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Abstract

This paper presents the results of the

WMT16 shared tasks, which included five

machine translation (MT) tasks (standard

news, IT-domain, biomedical, multimodal,

pronoun), three evaluation tasks (metrics,

tuning, run-time estimation of MT qual-

ity), and an automatic post-editing task

and bilingual document alignment task.

This year, 102 MT systems from 24 in-

stitutions (plus 36 anonymized online sys-

tems) were submitted to the 12 translation

directions in the news translation task. The

IT-domain task received 31 submissions

from 12 institutions in 7 directions and the

Biomedical task received 15 submissions

systems from 5 institutions. Evaluation

was both automatic and manual (relative

ranking and 100-point scale assessments).

The quality estimation task had three sub-

tasks, with a total of 14 teams, submitting

39 entries. The automatic post-editing task

had a total of 6 teams, submitting 11 en-

tries.

1 Introduction

We present the results of the shared tasks of the

First Conference on Statistical Machine Transla-

tion (WMT) held at ACL 2016. This confer-

ence builds on nine previous WMT workshops

(Koehn and Monz, 2006; Callison-Burch et al.,

2007, 2008, 2009, 2010, 2011, 2012; Bojar et al.,

2013, 2014, 2015).

This year we conducted several official tasks.

We report in this paper on five tasks:

• news translation (§2, §3)

• IT-domain translation (§4)

• biomedical translation (§5)

• quality estimation (§6)

• automatic post-editing (§7)

The conference featured additional shared tasks

that are described in separate papers in these pro-

ceedings:

• tuning (Jawaid et al., 2016)

• metrics (Bojar et al., 2016b)

• cross-lingual pronoun prediction (Guillou

et al., 2016)

• multimodal machine translation and crosslin-

gual image description (Specia et al., 2016)

• bilingual document alignment (Buck and

Koehn, 2016)

In the news translation task (§2), participants

were asked to translate a shared test set, option-

ally restricting themselves to the provided train-

ing data. We held 12 translation tasks this year,

between English and each of Czech, German,

Finnish, Russian, Romanian, and Turkish. The

Romanian and Turkish translation tasks were new

this year, providing a lesser resourced data con-

dition on challenging language pairs. The system

outputs for each task were evaluated both automat-

ically and manually.

The human evaluation (§3) involves asking

human judges to rank sentences output by

anonymized systems. We obtained large num-

bers of rankings from researchers who contributed
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evaluations proportional to the number of tasks

they entered. We made data collection more effi-

cient and used TrueSkill as ranking method. We

also explored a novel way of ranking machine

translation systems by judgments of adequacy and

fluency on a 100-point scale.

The IT translation task (§4) was introduced this

year and focused on domain adaptation of MT to

the IT (information technology) domain and trans-

lation of answers in a cross-lingual help-desk ser-

vice, where hardware&software troubleshooting

answers are translated from English to the users’

languages: Bulgarian, Czech, German, Spanish,

Basque, Dutch and Portuguese. Similarly as in the

News translation task, training and test data were

provided and the system outputs were evaluated

both automatically and manually.

Another task newly introduced this year was

the biomedical translation task (§5). Participants

were asked to translate the titles and abstracts of

scientific articles indexed in the Scielo database.

Training and test data were provided for two sub-

domains, biological sciences and health sciences,

and three language pairs, Portuguese/English,

Spanish/English and French/English. This task

therefore provided data for a language not previ-

ously covered in WMT, Portuguese. The system

outputs for each language pair were evaluated both

automatically and manually.

The quality estimation task (§6) this year in-

cluded three subtasks: sentence-level prediction of

post-editing effort scores, word and phrase-level

prediction of good/bad labels, and document-level

prediction of human post-editing scores. Datasets

were released with English→German IT trans-

lations for sentence and word/phrase level, and

English↔Spanish news translations for document

level.

The automatic post-editing task (§7) examined

automatic methods for correcting errors produced

by an unknown machine translation system. Par-

ticipants were provided with training triples con-

taining source, target and human post-edits, and

were asked to return automatic post-edits for un-

seen (source, target) pairs. In this second round,

the task focused on correcting English→German

translations in the IT domain.

The primary objectives of WMT are to evalu-

ate the state of the art in machine translation, to

disseminate common test sets and public train-

ing data with published performance numbers, and

to refine evaluation and estimation methodologies

for machine translation. As before, all of the

data, translations, and collected human judgments

are publicly available.1 We hope these datasets

serve as a valuable resource for research into sta-

tistical machine translation and automatic evalu-

ation or prediction of translation quality. News

and IT translations are also available for interac-

tive visualization and comparison of differences

between systems at http://wmt.ufal.cz using

MT-ComparEval (Sudarikov et al., 2016).

2 News Translation Task

The recurring WMT task examines translation be-

tween English and other languages in the news do-

main. As in the previous years, we include Ger-

man, Czech, Russian, and Finnish. New languages

this years are Romanian and Turkish.

We created a test set for each language pair by

translating newspaper articles and provided train-

ing data.

2.1 Test data

The test data for this year’s task was selected from

online sources, as before. We took about 1500 En-

glish sentences and translated them into the other

5 languages, and then additional 1500 sentences

from each of the other languages and translated

them into English. This gave us test sets of about

3000 sentences for our English-X language pairs,

which have been either originally written in En-

glish and translated into X, or vice versa. The

composition of the test documents is shown in Ta-

ble 1.

The stories were translated by professional

translators, funded by the EU Horizon 2020

projects CRACKER and QT21 (German, Czech,

Romanian), by Yandex2, a Russian search engine

company (Turkish, Russian), and by BAULT, a re-

search community on building and using language

technology funded by the University of Helsinki

(Finnish). For Finnish, a second translation was

provided as well, but not used in the evaluation.

All of the translations were done directly, and not

via an intermediate language.

For Turkish we also released an additional 500

sentence development set, and for Romanian a

third of the test set were released as a development

1http://statmt.org/wmt16/results.html
2http://www.yandex.com/
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set instead. For the other languages, test sets from

previous years are available as development sets.

2.2 Training data

As in past years we provided parallel corpora to

train translation models, monolingual corpora to

train language models, and development sets to

tune system parameters. Some training corpora

were identical from last year (Europarl3, United

Nations, French-English 109 corpus, Common

Crawl, Russian-English parallel data provided by

Yandex, Wikipedia Headlines provided by CMU)

and some were updated (CzEng v1.6pre (Bojar

et al., 2016a), News Commentary v11, monolin-

gual news data).

We added a few new corpora:

• Romanian Europarl (Koehn, 2002)

• SETIMES2 from OPUS for Romanian–

English and Turkish–English (Tiedemann,

2009)

• Monolingual data sets from CommonCrawl

(Buck et al., 2014)

Some statistics about the training materials are

given in Figure 1.

2.3 Submitted systems

We received 102 submissions from 24 institu-

tions. The participating institutions and their entry

names are listed in Table 2; each system did not

necessarily appear in all translation tasks. We also

included 36 online statistical MT systems (origi-

nating from 4 services), which we anonymized as

ONLINE-A,B,F,G.

For presentation of the results, systems are

treated as either constrained or unconstrained, de-

pending on whether their models were trained only

on the provided data. Since we do not know how

they were built, these online and commercial sys-

tems are treated as unconstrained during the auto-

matic and human evaluations.

3 Human Evaluation

Each year, we conduct a human evaluation

campaign to assess translation quality and deter-

mine the final ranking of candidate systems. This

section describes how we prepared the evaluation

data, collected human assessments, and computed

the official results.

3As of Fall 2011, the proceedings of the European Parlia-
ment are no longer translated into all official languages.

Over the past few years, our method of col-

lecting and evaluating the manual translations has

settled into the following pattern. We ask hu-

man annotators to rank the outputs of five systems.

From these rankings, we produce pairwise trans-

lation comparisons, and then evaluate them with a

version of the TrueSkill algorithm adapted to our

task. We refer to this approach (described in Sec-

tion 3.4) as the relative ranking approach (RR),

so named because the pairwise comparisons de-

note only relative ability between a pair of sys-

tems, and cannot be used to infer their absolute

quality. These results are used to produce the of-

ficial ranking for the WMT 2016 tasks. However,

work in evaluation over the past few years has pro-

vided fresh insight into ways to collect direct as-

sessments (DA) of machine translation quality. In

this setting, annotators are asked to provide an as-

sessment of the direct quality of the output of a

system relative to a reference translation. In or-

der to evaluate the potential of this approach for

future WMT evaluations, we conducted a direct

assessment evaluation in parallel. This evaluation,

together with a comparison of the official results,

is described in Section 3.5.

3.1 Evaluation campaign overview

Following the trend from previous years, WMT16

ended up being the largest evaluation campaign to

date. Similar to last year, we collected researcher-

based judgments only (as opposed to crowd-

sourcing annotations from a tool like Mechanical

Turk). For the News translation task, a total of

150 individual annotator accounts were involved.

Users came from 33 different research groups and

contributed judgments on 10,833 HITs.

Each HIT comprises three 5-way ranking tasks

for a total of 32,499 such tasks. Under ordinary

circumstances, each of the tasks would correspond

to ten individual pairwise system comparisons de-

noting whether a system A was judged better than,

worse than, or equivalent to another system B.

However, since many systems have produced the

same outputs for a particular sentence, we are of-

ten able to produce more than ten comparisons

(Section 3.2), ending up with a total of 569,287

pairwise annotations—a 75.2% increase over the

expected baseline of 324,990 pairs. This is smaller

than last year’s gain of 87.1% as we have decided

to preserve punctuation differences. Section 3.2

provides more details on our pre-processing.
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Europarl Parallel Corpus

German ↔ English Czech ↔ English Finnish ↔ English Romanian ↔ English

Sentences 1,920,209 646,605 1,926,114 399,375

Words 50,486,398 53,008,851 14,946,399 17,376,433 37,814,266 52,723,296 10,943,404 10,891,847

Distinct words 381,583 115,966 172,461 63,039 693,963 115,896 73,353 42,650

News Commentary Parallel Corpus

German ↔ English Czech ↔ English Russian ↔ English

Sentences 242,770 191,432 174,253

Words 6,284,116 6,307,244 4,385,588 4,914,094 4,452,010 4,681,362

Distinct words 153,835 68,039 154,044 62,043 151,228 55,382

Common Crawl Parallel Corpus
French ↔ English German ↔ English Czech ↔ English Russian ↔ English

Sentences 3,244,152 2,399,123 161,838 878,386

Words 91,328,790 81,096,306 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122

Distinct words 889,291 859,017 1,640,835 823,480 210,170 128,212 764,203 432,062

United Nations Parallel Corpus
French ↔ English

Sentences 12,886,831

Words 411,916,781 360,341,450

Distinct words 565,553 666,077

10
9 Word Parallel Corpus

French ↔ English

Sentences 22,520,400

Words 811,203,407 668,412,817

Distinct words 2,738,882 2,861,836

Yandex 1M Parallel Corpus

Russian ↔ English

Sentences 1,000,000

Words 24,121,459 26,107,293

Distinct words 701,809 387,646

CzEng Parallel Corpus

Czech ↔ English

Sentences 51,424,584

Words 592,890,104 699,087,647

Distinct words 3,073,115 1,727,574

Wiki Headlines Parallel Corpus

Russian ↔ English Finnish ↔ English

Sentences 514,859 153,728

Words 1,191,474 1,230,644 269,429 354,362

Distinct words 282,989 251,328 127,576 96,732

Europarl Language Model Data

English German Czech Finnish

Sentence 2,218,201 2,176,537 668,595 2,120,739

Words 59,848,044 53,534,167 14,946,399 39,511,068

Distinct words 123,059 394,781 172,461 711,868

News Language Model Data

English German Czech Russian Finnish Romanian

Sentence 145,573,876 187,008,695 53,383,346 56,371,276 6,740,879 2,280,642

Words 3,355,935,396 3,331,396,767 879,993,532 1,016,368,612 83,112,454 54,793,949

Distinct words 5,487,137 16,166,174 3,824,351 3,834,224 2,572,117 504,438

Common Crawl Language Model Data

English German Czech Russian Finnish Romanian Turkish

Sent. 3,074,921,453 2,872,785,485 333,498,145 1,168,529,851 157,264,161 288,806,234 511,196,951

Words 65,128,419,540 65,154,042,103 6,694,811,063 23,313,060,950 2,935,402,545 8,140,378,873 11,882,126,872

Dist. 342,760,462 339,983,035 50,162,437 101,436,673 47,083,545 37,846,546 88,463,295

Test Set
German ↔ EN Czech ↔ EN Russian ↔ EN Finnish ↔ EN Romanian ↔ EN Turkish ↔ EN

Sent. 2,999 2,999 2,998 3,000 1,999 2,998

Words 64,379 65,647 57,097 66,457 62,840 71,068 48,839 64,611 50,603 48,531 54,420 67,468

Dist. 12,234 8,877 15,163 8,639 16,304 8,963 16,092 8,413 9,851 6,953 15,395 8,799

Figure 1: Statistics for the training and test sets used in the translation task. The number of words and the number of distinct
words (case-insensitive) is based on the provided tokenizer.
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Language Sources (Number of Documents)

English ABC News (5), BBC (5), Brisbane Times (2), CBS News (2), CNN (1), Christian Science Monitor (2),
Daily Mail (4), Euronews (1), Fox News (2), Guardian (9), Independent (1), Los Angeles Times (3),
Medical Daily (1), News.com Australia (4), New York Times (1), Reuters (3), Russia Today (2), Scots-
man (2), Sky (1), Sydney Morning Herald (5), stv.tv (1), Telegraph (4), The Local (2), Time Maga-
zine (1), UPI (3), Xinhua Net (1).

Czech aktuálně.cz (2), blesk.cz (3), denı́k.cz (8), e15.cz (2), iDNES.cz (12), ihned.cz (4), lidovky.cz (7),
Novinky.cz (1), tyden.cz (6), ZDN (1).

German Wirtschaftsblatt (1), Abendzeitung München (1), Abendzeitung Nürnberg (1), Ärztezeitung (1), Aach-
ener Nachrichten (4), Berliner Kurier (1), Borkener Zeitung (1), Come On (1), Die Presse (2),
Dülmener Zeitung (2), Euronews (1), Frankfurter Rundschau (1), Göttinger Tageblatt (1), Hes-
sische/Niedersächsische Allgemeine (1), In Franken (4), Kleine Zeitung (3), Kreisanzeiger (1),
Kreiszeitung (1), Krone (2), Lampertheimer Zeitung (1), Lausitzer Rundschau (1), Merkur (2),
Morgenweb (1), Mitteldeutsche Zeitung (1), NTV (2), Nachrichten.at (6), Neues Deutschland (2),
Neue Presse Coburg (1), Neue Westfälische (1), Ostfriesenzeitung (2), Passauer Neue Presse (1),
Rheinzeitung (1), Schwarzwälder Bote (1), Segeberger Zeitung (1), Stuttgarter Nachrichten (1),
Südkurier (3), Tagesspiegel (1), Teckbote (1), Thueringer Allgemeine (1), Thüringische Lan-
deszeitung (1), tz München (1), Usinger Anzeiger (6), Volksblatt (3), Westfälischer Anzeiger (1),
Weser Kurier (1), Wiesbadener Kurier (2), Westfälische Nachrichten (4), Westdeutsche Zeitung (3),
Willhelmshavener Zeitung (1), Yahoo (1).

Finnish Aamulehti (4), Etelä-Saimaa (2), Etelä-Suomen Sanomat (1), Helsingin Sanomat (12), Ilkka (5), Iltale-
hti (10), Ilta-Sanomat (31), Kaleva (3), Karjalainen (7), Kouvolan Sanomat (2).

Russian 168.ru (1), aif (2), altapress.ru (2), argumenti.ru (1), BBC Russian (1), Euronews (2), Fakty (3), Russia
Today (1), Izvestiya (3), Kommersant (13), Lenta (7), lgng (2), MK RU (1), New Look Media (1),
Novaya Gazeta (3), Novinite (1), ogirk.ru (1), pnp.ru (2), rg.ru (1), Rosbalt (2), rusplit.ru (1), Sport
Express (10), trud.ru (2), tumentoday.ru (1), Vedomosti (1), Versia (2), Vesti (11), VM News (1).

Romanian National (1), HotNews (1), Info Press (1), Puterea (1), ziare.ro (29), Ziarul de Iaşi (17)

Turkish hurriyet (37), Sabah (26), Zaman (23)

Table 1: Composition of the test set. For more details see the XML test files. The docid tag gives the source and the date for
each document in the test set, and the origlang tag indicates the original source language.

In total, our human annotators spent nearly 39

days and 3 hours working in Appraise. This gives

an average annotation time of 6.4 hours per user.

The average annotation time per HIT amounts to

5 minutes and 12 seconds. This is a little slower

than last year’s average time of 4 minutes and 53

seconds. Similar to the previous campaign, sev-

eral of the annotators passed the mark of more

than 100 HITs annotated (the maximum number

being 684) and, again, some worked for more than

24 hours (the most patient annotator contributing

a little over 99 hours of annotation work).

The effort that goes into the manual evalua-

tion campaign each year is impressive, and we

are grateful to all participating individuals and

teams. We believe that human annotation provides

the best decision basis for evaluation of machine

translation output and it is great to see continued

contributions on this large scale.

3.2 Data collection

The system ranking is produced from a large set

of pairwise judgments, each of which indicates

the relative quality of the outputs of two systems’

translations of the same input sentence. Annota-

tions are collected in an evaluation campaign that

enlists participants in the shared task to help. Each

team is asked to contribute one hundred so-called

“Human Intelligence Tasks” (HITs) per primary

system submitted.

We continue to use the open-source Appraise4

(Federmann, 2012) tool for our data collection.

Last year, we had provided the following instruc-

tions at the top of each HIT page:

You are shown a source sentence fol-

lowed by several candidate translations.

Your task is to rank the translations from

best to worst (ties are allowed).

This year, in order to optimize screen space we

have streamlined the user interface, removing the

instruction text (which instead was communicated

to annotators outside of the HIT annotation inter-

face) and trimming vertical spacing. A screenshot

of the Appraise relative ranking interface is shown

in Figure 2.

