multi-dimensional temporal and spectral varia-

tions, but can generally be explained by lower-dimensional

dynamics (Perl et al., 2011; Gardner et al., 2001; Arneodo

et al., 2012). Dimensionality reduction, therefore, offers a

way to infer a smaller set of latent dimensions (or features)

that can explain much of the variance in high-dimensional

vocalizations.

The common practice of developing a set of basis-features

on which vocalizations can be quantitatively compared (also

called Predefined Acoustic Features, or PAFs) is a form of

dimensionality reduction and comes standard in most ani-

mal vocalization analysis software (e.g. Luscinia (Lachlan

et al., 2018), Sound Analysis Pro (Tchernichovski & Mitra,

2004; Tchernichovski et al., 2000), BioSound (Elie & The-

unissen, 2018), Avisoft (Specht, 2002), and Raven (Charif

et al., 2010)). Birdsong, for example, is often analyzed on

the basis of features such as amplitude envelope, Weiner

entropy, spectral continuity, pitch, duration, and frequency

modulation (Tchernichovski & Mitra, 2004; Kershenbaum

et al., 2016). Grouping elements of animal vocalizations

(e.g. syllables of birdsong, mouse ultrasonic vocalizations)

into abstracted discrete categories is also a form of dimen-

sionality reduction, where each category is a single orthog-

onal dimension. In machine learning parlance, the process

of determining the relevant features, or dimensions, of a

particular dataset, is called feature engineering.

An attractive alternative to feature engineering is to project

animal vocalizations into low-dimensional feature spaces

that are determined directly from the structure of the data.

Many methods for data-driven dimensionality reduction are

available. PCA, for example, projects data onto a lower-

dimensional surface that maximizes the variance of the pro-

jected data (Dunlop et al., 2007; Kershenbaum et al., 2016),

while multidimensional scaling (MDS) projects data onto

a lower-dimensional surface that maximally preserves the

pairwise distances between data points. Both PCA and

MDS are capable of learning manifolds that are linear or

near-linear transformations of the original high-dimensional

data space (Tenenbaum et al., 2000).

More recently developed graph-based methods extend di-

mensionality reduction to infer latent manifolds as non-

linear transformations of the original high-dimensional

space using ideas from topology (e.g. ISOMAP, UMAP,

t-SNE; Tenenbaum et al. (2000); McInnes et al. (2018);

Maaten & Hinton (2008)). Like their linear predecessors,

these non-linear dimensionality reduction algorithms also

try to find a low-dimensional manifold that captures vari-

ation in the higher-dimensional input data, but the graph-

based methods allow the manifold to be continuously de-

formed, by for example stretching, twisting, and/or shrink-

ing, in high dimensional space. These algorithms work by

building a topological representation of the data and then

learning a low-dimensional embedding that preserves the

structure of the topological representation (Fig 1). For ex-

ample, while MDS learns a low-dimensional embedding
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that preserves the pairwise distance between points in Eu-

clidean space, ISOMAP (Tenenbaum et al., 2000), one of

the original topological non-linear dimensionality reduc-

tion algorithms, infers a graphical representation of the data

and then performs MDS on the pairwise distances between

points within the graph (geodesics) rather than in Euclidean

space.

In this paper, we describe a class of nonlinear latent models

that learn complex feature-spaces of vocalizations, requiring

few a priori assumptions about the features that best de-

scribe a species’ vocalizations. We show that these methods

reveal informative, low-dimensional, feature-spaces that en-

able the formulation and testing of hypotheses about animal

communication. We apply our method to diverse datasets

consisting of over 20 species, including humans, bats, song-

birds, mice, cetaceans, and nonhuman primates. We intro-

duce methods for treating vocalizations both as sequences

of temporally discrete elements such as syllables, as is tra-

ditional in studying animal communication (Kershenbaum

et al., 2016), as well as temporally continuous trajectories,

as is becoming increasingly common in representing neu-

ral sequences (Cunningham & Byron, 2014). Using both

methods, we show that latent projections produce visually-

intuitive and quantifiable representations that capture com-

plex acoustic features. We show comparatively that the

spectrotemporal characteristics of vocal units vary from

species to species in how distributionally discrete they are

and discuss the relative utility of different ways to represent

different communicative signals.

