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Finding Zeroes of Maps: Homotopy Methods
That Are Constructive With Probability One*

By Shui-Nee Chow, John Mallet-Paret and James A. Yorke

Abstract.  We illustrate that most existence theorems using degree theory are in

principle relatively constructive.   The first one presented here is the Brouwer Fixed

Point Theorem. Our method is "constructive with probability one" and can be

implemented by computer.   Other existence theorems are also proved by the same

method.   The approach is based on a transversality theorem.

1.  Introduction.   Degree theory has become a major tool in analysis.  It is
generally used to prove the existence of solutions for a wide variety of problems.
Other methods of proof, such as those based on the Implicit Function Theorem,
generally require detailed information about the functions involved, or the results
are local.  In degree theory, proofs are topological in nature and require relatively
little prior information about the location of the supposed solutions and little need
be assumed about the detailed behavior of the mappings involved.  By comparison,
methods based on the Implicit Function Theorem are used to guarantee existence of
solutions near other known solutions.  Another method of analysis is the use of
contracting maps winch requires substantial information on the point-to-point
behavior of the maps involved.   In return for the stronger assumptions required in
order to employ these analytical approaches, we expect the proofs to be constructive.
In this paper we illustrate that most degree theory proofs involving smooth functions
are in principle rather constructive.  Our numerical experience has shown us that
apparently nonconstructive degree theory proofs can be readily turned into fairly con-
structive proofs involving an algorithm that can be implemented on computers.

The methods we describe are constructive (or implementable) only in a somewhat
restrictive sense, a sense which is useful in practice.   For each given problem there is
associated a set A C Rm which has nonempty interior.  We say a procedure is
"constructive with probability one" if for almost every a E A with respect to 777-
dimensional Lebesgue measure there is a given point pa and a path Ta (ra is the trajec-
tory leading from pa for a known ordinary differential equation in some Euclidean space)
and this path from pa "leads" to point sa, which is a solution of the given problem,
or perhaps the projection of this point sa into some lower-dimensional space is a solu-
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tion.  The curve Ta lies in a compact set but may in some case have infinite length.
Then we require that every point in the positive set of Ta (or the projection of these
points) must be a solution to the given problem.

To describe the limitations of the computer implementability, we describe now
a particularly simple problem:   solving for the roots of a polynomial p0(z) = ~Lb¡zl =
0 where b¡ E C for i = 0, . . . , k, bk = 1.  One proof of existence is based on the
topological degree of the map p0: C —► C.  For a ECk, a = (ax, . . . , ak) let

k
p(a, z)=   l\(z- a,).

i=i

For almost any a E C", the set of solutions of

(1 - t)p(a, z) + tp0(z) = 0,      0<7<1,

is k paths in (t, z) space connecting (0, aj) to (1, zj) where zi is a solution, a root of
p0.  Each of these curves is the trajectory of an ordinary differential equation and
may be closely followed numerically.  Hence, we say the method is constructive with
probability one.  Of course, it is possible that k is so large that it even exceeds the
storage capacity of the computer.  Also, the computer can represent only finitely many
points in C, and this may cause difficulties; and errors arise inevitably in following
trajectories, numerically.  The main problem in implementing degree theoretic
existence theorems is that initially there is no idea where the solution might be.
Once a good approximation is obtained a number of techniques may then become
available, so from this point of view it is sufficient to obtain a good numerical
approximation to the trajectory.  In practice these methods yield e-approximate
solutions so that one might expect to find a point z   such  that \p0(z )\ < e.  In
practice e can be made quite small (10-10 or less).  Of course, a pathological example
can be constructed for any e so that there will exist such a ze which is not close to an
actual root.  However, if the objective is to construct pathological examples, much
more absurd situations are possible.  Even if it is known that all solutions of
p0(z) = 0 Ue in the unit disc, any algorithm must contend with the difficulty that
the computer represents only a finite number of points in the disc and p0(z) might
be chosen so pathologically that p0(z) > 1 for all the computers' points.  We
explicitly ignore these difficulties in our use of the phrase "constructive with
probability one".

The history of algorithms for implementing degree-theoretic arguments starts
with the Brouwer Fixed Point Theorem.