Annotators are asked to rank the outputs from 1

(best) to 5 (worst), with ties permitted. Note that a

lower rank is better, and that this is clear from the

interface design. Annotators can decide to skip a

ranking task but are instructed to do this only as a

last resort, e.g., if the translation candidates shown

on screen are clearly misformatted or contain data

4https://github.com/cfedermann/Appraise
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ID Institution

AALTO Aalto University (Grönroos et al., 2016)

ABUMATRAN-* Abu-MaTran (Sánchez-Cartagena and Toral, 2016)

AFRL-MITLL Air Force Research Laboratory / MIT Lincoln Lab (Gwinnup et al., 2016)

AMU-UEDIN Adam Mickiewicz Uni. / Uni. Edinburgh (Junczys-Dowmunt et al., 2016)

CAMBRIDGE University of Cambridge (Stahlberg et al., 2016)

CMU Carnegie Mellon University

CU-MERGEDTREES Charles University (Mareček, 2016)

CU-CHIMERA Charles University (Tamchyna et al., 2016)

CU-TAMCHYNA

CU-TECTOMT Charles University (Dušek et al., 2015)

JHU-* Johns Hopkins University (Ding et al., 2016)

KIT, KIT-LIMSI Karlsruhe Institute of Technology (Ha et al., 2016)

LIMSI University of Paris (Allauzen et al., 2016)

LMU-CUNI University of Munich / Charles University (Tamchyna et al., 2016)

METAMIND Salesforce Metamind (Bradbury and Socher, 2016)

NRC National Research Council Canada (Lo et al., 2016)

NYU-MONTERAL New York University / University of Montréal (Chung et al., 2016)

PARFDA Ergun Bicici (Bicici, 2016a)

PJATK Polish-Japanese Academy of Inf. Technology (Wołk and Marasek, 2016)

PROMT PROMT Automated Translation Solutions (Molchanov and Bykov, 2016)

QT21-HIML QT21 System Combination (Peter et al., 2016b)

RWTH RWTH Aachen (Peter et al., 2016a)

TBTK TÜBITAK (Bektaş et al., 2016)

UEDIN-NMT University of Edinburgh (Sennrich et al., 2016)

UEDIN-PBMT University of Edinburgh (Williams et al., 2016)

UEDIN-SYNTAX

UEDIN-LMU University of Edinburgh / University of Munich (Huck et al., 2016)

UH-* University of Helsinki (Tiedemann et al., 2016)

USFD-RESCORING University of Sheffield (Blain et al., 2016)

UUT Uppsala University (Tiedemann et al., 2016)

YSDA Yandex School of Data Analysis (Dvorkovich et al., 2016)

ONLINE-[A,B,F,G] Four online statistical machine translation systems

Table 2: Participants in the shared translation task. Not all teams participated in all language pairs. The translations from the
commercial and online systems were not submitted by their respective companies but were obtained by us, and are therefore
anonymized in a fashion consistent with previous years of the workshop.
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Figure 2: Screenshot of the Appraise interface used in the human evaluation campaign. The annotator is presented with a
source segment, a reference translation, and up to five outputs from competing systems (anonymized and displayed in random
order), and is asked to rank these according to their translation quality, with ties allowed.

issues (wrong language, encoding errors or other,

obvious problems). Similar to last year, only a few

ranking tasks have been skipped in WMT16.

Each HIT consists of three so-called ranking

tasks. In a ranking task, an annotator is presented

with a source segment, a human reference trans-

lation, and the outputs of up to five anonymized

candidate systems, randomly selected from the set

of participating systems, and displayed in random

order. This year, as with last year, we perform a re-

dundancy cleanup as an initial preprocessing step

and create multi-system outputs to avoid confus-

ing annotators with identical content: instead of

selecting five systems and displaying their (identi-

cal) outputs, we select five distinct outputs, and

then propagate the collected rankings to all the

individual systems within each of the respective

multi-system outputs. Last year, however, nearly-

identical outputs were collapsed if they differed

only on punctuation. Because punctuation is an

important component of producing quality MT

output, this year, we only collapse outputs that

are exactly the same, apart from differences in

nonzero whitespace.

To demonstrate how this works, we provide the

following example. First, consider the case where

we select system outputs directly, instead of the

multi-system outputs described above. Here, we

consider an annotation provided by a judge among

the outputs of systems A,B, F,H , and J :

1 2 3 4 5

F •
A •
B •
J •
H •

The joint rankings provided by a ranking task are

then expanded to a set of pairwise rankings pro-

duced by considering all
(

n

2

)

≤ 10 combinations

of all n ≤ 5 outputs in the respective ranking task.
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Language Pair Systems Comparisons Comparisons/Sys

Czech→English 12 125,788 10,482.3

English→Czech 20 192,487 9,624.3

Finnish→English 9 30,519 3,391.0

English→Finnish 13 38,254 2,942.6

German→English 10 20,937 2,093.7

English→German 15 50,989 3,399.2

Romanian→English 7 15,822 2,260.2

English→Romanian 12 11,352 946.0

Russian→English 10 27,353 2,735.3

English→Russian 12 34,414 2,867.8

Turkish→English 9 10,188 1,132.0

English→Turkish 9 11,184 1,242.6

Totals WMT16 138 569,287 4,125.2

WMT15 131 542,732 4,143.0

WMT14 110 328,830 2,989.3

WMT13 148 942,840 6,370.5

WMT12 103 101,969 999.6

WMT11 133 63,045 474.0

Table 3: Amount of data (pairwise comparisons after “de-collapsing” multi-system outputs) collected in the WMT16 manual
evaluation campaign. The final five rows report summary information from previous years of the workshop. Note how many
rankings we get for Czech language pairs; these include systems from the tuning shared task.

As the number of outputs n depends on the

number of identical (and, hence, redundant) multi-

system outputs in the original data, we end up

getting varying numbers of corresponding binary

judgments. Now, consider the case of multi-system

outputs. If the outputs of system A and F from

above are actually identical, the annotator this year

would see an easier ranking task:5

1 2 3 4 5

AF •
B •
J •
H •

Both examples would be reduced to the following

set of pairwise judgments:

A > B,A = F,A > H,A < J

B < F,B < H,B < J

F > H,F < J

H < J

Here, A > B should be read is “A is ranked

higher than (worse than) B”. Note that by this pro-

cedure, the absolute value of ranks and the mag-

nitude of their differences are discarded. In the

5Technically, another distinct output would have been in-
serted, if possible, so as to present the annotator with five, but
we ignore that for illustration purposes.

case of multi-system outputs, this set of pairwise

rankings would have been produced with less an-

notator effort. This productivity gain grows in the

number of systems that produce identical output,

and this situation is quite common, due in part to

the fact that many systems are built on the same

underlying technology. Table 3 has more details.

3.3 Annotator agreement

Each year we calculate annotator agreement

scores for the human evaluation as a measure of

the reliability of the rankings. We measured pair-

wise agreement among annotators using Cohen’s

kappa coefficient (κ) (Cohen, 1960). If P (A) be

the proportion of times that the annotators agree,

and P (E) is the proportion of time that they would

agree by chance, then Cohen’s kappa is:

κ =
P (A)− P (E)

1− P (E)

Note that κ is basically a normalized version of

P (A), one which takes into account how mean-

ingful it is for annotators to agree with each other

by incorporating P (E). The values for κ range

from 0 to 1, with zero indicating no agreement and

1 perfect agreement.

We calculate P (A) by examining all pairs of
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Language Pair WMT12 WMT13 WMT14 WMT15 WMT16

Czech→English 0.311 0.244 0.305 0.458 0.244

English→Czech 0.359 0.168 0.360 0.438 0.381

German→English 0.385 0.299 0.368 0.423 0.475

English→German 0.356 0.267 0.427 0.423 0.369

French→English 0.272 0.275 0.357 0.343 —

English→French 0.296 0.231 0.302 0.317 —

Russian→English — 0.278 0.324 0.372 0.339

English→Russian — 0.243 0.418 0.336 0.340

Finnish→English — — — 0.388 0.293

English→Finnish — — — 0.549 0.484

Romanian→English — — — — 0.379

English→Romanian — — — — 0.341

Turkish→English — — — — 0.322

English→Turkish — — — — 0.319

Mean 0.330 0.260 0.367 0.405 0.357

Table 4: κ scores measuring inter-annotator agreement for WMT16. See Table 5 for corresponding intra-annotator agreement
scores. WMT14–WMT16 results are based on researchers’ judgments only, whereas prior years mixed judgments of researchers
and crowdsourcers.

outputs6 which had been judged by two or more

judges, and calculating the proportion of time that

they agreed that A < B, A = B, or A > B. In

other words, P (A) is the empirical, observed rate

at which annotators agree, in the context of pair-

wise comparisons.

As for P (E), it captures the probability that two

annotators would agree randomly. Therefore:

P (E) = P (A<B)2 + P (A=B)2 + P (A>B)2

Note that each of the three probabilities in P (E)’s
definition are squared to reflect the fact that we are

considering the chance that two annotators would

agree by chance. Each of these probabilities is

computed empirically, by observing how often an-

notators actually rank two systems as being tied.

Table 4 shows final κ values for inter-annotator

agreement for WMT11–WMT16 while Table 5

details intra-annotator agreement scores. The ex-

act interpretation of the kappa coefficient is dif-

ficult, but according to Landis and Koch (1977),

0–0.2 is slight, 0.2–0.4 is fair, 0.4–0.6 is moder-

ate, 0.6–0.8 is substantial, and 0.8–1.0 is almost

perfect.

Compared to last year’s results, inter-annotator

agreement rates have decreased. Notably, for

6Regardless if they correspond to an individual system
or to a set of systems (“multi-system”) producing identical
translations. Thus, when computing annotator agreement
scores, we effectively treat both individual and multi-systems
in the same way, as “individual comparison units”. By doing
so, we avoid artificially inflating our agreement scores based
on the automatically inferred A = B ties from multi-systems.

Czech→English, we see a drop from 0.458 to

0.244. English→Czech decreases from 0.438 to

0.381. Considering that the total number of data

points collected as well as the number of annota-

tors for these language pairs have increased sub-

stantially, the lower agreement score seems plau-

sible.7 We observe a small increase in agree-

ment for German→English (from 0.423 to 0.475)

and a drop for English→German (from 0.434 to

0.369). Scores for both Russian language pairs

are similar to what had been measured in WMT15.

For Finnish, we again see a decrease (from 0.388

to 0.293 for Finnish→English and from 0.549

to 0.484 for English→Finnish) and our new lan-

guages, Romanian and Turkish, end up with fair

annotator agreement. The average inter-annotator

agreement across all languages is 0.357, which is

also fair and comparable to researchers’ agree-

ment over the last years. Intra-annotator agree-

ment scores have mostly decreased compared to

WMT15, except for both Russian language pairs.

The new languages show moderate agreement ex-

cept for English→Turkish which achieves a fair

score. On average we observe an intra-annotator

agreement which is comparable to researcher-

based scores from WMT13–WMT15.

7Both Czech→English and English→Czech contain
tuning-task systems with very similar quality (according to
both human evaluation and BLEU), which makes the annota-
tion task more difficult.
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Language Pair WMT12 WMT13 WMT14 WMT15 WMT16

Czech→English 0.454 0.479 0.382 0.694 0.504

English→Czech 0.390 0.290 0.448 0.584 0.438

German→English 0.392 0.535 0.344 0.801 0.552

English→German 0.433 0.498 0.576 0.676 0.529

French→English 0.360 0.578 0.629 0.510 —

English→French 0.414 0.495 0.507 0.426 —

Russian→English — 0.450 0.629 0.506 0.552

English→Russian — 0.513 0.570 0.492 0.528

Finnish→English — — — 0.562 0.549

English→Finnish — — — 0.697 0.617

Romanian→English — — — — 0.621

English→Romanian — — — — 0.552

Turkish→English — — — — 0.559

English→Turkish — — — — 0.352

Mean 0.407 0.479 0.522 0.595 0.529

Table 5: κ scores measuring intra-annotator agreement, i.e., self-consistency of judges, across for the past few years of the
human evaluation campaign. Scores are in line with results from WMT14 and WMT15.

3.4 Producing the human ranking

The collected pairwise rankings are used to pro-

duce the official human ranking of the sys-

tems. Since WMT14, we have used the TrueSkill

method for producing the official ranking, in the

following fashion. We produce 1,000 bootstrap-

resampled datasets over all of the available data

(i.e., datasets sampled uniformly with replacement

from the complete dataset). We run TrueSkill over

each dataset. We then compute a rank range for

each system by collecting the absolute rank of

each system in each fold, throwing out the top

and bottom 2.5%, and then clustering systems into

equivalence classes containing systems with over-

lapping ranges, yielding a partial ordering over

systems at the 95% confidence level.

The full list of the official human rankings for

each task can be found in Table 6, which also re-

ports all system scores, rank ranges, and clusters

for all language pairs and all systems. The official

interpretation of these results is that systems in the

same cluster are considered tied. Given the large

number of judgments that we collected, it was pos-

sible to group on average about two systems in a

cluster, even though the systems in the middle are

typically in larger clusters.

In Figure 3–5, we plotted the human evalu-

ation result against everybody’s favorite metric

BLEU. Although these two metrics correlate gen-

erally well, the plots clearly suggest that a fair

comparison of systems of different kinds cannot

rely on automatic scores. Rule-based systems re-

ceive a much lower BLEU score than statistical

systems (see for instance English–German, e.g.,

PROMT-RULE). The same is true to a lesser degree

for statistical syntax-based systems (see English–

German, UEDIN-SYNTAX vs. UEDIN-PBMT).

3.5 Direct Assessment Manual Evaluation

In addition to the standard relative ranking (RR)

manual evaluation, this year a new method of hu-

man evaluation was also trialed in the main trans-

lation task: monolingual direct assessment (DA)

of translation fluency (Graham et al., 2013) and

adequacy (Graham et al., 2014, 2016).

Agreement between human assessors of trans-

lation quality is a known problem in evaluation of

MT and DA therefore aims to simplify translation

assessment, which conventionally takes the form

of a bilingual evaluation, by restructuring the task

into a monolingual assessment. Figure 6 provides

a screen shot of DA adequacy assessment, where

the task is structured as a monolingual similarity

of meaning task.

Human assessors are asked to rate a given trans-

lation by how adequately it expresses the meaning

of the corresponding reference translation on an

analogue scale, which corresponds to an underly-

ing absolute 0–100 rating. DA fluency assessment

is similar with two exceptions, firstly no reference

translation is displayed and secondly, assessors are

asked to rate how much they agree that a given

translation is fluent target language text. DA flu-
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Czech–English