2. Results

2.1. Discrete latent projections of animal vocalizations

To explore the broad utility of latent models in capturing

features of vocal repertoires, we analyzed nineteen datasets

consisting of 400 hours of vocalizations and over 3,000,000

discrete vocal units from 29 unique species. Each vocaliza-

tion dataset was temporally segmented into discrete units

(e.g. syllables, notes), either based upon segmentation

boundaries provided by the dataset (where available), or

using a novel dynamic-thresholding segmentation algorithm

that segments syllables of vocalizations between detected

pauses in the vocal stream. Each dataset was chosen because

it contains large repertoires of vocalizations from relatively

acoustically isolated individuals that can be cleanly sepa-

rated into temporally-discrete vocal units. With each tem-

porally discrete vocal unit we computed a spectrographic

representation. We then projected the spectrograms into la-

tent feature spaces using UMAP (e.g. Figs 2, 3). From these

latent feature spaces, we analyzed datasets for classic vocal

features of animal communication signals, speech features,

stereotypy/clusterability, and sequential organization.

Individual identity Many species produce caller-specific

vocalizations that facilitate the identification of individuals

when other sensory cues, such as sight, are not available.

The features of vocalizations facilitating individual identi-

fication vary between species. We projected identity call

datasets (i.e., sets of calls thought to carry individual identity

information) from four different species into UMAP latent

spaces (one per species) to observe whether individual iden-

tity falls out naturally within the latent space.

Figure 2. Individual identity is captured in projections for some

datasets. Each plot shows vocal elements discretized, spectro-

grammed, and then embedded into a 2D UMAP space, where each

point in the scatterplot represents a single element (e.g. syllable of

birdsong). Scatterplots are colored by individual identity. The bor-

ders around each plot are example spectrograms pointing toward

different regions of the scatterplot. (A) Rhesus macaque coo calls.

(B) Zebra finch distance calls. (C) Fruit bat infant isolation calls.

(D) Marmoset phee calls.

We looked at four datasets where both caller and call-type

are available. Caller identity is evident in latent projections

of all four datasets (Fig 2). The first dataset is comprised of

Macaque coo calls, where identity information is thought

to be distributed across multiple features including funda-

mental frequency, duration, and Weiner entropy (Fukushima

et al., 2015). Indeed, the latent projection of coo calls clus-

tered tightly by individual identity (silhouette score = 0.378;

Fig 2A). The same is true for Zebra finch distance calls

(Elie & Theunissen, 2016) (silhouette score = 0.615; Fig

2B). Egyptian fruit bat pup isolation calls, which in other

bat species are discriminable by adult females (Bohn et al.,

2007; Engler et al., 2017; Bohn et al., 2007) clearly show

regions of UMAP space densely occupied by single individ-
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ual’s vocalizations, but no clear clusters (silhouette score =

-0.078; Fig 2C). In the marmoset phee call dataset (Miller

et al., 2010) it is perhaps interesting that given the range

of potential features thought to carry individual identity

(Fukushima et al., 2015), phee calls appear to lie along a

single continuum where each individual’s calls occupy over-

lapping regions of the continuum (silhouette score = -0.062;

Fig 2D). The silhouette score for each species was well

above chance (H(2) > 20, p < 10-5). These patterns predict

that some calls, such as macaque coo calls, would be more

easily discriminable by conspecifics than other calls, such

as marmoset phee calls.

2.1.1. VARIATION IN DISCRETE DISTRIBUTIONS AND

STEREOTYPY

Figure 3. UMAP projections of vocal repertoires across diverse

species. Each plot shows vocal elements segmented, spectro-

grammed, and then embedded into a 2D UMAP space, where

each point in the scatterplot represents a single element (e.g. syl-

lable of birdsong). Scatterplots are colored by element categories

over individual vocalizations as defined by the authors of each

dataset, where available. (A) Human phonemes. (B) Egyptian

fruit bat calls (color is context). (C) Cassin’s vireo syllables. (O)

Clusterability (Hopkin’s metric) for each dataset. Lower is more

clusterable. Hopkin’s metric is computed over UMAP projected

vocalizations for each species. Error bars show the 95% confidence

interval across individuals. Color represents species category (red:

mammal, blue: songbird).

In species as phylogenetically diverse as songbirds and rock

hyraxes, analyzing the sequential organization of commu-

nication relies upon similar methods of segmentation and

categorization of discrete vocal elements (Kershenbaum

et al., 2016). In species such as the Bengalese finch, where

syllables are highly stereotyped, clustering syllables into

discrete categories is a natural way to abstract song. The

utility of clustering song elements in other species, however,

is more contentious because discrete category boundaries

are not as easily discerned (Tyack, 1998; Suzuki et al., 2006;

Goffinet et al., 2019; Hertz et al., 2019).