Let Rn be the real 77-dimensional space with norm | • |, B" = {x E R" : |x I < 1}
andB" = {x E R" : |x| < l}and5"_1 = {x E R" : \x\ = 1}.  For any continuous
mapping/:B" —*■ Bn, the Brouwer Fixed Point Theorem guarantees the existence
of a fixed point x0 E B".  The associated numerical problem is to give a constructive
proof of the theorem, or give an algorithm for finding a fixed point.

A numerical method which can be implemented by computer was discovered
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FINDING ZEROES OF MAPS 889

by Scarf [1].  His method is based on Sperner's lemma.  The ball B" (assumed to be
a simplex) is simplicially decomposed and the method produces a path along the
edges in the simplicial decomposition.  The path will of course lead to a fixed point
of a piecewise linear approximation of /.  This method was extended and simplified in
a number of ways.  See, for example, [2]-[6], [17].

Recently, nonsimplicial approaches were found by Kellogg, Li and Yorke [7],
[8].  Smale [9] recently discovered similar ideas for finding zeroes of maps and
applied them to economics.  Hirsch and Smale [10] extended the approach to maps
of R" into R".  These approaches, which may be called "continuation methods" or
"Davidenko's method", are based on the following ideas.  Pontrjagin [11] studied
homotopy properties of maps of spheres to spheres of one dimension lower.  He
used Sard's Theorem to study inverse images of points.  In [12], Hirsch then proved
the Brouwer Fixed Point Theorem as follows.  He assumes no solutions exist and
employs the standard retraction g :B"  —+ dB" = S", where g(x) is the point
where 5" meets the ray from f(x) through x.  Assuming /is smooth and has no fixed
points, he uses Sard's Theorem to investigate the set g~l (y) for a regular value
y E bBn.  He eliminates all possibilities for what it can be and, thereby, obtains a
contradiction.  Hence, there must be a fixed point of/  In [7] the argument was
modified slightly to make it constructive with probability one ; the mapping g was
considered to be defined everywhere in B" except at the fixed points off. Now for
any regular value y ES"~X we have g~ * (y) is the union of a curve leading from y
to a subset of the fixed points of/ plus disjoint closed paths.  An algorithm was
then given for following the curve from y to the fixed points.  In [8] it is reported
the Brouwer Fixed Point was found for some 20 dimensional problems in an
average time of 3.3 seconds using the UNIVAC 1108.  The method for following
the curve is made rigorous in [13].   Further numerical experiments have been carried
out by Watson [14] in response to a preprint of this paper.

In this paper, we give a more general approach based on a transversality theorem
which we call "the Parametrized Sard Theorem".  This approach will give solutions
to problems in which the topological scheme is more complicated.  In particular, we
investigate constructive methods for the following problems:

1. Finding the Brouwer fixed point;
2. Finding zeroes of maps of R" into R" under various hypotheses;
3. Finding solutions of two point boundary problems for second order ordinary

differential equations in R" ;
4. Finding zeroes of a vector field on S", where n is even.
The basic idea in our approach is simple and can be described briefly as follows.

Consider the mapping /(defined on B" or Euclidean space or S") whose zeroes
(or fixed points) are desired and assume we are given a "trivial" mapping ga whose
zeroes are known a priori, depending on parameter a.  Define the homotopy

4>a(\ x) = (1 - X)ga(x) + A/(x),      0 < X < 1.

We use the general "Sard" theorems to obtain a guarantee that for almost every a,
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<pa l(0) contains a smooth curve T   (see Figure 1), a curve which will lead from a

zero of^a to a zero of/
Components of

if1  (0)  in  (0,1)  x x

10,1]  x x^

Figure 1
77ze continuation method for finding a zero of a map f.X —► R" ,a possible
configuration.  In this figure a trivial map at X = 0 has a as its unique zero.
Ta C (0, 1) x X is the component of <p~l(0) which has (0, a) on its boundary.
Ta leads from a at X = 0 to a zero of/at X = 1. Numerical algorithms are
available for following ra.  As the curve is followed from (0, a), X need not
increase monotonically but this causes no numerical difficulties.

Solutions have often been shown to exist by constructing a homotopy from a
trivial map to the one of interest.  This is a basic technique for example in Leray-
Schauder degree theory.  Homotopy methods are used in [15] for constructively
finding fixed points for simplicial maps.  Our contribution here is the idea that one
should start with a large class of trivial maps. Next choose one at random. Next
homotop it to the nontrivial map.  Then with probability one, a curve starting from
the fixed point of the trivial map will lead us by a smooth path to a fixed point of
the nontrivial map.