# score range system

1 0.62 1 UEDIN-NMT

2 0.32 2 JHU-PBMT

3 0.21 3 ONLINE-B

4 0.11 4-6 TT-BLEU-MIRA

0.10 4-7 TT-AFRL

0.09 4-7 TT-NRC-NNBLEU

0.07 5-8 TT-NRC-MEANT

0.03 7-10 TT-BEER-PRO

0.00 8-10 PJATK
0.00 8-10 TT-BLEU-MERT

5 −0.07 11 ONLINE-A

6 −1.48 12 CU-MRGTREES

English–Czech

# score range system

1 0.59 1 UEDIN-NMT

2 0.43 2 NYU-MONTREAL

3 0.34 3 JHU-PBMT

4 0.30 4-5 CU-CHIMERA

0.30 4-5 CU-TAMCHYNA

5 0.22 6-7 UEDIN-CU-SYTX

0.19 6-7 ONLINE-B

6 0.16 8-11 TT-BLEU-MIRA

0.15 8-12 TT-BEER-PRO

0.15 8-13 TT-BLEU-MERT

0.14 9-14 TT-AFRL2
0.14 9-14 TT-AFRL1
0.13 9-14 TT-DCU

0.13 11-14 TT-FJFI

7 0.08 15 ONLINE-A

8 −0.03 16 CU-TECTOMT

9 −0.43 17 TT-USAAR-HMM-MERT

10 −0.54 18 CU-MRGTREES

11 −1.13 19 TT-USAAR-HMM-MIRA

12 −1.33 20 TT-USAAR-HARM

Romanian–English

# score range system

1 0.58 1-2 ONLINE-B
0.38 1-2 UEDIN-NMT

2 0.10 3 UEDIN-PBMT

3 −0.09 4-5 UEDIN-SYNTAX

−0.19 4-6 ONLINE-A
−0.32 5-7 JHU-PBMT

−0.46 6-7 LIMSI

English–Romanian

# score range system

1 0.45 1-2 UEDIN-NMT

0.43 1-2 QT21-HIML-COMB

2 0.20 3-7 KIT

0.16 3-7 UEDIN-PBMT

0.14 3-7 ONLINE-B
0.14 3-7 UEDIN-LMU-HIERO

0.12 3-7 RWTH-COMB

3 −0.15 8-10 LIMSI

−0.23 8-10 LMU-CUNI

−0.26 8-11 JHU-PBMT

−0.43 10-12 USFD-RESCORING

−0.57 11-12 ONLINE-A

German–English

# score range system

1 0.82 1 UEDIN-NMT

2 0.25 2-5 ONLINE-B
0.21 2-5 ONLINE-A
0.19 2-5 UEDIN-SYNTAX

0.18 2-6 KIT

0.04 5-7 UEDIN-PBMT

0.03 6-7 JHU-PBMT

3 −0.12 8 ONLINE-G

4 −0.67 9 JHU-SYNTAX

5 −0.93 10 ONLINE-F

Russian–English

# score range system

1 0.45 1-2 AMU-UEDIN

0.43 1-3 ONLINE-G
0.33 2-4 NRC

0.25 3-5 ONLINE-B
0.16 4-5 UEDIN-NMT

2 0.04 6-7 ONLINE-A
0.02 6-7 AFRL-MITLL-PHR

3 −0.11 8-9 AFRL-MITLL-CNTR

−0.17 8-9 PROMT-RULE

4 −1.39 10 ONLINE-F

English–Russian

# score range system

1 0.79 1 PROMT-RULE

2 0.30 2-4 AMU-UEDIN

0.26 2-5 ONLINE-B
0.26 2-5 UEDIN-NMT

0.20 3-5 ONLINE-G

3 0.10 6 NYU-MONTREAL

4 −0.02 7-8 JHU-PBMT

−0.07 7-10 LIMSI

−0.10 8-10 ONLINE-A
−0.15 9-10 AFRL-MITLL-PHR

5 −0.31 11 AFRL-MITLL-VERB

6 −1.26 12 ONLINE-F

Turkish–English

# score range system

1 0.82 1-2 ONLINE-B
0.65 1-3 ONLINE-G
0.56 2-3 ONLINE-A

2 0.21 4-5 TBTK-SYSCOMB

0.12 4-6 PROMT-SMT

−0.00 5-6 YSDA

3 −0.67 7-8 JHU-SYNTAX

−0.76 7-9 JHU-PBMT

−0.94 8-9 PARFDA

English–German

# score range system

1 0.49 1 UEDIN-NMT

2 0.40 2 METAMIND

3 0.29 3 UEDIN-SYNTAX

4 0.17 4 NYU-MONTREAL

5 −0.01 5-10 ONLINE-B
−0.01 5-10 KIT-LIMSI

−0.02 5-10 CAMBRIDGE

−0.02 5-10 ONLINE-A
−0.03 5-10 PROMT-RULE

−0.05 6-10 KIT

6 −0.14 11-12 JHU-SYNTAX

−0.15 11-12 JHU-PBMT

7 −0.26 13-14 UEDIN-PBMT

−0.33 13-15 ONLINE-F
−0.34 14-15 ONLINE-G

Finnish–English

# score range system

1 0.42 1-4 UEDIN-PBMT

0.40 1-4 ONLINE-G
0.39 1-4 ONLINE-B
0.34 1-4 UH-OPUS

2 0.01 5 PROMT-SMT

3 −0.11 6-7 UH-FACTORED

−0.13 6-7 UEDIN-SYNTAX

4 −0.29 8 ONLINE-A

5 −1.03 9 JHU-PBMT

English–Finnish

# score range system

1 0.36 1-3 ONLINE-G
0.31 1-4 ABUMATRAN-NMT

0.29 1-4 ONLINE-B
0.23 3-5 ABUMATRAN-CMB

0.16 4-5 UH-OPUS

2 −0.01 6-8 ABUMATRAN-PB

−0.02 6-8 NYU-MONTREAL

−0.02 6-8 ONLINE-A

3 −0.14 9-10 JHU-PBMT

−0.23 9-12 UH-FACTORED

−0.28 10-13 AALTO

−0.30 10-13 JHU-HLTCOE

−0.35 11-13 UUT

English–Turkish

# score range system

1 0.76 1-2 ONLINE-G
0.62 1-2 ONLINE-B

2 0.38 3 ONLINE-A

3 0.06 4 YSDA

4 −0.13 5-6 JHU-HLTCOE

−0.19 5-7 TBTK-MORPH

−0.29 6-7 CMU

5 −0.54 8-9 JHU-PBMT

−0.66 8-9 PARFDA

Table 6: Official results for the WMT16 translation task. Systems are ordered by their inferred system means, though systems
within a cluster are considered tied. Lines between systems indicate clusters according to bootstrap resampling at p-level
p ≤ .05. Systems with gray background indicate use of resources that fall outside the constraints provided for the shared task.
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Romanian–English

30 32 34 36 38 40

BLEU-.6

-.4

-.2

.0

.2

.4

.6

HUMAN

UEDIN-NMT

LIMSI

ONLINE-A

UEDIN-SYNTAX

UEDIN-PBMT

JHU-PBMT

ONLINE-B

English–Romanian

18 20 22 24 26 28 30

BLEU

-.6

-.4

-.2

.0

.2

.4

HUMAN

ONLINE-B

KIT

USFD-RESCORING

JHU-PBMT

UEDIN-LMU-HIERO

LMU-CUNI

QT21-HIML-SYSCOMB

ONLINE-A

UEDIN-PBMT

RWTH-SYSCOMB

LIMSI

UEDIN-NMT

German–English

20 22 24 26 28 30 32 34 36 38 40

BLEU

-1.0

-.8

-.6

-.4

-.2

.0

.2

.4

.6

.8

HUMAN

UEDIN-PBMT

UEDIN-SYNTAX

ONLINE-A

UEDIN-NMT

JHU-SYNTAX

ONLINE-F

ONLINE-G

ONLINE-B

JHU-PBMT

KIT

English–German
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BLEU

-.4

-.2

.0
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.4

.6

HUMAN

CAMBRIDGE

METAMIND

JHU-PBMT

KIT

ONLINE-G

NYU-UMONTREAL

ONLINE-B

UEDIN-NMT

KIT-LIMSI

UEDIN-PBMT

UEDIN-SYNTAX

ONLINE-A
PROMT-RULE-BASED

JHU-SYNTAX

ONLINE-F

Figure 3: Human evaluation scores versus BLEU scores for the German–English and Romanian–English language pairs il-
lustrate the need for human evaluation when comparing systems of different kind. Confidence intervals are indicated by the
shaded ellipses. Rule-based systems and to a lesser degree syntax-based statistical systems receive a lower BLEU score than
their human score would indicate. The big cluster in the Czech-English plot are tuning task submissions.
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Russian–English
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BLEU
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HUMAN
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ONLINE-G

NRC
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English–Russian

8 10 12 14 16 18 20 22 24 26 28

BLEU
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-.4
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.0
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.8

HUMAN

PROMT-RULE-BASED

ONLINE-A
LIMSI

UEDIN-NMT

ONLINE-F

AMU-UEDIN

AFRL-MITLL-VERB-ANNOT

NYU-UMONTREAL

ONLINE-B

ONLINE-G

AFRL-MITLL-PHRASE-BASED

JHU-PBMT

Turkish–English
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PARFDA

JHU-SYNTAX
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ONLINE-A

YSDA

PROMT-SMT

English–Turkish
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BLEU-.8

-.6

-.4
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HUMAN
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YSDA

ONLINE-A

Figure 4: Human evaluation scores versus BLEU scores for the Russian–English and Turkish–English language pairs
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Czech–English
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Finnish–English
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English–Finnish
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JHU-PBMT
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ONLINE-A
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English–Czech
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CU-MERGEDTREES

ONLINE-B

NYU-UMONTREAL
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Figure 5: Human evaluation scores versus BLEU scores for the Czech–English and Finnish–English language pairs
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Figure 6: Direct Assessment of translation adequacy as carried out by workers on Mechanical Turk.

ency therefore provides a dimension of the assess-

ment that cannot be biased by the presence of a ref-

erence translation. For both fluency and adequacy,

the simpler monolingual assessment DA employs

also allows the sentence length restriction to be re-

moved.8

DA also aims to avoid the possible source of

bias identified in Bojar et al. (2011), introduced by

simultaneous assessment of several translations at

once, where systems for which translations were

more frequently compared to other low or high

quality outputs resulted in either an unfair advan-

tage or disadvantage for that system. We there-

fore elicit assessments of individual translations in

isolation from the output of other systems, an im-

portant criteria when aiming for absolute quality

judgments.

Large numbers of human assessments of trans-

lations for seven language pairs (cs-en, de-en, fi-

en, ro-en, ru-en, tr-en and en-ru) were collected on

Amazon’s Mechanical Turk.9 Table 7 shows over-

all numbers of translation assessments carried out.

Translations are arranged in sets of 100-

translations per HIT to ensure sufficient repeat

items per worker, before application of strict qual-

ity control measures to filter out assessments from

poorly performing workers. When an analogue (or

100-points, in practice) scale is employed, agree-

8The maximum sentence length with RR was 30 in
WMT16.

9www.mturk.com

ment cannot be measured using the conventional

Kappa coefficient, ordinarily applied to evaluation

of human assessment where judgments are dis-

crete categories or preferences. Instead, we fil-

ter human assessors by how consistently they rate

translations of known distinct quality.

A degraded version of a given original system

output translation is automatically generated by

substituting a sequence of words with a random

phrase, itself selected from elsewhere in the refer-

ence document. Together with the original out-

put, the degraded translation is known as a bad

reference translation pair. Bad reference pairs

are subsequently hidden within HITs, and provide

a mechanism for filtering out workers who are

simply not up to the task or those attempting to

game the system. Assessments of workers who do

not reliably score bad reference translations sig-

nificantly lower than corresponding genuine sys-

tem output translations are filtered out by com-

parison of scores they attribute to bad reference

pairs within HITs. More specifically, we apply a

paired Wilcoxon signed-rank test to score distri-

butions of bad reference pairs, yielding a p-value

for each worker we subsequently employ as a re-

liability estimate. Assessments of workers whose

p-value lies above the conventional 0.05 threshold

are omitted from the evaluation of systems.

Table 8 shows the number of unique workers

who evaluated MT output on Mechanical Turk via

DA for WMT16 for both fluency and adequacy,

those who met our filtering requirement by show-
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Adequacy Fluency

Pre Quality Post Quality Ave. per Pre Quality Post Quality Ave. per

Control Control System Control Control System

cs-en 30,000 16,800 (56.0%) 2,800 16,880 6,880 (40.8%) 1,146
de-en 68,800 33,760 (49.1%) 3,376 20,480 10,400 (50.8%) 1,040
fi-en 63,040 30,080 (47.7%) 3,342 21,760 9,680 (44.5%) 1,075

ro-en 27,920 16,000 (57.3%) 2,285 18,960 8,000 (42.2%) 1,142
ru-en 64,960 37,040 (57.0%) 3,704 24,640 11,520 (46.8%) 1,152
tr-en 48,640 18,400 (37.8%) 2,044 28,000 10,640 (38.0%) 1,182

en-ru 38,160 15,920 (41.7%) 1,326 - - -

Overall 341,520 168,000 (49.2%) 2,666 130,720 57,120 (43.7%) 1,120

DA Manual Evaluation Assessments

Table 7: Numbers of system output translations evaluated on Mechanical Turk for direct assessment (DA) in WMT16, numbers
exclude quality control items.

(A) Sig. (A) & No Sig.
Diff. Diff.

All Bad Ref. Exact Rep.

Adequacy 1307 735 717 (98%)
Fluency 864 380 372 (98%)

DA Workers

Table 8: Number of unique human assessors for DA ade-
quacy and fluency on Mechanical Turk in WMT16, (A) those
whose scores for bad reference pairs were significantly dif-
ferent and numbers of unique human assessors in (A) whose
scores for exact repeat items also showed no significant dif-
ference, paired Wilcoxon signed-rank significance test was
applied in both cases.

ing a significantly lower score for bad reference

items, and the proportion of those workers who si-

multaneously showed no significant difference be-

tween scores they attributed in repeat assessment

of an identical previous translation.

In order to iron out differences in scoring strate-

gies of distinct workers, human assessment scores

for translations are standardized according to each

individual worker’s overall mean and standard de-

viation score. Subsequently, the overall score of a

given MT system participating in the shared task

simply comprises the mean (standardized) score of

its translations.

Table 9 includes mean DA fluency and ade-

quacy scores for all to-English systems participat-

ing in WMT16 translation task, while Table 10

includes results for the single out-of-English lan-

guage pair for which DA was run this year, English

to Russian. Mean standardized scores for systems

not significantly lower than that of any other par-

ticipating system, according to Wilcoxon signed-

rank test, for a given language pair, are highlighted

in bold. Although we also evaluated the fluency of

translations, mean standardized adequacy scores

should provide the primary mechanism for rank-

ing competing systems, since it is entirely possible

to achieve a high fluency score without conveying

the meaning of the source input. Fluency can be

employed as a secondary mechanism to break sys-

tems tied for adequacy or for diagnostic purposes.

Figures 7, 8 and 9 show results of combining sig-

nificance test conclusions for DA adequacy and

fluency, where any ties between systems tied for

adequacy are broken if that system outperformed

the other with respect to fluency. It should be

noted that RR provide official task results, while

DA results are investigatory and do not indicate

official translation task winners.

Finally, we compare scores of the official rank-

ing to mean standardized adequacy scores for sys-

tems evaluated with DA. Table 11 shows the Pear-

son correlation between Trueskill scores for sys-

tems evaluated by researchers with relative pref-

erence judgments (official results) and DA mean

scores collected via crowd-sourcing, showing high

levels of agreement reached overall for all lan-

guage pairs as correlations range from 0.92 to

0.997.
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DA Adequacy DA Fluency

mean z mean raw (%) mean z mean raw (%)
cs

-e
n

UEDIN-NMT 0.207 75.4 0.499 78.7
JHU-PBMT 0.101 72.6 0.194 69.3
ONLINE-B 0.051 70.8 0.052 64.6
ONLINE-A 0.000 69.5 −0.057 61.2

PJATK −0.024 69.0 −0.014 62.8
CU-MERGEDTREES −0.503 55.8 −0.754 41.1

d
e-

en

UEDIN-NMT 0.204 75.8 0.339 77.5
ONLINE-A 0.095 72.7 0.094 70.1
ONLINE-B 0.086 72.2 0.015 68.4

UEDIN-SYNTAX 0.065 71.5 0.141 71.8
KIT 0.062 71.4 0.192 72.7

UEDIN-PBMT 0.042 70.9 0.004 68.6
JHU-PBMT 0.019 70.5 0.084 70.5
ONLINE-G 0.009 70.2 −0.067 65.3
ONLINE-F −0.204 64.0 −0.348 57.8

JHU-SYNTAX −0.261 62.4 −0.237 62.5

fi
-e

n

ONLINE-B 0.095 66.9 0.100 65.4
UEDIN-PBMT 0.087 66.3 0.149 66.6

ONLINE-G 0.084 66.4 0.009 62.3
UH-OPUS 0.065 65.9 0.105 65.3

PROMT-SMT −0.037 62.9 −0.093 58.8
UEDIN-SYNTAX −0.090 61.5 −0.041 60.9
UH-FACTORED −0.098 61.2 −0.020 61.1

ONLINE-A −0.126 60.6 −0.094 58.5
JHU-PBMT −0.391 52.7 −0.320 53.1

ro
-e

n

ONLINE-B 0.129 73.9 0.051 66.7
UEDIN-NMT 0.044 71.2 0.258 71.9

UEDIN-PBMT 0.025 71.0 0.028 65.6
UEDIN-SYNTAX 0.000 69.9 −0.020 64.6

ONLINE-A −0.012 69.7 −0.015 64.3
LIMSI −0.123 66.7 −0.071 62.8

JHU-PBMT −0.160 65.7 −0.187 60.2

ru
-e

n

ONLINE-G 0.115 74.2 0.100 69.9
AMU-UEDIN 0.103 73.3 0.178 72.2

ONLINE-B 0.083 72.8 0.030 67.8
NRC 0.060 72.7 0.092 69.9

PROMT-RULE-BASED 0.044 72.1 −0.102 63.8
UEDIN-NMT 0.011 71.1 0.245 74.3
ONLINE-A −0.007 70.8 0.020 66.7

AFRL-MITLL-PHRASE −0.040 70.1 0.047 68.4
AFRL-MITLL-CONTRAST −0.071 69.3 −0.020 66.5

ONLINE-F −0.322 61.8 −0.472 54.7

tr
-e

n

ONLINE-B 0.163 57.1 0.250 60.0
ONLINE-G 0.109 55.0 0.166 58.7
ONLINE-A 0.002 52.2 0.130 57.8

TBTK-SYSCOMB −0.077 49.6 0.009 53.2
PROMT-SMT −0.079 49.2 −0.057 51.4

YSDA −0.088 49.5 −0.036 52.6
JHU-PBMT −0.355 41.0 −0.416 43.1

JHU-SYNTAX −0.364 40.8 −0.307 46.4
PARFDA −0.367 40.5 −0.406 42.3

DA to-English Translation Task

Table 9: DA mean scores for WMT16 translation task participating systems for translation into English.
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Figure 7: Significance test results for pairs of systems competing in the news domain translation task (cs-en, de-en, fi-en),
where a green cell denotes a significantly higher DA adequacy or fluency score for the system in a given row over the system in
a given column, “Combined” results show overall conclusions when adequacy is primarily used to rank systems with fluency
used to break ties between systems tied with respect to adequacy.
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Figure 8: Significance test results for pairs of systems competing in the news domain translation task (ro-en, ru-en, tr-en),
where a green cell denotes a significantly higher DA adequacy or fluency score for the system in a given row over the system in
a given column, “Combined” results show overall conclusions when adequacy is primarily used to rank systems with fluency
used to break ties between systems tied with respect to adequacy.
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Adequacy

mean mean
z raw (%)

PROMT-RULE-BASED 0.258 69.0
ONLINE-G 0.101 63.8
ONLINE-B 0.092 62.5

AMU-UEDIN 0.084 63.4
UEDIN-NMT 0.062 63.2

ONLINE-A −0.008 60.8
JHU-PBMT −0.023 58.6

NYU-UMONTREAL −0.042 58.3
LIMSI −0.072 58.9

AFRL-MITLL-PHRASE −0.077 58.3
AFRL-MITLL-VERB-ANN −0.093 57.8

ONLINE-F −0.489 43.7

DA English to Russian

Table 10: DA mean scores for WMT16 translation task par-
ticipating systems for translation from English into Russian.
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Figure 9: Significance test results for pairs of systems com-
peting in the news domain translation task (en-ru), where a
green cell denotes a significantly higher DA adequacy score
for the system in a given row over the system in a given col-
umn.

cs-en 0.997
fi-en 0.996
tr-en 0.988

de-en 0.964
ru-en 0.961
ro-en 0.920

en-ru 0.975

DA Correlation with RR

Table 11: Correlation between overall DA standardized
mean adequacy scores and RR Trueskill scores.
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4 IT Translation Task

The IT-domain translation task introduced this

year brought several novelties to WMT:

• 4 out of the 7 languages of the IT task are

new in WMT (Bulgarian, Basque, Dutch and

Portuguese),

• adaptation to the IT domain with its specifics

such as frequent named entities (mostly menu

items, names of products and companies) and

technical jargon,

• adaptation to translation of answers in help-

desk service setting (many of the sentences

are instructions with imperative verbs, which

is very rare in the News translation task and

may require adaptation of the whole transla-

tion pipeline, including e.g. part-of-speech

taggers).