To compare broad structural characteristics across a wide

sampling of species, we projected vocalizations from 14

datasets of different species vocalizations, ranging across

songbirds, cetaceans, primates, and rodents into UMAP

space (Fig 3). To do so, we sampled from a diverse range

of datasets, each of which was recorded from a different

species in a different setting. Some datasets were recorded

from single isolated individuals in a sound isolated chamber

in a laboratory setting, while others were recorded from

large numbers of freely behaving individuals in the wild. In

addition, the units of vocalization from each dataset are vari-

able. We used the smallest units of each vocalization that

could be easily segmented, for example, syllables, notes,

and phonemes. Thus, this comparison across species is not

well-controlled. Still, such a dataset enabling a broad com-

parison in a well-controlled manner does not exist. Latent

projections of such diverse recordings, while limited in a

number of ways, have the potential to provide a glimpse

into broad structure into vocal repertoires, yielding novel in-

sights into broad trends in animal communication. For each

dataset, we computed spectrograms of isolated elements,

and projected those spectrograms into UMAP space (Fig 3).

Where putative element labels are available, we plot them

in color over each dataset.

Visually inspecting the latent projections of vocalizations

reveals appreciable variability in how the repertoires of

different species cluster in latent space. For example, mouse

USVs appear as a single cluster (Fig 3I), while zebra finch

syllables appear as multiple discrete clusters (Fig 3M,F),

and gibbon song sits somewhere in between (Fig 3L). This

suggests that the spectro-temporal acoustic diversity of vocal

repertoires fall along a continuum ranging from unclustered

and uni-modal to highly clustered.

We quantified this effect using a linear mixed-effects model

comparing the Hopkin’s statistic across UMAP projections

of vocalizations from single individuals (n = 289), control-

ling for the number of vocalizations produced by each indi-

vidual as well as random variability at the level of species.

We included each of the species in Fig 3 except giant ot-

ter and gibbon vocalizations, as individual identity was

not available for those datasets. We find that songbird

vocalizations are significantly more clustered than mam-

malian vocalizations (χ2(1) = 20, p < 10-5). The stereotypy

of songbird (and other avian) vocal elements is well docu-

mented (Williams, 2004; Smith et al., 1997) and at least in
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Figure 4. HDBSCAN density-based clustering. Clusters are found by generating a graphical representation of data, and then clustering on

the graph. The data shown in this figure are from the latent projections from Fig 1. Notably, the three clusters in Fig 1. are clustered into

only two clusters using HDBSCAN, exhibiting a potential shortcoming of the HDBSCAN algorithm. The grey colormap in the condensed

trees represent the number of points in the branch of the tree. Λ is a value used to compute the persistence of clusters in the condensed

trees.

zebra finches is related to the high temporal precision in the

singing-related neural activity of vocal-motor brain regions

(Hahnloser et al., 2002; Fee et al., 2004; Chi & Margoliash,

2001).

2.1.2. CLUSTERING VOCAL ELEMENT CATEGORIES

UMAP projections of birdsongs largely fall more neatly into

discriminable clusters (Fig 3). If clusters in latent space are

highly similar to experimenter-labeled element categories,

unsupervised latent clustering could provide an automated

and less time-intensive alternative to hand-labeling elements

of vocalizations. To examine this, we compared how well

clusters in latent space correspond to experimenter-labeled

categories in three human-labeled datasets: two separate

Bengalese finch datasets (Nicholson et al., 2017; Koumura,

2016), and one Cassin’s vireo dataset (Hedley, 2016). We

compared four different labeling techniques: a hierarchical

density-based clustering algorithm (HDBSCAN; (Campello

et al., 2013; McInnes et al., 2017)) applied to UMAP pro-

jections of spectrograms, HDBSCAN applied to PCA pro-

jections of spectrograms1, k-means (Pedregosa et al., 2011)

clustering applied over UMAP, and k-means clustering ap-

plied over spectrograms. We found that HDBSCAN cluster-

ing outperformed other clustering algorithms on all metrics

for all datasets (See full manuscript).