Homotopy methods for finding zeroes or fixed points are known variously
as the "Continuous Newton's Method" or the continuation method or Davidenko's
method. See, for example, [16].

The history of this paper is as follows.  The basic ideas of this paper, which
use the Parametrized Sard Theorem, were presented by Yorke at the 1976 NSF
regional conference in Boulder, Colorado.  He also proposed the problem of finding
a constructive proof of the existence of zeroes of vector fields on even-dimensional
spheres.  Chow and Mallet-Paret, who attended this meeting, found how to solve
this sphere problem using the Transversality Theorem.

Acknowledgements.  We would like to thank M. Hirsch, H. Scarf, and S. Smale
for enlightening discussions.

2.   Generalizations of Sard's Theorem.   Let U C R" be open and f:R"—+ Rp
be smooth.  We say y G Rp is a regular value for /if
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FINDING ZEROES OF MAPS 891

Range Df(x) = Rp     for all x E f ~l(y),

where Dfix) denotes the n x p matrix of partial derivatives of fix).  Sard's Theorem
says that if /is smooth (or C, r > max(0,77 - p)), then almost every y 6 Rp is
regular.  See [18, p. 7].  We now state the more general "Parametrized Sard's
Theorem".

Theorem 2.1. Let VCRq, U C Rm be open and let 0 : V x U-+Rp be
C, r > max {0,m - p}. If 0 E Rp is a regular value of 0, then for almost every
a E V, 0 is a regular value of 0fl(-) = 0(a, •).

We will usually be interested in the case q = p = n, m = n + I.  Our
assumption will guarantee 0 is a regular value of <t>; since Range D,a x.<¡> =
Range Da<j> + Range Dx<¡>, it will be sufficient to guarantee Range Da<p = Rp.  Here
Da4> denotes the matrix of partial derivatives of 0 with respect to a, so DaqAa, x) is
a q x p matrix.

Proof The proof of Theorem 2.1 may be found in [17]. For the convenience
of the reader, we include the following outline of the proof. By the Implicit Function
Theorem, M = 0_1(O) is a smooth manifold in Ri + m.  Define the projection

Tr:M—+Rq    by    7r(a, x) = a.

By Sard's Theorem, almost every a E Rq is a regular value of tt. But the regularity of
a for 77 is equivalent to the condition: if ia, x) E M, then for all b E Rq there exists
y E Rm such that (/>, y) is tangent to M at (a, x), that is

£>0(a, x) • ib, y) = 0,

that is,

DJia, x) ■ b + DJia, x) ■ y = 0.

By the regularity of 0 E Rp and the above equation, we have

Range Dx4>ia, x) = Range Z)0(a, x) =RP.    □

A slightly stronger version will be needed in Section 6; it is easy to see that
Theorem 2.1 is still true if 0 is a smooth mapping between smooth finite-dimensional
manifolds.  In fact, the following is true, [17].

Theorem 2.2   (Transversality Theorem).   Let Q, N and P be smooth
manifolds of dimensions q, m and p, respectively.  Let W CP be a submanifold of
codimension p.   (Jhat is, the dimension of P = p + dimension of W.)  Consider
a smooth mapping

0: Q x N —> P.

If 0 is transversal to W, then for almost every a E Q, 0fl(-) = 0(a, -): tV —► P is
transversal to W.

(Recall that a smooth mapping h : N —> P is transversal to W if

{Range Dh(x)}+ {Ty W} = TyP   whenever y = h(x) E W,
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where T W and T P denote the tangent spaces of W and P at y, respectively.)
Given the hypotheses of Theorems 2.1 (or 2.2, respectively) we may draw the

following standard conclusion from the Implicit Function Theorem. See [18,
Appendix].

Corollary 2.3. If m = p + 1, then each component o/0a"1(O) (or <p~1(W),
respectively) is a smooth curve for almost every a in V (or in Q) with respect to q-
dimensional Lebesgue measure.

Hence, we may say that if we choose a point a at random from V (or Q), the
probability is one that each component of 0~1(O) (or <p~1(W)) is a smooth curve.
In practice, we will know one point of 0~1(O) and will write Ta for the component
that that point is in.   More generally, we will be able to distinguish a particular com-
ponent of 0~1(O), and it will be denoted T .  Algorithms have been presented for
following this curve to its other end, so the methods based on results in this section
are constructive with probability one.  See Section 7.