4.1 Data

The test set consisted of 1000 answers from

the Batch 3 of the QTLeap Corpus.10 The

in-domain training data contained 2000 answers

from the Batches 1 and 2 and also localization

files from several open-source projects (LibreOf-

fice, KDE, VLC) and bilingual dictionaries of IT-

related terms extracted from Wikipedia. The out-

of-domain training data contained all the corpora

from the News Task (see Figure 1), plus PaCo2-

EuEn Basque-English corpus and SETimes with

Bulgarian-English parallel sentences.

“Constrained” systems were restricted to use

only these training data provided by the organiz-

ers. Linguistic tools such as morphological ana-

lyzers, taggers, parsers, word-sense disambigua-

tion or named entity recognizer were allowed in

the constrained condition. The split of Batches 1

and 2 into the training set and development test set

was left to the participants.

4.2 Submitted systems

31 systems were submitted in total for the 7 lan-

guage pairs.

Avramidis (2016) describes all

English→German QTL-* systems (DFKI).

Rosa et al. (2016) describe QTL-CHIMERA

(Charles University). Gaudio et al. (2016) de-

scribe the remaining QTL-* systems (partners

10http://metashare.metanet4u.eu/go2/

qtleapcorpus

from the QTLeap project: HF&FCUL for Por-

tuguese, UPV/EHU for Spanish and Basque,

IICT-BAS for Bulgarian, CUNI for Czech and

UG for Dutch). Duma and Menzel (2016)

describe UHDS-DOC2VEC and UHBS-LMI

(University of Hamburg). Pahari et al. (2016)

describe JU-USAAR (Jadavpur University

& Saarland University). Cuong et al. (2016)

describe ILLC-UVA-SCORPIO (University of

Amsterdam). IILC-UVA-DS is based on Hoang

and Sima’an (2014). PROMT-RULE-BASED and

PROMT-HYBRID systems were submitted by the

PROMT LLC company and they are not described

in any paper.

QTL-MOSES is the standard Moses setup

(MERT-tuned on the in-domain training data, but

otherwise without any domain-adaptation) and

serves as a baseline.

4.3 Human evaluation

The main results are presented in Table 12. The

PROMT-* systems won all three language pairs,

for which they were submitted, but they were

trained using additional training data not avail-

able to other participants, so they are considered

unconstrained and not comparable to the con-

strained systems. In all language pairs except for

English→Bulgarian, the baseline (QTL-MOSES)

was outperformed by all other systems.

Table 13 reports the amount of pairwise com-

parisons collected and inter- and intra-annotator

agreement of the human evaluation, which is in a

similar range as in the News task (cf. Tables 4 and

5).

5 Biomedical Translation Task

This is the first time that we have run the Biomed-

ical Translation task at WMT. This task aims to

evaluate systems for the translation of biomedical

titles and abstracts from scientific publications. In

this first edition of the challenge, we have focused

on three language pairs (considering both trans-

lation directions), namely, English/Portuguese

(EN/PT), English/Spanish (EN/ES) and En-

glish/French (EN/FR), and documents in the two

sub-domains of biological sciences and health sci-

ences.

5.1 Task description

The participants were provided with training data

and were required to submit automatic translations
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English→Bulgarian

# score range system
1 5.26 1 QTL-MOSES

2 −5.26 2 QTL-DEEPFMOSES

English→Czech

# score range system
1 0.53 1–2 QTL-CHIMERA-PURE

0.43 1–2 ILLC-UVA-DS

2 0.13 3 QTL-TECTOMT

3 −0.47 4–5 QTL-CHIMERA-PLUS

−0.62 4–5 QTL-MOSES

English→German

# score range system
1 1.61 1 PROMT-RULE-BASED

2 −0.04 2–5 UHBS-LMI

−0.06 2–6 UHDS-DOC2VEC

−0.06 2–6 QTL-RBMT-SMTMENUS

−0.09 3–6 RBMT
−0.10 3–6 QTL-RBMT-MENUS

3 −0.19 7–8 DFKI-SYNTAX

−0.19 7–8 JU-USAAR

4 −0.38 9 QTL-SELECTION

5 −0.49 10 QTL-MOSES

English→Spanish

# score range system
1 3.53 1 PROMT-HYBRID

2 −0.80 2–3 QTL-CHIMERA

−0.81 2–3 QTL-TECTOMT

3 −1.93 4 QTL-MOSES

English→Basque

# score range system
1 1.57 1 QTL-TECTOMT

2 −1.57 2 QTL-MOSES

English→Dutch

# score range system
1 1.95 1 ILLC-UVA-SCORPIO

2 0.36 2 QTL-CHIMERA

3 0.15 3 QTL-TECTOMT

4 −2.46 4 QTL-MOSES

English→Portuguese

# score range system
1 4.61 1 PROMT-HYBRID

2 −1.06 2 QTL-TECTOMT

3 −1.27 3 QTL-CHIMERA

4 −2.28 4 QTL-MOSES

Table 12: Official results for the WMT16 IT translation task. Systems are ordered by their inferred system means, though
systems within a cluster are considered tied. Lines between systems indicate clusters according to bootstrap resampling at p-
level p ≤ .05. Systems with gray background indicate use of resources that fall outside the constraints provided for the shared
task.

Language pair Systems Comparisons Comparisons/sys Inter-κ Intra-κ

English→Bulgarian 2 1,769 884.5 0.447 0.627

English→Czech 5 16,870 3,374.0 0.330 0.463

English→German 10 38,733 3,873.3 0.385 0.492

English→Spanish 4 8,538 2,134.5 0.351 0.398

English→Basque 2 1,485 742.5 0.483 0.610

English→Dutch 4 7,278 1,819.5 0.258 0.249

English→Portuguese 4 7,794 1,948.5 0.594 0.705

Sum 31 82,467

Mean 2,660.2 0.407 0.506

Table 13: Amount of manual-evaluation pairwise comparisons (after “de-collapsing” multi-system outputs) collected and κ
scores measuring inter- and intra-annotator agreement in the IT task. Cf. Tables 3, 4 and 5 for the respective News task
statistics.
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for each document in the test set. Details on the

data, baseline system, automatic evaluation and

manual validation are described below.

Data

We provided the participants with training data of

parallel documents for the three language pairs as

well as monolingual documents for each of the

four languages, as summarized in Table 14. We

did not provide any development data and the par-

ticipants were free to split the training data into a

training and a development datasets.

The training data consisted mainly of the Sci-

elo corpus (Neves et al., 2016), a parallel collec-

tion of scientific publications composed of either

titles, abstracts or title and abstracts which were

retrieved from the Scielo database. For the Sci-

elo corpus, we compiled parallel documents for

all language pairs in the two sub-domains, except

for the EN/FR, where only health was considered,

as there were inadequate parallel documents avail-

able for biology in that pair. In previous work

(Neves et al., 2016), the training data was aligned

using the GMA alignment tool. The quality of

the alignment was found to be satisfactory so that

aligned training data could be made available to

the participants.

The test set consisted of 500 documents (title

and abstract) for each of the two directions of each

language pair, i.e., English to Portuguese (en-pt),

Portuguese to English (pt-en), English to Span-

ish (en-es), Spanish to English (es-en), English to

French (en-fr) and French to English (fr-en). None

of the test documents was included in the training

data and there is no overlap of documents between

the test sets for any language pair, translation di-

rection and sub-domain.

Additionally, we prepared a corpus of paral-

lel titles from MEDLINE R© for all three language

pairs. Finally, we also provided monolingual

documents for the four languages, i.e., English,

French, Spanish and Portuguese, retrieved from

the Scielo database. These consist of documents

in the Scielo database which have no correspond-

ing document in another language.

Evaluation metric

We computed the BLEU score for each of the runs

in comparison to the reference translation, i.e., the

original text made available in the Scielo database,

as provided by the authors of the publications.

Baseline

Our baseline system was described in previous

work (Neves et al., 2016). It consists of the statisti-

cal MT system Moses 11 trained on both the Scielo

corpus and on the parallel collection of Medline

titles. We did not make use of the monolingual

collection as we did not train a language model.

Manual validation

We carried out a manual evaluation for 100 ran-

dom sentences for some selected pairs in the test

data. We used the 3-way ranking task in the Ap-

praise tool 12 which typically shows the source and

the reference translation, and allows the pairwise

comparison of two translations (A and B).

However, to distance the manual evaluation

from the automatic BLEU evaluation which com-

pares automatic runs to the reference translation,

we treated the reference translation as one of the

systems and therefore suppressed the reference

translation in the interface. Evaluators were only

presented with the source sentence, and two trans-

lations to rank. Evaluators were blind to the nature

of the sentences they were evaluating: automatic

system A vs. system B, reference translation vs.

system, or system vs. reference translation.

When comparing two translations in the 3-way

ranking task in Appraise, evaluators were pre-

sented with four options: (1) A>B, translation A

is better than translation B; (2) A=B, the quality of

the two candidate translations is similar; (3) A<B,

translation B is better than translation A; and (4)

Flag Error, to indicate that one of the translations

did not seem to refer to the same source sentence

or there is some other misalignment. The lat-

ter situation could happen when the original sen-

tence pairs were not perfectly aligned. This may

be due to the fact that the reference translations

are created by the article authors independently of

the WMT challenge goals. These authors are not

professional writers or professional translators, so

that some of the content may only be present in

one of the languages, i.e., not every sentence in

one language has a directly corresponding sen-

tence in the other language. Thus, when selecting

the corresponding sentences in the reference trans-

lation, we do it based on the automatic alignment

provided by the GMA tool, which performs with

at least 80% accuracy for our training data (Neves

11http://www.statmt.org/moses/
12https://github.com/cfedermann/Appraise
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Table 14: Statistics on training and test collections for the Biomedical Translation Task. “T” corresponds to percentage of
titles and “A” to percentage of abstracts, separated by a slash. “Docs” to total number of documents, “Lang” identifies the
language,“Sents” to total number of sentences and “Tokens” to total number of tokens.

Dataset Train Docs T/A Lang Sents Tokens

Biological

EN/ES 17,672 49.4/97.7
EN 138,073 3,819,190
ES 128,894 3,887,818

EN/PT 18,180 31.1/96.1
EN 128,357 3,807,296
PT 125,717 3,598,618

Health

EN/ES 75,856 55.6/99.5
EN 628,966 15,978,198
ES 606,231 17,168,994

EN/PT 65,659 74.0/92.8
EN 541,272 14,457,939
PT 525,721 14,447,017

EN/FR 1,135 64.5/99.7
EN 9,393 250,907
FR 9,501 320,132

Dataset Test Docs T/A Lang Sents Tokens

Biological

en-es 500 100/100
EN 4,344 116,388
ES 4,070 125,491

es-en 500 100/100
ES 4,113 124,343
EN 4,405 115,045

en-pt 500 100/100
EN 4,333 114,705
PT 4,205 120,591

pt-en 500 100/100
PT 4,029 114,970
EN 4,164 108,120

Health

en-fr 500 100/100
EN 5,093 137,321
FR 5,782 208,795

fr-en 500 100/100
FR 5,784 206,559
EN 5,178 137,638

en-es 500 100/100
EN 5,111 127,112
ES 5,027 141,473

es-en 500 100/100
ES 5,198 144,666
EN 5,276 128,742

en-pt 500 100/100
EN 3,858 99,001
PT 3,776 101,991

pt-en 500 100/100
PT 3,826 106,735
EN 3,930 102,813

et al., 2016).

Regarding assigning the second option, i.e.,

A=B, we considered situations in which both

translations were equally bad or good. In some

cases, both candidate translations exhibited either

lexical or grammatical issues, but the evaluator

could not rank one candidate as definitely better or

worse than the other. Sometimes, both candidates

were correct and were acceptable translations of

the source sentence, even if not identical. Cur-

rently, this distinction is not captured in the statis-

tics computed by Appraise.

5.2 Participants

Five teams participated in the Biomedical Trans-

lation task, submitting a total of 40 runs. Partici-

pants are listed in Table 15; a short description of

their systems is provided below.

Istrionbox The Istrionbox team utilized a non-

log-linear model based on a weighted average of

the translation and language models. They aligned

the training documents on the phrase level using

an aligner based on a lexicon which contains more

than 930,000 terms derived from many parallel

corpora for English/Portuguese. The language

model was based on phrases, instead of words, as

well as the translation model. For the various runs

that the team submitted, they experimented with

assigning equal or different weights for the distinct

models trained on the biological or the health cor-

pora, and they also considered a bilingual lexicon

and named entities.

IXA The IXA team adapted a general-domain

statistical machine translation system to the

biomedical domain. Three approaches were de-

veloped for English-Spanish and Spanish-English

language pairs, using Moses and three corpora

(News corpora, Scielo Health and Scielo Biolog-

ical, both the bilingual and monolingual docu-

ments). In the system used for the first submission,

the medical vocabulary SNOMED-CT is used to

extend the vocabulary to address the problem of

out-of-vocabulary (OOV) words. In the system

used for the second submission, OOV words are
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Team ID Participating team

Istrionbox Istrionbox, Portugal (Aires et al., 2016)

IXA University of the Basque Country UPV/EHU, Spain (Perez-de Viñaspre

and Labaka, 2016)

LIMSI-TLP LIMSI, France (Ive et al., 2016)

TALP-UPC Universitat Politècnica de Catalunya, Spain (Costa-jussà et al., 2016)

uedin University of Edinburgh, UK (Williams et al., 2016)

Table 15: Participants in the WMT16 Biomedical Translation task.

addressed by expanding generated phase tables

with morphological variants and transliterations of

the remaining words. In the system used for the

third submission, the IXA team used the test set

provided by the organizers to optimize the method

used in the second submission.

TALP The TALP team’s system is a standard

phrase-based system based on Moses and MERT

and enhanced with vocabulary expansion using

bilingual word embeddings and a character-based

neural language model with rescoring. The former

focuses on resolving out-of-vocabulary words,

while the latter enhances the fluency of the sys-

tem.

LIMSI-TLP The LIMSI-TLP system is a

MOSES-based statistical machine translation sys-

tem, rescored with Structured Output Layer neu-

ral network models. It relied on additional in-

domain data, including data from the WMT’14

medical translation task (English-French) and a set

of English-French Cochrane systematic review ab-

stracts. They also experiment with a confusion

network system combination which combines the

outputs of Phrase Based SMT systems trained ei-

ther to translate entire source sentences or spe-

cific syntactic constructs extracted from those sen-

tences. The approach is implemented using Con-

fusion Network decoding.

uedin The University of Edinburgh team used

the phrase-based statistical model from Moses in-

cluding hierarchical lexicalized reordering model

with four orientations in both directions. The

translation model was trained on data from the

WMT13, the Scielo training data as well as the

EMEA corpus. The language model was based

on the interpolation of various language models

trained separately on monoligual English corpora,

such as the WMT14 medical, Scielo, EMEA and

English LDC GigaWord corpus.

5.3 Results

The five participating teams submitted a total of

40 runs. However, only the Spanish–English and

English–Spanish language pairs attracted submis-

sions from more than one team. In addition, one

language pair (fr-en) did not receive any submis-

sion. Table 16 presents the BLEU score for each

run as well as for our baseline system.

All runs obtained a much higher BLEU score

than the baseline system, except for the en-pt and

pt-en submissions, with BLEU scores just slightly

superior to the baseline. The LIMSI run showed

the best improvement over the baseline (246% ab-

solute improvement, from 9.24 to 22.75). Overall,

however, the BLEU scores for all language pairs

remain quite moderate. Regarding comparison of

the various runs and teams for each language pair,

we did not observe considerable differences be-

tween them, except for the the runs of the ”uedin”

system, which obtained around two BLEU points

more than other runs.

We rank the systems as follows according to

their BLEU scores, with B=biology and H=health,

and bl=baseline:

• en-pt(B): Istrionbox>bl;

• en-pt(H): Istrionbox>bl;

• pt-en(B): Istrionbox>bl;

• pt-en(H): Istrionbox>bl;

• en-es(B): TALP>IXA>bl;

• en-es(H): TALP>IXA>bl;

• es-en(B): uedin>IXA>TALP>bl;

• es-en(H): uedin>IXA>TALP>bl;

• en-fr(H): LIMSI>bl;
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Languages Team ID Run ID
BLEU score

Biological Health

en-pt
Istrionbox

1 17.55 19.01

2 16.47 18.33

3 16.45 18.37

Baseline - 15.38 17.22

pt-en
Istrionbox

1 20.88 21.50

2 20.17 20.17

3 20.14 20.62

Baseline - 17.59 18.48

en-es

IXA

1 31.57 28.09

2 31.32 28.06

3 29.61 28.13

TALP

1 31.18 28.11

2 31.17 27.85

3 33.22 29.47

Baseline - 17.82 16.88

es-en

IXA

1 30.66 27.96

2 30.59 27.97

3 29.51 28.12

TALP

1 29.68 27.42

2 29.41 26.74

3 29.83 27.27

uedin 1 31.49 29.05

Baseline - 18.78 16.92

en-fr LIMSI

1 - 22.52

2 - 22.75

Baseline - - 9.24

Table 16: Official BLEU scores for the WMT16 Biomedical Translation task.

For the pairwise manual validation of sentences,

and given the high number of runs for some lan-

guage pairs, e.g., Spanish–English and English–

Spanish, we did not perform a pairwise evaluation

for every pair of two systems. Instead, we consid-

ered only one run from each participant for each

language pair and dataset: the one that achieved

the best BLEU score in the automatic evaluation.

An exception was made for the English–French

and English-Portuguese tasks for which we had

only one participating team: we considered all

combinations of runs and reference translations

for English–French and combinations of the refer-

ence translation and both the run with best BLEU

score and the one that the participant (Istrionbox)

reported as their best run. The results of the man-

ual validation are presented in Table 17.

Only one run (IXA run 3, English–Spanish,

health dataset) was comparable to the reference

translation: 30 vs. 26 for A>B and A<B, respec-

tively. For all other cases, the reference translation

was assigned to be better than the other translation

at least twice as many times.