Like the contrast between MDS and UMAP, the k-means

clustering algorithm works directly on the Euclidean dis-

tances between data points, whereas HDBSCAN operates

on a graph-based transform of the input data (Fig 4). Briefly,

HDBSCAN first defines a ’mutual reachability’ distance

between elements, a measure of the distance between points

in the dataset weighted by the local sparsity/density of each

point (measured as the distance to a kth nearest neighbor).

HDBSCAN then builds a graph, where each edge between

1HDBSCAN is applied to 100-dimensional PCA projections
rather than spectrograms directly because HDBSCAN does not
perform well in high-dimensional spaces (McInnes et al., 2017).

vertices (points in the dataset) is the mutual reachability

between those points, and then prunes the edges to construct

a minimum spanning tree (a graph containing the minimum

set of edges needed to connect all of the vertices). The min-

imum spanning tree is converted into a hierarchy of clusters

of points sorted by mutual reachability distance, and then

condensed iteratively into a smaller hierarchy of putative

clusters. Finally, clusters are chosen as those that persist

and are stable over the greatest range in the hierarchy.

2.1.3. ABSTRACTING AND VISUALIZING SEQUENTIAL

ORGANIZATION

As acoustic signals, animal vocalizations have an inherent

temporal structure that can extend across time scales from

short easily discretized elements such as notes, to longer

duration syllables, phrases, songs, bouts, etc. The latent

projection methods described above can be used to abstract

corpora of song elements well-suited to temporal pattern

analyses (Sainburg et al., 2019), and to make more direct

measures of continuous vocalization time series. Moreover,

their automaticity enables the high throughput necessary

to satisfy intensive data requirements for most quantitative

sequence models.

In practice, modeling sequential organization can be ap-

plied to any discrete dataset of vocal elements, whether

labeled by hand or algorithmically. Latent projections of

vocal element have the added benefit of allowing visualiza-

tion of the sequential organization that can be compared

to abstracted models. As an example of this, we derived

a corpus of symbolically segmented vocalizations from a

dataset of Bengalese finch song using latent projections

and clustering (Fig 5). Bengalese finch song bouts com-

prise a small number (˜5-15) of highly stereotyped syllables

produced in well-defined temporal sequences a few dozen

syllables long (Katahira et al., 2013). We first projected

syllables from a single Bengalese finch into UMAP latent

space, then visualized transitions between vocal elements
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Figure 5. Latent visualizations of Bengalese finch song sequences.

(A) Syllables of Bengalese finch songs from one individual are

projected into 2D UMAP latent space and clustered using HDB-

SCAN. (B) Transitions between elements of song are visualized

as line segments, where the color of the line segment represents its

position within a bout. (C) The syllable categories and transitions

in (A) and (B) can be abstracted to transition probabilities between

syllable categories, as in a Markov model. (D) An example vocal-

ization from the same individual, with syllable clusters from (A)

shown above each syllable. (E) A series of song bouts. Each row

is one bout, showing overlapping structure in syllable sequences.

Bouts are sorted by similarity to help show structure in song.

in latent space as line segments between points (Fig 5B),

revealing highly regular patterns. To abstract this organiza-

tion to a grammatical model, we clustered latent projections

into discrete categories using HDBSCAN. Each bout is then

treated as a sequence of symbolically labeled syllables (e.g.

B → B → C → A; Fig 5D) and the entire dataset rendered

as a corpus of transcribed song (Fig 5E). Using the tran-

scribed corpus, one can abstract statistical and grammatical

models of song, such as the Markov model shown in Fig

5C or the information-theoretic analysis in Sainburg et al.,

(2019).

2.2. Temporally continuous latent trajectories

Not all vocal repertoires are made up of elements that fall

into highly discrete clusters in latent space (Fig 3). For

several of the datasets we analysed, categorically discrete

elements are not readily apparent, making analyses such as

the cluster-based analyses performed in Figure 5 more diffi-

cult. In addition, many vocalizations are difficult to segment

temporally, and determining what features to use for segmen-

tation requires careful consideration (Kershenbaum et al.,

2016). In many bird songs, for example, clear pauses exist

between song elements that enable one to distinguish sylla-

bles. In other vocalizations, however, experimenters must

rely on less well-defined physical features for segmenta-

tion (Janik, 1999; Kershenbaum et al., 2016), which may in

turn invoke a range of biases and unwarranted assumptions.