Degree theory results are based on homotopy ideas.  We now investigate in
detail the homotopy mapping 0 we will use for the Brouwer Fixed Point Theorem.
For other problems we change 0 slightly if we are investigating zeroes of a map /
instead of fixed points, and the domain and range of 0 will vary from problem to
problem.  In all cases we investigate 0~'(O).

Let f:B" —*■ B" be smooth, and define

g(a,x) = x-a,      a,xER",   and   tfa, X, x) = (1 - \)g(a, x) + X(x - f(x)).

In seeking fixed points of/ we examine the zeroes of g and 0.  Let Ta be the
component of 0~1(O) n (0, 1) x B" whose closure contains (0, a).

Theorem 2.4. Consider the mapping
4>:B"  x (0, 1) x B" —► R"

defined as above.   We have
(a) 0 ER" is a regular value of 0,
(b) for almost every aEB" ,Tais a smooth curve in (0, 1) x B" joining (0, a)

to a fixed point of f (or to a set of fixed points) at X = 1.
Remark.   In practice for most / the curve Ta forms a smooth arc leading to a

fixed point of/  However, possibilities remain that Ta will not actually meet the
fixed point but will converge to a set of fixed points of/as shown in Figure 1.
Hence, 0~1(O) is smooth when restricted to (0, 1) x B" or [0, 1) x B" but not
necessarily in [0, 1 ] x B".

Proof.   Let (a, X, x) E B"  x (0, 1) x B" and <j>(â, X, x) = 0.   Then
Da<¡Afl, X, x) = - (1 - X)I, I = identity matrix, and for X ̂  1,

Range D$(a, X, x ) D Range Da0(a, X, x) =Rn.

This proves (a).   By Theorem 2.1, for almost every a E B", 0 is a regular value of
0a.   By Corollary 2.3, <t>~l(0) is a smooth curve in (0, 1) x Bn.   Hence, each
component is a smooth curve and is either diffeomorphic to a circle or an open
interval.
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FINDING  ZEROES OF MAPS 893

Consider the map 0a with domain (-°°, 1) x B". Since 0a(O, a) = 0 and
Dx0a(O, x) = /, we may solve for IXI « 1 in a neighborhood of (0, a) by the
Implicit Function Theorem, and write

0a(X, x(X)) = 0,    where x(0) = a.

This implies that Ta C (0, 1) x B" is not diffeomorphic to a circle. It remains to be
shown that Ta has no limit points on the lateral surface (0, 1) xS""1. Such a limit
point (X, x) would satisfy

0a(X, x) = 0,   where 0<X<1,
then x = (1 - X)a + X/(x).  Hence, x is on the line segment between a and fix).
Since a E B", fix) E B", we have x E B" ■ Hence, Ta has no limit points on
(0, 1) x 5"_1.  Of course, any limit point of Ta is in 0~1(O) so the only limit point
of Ta in {0} x B" is (0, a).  Furthermore, we have seen that Ta is homeomorphic to
an open interval and (0, a) lies at one end.  By compactness  of [0, 1]  x B" there
must be at least one additional limit point of Ta and all such limit points must lie in
{1} x B". If (1, x,) is such a point, then x, is a fixed point of/  D

Notice that if / - Dfix) is nonsingular for every fixed point x of /, then ra is
a smooth curve in [0, 1]  x B" and so has finite arc length.

3. The Brouwer Fixed Point Theorem.  We may immediately deduce the
Brouwer Fixed Point Theorem from Theorem 2.4 when /is smooth. Suppose now /
is merely continuous.  Approximating / by smooth mappings fk, k = 1, 2, . . . , we
obtain a sequence of smooth curves Ta.  By taking the limit of these curves

IT    U    r*
n=\   ^k>n   a

0a-1(O) n({l}xfi»)^0.

We now have that for any smooth /: B" —► B" we may find a fixed point by
following a curve Ta of fixed points we get by starting with the trivial map x - a = 0,
for almost any a.

Mas-Colell [19] has applied the Thorn transversality theorem to obtain a related
result.   He says that for / in an open and dense subset of the twice differentiable
functions, we may find the fixed point by starting with the trivial map x = 0.
That is, the set of solutions of X/(x) - x = 0 will be the union of a set of smooth
curves for "most choices of/"    See also [20].