Regarding comparison between teams and

runs, i.e., ES2PT (biological and health) and

English–French, we did not observe much differ-

ence when comparing distinct runs of the same

team. When comparing runs from distinct teams,

IXA clearly outperformed TALP in two compar-

isons: Spanish–English biological (57 vs. 24) and

Spanish–English health (48 vs. 22). On the other

hand, TALP slightly outperformed IXA in one

dataset: English–Spanish biological (16 vs. 7). Fi-

nally, the uedin system was clearly superior to

TALP in the Spanish–English biological dataset

(60 vs. 20) and to both TALP and IXA in the

Spanish–English health dataset (54 vs. 19 and 41

vs. 15, respectively).

We rank the systems as follows according to our

manual validation (ref=reference):
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Datasets Pairs Runs Total A>B A=B A<B

Biological

en-es
TALP run3 vs. reference 97 18 20 59
IXA run1 vs. TALP run3 70 7 47 16
reference vs. IXA run1 96 50 30 16

es-en
IXA run1 vs. reference 76 17 19 40

reference vs. uedin run1 75 43 14 18
TALP run3 vs. IXA run1 100 24 19 57
reference vs. TALP run3 68 52 6 10
IXA run1 vs. uedin run1 100 30 31 39

uedin run1 vs. TALP run3 100 60 20 20

en-es
reference vs. Istrionbox run1 80 54 20 6

Istrionbox run3 vs. Istrionbox run1 99 22 52 25
Istrionbox run3 vs. reference 80 4 14 62

pt-en reference vs. Istrionbox run3 78 67 7 4

Health

en-fr
reference vs. LIMSI-TLP run2 91 71 5 15

LIMSI-TLP run1 vs. LIMSI-TLP run2 88 26 40 22
LIMSI-TLP run1 vs. reference 85 8 12 65

en-es
reference vs. IXA run3 93 30 37 26

IXA run3 vs. TALP run3 82 23 40 19
TALP run3 vs. reference 94 21 28 45

es-en
reference vs. IXA run3 82 41 29 12

IXA run3 vs. TALP run1 100 48 30 22
TALP run1 vs. reference 75 8 20 47
IXA run3 vs. uedin run1 100 15 44 41
reference vs. uedin run1 79 44 20 15

TALP run1 vs. uedin run1 100 19 27 54

en-pt
Istrionbox run3 vs. Istrionbox run1 100 29 42 29

Istrionbox run1 vs. reference 80 4 15 61
reference vs. Istrionbox run3 82 62 17 3

pt-en Istrionbox run1 vs. reference 89 6 1 82

Table 17: Results for the manual validation carried out in Appraise for the Biomedical Translation task.

• en-pt (B): ref>Istrionbox;

• en-pt (H): ref>Istrionbox;

• pt-en (B): ref>Istrionbox;

• pt-en (H): ref>Istrionbox;

• en-es (B): ref>TALP> IXA;

• en-es (H): {IXA,ref}>TALP;

• es-en (B): ref>uedin>IXA>TALP;

• es-en (H): ref>uedin> IXA>TALP;

• en-fr (H): ref>LIMSI;

5.4 Discussion

In this section we analyze the errors we observed

in the translations submitted by teams, the lessons

we learned in this first edition of the task and our

plans for future work.

Error analysis. During our manual analysis of a

sample of the translations that were submitted for

the test data, we noticed that their quality is still

poor in comparison to the reference translations.

We identified numerous problems, as summarized

below:

• many missing words or words in the source

language mixed in with the target language,

probably due to words or concepts in the

source language that could not be translated

to the target language;

• incorrect ordering of adjectives and nouns,

given that, in contrast to English, nouns typi-

cally precede adjectives in Portuguese, Span-

ish and French;

• incorrect agreement of nouns, verbs and ad-

jectives with respect to gender and number;

• incorrect punctuation, e.g., periods placed in

the middle of a sentence;

• incorrect casing for words, e.g., common

words which were capitalized or in upper

case;

• missing translations for acronyms, i.e., the

acronym in the source language was used in-

stead.

We note that some of these issues were ignored

during the manual evaluation, for instance, incor-

rect capitalization was not penalized if the trans-

lation was otherwise better or comparable to the

other translation.
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Lessons learned. We performed a comparison

of the systems based only on the overall results

on the complete test set and on the samples of sets

that we randomly selected for manual validation.

For this first edition of the Biomedical Translation

task, we aimed at providing an evaluation platform

for the automatic translation of scientific publica-

tions, in particular for titles and abstracts in the

biomedical domain.

In this first edition of the task, the training and

test data was obtained from the parallel publica-

tions available in Scielo. We did not perform

manual translation of the documents for either the

training or the test data, but rather used the origi-

nal text available in Scielo for all languages under

consideration here. In practice, this means that the

reference translations were produced by the arti-

cle authors independently of the WMT challenge

goals. These authors are not professional writers

or professional translators, and some of them may

have limited proficiency in the languages they are

required to use for publication. This situation has

an impact on the quality of the reference trans-

lations, compared to other WMT tasks. It is re-

flected in the manual evaluation which indicates

that for some language pairs (notably English–

Spanish health), participant runs were rated over-

all as better or equal to the reference translation.

Our experience with this first edition of the task

indicates that the Scielo corpus is a valuable re-

source for biomedical WMT, however more work

is needed in terms of quality assurance to ensure

that meaningful evaluation results can be obtained.

Plan for future editions. In next editions, we

plan to build on the established pipeline to collect

and pre-process Scielo data to prepare a new test

dataset. More importantly, we plan to work to-

wards improved data and evaluation quality.

While we initially focused on characterizing

the quality of the alignment in the parallel Scielo

corpus, we are planning to craft a higher quality

dataset by removing any sentence pairs with align-

ment issues. Furthermore, the data set will also be

pruned for sentences exhibiting lexical, grammati-

cal or fluency issues. These steps will contribute to

improve the significance of the evaluation results,

especially in terms of BLEU scores.

Furthermore, we believe that the nature of sci-

entific texts and biomedical texts in particular calls

for specific evaluation metrics. One of the in-

tended uses of translation systems in the biomedi-

cal domain is to provide health professionals with

access to the latest research results that are pub-

lished in a language other than their native lan-

guage. Consequently, health professionals may

use the translated information to make clinical

decisions impacting patients care. It is vital

that translation systems do not contribute to the

dissemination of incorrect clinical information.

Therefore, the evaluation of biomedical translation

systems should include an assessment at the doc-

ument level indicating whether a translation con-

veyed erroneous clinical information.

6 Quality Estimation

The fifth edition of the WMT shared task on

quality estimation (QE) of machine translation

(MT) builds on the previous editions of the task

(Callison-Burch et al., 2012; Bojar et al., 2013,

2014, 2015), with “traditional” tasks at sentence

and word levels, a new task for entire documents

quality prediction, and a variant of the word-level

task: phrase-level estimation.

The goals of this year’s shared task were:

• To advance work on sentence and word-

level quality estimation by providing domain-

specific, larger and professionally annotated

datasets.

• To analyse the effectiveness of different types

of quality labels provided by humans for

longer texts in document-level prediction.

• To investigate quality estimation at a new

level of granularity: phrases.

These goals are addressed through three groups

of tasks: Task 1 at sentence level (Section 6.3),

Task 2 at word and phrase levels (Section 6.4),

and Task 3 at document level (Section 6.6). Tasks

1 and 2 provide the same dataset with English-

German translations generated by a statistical ma-

chine translation (SMT) system, while Task 3 pro-

vides an English-Spanish dataset of translations

taken from all participating systems in WMT08-

WMT13. These datasets were annotated with

different labels for quality: for Tasks 1 and 2,

the labels were automatically derived from the

post-editing of the machine translation output,

while for Task 3, scores were computed based

on a two-stage post-editing process. Any exter-

nal resource, including additional quality estima-

tion training data, could be used by participants
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(no distinction between constrained and uncon-

strained tracks was made). As presented in Sec-

tion 6.1, participants were also provided with a

baseline set of features for each task, and a soft-

ware package to extract these and other quality

estimation features and perform model learning,

with suggested methods for all levels of predic-

tion. Participants, described in Section 6.2, could

submit up to two systems for each task.

Data used to build MT systems or internal sys-

tem information (such as model scores or n-best

lists) were made available on request for Tasks 1

and 2.

6.1 Baseline systems

Sentence-level baseline system: For Task 1,

QuEst++13 (Specia et al., 2015) was used to ex-

tract 17 features from the SMT source/target lan-

guage training corpus:

• Number of tokens in source & target sen-

tences.

• Average source token length.

• Average number of occurrences of the target

word within the target sentence.

• Number of punctuation marks in source and

target sentences.

• Language model probability of source and

target sentences based on models built from

the SMT training corpus.

• Average number of translations per source

word in the sentence as given by IBM Model

1 extracted from the SMT training corpus.

• Percentage of unigrams, bigrams and tri-

grams in frequency quartiles 1 (lower fre-

quency words) and 4 (higher frequency

words) in the source language extracted from

the source SMT training corpus.

• Percentage of unigrams in the source sen-

tence seen in the source SMT training corpus.

These features were used to train a Support

Vector Regression (SVR) algorithm using a Ra-

dial Basis Function (RBF) kernel within the

scikit-learn toolkit (Pedregosa et al., 2011).14

13https://github.com/ghpaetzold/

questplusplus
14http://scikit-learn.org/

The γ, ǫ and C parameters were optimised via grid

search with 5-fold cross validation on the training

set.

Word-level baseline system: For Tasks 2 and

2p, the baseline features were extracted with the

Marmot tool (Logacheva et al., 2016b).

For the baseline system we used a number of

features that have been found the most informa-

tive in previous research on word-level QE. Our

baseline set of features is loosely based on the one

described in (Luong et al., 2014). It contains the

following 22 features:

• Word count in the source and target sen-

tences, source and target token count ratio.

Although these features are sentence-level

(i.e. their values will be the same for all

words in a sentence), the length of a sentence

might influence the probability of a word be-

ing wrong.

• Target token, its left and right contexts of one

word.

• Source word aligned to the target token, its

left and right contexts of one word. The

alignments were taken from the SMT system

that produced the automatic translations.

• Binary dictionary features: whether target to-

ken is a stopword, a punctuation mark, a

proper noun, a number.

• Target language model features:

– The order of the highest order ngram

which starts and end with the target to-

ken.

– Backoff behaviour of the ngrams

(ti−2, ti−1, ti), (ti−1, ti, ti+1),
(ti, ti+1, ti+2), where ti is the tar-

get token (the backoff behaviour was

computed as described in (Raybaud

et al., 2011)).

• The order of the highest order ngram which

starts and ends with the source token.

• The Part-of-speech tags of the target and

source tokens.

This set of baseline features is similar to the

one used at WMT15 QE shared task (Bojar et al.,

2015). We excluded three features used the last
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year: pseudo-reference features and number of

WordNet senses for the source and target tokens.

We model the task as a sequence prediction

problem, and train our baseline system using the

Linear-Chain Conditional Random Fields (CRF)

algorithm with the CRFSuite tool (Okazaki,

2007). The model was trained using the passive-

aggressive optimisation algorithm.

Phrase-level baseline system: The phrase-level

features were also extracted with Marmot, but they

are different from the word-level features. The

baseline set of phrase-level features is based on a

list of features which were used for sentence-level

QE in QuEst++ toolkit. These so-called “black-

box” features do not use the internal information

from the MT system. We use the following fea-

ture set consisting of 72 features, using the SMT

source/target language training corpus:

• Source phrase frequency features:

– average frequency of ngrams (unigrams,

bigrams, trigrams) from different quar-

tiles of frequency (from the low fre-

quency to high frequency ngrams);

– percentage of distinct source ngrams

(unigrams, bigrams, trigrams) seen in a

corpus of the source language.

• Translation probability features:

– average number of translations per

source word in the sentence (with dif-

ferent translation probability thresholds:

0.01, 0.05, 0.1, 0.2, 0.5);

– average number of translations per

source word in the sentence (with dif-

ferent translation probability thresholds:

0.01, 0.05, 0.1, 0.2, 0.5) weighted by

the frequency of each word in the source

corpus.

• Punctuation features:

– difference between numbers of various

punctuation marks (periods, commas,

colons, semicolons, question and excla-

mation marks) in the source and the tar-

get phrases;

– difference between numbers of various

punctuation marks normalised by the

length of the target phrase;

– percentage of punctuation marks in the

target and the source.

• Language model features:

– log probability of the source and the tar-

get phrases;

– perplexity of the source and the target

phrases.

• Phrase statistics:

– lengths of the source and target phrases;

– ratio of the source and the target phrase

lengths;

– average length of tokens in source and

target phrases;

– average occurrence of target word

within the phrase.

• Alignment features:

– Number of unaligned target words;

– Number of target words aligned to more

than one word;

– Average number of alignments per word

in the target phrase.

• Part-of-speech features:

– percentage of content words in the

source and target phrases;

– percentage of words of a particular part-

of-speech (verb, noun, pronoun) in the

source and the target phrases;

– ratio of numbers of words of a particular

part-of-speech (verb, noun, pronoun) in

the source and the target phrases;

– percentage of numbers and alphanu-

meric tokens in the source and the target

phrases;

– ratio of the percentage of numbers and

alphanumeric tokens in the source and

the target phrases;

This feature set was originally designed for sen-

tences. We expect that since phrases are sequences

of words of varied length, they can be treated

analogously for QE. However, unlike sentences,

which are translated independently, phrases are re-

lated to their neighbouring phrases in a sentence,

and in this respect they are similar to words in

the context of QE. Therefore, as in the baseline

word-level system, we treat phrase-level QE as a

sequence labelling task and model it using Con-

ditional Random Fields. The phrase-level base-

line system is trained with CRFSuite using the

passive-aggressive optimisation algorithm.
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Document-level baseline system: For Task 3,

17 baseline features equivalent to those for sen-

tence level were extracted at document level us-

ing QuEst++. These features are aggregations of

sentence-level baseline features. Some sentence-

level features were summed (number of tokens

in the source and target sentences and number of

punctuation marks in source and target sentences),

while all remaining were averaged.

The model was trained with a SVR algorithm

with RBF kernel using the scikit-learn toolkit.

The γ, ǫ and C parameters were optimised via grid

search with 5-fold cross validation on the training

set.

6.2 Participants

Table 18 lists all participating teams submitting

systems to any of the tasks. Each team was al-

lowed up to two submissions for each task. In the

descriptions below, participation in specific tasks

is denoted by a task identifier.

CDACM (Task 2): The CDACM team partici-

pated in Task 2 for the word and phrase-level QE.

They use a Recurrent Neural Network Language

Model (RNN-LM) architecture for word-level QE.

To estimate the phrase-level quality, they use the

output of the word-level QE system. For this task,

they use a modified RNN-LM with other RNN

variants like Long Short Term Memory (LSTM),

deep LSTM and Gated Recurring Units (GRU).

The modified system predicts a label (OK/BAD)

rather than predicting the word as in the case of

standard RNN-LM. The input to the system is a

word sequence, similar to the standard RNN-LM.

They also tried bilingual models with RNN-LM

and found that they perform better than monolin-

gual models. In the training data, the distribu-

tion of labels (OK/BAD) is skewed, with signifi-

cantly more OK labels. To handle this issue, they

use strategies to replace the OK label with sub-

labels to balance the distribution. The sub-labels

are OK B, OK I, OK E, depending on the loca-

tion of the token in the sentence.

POSTECH (Task 1, Task 2): POSTECH’s sub-

missions (SENT/RNN for Task 1, WORD/RNN

for Task 2 and PHR/RNN for Task 2p) are RNN-

based QE systems consisting of two component:

two bidirectional RNNs on the source and tar-

get sentences in the first component and other

RNNs for predicting the final quality in the sec-

ond component. The first component is an RNN-

based modified neural MT model which gener-

ates quality vectors. Quality vectors indicate a

sequence of vectors about target words’ transla-

tion quality. The second component using other

RNNs predicts the quality at sentence level (Task

1), word level (Task 2), and phrase level (Task 2p).

POSTECH’s RNN-based systems are entirely neu-

ral approaches for QE. Due to the small amount of

data to train the prediction models, each compo-

nent of the systems is trained separately by using

different training data. To train the first component

of the systems, the Europarl v7 English-German

parallel corpus was used. To train the second com-

ponent of the systems, WMT16 QE task English-

German datasets were used.

RTM (Task 1, Task 2, Task 3): Referential trans-

lation machines (RTMs) (Biçici and Way, 2015)

are a language-independent approach for predict-

ing translation quality, as well as for addressing

other text similarity tasks. They eliminate the need

to access any task or domain specific information

or resource. SVR and regression trees are used

in combination with feature selection and partial

least squares for the document and sentence-level

prediction tasks and global linear models with dy-

namic learning were used for the word and phrase-

level prediction tasks.

SHEF (Task 1): The SHEF systems exploit

RNNs and the principle of compositionality to of-

fer a resource-light solution to sentence-level QE.

They use only one side of the translation, the

source (SRC) or the target (TGT). They split the

sentence in ngrams and train a model that pre-

dicts the quality of ngrams. To calculate the qual-

ity of an entire sentence translation, they split its

source/target side in ngrams, estimate their qual-

ity individually, then average their quality scores.

They use word embedding models trained over 7

billion words as external resource (English and

German) using word2vec.