At the same time, much of the research on animal vocal

production, perception, and sequential organization relies

on identifying ”units” of a vocal repertoire (Kershenbaum

et al., 2016). To better understand the effects of temporal

discretization and categorical segmentation in our analyses,

we considered vocalizations as continuous trajectories in

latent space and compared the resulting representations to

those that treat vocal segments as single points (as in the

previous Bengalese finch example in Fig 5). We show here

explorations of two datasets: Bengalese finch (Fig 6) and hu-

man speech (Fig 7). In both dataset, we find that continuous

latent trajectories capture short and long timescale structure

in vocal sequences without requiring vocal elements to be

segmented or labeled.

2.2.1. COMPARING DISCRETE AND CONTINUOUS

REPRESENTATIONS OF SONG IN THE BENGALESE

FINCH

Figure 6. Continuous UMAP projections of Bengalese finch song

from a single bout produced by one individual. (A-C) Bengalese

finch song is segmented into either 1ms (A), 20ms (B), or 100ms

(C) rolling windows of song, which are projected into UMAP.

Color represents time within the bout of song. (D-F) The same

plots as in (A), projected into PCA instead of UMAP. (G-I) The

same plots as (A-C) colored by hand-labeled element categories

(unlabelled points are not shown). (J-L) The same plot as (D-E)

colored by hand-labeled syllable categories. (M) UMAP projec-

tions represented in colorspace over a bout spectrogram. The top

three rows are the UMAP projections from (A-C) projected into

RGB colorspace to show the position within UMAP space over

time as over the underlying spectrogram data. The fourth row are

the hand labels. The final row is a bout spectrogram. (N) a subset

of the bout shown in (M). In G-L, unlabeled points (points that are

in between syllables) are not shown for visual clarity.



Latent space characterization for vocal signals

Bengalese finch song provides a relatively easy visual com-

parison between the discrete and continuous treatments of

song, because it consists of a small number of unique highly

stereotyped syllables (Fig 6). With a single bout of Ben-

galese finch song, which contains several dozen syllables,

we generated a latent trajectory of song as UMAP projec-

tions of temporally-rolling windows of the bout spectrogram

(See Projections section). To explore this latent space, we

varied the window length between 1 and 100ms (Fig 6A-L).

At each window size, we compared UMAP projections (Fig

6A-C) to PCA projections (Fig 6D-F). In both PCA and

UMAP, trajectories are more clearly visible as window size

increases across the range tested, and overall the UMAP

trajectories show more well-defined structure than the PCA

trajectories. To compare continuous projections to discrete

syllables, we re-colored the continuous trajectories by the

discrete syllable labels obtained from the dataset. Again, as

the window size increases, each syllable converges to a more

distinct trajectory in UMAP space (Fig 6G-I). To visualize

the discrete syllable labels and the continuous latent projec-

tions in relation to song, we converted the 2D projections

into colorspace and show them as a continuous trajectory

alongside the song spectrograms and discrete labels in Fig-

ure 6M,N. Colorspace representations of the 2D projections

consist of treating the two UMAP dimensions as either a

red, green, or blue channel in RGB (3D) colorspace, and

holding the third channel constant. This creates a colormap

projection of the two UMAP dimensions.

2.2.2. LATENT TRAJECTORIES OF HUMAN SPEECH

Discrete elements of human speech (i.e. phonemes) are

not spoken in isolation and their acoustics are influenced

by neighboring sounds, a process termed co-articulation.

For example, when producing the words ’day’, ’say’, or

’way’, the position of the tongue, lips, and teeth differ dra-

matically at the beginning of the phoneme ’ey’ due to the

preceding ’d’, ’s’, or ’w’ phonemes, respectively. This re-

sults in differences in the pronunciation of ’ey’ across words

(Fig 7E). Co-articulation explains much of the acoustic vari-

ation observed within phonetic categories. Abstracting to

phonetic categories therefore discounts much of this context-

dependent acoustic variance.