4. Maps of R" into R".  There are many different variants of Brouwer's
Fixed Point Theorem.  Some are used in the existence proof for nonlinear partial
differential equations.   For example, in monotone operator theory the following
version of Brouwer's Fixed Point Theorem is used in connection with Galerkin's
approximation (see [21, pp. 53-56 and 171-173]).

Theorem 4.1. Let f': R" —*■ R" be smooth.  Suppose that

(4.1) f(x)-x>0    when\x\ = l.

Then there exists \x \ < 1 such that fix) = 0.
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Proof.   The standard proof is by contradiction [21, p. 53].   We present here a
constructive proof similar to the previous one.  Consider the mapping

0(a, X x) = (1 - X)(x - a) + X/(x),      \a\ < 1, 0 < X < 1.

By similar arguments as in the proof of Theorem 2.4, we obtain for almost every
a E B" a smooth curve Ta C 0~1 (0) of zeros of 0a.  To see that Ta continues to
X = 1, we must show Ta cannot contain any points  (X, x) with 0 < X < 1 and
x E bnd B".  Suppose otherwise, that there is X G (0, 1) and x with norm 1 such that

(1 - X)(x - a) + X/(x) = 0.

Using (4.1), we get (x - a) • x < 0 since (1 - X) > 0.  Hence 1 < a • x which is
impossible since \a | < 1, which is a contradiction.  Since ra has one endpoint at
(0, a), its other endpoint must lie at (1, x) where x is a zero of/  D

Hirsch and Smale [10] have used continuation to give a constructive proof for
several similar results and also for the following theorem.

Theorem 4.2.  Let f:R"—>R" be smooth.  Suppose that |/(x) I —*■ °° as
I x I —► °°. Suppose for some ß > 0, we have det Dfix) > 0 when l/(x) I > ß and
suppose we are given a sequence {x¡} with \x¡\ —► °° as i —► °° such that
det DfiXj) > 0. Assume n > I.   Then fhas a zero.

The continuation approach they use does not explicitly mention homotopies,
but it is equivalent to the following approach.  Let fix) — fia) be the trivial map.
(It is "trivial" because we immediately know x = a is a zero.)  Then let

0(77, X x) = (1 - X) [fix) - fia)] + X/(x) = fix) -il- X)fia).
Now let F be an open subset of R" on which |/(x)| > ß and det Dfix) i= 0.  Hence,
Da(p has rank 77 for X < 1 and so 0 is a regular value for 0a for almost every a E V.
Using degree theory arguments which we cannot give here, Hirsch and Smale have
shown in effect that the curve Ta is bounded and leads to a zero of/for almost
every a E V.

J. Alexander [22] has found an application of this result to the following
problem.  Given any complex k x k matrix im¡j) and the complex number
Xj, . . . , Xfc, how may one change the diagonal entries mxx, . . . , mkk so the
altered matrix has X,, . . . , Xfc as its eigenvalues?  For all matrices there are k\ ways
that the diagonal [mx,,..., mkk} may be chosen (for almost any choice of
{X, ■ • • Xfe}).  While Friedland had previously shown  [23]  that it is possible
to choose the diagonal appropriately, Alexander [22] has shown how Theorem 4.2
is always applicable and so can be used constructively to find appropriate diagonals.

5.  Solving a Two Point Boundary Value Problem.  While we may think of the
Brouwer Fixed Point Theorem as being a basic tool in problems of applied mathematics,
surprisingly few mathematical applications outside mathematical economics have been
found for the constructive methods first introduced by Scarf.  We feel that by the
simple modifications suggested in this paper, a richer class of problems becomes
tractable.  We present this section as an illustration.  See also [4].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINDING ZEROES OF MAPS 895

Let 0 :Rk x Rk —> Rk be smooth and consider the second order boundary value
problem on [-1,-1-1],

BVP.

Theorem 5.1 (Scorza-Dragoni [24]). Assume \\p\is bounded.   Then BVP
has at least one solution.

Our objective here is to find a constructive continuation method for producing
the solution.  The simplest nonconstructive approach would be to consider the
trivial equation u" = 0 and homotop the 0 map to 0, all the while using the
boundary condition (5.2).  The standard Leray-Schauder (or Brouwer) degree
argument would be to prove that there is a uniform bound for all solutions of all
intermediate problems, that is for u" = X/(i7, u) with (5.2).  Such a method is used
for more general boundary value problems by Lasota and Yorke [25 ].  This approach
need not produce a smooth curve of solutions and so it is not "constructive" in our
sense.