SHEF-LIUM (Task 1): The two joint sub-

missions from the University of Sheffield and

LIUM use (i) a Continuous Space Language

Model (CSLM) to extract sentence embeddings

and cross-entropy scores, (ii) a neural network

MT (NMT) model, (iii) a set of QuEst++ fea-

tures (iv) a combination of features produced by

QuEst++ and the features produced with CSLM

and NMT. When added to QuEst++ standard fea-

ture sets for Task 1, the CSLM sentence embed-
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ID Participating team

CDACM Centre for Development of Advanced Computing, India (Patel and M,

2016)

POSTECH Pohang University of Science and Technology, Republic of Korea (Kim

and Lee, 2016)

RTM Referential Translation Machines, Turkey (Bicici, 2016b)

SHEF University of Sheffield, UK (Paetzold and Specia, 2016)

SHEF-LIUM University of Sheffield, UK and Laboratoire d’Informatique de

l’Université du Maine, France (Shah et al., 2016)

SHEF-MIME University of Sheffield, UK (Beck et al., 2016)

UAlacant University of Alicante, Spain (Esplà-Gomis et al., 2016)

UFAL Nile University, Egypt & Charles University, Czech Republic (Abdel-

salam et al., 2016)

UGENT Ghent University, Belgium (Tezcan et al., 2016)

UNBABEL Unbabel, Portugal (Martins et al., 2016)

USFD University of Sheffield, UK (Logacheva et al., 2016a)

USHEF University of Sheffield, UK (Scarton et al., 2016)

UU Uppsala University, Sweden (Sagemo and Stymne, 2016)

YSDA Yandex School of Data Analysis, Russia (Kozlova et al., 2016)

Table 18: Participants in the WMT16 Quality Estimation shared task.

ding features along with the cross entropy and

NMT likelihood led to large improvements in pre-

diction, and achieved third place in the scoring and

second place in the ranking task variants according

to the official evaluation metrics. Neural network

features alone also performed very well. This is a

very encouraging finding since for many language

pairs it is sometime hard to find appropriate re-

sources to build hand-crafted features, while the

neural network features used only require (suffi-

cient) monolingual data to train models, which is

available in abundance for many languages.

SHEF-MIME (Task 2): The University of

Sheffield’s submission to the word-level QE task

is based on imitation learning, an approach that

treats structured prediction as a sequence of ac-

tions taken by a binary classifier. This approach

allows the use of arbitrary information from pre-

vious tag predictions and has the ability to train

the classifier using non-decomposable loss func-

tions over the predicted structure. The submitted

system uses the baseline features provided by the

shared task organisers plus additional features re-

lying on the predicted structure, such as previous

tag ngrams and the total number of BAD predic-

tions. It employs an online learning algorithm as

the underlying classifier and uses a loss function

based on the official shared task evaluation metric.

No external data or resources were used for this

submission.

UALacant (Task 2): The submissions of the

Universitat d’Alacant team focus for Task 2 were

obtained by applying the approach by Esplà-

Gomis et al. (2015), which uses any source of

bilingual information available online in order to

spot sub-segment correspondences between the

source segment and the translation hypothesis.

These sub-segment correspondences are used to

extract a collection of features that are then used

by a multilayer perceptron to determine the fi-

nal word-level QE labels. The probabilities pro-

vided by this classifier for every word in a phrase

are then used as new features for a second multi-

layer perceptron that is able to obtain quality esti-

mates at the phrase level. Three sources of bilin-

gual information available online were used by the

UAlacant submissions: two online MT systems,

Lucy LT KWIK15 and Google Translate,16 and

the bilingual concordancer Reverso Context.17

Two systems were submitted, both for word-level

and phrase-level QE tasks: one using only features

based on external sources of bilingual information,

and another combining them with the baseline fea-

tures provided by the task organisers.

15http://www.lucysoftware.com/catala/

traduccio-automatica/kwik-translator-/
16http://translate.google.com
17http://context.reverso.net/translation/
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UFAL (Task 1): The submission is based on

word alignments and bilingual distributed repre-

sentations to introduce a new set of features for the

sentence-Level QE task. The features extracted in-

clude three alignment-based features, three bilin-

gual embedding-based features, two embedding-

based features constrained on alignment links, as

well as a set of 74 bigrams used as boolean fea-

tures. The set of bigrams represents the most fre-

quent bigrams in translations that have changed

after the post-edition, and they are compiled by

aligning translations to their post-editions pro-

vided in the WMT QE datasets. To produce

these features, GIZA++ (Och and Ney, 2003) was

used for word alignment and Multivec (Berard

et al., 2016) was used for the bilingual model,

which jointly learns distributed representations for

source and target languages using a parallel cor-

pus. To build the bilingual model, domain-specific

data compiled from the resources made available

for the WMT 16 IT-Domain shared task was used.

As prediction model, a Linear Regression model

using scikit-learn was built using a combina-

tion of QuEst++ baseline features and the new fea-

tures proposed.

UGENT-LT3 (Task 1, Task 2): The submissions

for the word-level task use 41 features in com-

bination with the baseline feature set to train bi-

nary classifiers. The 41 additional features at-

tempt to capture accuracy errors (concerned with

the meaning transfer from the source to target sen-

tences) using word and phrase alignment proba-

bilities, fluency errors (concerned with the well-

formedness of target sentence) using language

models trained on word surface forms and on

part-of-speech tags, and terminology errors (con-

cerned with the domain-specific terminology) us-

ing a bilingual terminology list. Based on the com-

bined feature set, SCATE-RF uses random forests

for binary classification, which combines deci-

sion trees into an ensemble. SCATE-ENS uses

the same feature set and combines different algo-

rithms into an ensemble by applying the major-

ity voting scheme. For the sentence-level task,

SCATE-SVM1 adds 18 features to the baseline

feature set to train SVR models using an RBF ker-

nel. SCATE-SVM2 additionally utilises an extra

feature, which is based on the percentage of words

that are labelled as BAD by the best word-level QE

system (SCATE RF). External language resources

from the IT domain are used to extract the addi-

tional features for both tasks.

UNBABEL (Task 2): Two systems were

submitted for the word-level task. UNBA-

BEL 2 linear is a feature-based linear sequen-

tial model. It uses the baseline features pro-

vided by the shared task organisers (with slight

changes) conjoined with individual labels and

pairs of consecutive labels. It also uses vari-

ous syntactic dependency-based features (depen-

dency relations, heads, and second-order struc-

tures like siblings and grandparents). The syntac-

tic dependencies are predicted with TurboParser

trained on the TIGER German treebank. UN-

BABEL 2 ensemble uses a stacked architecture,

inspired by the last year’s QUETCH+ system

(Kreutzer et al., 2015), which combines three

neural systems: one feedforward and two re-

current ones. The predictions of these sys-

tems are added as additional features in the lin-

ear system above. The following external re-

sources were used: part-of-speech tags and extra

syntactic dependency information obtained with

TurboTagger and TurboParser (Martins et al.,

2013), trained on the Penn Treebank (for English)

and on the version of the German TIGER corpus

used in the SPMRL shared task (Seddah et al.,

2014) for German. For the neural models, pre-

trained word embeddings from Polyglot (Al-

Rfou et al., 2013) and those produced with a neural

MT system (Bahdanau et al., 2014) were used.

USFD (Task 2): USFD’s submissions tested two

different approaches for phrase-level QE. The first

one (CONTEXT submission) is an enhancement

of the baseline feature set provided with the con-

text features. The additional features consist of the

source and target tokens which precede and fol-

low the phrase under consideration, part-of-speech

tags of these tokens, and language model scores

for ngrams at the borders of the phrase. The

second approach (W&SLP4PT submission) learns

phrase-level labels from predictions at other lev-

els. The models are trained on a set of seven fea-

tures that are based on (i) the phrase segmentation

itself (length and ratio to the sentence), (ii) word-

level predictions (number of predicted OK/BAD

words in the current phrase and in the sentence),

and (iii) the predicted quality of the sentence.

CRFsuite is used to train the prediction models

in both cases.
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USHEF (Task 3): Two different systems were

submitted for Task 3. The first system (BASE-

EMB-GP) combines the 17 baseline features with

word embeddings from the source documents (En-

glish) using a Gaussian Process (GP) model. The

word embeddings were learned by using the Con-

tinuous Bag-of-Words (CBOW) model (Mikolov

et al., 2013), trained on the Google’s billion-word

corpus,18 with a vocabulary size of 527K words.

Document embeddings are extracted by averaging

word embeddings in the document. The GP model

was trained with two Rational Quadratic kernels

(Rasmussen and Williams, 2006): one for the 17

baseline features and another for the 500 features

from the embeddings. Since each kernel has its

own set of hyperparameters, the full model can

leverage the contributions from the two different

sets. The second system (GRAPH-DISC) com-

bines the baseline features with discourse-aware

features. The discourse aware features are the

same as the ones used by Scarton et al. (2015a)

plus Latent Semantic Analysis (LSA) cohesion

features (Scarton and Specia, 2014), number of

subtrees and height of the Rhetorical Structure

Theory (RST) tree and entity graph-based coher-

ence scores (Sim Smith et al., 2016). Discourse-

aware and RST tree features were extracted only

for English (tools are only available for this lan-

guage), LSA features were extracted for both lan-

guages, and entity graph-based coherence scores

were extracted for the target language only (Span-

ish), as the source documents are expected to be

coherent. This QE model was trained with an SVR

algorithm.

UU (Task 1): The UU system uses SVR to pre-

dict HTER scores based on features extracted with

QuEst++ plus additional features. The feature

vector consists of a combination of the 17 base-

line features and top performing new features pro-

posed by UU. These new features are related to re-

ordering and noun translation, grammatical corre-

spondence and structural integrity, based on parse

trees and part-of-speech tags. The system submit-

ted uses Kendall Tau distances in alignments be-

tween source and target for measuring reordering,

noun group ratio, verb ratio and probabilistic con-

text free grammars probabilities.

18https://github.com/ciprian-chelba/

1-billion-word-language-modeling-benchmark

YSDA (Task 1): The YSDA submission is based

on a simple idea that the more complex the sen-

tence is the more difficult it is to translate. For this

purpose, it uses information provided by syntac-

tic parsing (information from parsing trees, some

specific language constructions, etc). Addition-

ally, it uses features based on pseudo-references,

back-translation, web-scale language model, word

alignments (as given by the data for Task 2),

and combinations of several features. A regres-

sion model was training to predict BLEU as tar-

get metric instead HTER. The machine learning

pipeline uses an SVR with RBF kernel to pre-

dict BLEU scores, followed by a linear SVR to

predict HTER scores from BLEU scores. As

external resources, the system uses a syntac-

tic parser, pseudo-references and back-translation

from web-scale MT system, and a web-scale lan-

guage model.

6.3 Task 1: Predicting sentence-level quality

This task consists in scoring (and ranking) transla-

tion sentences according to the percentage of their

words that need to be fixed. HTER (Snover et al.,

2006) is used as quality score, i.e. the minimum

edit distance between the machine translation and

its manually post-edited version in [0,1].

As in previous years, two variants of the results

could be submitted:

• Scoring: An absolute HTER score for each

sentence translation, to be interpreted as an

error metric: lower scores mean better trans-

lations.

• Ranking: A ranking of sentence translations

for all source sentences from best to worst.

For this variant, it does not matter how the

ranking is produced (from HTER predictions

or by other means). The reference ranking is

defined based on the true HTER scores.

Data The data is the same as that used for the

WMT16 Automatic Post-editing task, collected

By the QT21 Project19 in the Information Technol-

ogy (IT) domain.20 Source segments are English

sentences and target segments are German trans-

lations produced by a strong SMT system built

within the QT21 Project. The human post-editions

19http://www.qt21.eu/
20The source sentences and reference translations were

provided by TAUS (https://www.taus.net/) and come
from a unique IT vendor.
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are a manual revision of the target, done by profes-

sional translators using the PET post-editing tool

(Aziz et al., 2012). HTER labels were computed

using the TERCOM tool21 with default settings (to-

kenised, case insensitive, exact matching only),

and scores capped to 1.

As training and development data, we provided

English-German datasets with 12,000 and 1,000

source sentences, their machine translations, post-

editions and HTER scores. As test data, we pro-

vided an additional set of 2,000 English-German

source-translations pairs produced by the same

SMT system used for the training data.

Evaluation Evaluation was performed against

the true HTER label and/or ranking, using the fol-

lowing metrics:

• Scoring: Pearson’s r correlation score (pri-

mary metric, official score for ranking sub-

missions), Mean Average Error (MAE) and

Root Mean Squared Error (RMSE).

• Ranking: Spearman’s ρ rank correlation and

DeltaAvg.

Statistical significance on Pearson r and Spear-

man rho was computed using the William’s test,

following the approach suggested in (Graham,

2015).

Results Table 19 summarises the results for

Task 1, ranking participating systems best to worst

using Pearson’s r correlation as primary key.

Spearman’s ρ correlation scores should be used to

rank systems according to the ranking variant. We

note that three systems have not submitted results

ranking evaluation variant.

6.4 Task 2: Predicting word-level quality

The goal of this task is to evaluate the extent to

which we can detect word-level errors in MT out-

put. Various classes of errors can be found in

translations, but for this task we consider all error

types together, aiming at making a binary distinc-

tion between OK and BAD tokens. The decision to

bucket all error types together was made because

of the lack of sufficient training data that could al-

low consideration of more fine-grained error tags.

Data This year’s word-level task uses the same

dataset as Task 1, for a single language pair:

English-German. Each instance of the training,

21http://www.cs.umd.edu/˜snover/tercom/

development and test sets consists of the follow-

ing elements:

• Source sentence (English).

• Automatic translation (German).

• Manual post-edition of the automatic transla-

tion.

• Word-level binary (OK/BAD) labelling of the

automatic translation.

The binary labels for the datasets were acquired

automatically with the TERCOM tool. The tool iden-

tifies four types of errors: substitution of a word

with another word, deletion of a word (word was

omitted by the translation system), insertion of a

word (a spurious word was added by the transla-

tion system), and word or sequence of words shift

(word order error). Every word in the machine-

translated sentence is tagged with one of these er-

ror types or not tagged if it matches a word from

the reference.

All the untagged (correct) words were tagged

with OK, while the words tagged with substitution

and insertion errors were assigned the tag BAD.

The deletion errors are not associated with any

word in the automatic translation, so we could not

consider them. We also disabled the shift errors by

running TERCOMwith the option ‘-d 0’. The reason

for that is the fact that searching for shifts intro-

duces significant noise in the annotation. The tool

cannot discriminate between cases where a word

was really shifted and where a word (especially

common words such as prepositions, articles and

pronouns) was deleted in one part of the sentence

and then independently inserted in another part of

this sentence, i.e. to correct an unrelated error. The

statistics of the datasets are outlined in Table 20.

Evaluation This year’s evaluation procedure is

different from the one used in previous QE tasks.

Previously, the submissions were evaluated in

terms of F1-score for the BAD class. However,

this metric was criticised for being biased towards

“pessimistic” labellings. It tends to rate higher the

outputs of systems which labelled most of words

as BAD, e.g. a trivial “all-BAD” baseline out-

performs many real systems in terms of F1-BAD

score (Bojar et al., 2013).

Therefore, this year we used a different metric:

the multiplication of F1-scores of the BAD and

OK classes (herein referred to as F1-mult). As it
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System ID Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
English-German

• YSDA/SNTX+BLEU+SVM 0.525 12.30 16.41 – –
POSTECH/SENT-RNN-QV2 0.460 13.58 18.60 0.483 7.663

SHEF-LIUM/SVM-NN-emb-QuEst 0.451 12.88 17.03 0.474 8.129
POSTECH/SENT-RNN-QV3 0.447 13.52 18.38 0.466 7.527

SHEF-LIUM/SVM-NN-both-emb 0.430 12.97 17.33 0.452 7.886
UGENT-LT3/SCATE-SVM2 0.412 19.57 24.11 0.418 7.615

UFAL/MULTIVEC 0.377 13.60 17.64 0.410 7.114
RTM/RTM-FS-SVR 0.376 13.46 17.81 0.400 6.655

UU/UU-SVM 0.370 13.43 18.15 0.405 6.519
UGENT-LT3/SCATE-SVM1 0.363 20.01 24.63 0.375 7.008

RTM/RTM-SVR 0.358 13.59 18.06 0.384 6.379
BASELINE 0.351 13.53 18.39 0.390 6.300

SHEF/SimpleNets-SRC 0.320 13.92 18.23 – –
SHEF/SimpleNets-TGT 0.283 14.35 18.22 – –

Table 19: Official results for the scoring ad ranking variants of the WMT16 Quality Estimation Task 1. The systems are
ranked according to the Pearson r metric and significance results are also computed for this metric. The winning submissions
are indicated by a •. These are the top-scoring submission and those that are not significantly worse according to Williams
test with 95% confidence intervals. The systems in the grey area are not different from the baseline system at a statistically
significant level according to the same test.

Sentences Words
% of BAD
words

Training 12,000 210,958 21.4

Development 1,000 19,487 19.54

Test 2,000 34,531 19.31

Table 20: Datasets for Task 2.

was shown in (Logacheva et al., 2016c), this met-

ric is not biased neither towards “pessimistic” nor

to “optimistic” labellings, and is good at discrimi-

nating between different systems.

We tested the significance of the results using

randomisation tests (Yeh, 2000) with Bonferroni

correction (Abdi, 2007).

Results The results for Task 2 are summarised in

Table 21. We show the performance of all partici-

pating systems as well as the baseline model. The

results are ordered by the F1-mult metric. The top

three submissions are statistically significantly dif-

ferent from any other system. However, we cannot

unambiguously depict other significance groups in

the table. Therefore, we only show the systems

which are not significantly different from the base-

line (grey area). The models above and below the

grey area are significantly better and worse than

the baseline system, respectively.

In order to show and analyse the groups of

significantly different systems we plot the results

of significance test as a heatmap (see Table 22).

Here, a cell at the crossing of a row and a col-

umn corresponding to different submissions con-

tains the information about the significance of the

difference in their results: the darker the cell is,

the lower is the significance in the difference for

the pair of systems. The coloured frames denote

groups of submissions which are not significantly

different.

We should also note that in order to adequately

evaluate the significance for multiple experiments

we used Bonferroni correction. The essence of

this method is that in cases when multiple results

are compared (i.e. multiple comparisons are per-

formed) the final significance level is computed

as the initial significance level over the number of

comparisons. In our case we had 91 comparisons

which gave us αB = α

91
= 0.0005 for the sig-

nificance level of 0.05. Bonferroni correction is

quite a conservative method, so the number of sig-

nificance groups may vary when using a different

correction technique.