We explored co-articulation in speech, by projecting sets of

words differing by a single phoneme (i.e. minimal pairs)

into continuous latent spaces, then extracted trajectories

of words and phonemes that capture sub-phonetic context-

dependency (Fig 7). We obtained the words from the Buck-

eye corpus of conversational English. We computed spectro-

grams over all examples of each target word, then projected

sliding 4-ms windows from each spectrogram into UMAP

latent space to yield a continuous vocal trajectory over each

word (Fig 7). We visualized trajectories by their correspond-

ing word and phoneme labels (Fig 7A,B) and computed the

Figure 7. Speech trajectories showing coarticulation in minimal

pairs. (A) Utterances of the words ’day’, ’say’, and ’way’ are

projected into a continuous UMAP latent space with a window

size of 4ms. Color represents the corresponding word. (B) The

same projections are colored by the corresponding phonemes. (D)

The average latent trajectory for each word. (E) The average

trajectory for each phoneme. (F) Example spectrograms of words,

with latent trajectories above spectrograms and phoneme labels

below spectrograms. (G) Average trajectories and corresponding

spectrograms for the words ’take’ and ’talk’ showing the different

trajectories for ’t’ in each word. (H) Average trajectories and

the corresponding spectrograms for the words ’then’ and ’them’

showing the different trajectories for ’eh’ in each word.

average latent trajectory for each word and phoneme (Fig

7C,D). The average trajectories reveal context-dependent

variation within phonemes caused by coarticulation. For

example, the words ’way’, ’day’, and ’say’ each end in

the same phoneme (’ey’; Fig 7A-D), which appears as an

overlapping region in the latent space (the red region in

Fig 7C). The endings of each average word trajectory vary,

however, indicating that the production of ’ey’ differs based

on its specific context (Fig 7C). The difference between the

production of ’ey’ can be observed in the average latent

trajectory over each word, where the trajectories for ’day’

and ’say’ end in a sharp transition, while the trajectory for

’way’ is more smooth (Fig 7C). Latent space trajectories can
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reveal other co-articulations as well. In Figure 7E, we show

the different trajectories characterizing the phoneme ’t’ in

the context of the word ’take’ versus ’talk’. In this case, the

’t’ phoneme follows a similar trajectory for both words until

it nears the next phoneme (’ey’ vs. ’ao’), at which point the

production of ’t’ diverges for the different words.

3. Discussion

We have presented a set of computational methods for pro-

jecting vocal communication signals into low-dimensional

latent representational spaces, learned directly from the spec-

trograms of the signals. We demonstrate the flexibility and

power of these methods by applying them to a wide sample

of animal vocal communication signals, including songbirds,

primates, rodents, bats, and cetaceans (Fig 3). Deployed

over short timescales of a few hundred milliseconds, our

methods capture significant behaviorally-relevant structure

in the spectro-temporal acoustics of these diverse species’

vocalizations. We find that complex attributes of vocal sig-

nals, such as individual identity (Fig 2), species identity,

geographic population variability, phonetics, and similarity-

based clusters can all be captured by the unsupervised la-

tent space representations we present. We also show that

songbirds tend to produce signals that cluster discretely in

latent space, whereas mammalian vocalizations are more

uniformly distributed, an observation that deserves much

closer investigation in more species. Applied to longer

timescales, spanning seconds or minutes, the same methods

allowed us to visualize sequential organization and test mod-

els of vocal sequencing (Fig 5). We demonstrated that in

some cases latent approaches confer advantages over hand

labeling or supervised learning (See full manuscript/code).

Finally, we visualized vocalizations as continuous trajecto-

ries in latent space (Figs 6, 7), providing a powerful method

for studying sequential organization without discretization

(Kershenbaum et al., 2016).

Latent models have shown increasing utility in the biologi-

cal sciences over the past several years. As machine learning

algorithms improve, so will their utility in characterizing the

complex patterns present in biological systems like animal

communication. In neuroscience, latent models already play

an important role in characterizing complex neural popu-

lation dynamics (Cunningham & Byron, 2014). Similarly,

latent models are playing an increasingly important role in

computational ethology (Brown & De Bivort, 2018), where

characterizations of animal movements and behaviors have

uncovered complex sequential organization (Marques et al.,

2018; Berman et al., 2016; Wiltschko et al., 2015). In animal

communication, pattern recognition using various machine

learning techniques has been used to characterize vocal-

izations and label auditory objects (Sainburg et al., 2019;

Cohen et al., 2019; Coffey et al., 2019; Van Segbroeck et al.,

2017; Goffinet et al., 2019; Kollmorgen et al., 2019; Hertz

et al., 2019). Our work furthers this emerging research area

by demonstrating the utility of unsupervised latent models

for both systematically visualizing and abstracting structure

from animal vocalizations across a wide range of species.

Software and Data

All software is publicly available and example Jupyter Note-

books are provided for each species vocal repertoire and

analyses type (https://github.com/timsainb/

avgn_paper). The data is provided in Supplementary

Table 1 of the longform paper.
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