Continuation Proof.   Consider the trivial problem
u" = 0,       u(-l)=a0,       ui+l)=ax,

where a0, ax E Rk.  We now homotop this problem to the problem BVP.   For
X G [0, 1] we consider

(5 3) "" = A^("' ")
M(-l) = (l-X)a0, u(+l) = (l-X)a,

Let w be (u0, vx, X) G R2k+1 and write u(t, w) for the solution of (5.3) for which

w(0, w) = v0    and    i/'(0, w) = vx.

Let a be (a0,ax)ER2k and define <¡>:R2k x R2k+1 —* R2k by

0(a, x) = (Xa0 - «(-1, w), Xa, - w(l, w)).

Then Da<t> = XI where / is the identity on R2k.  Thus, Range Da0 is all of R2k for
X < 1 and so the same must be true for Range D<¡>.  Therefore, we may apply
Theorem 2.1.

Since 0 is bounded, we may choose ß > 0 such that | 0 | < ß everywhere on
R2k. Given a0, a,, let a = max{|a0 |, \ax |}. It follows that if uit) is a solution of
BVPK for some X < 1, then |«(i)l < a + 0/2 for all t E [- 1, + 1].  See [25] for
more complicated estimates.

The argument now follows as before.  The Ta leads to a zero of 0a with X = 1
for almost all a; of course this "solution" gives us w = (u0, vx, 1) and u(-, w) is a
solution of the original problem B VP.

In [24], [25] continuity of 0 is assumed instead of smoothness and the initial
value problems need not have unique solutions.  Hence, the degree arguments are
carried out in a function space.

(5.1)

(5.2)

u" = 0(77,

u(-l)

u, u)      )

0 = 7/(1))

BVPK.
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6.  Vector Fields on Spheres.   A basic result in bifurcation theory concerning
eigenvalues with odd multiplicities is equivalent to saying any smooth vector field
on an even-dimensional sphere must have a zero; (see Krasnoselskii [26]).
Computational techniques for finding such zeroes are desirable.

Let TS" be the tangent bundle of S".  Given a smooth vector field r :S" —> TS",
write

(6.1) r(x) = (x, fix)),

where x G 5", x • fix) = 0 and x, fix) ER" + 1.  Fox any a ES" define the
"trivial" vector field

aix) = (x, gia, x)),       gia, x) = a - (a • x)x

(a is a vector field whose trajectories lead from the south pole "-a" to the north
pole "a").  Let 0 be the homotopy between a and t defined by

(6-2) 0(a, X, x) = (x, (1 - X)gia, x) + X/(x)).

Theorem 6.1.  For the mapping

<p:S" x (0, 1) xS" ^TS"

defined by (6.1) we have
(a) 0 is transversal to W = {(x, y) G TS" : y = 0} ;

(b) 7/« is even, then for almost every a, Ta = (p~1iW) contains a curve in
(0, 1) x S" such that Va leads from a to a zero of the vector field t defined by
(6.1).

Proof.   Suppose that <p(a~, X, x) E W.   Hence,

(6.3) (1 - X)s(a, x ) + X/(x ) = 0.

Since X =£ 0, l,gifl, x) and fix) are proportional.  Thus,

Range Z?a0(a, X, x) = {b - (b • x)x : à • b = 0},

Range Dx4>(a, X, x) = {(a - (a • x)x)p:pER}.

Moreover,

T4,(à-,\,x)w= (y:y -x =0}.

It is clear that

Range Da0(a, X, x) + Range £>x0(a, X, x) = THaKx)W.

This proves (a). Next, by Theorem 2.2 for almost every a E S", 0a is transversal to
W.  Since codim W = codim <p~1iW) = 77.  Thus, 0~1(rt/) is diffeomorphic to either
a circle or an open interval.  Just as in Theorem 2.4 it follows from the Implicit
Function Theorem that fa = 0~1(IV) is diffeomorphic to an open interval.
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Since the manifold (0, 1) x S" has no boundary, Ta must have limit points on
{0} x S" or {1} x S". Suppose that Tfl has no limit points on {1} x S". Then, Ta has
two limit points, namely, (0, a) and (0, -a). Let Í2 C (0,1) x S" be an open neighbor-
hood of Ta such that the boundary 9Í2 of Í2 contains no points of {1} x S". Let fi(X) =
{x : (X, x) G £2}. Since 77 is even, the indices of the vector field 0a(O, •) at a ox -a
axe both equal to 1.  Thus,

deg(0a(X, •), Í2(X)) = 2    for 0 < X « 1,

where "deg" denotes the topological degree.   By the homotopy invariance of
topological degree,

deg(0a(X, ■), Í2(x)) = 2    for all X G (0, 1).