Overall, there are 10 groups of significantly

different results: three of them contain one sub-

mission (the three best-performing models), other

seven contain two to five models each (these are

the groups denoted by frames of different colours).

6.5 Task 2p: predicting phrase-level quality

As an extension of the word-level task, we intro-

duced a new task: phrase-level prediction. For this

task, given a “phrase” (segmentation as given by

the SMT decoder), participants are asked to label it

as ‘OK’ or ‘BAD’. Errors made by MT engines are

interdependent and one incorrectly chosen word

can cause more errors, especially in its local con-

text. Phrases as produced by SMT decoders can be

seen as a representation of this local context and

in this task we ask participants to consider them as

atomic units, using phrase-specific information to
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System ID F1-mult ↑ F1-BAD F1-OK

English-German

• UNBABEL/ensemble 0.495 0.560 0.885
UNBABEL/linear 0.463 0.529 0.875

UGENT-LT3/SCATE-RF 0.411 0.492 0.836
UGENT-LT3/SCATE-ENS 0.381 0.464 0.821

POSTECH/WORD-RNN-QV3 0.380 0.447 0.850
POSTECH/WORD-RNN-QV2 0.376 0.454 0.828
UAlacant/SBI-Online-baseline 0.367 0.456 0.805

CDACM/RNN 0.353 0.419 0.842
SHEF/SHEF-MIME-1 0.338 0.403 0.839

SHEF/SHEF-MIME-0.3 0.330 0.391 0.845
BASELINE 0.324 0.368 0.880

RTM/s5-RTM-GLMd 0.308 0.349 0.882
UAlacant/SBI-Online 0.290 0.406 0.715
RTM/s4-RTM-GLMd 0.273 0.307 0.888

Table 21: Official results for the WMT16 Quality Estimation Task 2. The winning submissions are indicated by a •. These
are the top-scoring submission and those that are not significantly worse according to approximate randomisation tests with
95% confidence intervals. The grey area indicates the submissions whose results are not statistically different from the baseline
according to the same test.

improve upon the results of the word-level task.

Data The data to be used is exactly the same as

for Task 1 and the word-level task. The labelling

of this data was adapted from word-level labelling

by assigning the ‘BAD’ tag to any phrase that con-

tains at least one ‘BAD’ word. The phrase seg-

mentation used in this dataset is the original seg-

mentation of sentences produced by the SMT de-

coder during translation.

The dataset statistics are outlined in Table 23

(this is similar to Table 20, but shows the percent-

age of incorrect phrases instead of words).

Evaluation Although the QE was produced at

the level of phrases, we used word-level metrics

to evaluate the performance of participating sys-

tems. This choice was motivated by the fact that

the length of phrases can vary significantly, and

an incorrectly labelled phrase can actually mean 1

to 5 incorrectly labelled words, while phrase-level

metrics do not weigh incorrect labels by the length

of the phrases. We decided to use word-level eval-

uation to make the results of this task more intu-

itive. We used the same metric as the one used

in task 2: multiplication of word-level F1-OK and

word-level F1-BAD (F1-mult). However, the test

set was re-labelled in order to agree with phrase

boundaries: if a phrase had at least one BAD word,

all its labels were replaced with BAD.

Thus, the sequence

OK ‖ BAD OK OK ‖ OK ‖ BAD OK ‖ OK OK

was converted to:

OK ‖ BAD BAD BAD ‖ OK ‖ BAD BAD ‖ OK OK

As in Task 2, statistical significance was com-

puted using randomisation tests with Bonferroni

correction.

Results The results of the phrase-level task are

represented in Table 24. Here, unlike the word-

level task, we cannot find a single winner: al-

though the F1-mult scores of the top five systems

vary from 0.379 to 0.364, this difference is not

significant. However, all the winning submissions

outperform the baseline.

Analogously to the previous task, we provide

the F1-BAD and F1-OK scores in order to bet-

ter understand the differences between the models.

We can see that some models have very close F1-

mult scores, although their per class components

scores can differ. For example, the F1-mult scores

of two submissions by the USFD team are very

close (0.367 and 0.364). However, if we decom-

pose these scores, we will see that both F1-BAD

and F1-OK scores of the two models have around

2% of absolute difference: the W&SLP4PT model

is more “pessimistic” (i.e. it is better at labelling

BAD words), while the CONTEXT model identi-

fies the correct words more accurately. However,

the combinations of these scores lead to very sim-

ilar F1-mult. The situation is the same with all

top five submissions: the differences in F1-BAD

are levelled off by the F1-OK component, and the

values of the F1-mult are closer than those of F1-

BAD.

This suggests that the F1-mult score might not

be an best metric for the phrase-level task. While

in the phrase-level models phrases of different

length are treated in the same way, the word-level

metric unfolds each phrase-level label to a set of
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UNBABEL/ensemble

UNBABEL/linear

UGENT/LT3-RF

UGENT/LT3-ENS

POSTECH/WORD-RNN-QV3

POSTECH/WORD-RNN-QV2

UAlacant/SBI-Online-baseline

CDACM/RNN

SHEF/SHEF-MIME-1

SHEF/SHEF-MIME-0.3

BASELINE

RTM/s5-RTM-GLMd

UAlacant/SBI-Online

RTM/s4-RTM-GLMd

Table 22: Randomised significance test for the word-level task with Bonfferroni correction. The darker the cell, the lower the
significance level of the difference between the scores of the corresponding systems. The coloured frames denote groups of
submissions which are not significantly different. The blue row shows the baseline system.
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Sentences Words
% of BAD
words

Training 12,000 210,958 29.84

Development 1,000 19,487 30.21

Test 2,000 34,531 29.53

Table 23: Datasets for Task 2p.

word-level labels, thus giving different importance

to phrases of different lengths. In order to find a

more suitable metric we tested another evaluation

strategy. We evaluated the submissions in terms

of phrase-level F1-scores: here all phrases were

considered as uniform atomic units regardless of

their lengths, and F1-BAD and F1-OK were com-

puted as harmonic means of precision and recall

for phrase-level of OK and BAD labels.

Table 25 shows the performance of phrase-level

QE models measured in terms of multiplication of

phrase-level F1-scores. Except for some changes

in the order of models, this ranking is very similar

to the official one represented in Table 24. Here,

the order of submissions by the POSTECH and

CDACM teams is different from the ranking pro-

duced with the primary metric, but they are still

not significantly different. On the other hand, the

USFD team models are no longer best-performing

under the phrase-level F1-score. This evaluation

shows that phrase-level F1-mult is slightly better

at discriminating between models, although they

are still considered too close and no single best-

performing approach can be identified.

6.6 Task 3: Predicting document-level quality

The document-level QE task consists in scoring

and ranking documents according to their pre-

dicted quality. Knowing the quality of entire doc-

uments is useful for scenarios where fully auto-

mated approaches are used. An example is gisting,

mainly if the user of the system does not know the

source language. Another example are scenarios

where post-editing is not an option or cannot be

performed for the entire data.

Different from last year’s task, in this second

edition we use entire documents and a document-

oriented quality score. The quality scores are

achieved by a two-stage post-editing method

(Scarton et al., 2015b), with post-editing done by

professional translators. In the first stage, sen-

tences are shuffled and post-edited without context

(PE1). In the second stage, the post-edited sen-

tences (from the first stage) are put together in the

document context and post-edited again (PE2) by

the same translator. This approach aims to isolate

problems that can only be solved with document-

level information.

Although the annotation task is considerably

simple to perform, generating reliable quality la-

bels from the data is not a trivial task. Aver-

age (AVG) and Standard Deviation (STDEV) of

HTER between PE1 and MT (PE1 × MT ), PE2

and MT (PE2 ×MT ) and PE2 and PE1 (PE2 ×
PE1) are presented in Table 26.22

As shown in Table 26, PE1 ×MT and PE2 ×
MT show low variation. As discussed last year

(Bojar et al., 2015), we hypothesise that the low

variation in the scores means that quality labels

are not not able to distinguish documents reliably.

PE2×PE1 values, on the other hand, show a high

variation, indicating that the documents vary more

when only document-wide errors are considered.

However, taking only PE2 × PE1 as quality la-

bel is not ideal as it disregards problems at word

and sentence levels, which certainly also influence

the quality of the document as whole. Our solu-

tion is to combine the scores such as to maintain

a high enough variation in the data, while consid-

ering all issue levels. More specifically, we use a

linear combination of PE1×MT and PE2×PE1

(Equation 1).

f = w1 · PE1 ×MT + w2 · PE2 × PE1, (1)

where w1 and w2 are empirically defined weights.

w1 was fixed to 1, while w2 was optimised aim-

ing at finding how much relevance we should give

to each component in order to meet two crite-

ria. First, the final label (f ) should lead to sig-

nificant data variation (in terms of standard devi-

ation on the mean). Second, the difference be-

tween the MAE of the mean baseline23 and the

MAE of the official baseline QE system should be

large enough.24 The quality labels were defined

by Equation 1 with w1 = 1 and w2 = 13.

22HTER was calculated by using the Asiya toolkit im-
plementation of TER (non-tokenised and case insensitive)
(Giménez and Màrquez, 2010).

23This baseline is calculated by assuming the mean of the
training set as the predicted value of all instances in the test
set.

24In our experiments, for variance we defined that the ratio
between the standard deviation and mean should be at least
0.5 and for MAE difference, we defined it to be at least 0.1.
w2 was increased by 1 at each iteration and the optimisation
process stopped when any of the requirements was met.
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System ID F1-mult ↑ F1-BAD F1-OK

English-German

• CDACM/RNN 0.380 0.503 0.755
• POSTECH/PHR-RNN-QV3 0.378 0.495 0.764
• POSTECH/PHR-RNN-QV2 0.369 0.478 0.772

• USFD2/W&SLP4PT 0.368 0.486 0.757
• USFD2/CONTEXT 0.365 0.470 0.777
RTM/s5 RTM-GLMd 0.327 0.408 0.802

BASELINE 0.321 0.401 0.800
RTM/s4 RTM-GLMd 0.307 0.377 0.814

Ualacant/SBI-Online-baseline 0.259 0.493 0.526
UAlacant/SBI-Online 0.098 0.459 0.213

Table 24: Official results for the WMT16 Quality Estimation Task 2p. The winning submissions are indicated by a •. These are
the top-scoring submission and those that are not significantly worse according to approximate randomisation tests with 95%
confidence intervals. The grey area indicates the submissions whose results are not statistically different from the baseline.

System ID F1-mult ↑ F1-BAD F1-OK

English-German

• POSTECH/PHR-RNN-QV3 0.393 0.518 0.759
• POSTECH/PHR-RNN-QV2 0.388 0.504 0.771

• CDACM/RNN 0.378 0.500 0.756
USFD/CONTEXT 0.364 0.467 0.780

USFD/W&SLP4PT 0.363 0.475 0.764
RTM/s5-RTM-GLMd 0.331 0.413 0.802

BASELINE 0.311 0.389 0.799
RTM/s4-RTM-GLMd 0.306 0.376 0.815

UAlacant/SBI-Online-baseline 0.275 0.502 0.547
UAlacant/SBI-Online 0.146 0.456 0.320

Table 25: Results for the WMT16 Quality Estimation Task 2p computed in terms of phrase-level F1-scores. The winning
submissions are indicated by a •. These are the top-scoring submission and those that are not significantly worse according to
approximate randomisation tests with 95% confidence intervals. The grey area indicates the submissions whose results are not
statistically different from the baseline.

PE1 ×MT PE2 ×MT PE2 × PE1

AVG 0.346 0.381 0.042
STDEV 0.108 0.091 0.034

Ratio 0.312 0.239 0.810

Table 26: AVG and STDEV of the post-edited data.

Data The documents were extracted from the

WMT translation task test data from 2008 to 2013,

using submissions from all participating MT sys-

tems. Source documents were randomly chosen.

For each source document, a translation was taken

from a different MT system. We considered EN-

ES as language pair, extracting 208 documents.

All documents were post-edited as previously ex-

plained. 146 documents were used for training and

62 for test.

Evaluation The evaluation of the document-

level task was the same as that for the sentence-

level task. Pearson’s r, MAE and RMSE are re-

ported as evaluation metrics for the scoring task,

with Pearson’s r as official metric for the ranking

of systems. For the ranking task, Spearman’s ρ

correlation and DeltaAvg are reported, with Spear-

man’s rho as main metric. The significance of the

results is evaluated by applying the Williams test

on Pearson’s r scores.

Results The results of both the scoring and rank-

ing variants of the task are given in Table 27,

sorted from best to worst by using the Pearson’s

r scores as primary key. USHEF/BASE-EMB-

GP and RTM/RTM-FS+PLS-TREE showed the

best scores, with no significant difference between

them. The other two systems are not statistically

significantly different from the baseline.

The two winning submissions are very differ-

ent. The BASE-EMB-GP system combines word

embeddings with the official baseline features in a

GP model with two-kernels, while RTM-FS+PLS-

TREE is an RTM implementation that explores

more sophisticated features from the source and

target texts. For ranking variant, however, RTM-

FS+PLS-TREE showed better results. Moreover,

this is the only system with higher scores than the

baseline that is also significantly better than the

baseline.

6.7 Discussion

In what follows, we discuss the main findings of

this year’s shared task based on the goals we had
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System ID Pearson’s r ↑ MAE ↓ RMSE ↓ Spearman’s ρ ↑ DeltaAvg ↑
English-Spanish

• USHEF/BASE-EMB-GP 0.391 0.295 0.128 0.393 0.111
• RTM/RTM-FS+PLS-TREE 0.356 0.253 0.118 0.476 0.123

RTM/RTM-FS-SVR 0.293 0.268 0.125 0.360 0.119
BASELINE 0.286 0.278 0.139 0.354 0.093

USHEF/GRAPH-DISC 0.256 0.285 0.144 0.285 0.061

Table 27: Official results for the scoring ad ranking variants of the WMT16 Quality Estimation Task 3. The systems are
ranked according to the Pearson r metric and significance results are also computed for this metric. The winning submissions
are indicated by a •. These are the top-scoring submission and those that are not significantly worse according to Williams
test with 95% confidence intervals. The systems in the grey area are not different from the baseline system at a statistically
significant level according to the same test.

previously identified for it.

Domain specific, professionally done

post-editions

Last year we used the largest dataset of all editions

of the shared task to date (for sentence and phrase-

level QE): ∼14K segment pairs altogether. How-

ever, the findings were somewhat inconclusive as

the quality of the dataset was dubious (crowd-

sourced post-editions). This year we were able

to collect a dataset of comparable size (15K) but

in a completely controlled way, and with profes-

sional (paid) translators to ensure the quality of

the data. Another critical difference in this year’s

main dataset is its domain: IT, as opposed to the

rather general, “news” domain that had been used

so far. Finally, we had access to the SMT sys-

tem that produced the translations, which was very

important for the new task introduced this year –

phrase-level QE. For phrase-level QE, the segmen-

tation of the sentences in phrases was necessary.

Having a more repetitive text domain was deemed

particularly relevant for the word and phrase-level

tasks, where data sparsity is a major issue.

In practice, we found that this year’s main

dataset is similar to last year’s in terms of error

distribution at the word-level: about 20% of the

words are labelled as BAD. One thing to notice,

however, is that with the new data systems did not

seem to benefit from filtering data out. Last year,

various systems reported improvements from fil-

tering out significant portions of the “all/mostly

GOOD” sentences, which could have meant that

these sentences may not have been correct, but did

not get post-edited by the crowdworkers.

In terms of progress with respect to last year for

comparable tasks, although direct comparisons are

not possible, we observed that:

• For sentence-level, the Pearson correlation of

the winning submission last year was 0.39

(against 0.14 of the baseline system). This

year, the winning submission reached 0.52

Pearson correlation, with many other systems

above 0.4 (against 0.35 of the same baseline

system as last year). One can speculate that

the task was made somewhat “easier” by us-

ing high quality data, but the delta in Pearson

correlation between the baseline and winning

submission is still very substantial.

• For word-level, the main metric used this

year (F1-mult) is different from the one used

last year (F1-BAD), and this may have been

the metric most systems optimised against, so

looking at the F1-BAD results for both years

is not entirely fair to this year’s systems, but

nevertheless this year’s systems performed

much better: 0.56 against 0.43 last year. The

baseline system used last year was much sim-

pler, and therefore comparisons against the

baseline cannot be made.

Effectiveness of new quality label provided by

humans for document-level prediction

Participation in the document-level task was again

disappointingly low, with only four systems.

Document-level QE is still a relative new area and

engaging the community is therefore still a chal-

lenge.

The main changes in this year’s task were the

fact that entire documents are used (potentially re-

sulting in the need for more discourse/document-

wide features), and the the fact that the quality la-

bels are computed based on human post-editing.

We start by analysing the new quality label against

automatic metrics (such as BLEU) used in previ-

ous work. Our hypothesis is that automatic met-

rics are not reliable labels for document-level eval-

uation (as discussed in (Scarton et al., 2015b)).

Therefore, we expect that our new label would per-

form differently from these metrics. We use cor-
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relation to measure whether or not the new label

shows different behaviour. Table 28 shows Pear-

son r correlation scores for automatic metrics ver-

sus the new label, as well as between HTER and

all labels. The HTER score was calculated consid-

ering the last version of the two-stage post-editing

method (PE2 ×MT ).

NEW (↓) BLEU(↑) TER(↓) METEOR(↑)

BLEU −0.168 - - -

TER +0.195 −0.928 - -

METEOR −0.186 +0.954 −0.961 -

HTER(↓) +0.516 −0.462 +0.449 −0.452

Table 28: Pearson r correlation between automatic metrics,
our new label (NEW) and HTER. All correlation scores are
significant with 95% of confidence.

Although the new label showed some corre-

lation to BLEU, TER and METEOR, the best

correlation is showed with HTER. On the other

hand, the automatic metrics showed higher cor-

relation among themselves than against HTER

scores, which is expected since such metrics are

similar in many ways.

An important observation is that the automatic

metrics are calculated against a human translation

and HTER is calculated against a post-edited ver-

sion. The effect of this is that BLEU, TER and

METEOR compare the MT output to a human

translation that can be completely different from

the MT output, without necessarily meaning that

the machine translation is bad. HTER, conversely,

compares the MT output to its post-edited version.