But, for X sufficiently close to 1, Í2(X) is empty and

deg(0a(X, ), SICK)) = 0.

This is a contradiction and proves (b).  D
A sequel [30] to this paper (written after this paper was submitted but

accepted before this paper was reported on) extends the method to the Borsuk-Ulam
Theorem and analyzes the class of problems for which the homotopy method works.

7.   Following the Curve Ta.  For a number of related problems we have establish-
ed here that all we need do to find solutions is follow the curve Ta.  In this section
we show that Ta is the solution of a differential equation which is defined on an
open set.  Hence, the curve may be followed by computer using any of the available
differential equation solving algorithms. To be specific, we choose the notation and
setting of Theorem 2.4.

Let K(X, x) be ker D<j>a(\ x); (that is, Z>0a here means D,x x)0a and the
ker D(j>a(\ x) is [v E R" + 1 : D<t>a(\ x)v = 0}). Let 0 be the set of (X, x) G [0, 1) x
B" such that the subspace K(X, x) is one dimensional.   Let {el, . . . , en} be a
complete set of basis vectors for R" .  Let (X, x) be in 0.  Let H(X, x) be the 77-
dimensional subspace in R" + 1 which is perpendicular to K(\ x).  By construction,
for i = 1, . . . , 77, there exist unique vectors e'i E H(X, x) such that D<j>a(X, xje¡ = e¡.
For vE R" + 1 ,let 17(11) ( = 17(17, X, x)) be the determinant of the ordered set
(u, e ,,..., en); that is we consider these vectors to be columns of an (77 + 1) x
(77 + I) matrix and evaluate its determinant.  Notice that if v E K(X, x), v i= 0, then
[v, e,, . . . , 7n} is a basis for R" + 1, and so p(v) =£ 0.

Let a be chosen so 0 is a regular value of 0a. Then 0 is a neighborhood of
Ta. There are two natural vector fields, that is differential equations on 0- Write
y for (X x), and let v+(y) be the unit vector in Kiy) for which p(v+(y)) > 0, and
let v~(y) be the other unit vector,~v+(y). IXy is a point of Ta, both v+(y) and
v~(y) axe tangent to Ta at y. Writing u(y) for either v+ or v~, the corresponding
differential equation is

(7.1) ^ = viy),     y(0) = (0,a)ER" + i.
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The solution y(s) has Ta as its trajectory and s corresponds to arc length since
\v(y)\ = 1.  One of these choices traces out Ta with positive s, and the other,
negative s.  Let v0 be the unit vector in K(0, a) for which the first coordinate, (i.e.
the  X coordinate) is positive.  If v0 = v+(0, a), we choose v(y) = v+(y), and v~(y)
in the alternative case.  Hence, we have now chosen a single differential equation on

o.
It should be noticed that for any y E 0, d<pa(y(s))/ds = 0 since D<pa(y)v(y) = 0,

that is, 0a is constant along trajectories of (7.1).  Of course for an arbitrary point
y G 0, y £ Ta, the solution of (7.1) may trace out a closed loop or it may reach a
boundary of 0 at which X ¥= 1, that is, a point at which v is not defined.

An alternative approach for defining v (and v+ and u~) is available.  Given a
point (X, x) G [0, 1) x B", we could choose tT = ä~(X, x) so that 0(0", X, x) = 0.
Then if D,x x\4Aß< X, x) has rank 77, we can define v(X, x), namely by choosing it to
be tangent to the curve through (X, x) on which 0~ is 0.  Of course, we still have to
choose the orientation of v by examining an appropriate determinant.  We would
expect this second approach to defining v to be better in practice than the first,
since in the second we would expect small errors, numerically introduced, to shift the
trajectory to a nearby curve which is as good as the original curve. In this alternative
approach we would expect the nearby curve by construction to be leading to a fixed
point also.  Hence, this method may be computationally superior.  In fact, there has
been insufficient computer experimentation so far with these methods.  Certainly
pathological examples can be constructed and the frequency of these in practice
can only be determined by further experimentation.   For discussions of the continua-
tion method in special cases, see also [27] -[29].
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