It is also worth noticing that although HTER did

not show a high variation (0.091 for mean 0.381 -

third column of Table 26), similar to the automatic

metrics, it still did not show very high correla-

tion with BLEU, TER and METEOR. Conversely,

the new label showed high correlation with HTER,

but much lower correlation with BLEU, TER and

METEOR than HTER itself. This seems to indi-

cate that the new label captures different informa-

tion than BLEU, TER and METEOR. Therefore,

we believe that the new label and standard evalu-

ation metrics provide complementary information

on translation quality.

In terms of features, most are similar to

those used by the systems submitted last year,

which are aggregations of sentence-level fea-

ture values. Therefore, our hypothesis that

discourse/document-aware features would show

better results on evaluating full document was not

proved. Systems using discourse-aware features

(USHEF/GRAPH-DISC) did not show improve-

ments relative to the baseline system. This could

be an indication of the limitations of the features

or of the labels themselves.

QE at the phrase level

One of the main motivations for switching from

the word level to phrase level is the fact that MT

errors are often context-dependent, and the wrong

choice of a word might be explained by an error

in its context. A good example of such errors are

adjectives that take the gender of the noun they

depend on, and become erroneous if this noun is

replaced with another noun of a different gender.

This motivation suggests that the phrases to be

used as atomic units in a phrase-level QE sys-

tem should be syntactically motivated. However,

there can be other approaches. For example, the

very popular SMT systems manipulate sequences

of words as opposed to single words. These se-

quences – referred to as “phrases” – are not lin-

guistically motivated phrases. During decoding

these phrases are selected or rejected as atomic

units (regardless of the quality of the individual

words they consist of), and thus it may be useful

to estimate the quality of the entire phrase.

Overall, there is no single answer to what

should be considered as a “phrase” in a phrase-

level QE system. A fully-fledged phrase-level QE

system should be able to handle both the segmen-

tation of a sentence into phrases and the labelling

of each phrase for quality. However, each of these

two steps is a complex problem on itself. There-

fore, for the first edition of the task we decided to

simplify it and provide the phrase segmentation.

Following Logacheva et al. (2015), we considered

a “phrase” the final segmentation produced by the

SMT decoder by an MT decoder that generated

the automatic translations in the dataset. This seg-

mentation is useful for decoding-time QE.

The baseline phrase-level QE system uses a

set of features which were originally designed

for sentences and later adapted for smaller se-

quences. These features were used to train a CRF

model. Participants chose many different tech-

niques to model the task. The best performing

ones are deep neural networks: the Recurrent Neu-

ral Network from the POSTECH team which pre-

dicts the phrase-level label and the CDACM Re-

current Neural Network whose word-level predic-

tions were successfully applied to the phrase-level

task. Two of the submitted models make use of

the baseline feature set: the USFD team enhanced
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it with context information, while the UAlacante

team combined it with features based on pseudo-

reference translations coming from a number of

sources.

Several teams attempted to take into account

the predictions for other the task at other levels.

The phrase-level submission from CDACM sim-

ply labels the phrase-level test set using word-

level predictions; while the UAlacant submission

uses the probability of each word in a phrase be-

ing labelled as BAD along with other external fea-

tures. Similarly, USFD uses information on word

labels within a phrase as well as the information

on sentence-level quality.

Comparison of word-level and phrase-level

models The word-level and phrase-level sys-

tems that participated in Tasks 2 and 2p are not di-

rectly comparable. Although they are evaluated on

the same test sentences, and the labels for the test

set come from the same post-editions, they are not

identical. The labels for the phrase-level test set

were modified in order to comply with the phrase-

level training data. We established a pessimistic

approache where a phrase is considered BAD if

any of its words is BAD. We changed the word-

level labels so that all labels within a BAD phrase

are also BAD. This is analogous to replacing some

OK labels with BAD labels for words.

Nevertheless, we can still try to compare the

word-level and phrase-level submissions if we

change the word-level submissions appropriately.

Let us consider that a word-level QE model was

used to label phrases for quality. Following the

rules mentioned above we will label a phrase as

BAD if our QE model labelled any of words of

this phrase as BAD. After performing this trans-

formation we can use the Task 2p test set to eval-

uate both phrase-level and (modified) word-level

submissions.

While this comparison is an approximation as

the submitted word-level models were not trained

to predict the quality of phrases, it still al-

lows a rough comparison between word-level and

phrase-level QE models. One of the purposes

of the phrase-level task was to understand if the

subsentence-level QE can benefit from joint la-

belling of groups of words, and this cross-task

comparison is a means to try to answer that ques-

tion.

Table 29 contains the joint results of Tasks 2 and

2p. The best-performing system is the winning

word-level submission. Moreover, the word-level

systems tend to perform better in this task in gen-

eral: the top seven positions in this joint table are

occupied by the word-level systems. Some of the

phrase-level systems which performed well turn

out not to be better than the word-level baseline

system. Presumably, this result means that defin-

ing the quality for individual words yields better

results in general.

Another observation we can make from this ta-

ble is the change in the significance level of the re-

sults: some of the word-level submissions which

were significantly different from the word-level

baseline model in the original (word-level) task

are no longer different in the phrase-level version.

This can shed some light on the difficulties we had

with defining the single best phrase-level system:

perhaps the lack of significance in the differences

between the labellings is derived from the phrase-

level task itself. Alternatively, as it was discussed

in Section 6.5, it could be explained by the fact that

F1-mult score is not a suitable metric for phrase-

level QE.

In order to examine how the phrase-level task

relates to the word-level one more closely we per-

formed a different comparison. Some of the teams

presented their results for both variants of Task 2,

and the majority of them have similar models for

both levels: they tried to adapt their original word-

level system for the phrase-level task. We can

compare these pairs of systems to see if the adap-

tation was successful. This is not a direct compar-

ison, because the models, although similar, can-

not be identical due to differences between words

and phrases. This comparison was only done for

analysis, as it can give us more insights on the fu-

ture perspectives for the phrase-level task. Table

30 outlines the results of this comparison.25

Here, in order to enable the direct comparison,

we adapted the word-level systems to phrase-level

test set the same way as we did for Table 29. It can

be clearly seen that the performance of word-level

systems is better than that of the analogous phrase-

level systems. There are multiple possible reasons

for that, for example, wrong choice of phrase-level

features, limitations of models originally designed

for word-level QE in dealing effectively with word

25The submission by the CDACM team was not included
in the table because their phrase-level submission is an adap-
tation of word-level predictions to phrase level. It was per-
formed analogously to our word-level submissions adapta-
tion, therefore it should be no different.
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System ID F1-mult ↑
English-German

• word UNBABEL/ensemble 0.517
word UNBABEL/linear 0.487
word UGENT-LT3/SCATE-RF 0.426
word POSTECH/WORD-RNN-QV3 0.399
word UGENT-LT3/SCATE-ENS 0.395
word POSTECH/WORD-RNN-QV2 0.388
word CDACM/RNN 0.381
phrase CDACM/RNN 0.379
phrase POSTECH/PHR-RNN-QV3 0.378
phrase POSTECH/PHR-RNN-QV2 0.369
word UAlacant/SBI-Online-baseline 0.369
phrase USFD/W&SLP4PT 0.367
word SHEF/SHEF-MIME-0.3 0.367
word SHEF/SHEF-MIME-1 0.367
phrase USFD/CONTEXT 0.364
word BASELINE 0.360
word RTM/s5-RTM-GLMd 0.344
phrase RTM/s5-RTM-GLMd 0.327
phrase BASELINE 0.321
word RTM/s4-RTM-GLMd 0.313
phrase RTM/s4-RTM-GLMd 0.307
word UAlacant/SBI-Online 0.290
phrase UAlacant/SBI-Online-baseline 0.259
phrase UAlacant/SBI-Online 0.097

Table 29: Comparison of submissions for Tasks 2 and 2p in terms of word-level F1-mult scores computed on the test set used
for the Task 2p. Word-level systems (Task 2) are indicated by “word”, while phrase-level systems (Task 2p), by “phrase”.
The winning submission is indicated with •. The grey area indicates the models which are not significantly different from
the word-level baseline system, the cyan area indicates the models which are not significantly different from the phrase-level
baseline.

System ID Word-level Phrase-level

English-German

POSTECH/RNN-QV3 0.399 0.378
POSTECH/RNN-QV2 0.388 0.369
RTM/s5-RTM-GLMd 0.344 0.327
RTM/s4-RTM-GLMd 0.313 0.307
Ualacant/SBI-Online-baseline 0.369 0.259
Ualacant/SBI-Online 0.290 0.097

Table 30: Comparison of systems’ performance in Task 2 (word-level) and 2p (phrase-level). Performance is evaluated in
terms of word-level F1-mult scores computed on the test set used for the Task 2p. The submissions to the word-level task are
modified in order to comply with the phrase-level task.

sequences.

Nevertheless, it is worth noticing the phrase-

level QE systems introduced a number of inter-

esting strategies that allowed them to outperform

a strong baseline phrase-level model. Finally, we

recall that the evaluation metric – word-level F1-

mult – has difficulties to distinguish phrase-level

systems. This suggests that we may need to find a

different metric for evaluation of the phrase-level

task, with phrase-level F1-mult one of the candi-

dates.

7 Automatic Post-editing Task

This year WMT hosted the second round of the

shared task on MT automatic post-editing (APE),

which consists in automatically correcting the er-

rors present in a machine translated text. As

pointed out by Chatterjee et al. (2015b), from the

application point of view the task is motivated by

its possible uses to:

• Improve MT output by exploiting informa-

tion unavailable to the decoder, or by per-

forming deeper text analysis that is too ex-

pensive at the decoding stage;

• Cope with systematic errors of an MT system

whose decoding process is not accessible;

• Provide professional translators with im-

proved MT output quality to reduce (human)

post-editing effort;

• Adapt the output of a general-purpose MT

system to the lexicon/style requested in a spe-

cific application domain.
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Also this year, the general framework consisted

in a “black box” scenario in which the MT sys-

tem that produced the translations is unknown to

the participants and cannot be modified. How-

ever, building on the lessons learned in the first pi-

lot round (Bojar et al., 2015), some changes have

been made.

The major differences concern the domain and

the origin of the data. First, we moved from

the general news domain to the more specific

information technology (IT) domain. This

novelty is motivated by the difficulties observed in

the pilot round, in which the baseline (the simple

do-nothing APE system that leaves all the test sen-

tences unmodified) remained unbeaten. Indeed,

the scarce repetitiveness of the news domain pre-

vented participants to learn from the training data

effective correction patterns that are also applica-

ble to the test set. Second, concerning the ori-

gin of the data, we moved from post-edits ob-

tained from non-professional crowdsourced work-

force to material collected from professional trans-

lators. Data collected from trained professionals

represents first of all a more standard scenario for

the translation industry. Besides this, they are con-

sidered to guarantee higher translation coherence,

feature higher repetitiveness and, eventually, make

the APE task more feasible by automatic systems.

Other changes concern the language combina-

tion and the evaluation mode. As regards the

languages, we moved from English-Spanish to

English-German, which is one of the language

pairs covered by the QT21 Project26 that sup-

ported data collection and post-editing. Con-

cerning the evaluation, we changed from TER

scores computed both in case-sensitive and case-

insensitive mode to a single ranking based on case

sensitive measurements.

Besides these changes the new round of the

APE task included some extensions in the evalu-

ation. BLEU (Papineni et al., 2002) has been in-

troduced as a secondary evaluation metric to mea-

sure the improvements over the rough MT output.

In addition, to gain further insights on final output

quality, a subset of the outputs of the submitted

systems has also been manually evaluated.

Based on these changes and extensions, the

goals of this year’s shared task were to: i) im-

prove and stabilize the evaluation framework in

view of future rounds, ii) analyze the effect on task

26http://www.qt21.eu/

feasibility of data coming from a narrow domain,

iii) analyze the effect of post-edits collected from

professional translators, iv) analyze how humans

perceive TER/BLEU performance differences be-

tween different systems, v) measure the progress

made during one year of research on the APE task.

Although the changes made with respect to the

first pilot round prevent from fair and informa-

tive result comparisons, we believe that these ob-

jectives were successfully achieved. Most notice-

ably, the higher feasibility of the task brought by

domain-specific data and professional post-edits

resulted in significant baseline improvements (up

to 3.2 TER and 5.5 BLEU points), which are also

evident to human evaluation. These positive re-

sults, together with the increase in the number of

participants with respect to the pilot round (from

four to six), represent a good starting point for fu-

ture rounds of the APE task.

7.1 Task description

Similar to last year, participants were provided

with training and development data consisting of

(source, target, human post-edit) triplets, and were

asked to return automatic post-edits for a test set of

unseen (source, target) pairs.

7.1.1 Data

One of the findings of the first pilot task was that

the origin and the domain of the data pose specific

challenges to the participating systems. In particu-

lar, our analysis highlighted the strong dependence

of system results on data repetitiveness, which

tends to be higher within restricted domains and

with coherent post-edits. On one side, restricted

domains are more likely to feature smaller vocabu-

laries and to be more repetitive (or, in other terms,

less sparse). This situation, in turn, will likely de-

termine a higher applicability of the learned error

correction patterns. On the other side, coherent

post-edits (like those produced within controlled

professional environments) will result in a lower

variability in the correction of specific errors and,

in turn, in favorable conditions to learn and gather

reliable statistics. These considerations motivate

some of the major changes of this year’s round

of the APE task, namely those concerning the do-

main (a specific one as opposed to news) and the

origin of the post-edits (from professional transla-

tors instead of crowdsourced).

The data used this year was released by the

QT21 Project. This material was obtained by
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randomly sampling from a collection of English-

German (source, target, human post-edit) triplets

drawn from the Information Technology (IT)

domain.27 Also this year, the main reason for ran-

dom sampling was to induce a higher data homo-

geneity and, in turn, to increase the chances that

correction patterns learned from the training set

can be applied also to the test set. The down-

side of losing information yielded by text coher-

ence (an aspect that some APE systems might take

into consideration) has hence been accepted in ex-

change for a higher error repetitiveness across the

three data sets.

The training and development sets respectively

consist of 12, 000 and 1, 000 instances. In each

instance:

• The source (SRC) is a tokenized English sen-

tence whose length ranges between 3 and 30

tokens;

• The target (TGT) is a tokenized German

translation of the source. Translations were

obtained with a statistical MT system.28 This

information, however, was unknown to par-

ticipants, for which the MT system was a

black-box.

• The human post-edit (PE) is a manually-

revised version of the target, done by profes-

sional translators.29

Test data (2, 000 instances) consists of (source,

target) pairs having similar characteristics of those

in the training set. Human post-edits of the test

target instances were left apart to measure system

performance.

Table 31 provides some basic statistics about

the data. As discussed in Section 7.3, the differ-

ences in the domain and the origin of this year’s

data can contribute to explain the large improve-

ments over the baseline, which in the first pilot

round unfortunately remained unbeaten. These

differences are highlighted by the Repetition Rate

27The source sentences (together with their reference
translations which were not used for the task) were provided
by TAUS (https://www.taus.net/) and originally come
from a unique IT vendor.

28It consists of a phrase-based machine translation system
leveraging generic and in-domain parallel training data and
using a pre-reordering technique (Herrmann et al., 2013). It
takes also advantages of POS and word class-based language
models.

29German native speakers working at Text&Form https:
//www.textform.com/.

(RR30) scores reported in Table 32. Values are in-

deed very close to those observed in the IT-related

corpus (the Autodesk Post-Editing Data corpus31)

that was used last year as a term of comparison to

motivate the high difficulty of dealing with news

data.

7.1.2 Evaluation metric

System performance was evaluated by computing

the distance between automatic and human post-

edits of the machine-translated sentences present

in the test set (i.e. for each of the 2, 000 target

test sentences). Differently from the first edition of

the task, in which this distance was only measured

in terms of Translation Error Rate (TER) (Snover

et al., 2006), this year the BLEU (Papineni et al.,

2002) score was also used. TER is an evalua-

tion metric commonly used in MT-related tasks

(e.g. in quality estimation) to measure the mini-

mum edit distance between an automatic transla-

tion and a reference translation.32 BLEU is the

reference metric for MT evaluation and is based

on modified n-gram precision to find how many of

the n-grams in the candidate translation are present

in the reference translation over the entire test set.

The main difference between the two metrics is

that TER works at word level, while BLEU takes

advantage of words and n-grams with n from 2 to

4. Systems were ranked based on the average TER

calculated on the test set by using the TERcom33

software: lower average TER scores correspond

to higher ranks. BLEU was computed using the

multi-bleu.perl package34 available in MOSES.

Differently from the pilot round, in which TER

was computed both in case-sensitive and case-

insensitive mode, this year we opted for only one

mode. Working with German, for which case er-

rors are of crucial importance, participants’ sub-

missions were evaluated with the more strict case-

sensitive mode.

30Repetition rate measures the repetitiveness inside a text
by looking at the rate of non-singleton n-gram types (n=1...4)
and combining them using the geometric mean. Larger value
means more repetitions in the text.

31https://autodesk.app.box.com/

Autodesk-PostEditing
32Edit distance is calculated as the number of edits (word

insertions, deletions, substitutions, and shifts) divided by the
number of words in the reference. Lower TER values indicate
lower distance from the reference as a proxy for higher MT
quality.

33http://www.cs.umd.edu/˜snover/tercom/
34https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/generic/multi-bleu.perl
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Tokens Types Lemmas
SRC TGT PE SRC TGT PE SRC TGT PE

Train (12,000) 201,505 210,573 214,720 9,328 14,185 16,388 5,628 11,418 13,244

Dev (1,000) 17,827 19,355 19,763 2,931 3,333 3,506 1,922 2,686 2,806

Test (2,000) 31,477 34,332 35,276 3,908 4,695 5,047 2,479 3,753 4,050

Table 31: Data statistics.

APE@WMT15 APE@WMT16
(EN-ES, news, crowd) (EN-DE, IT, prof.)

SRC 2.905 6.616
TGT 3.312 8.845
PE 3.085 8.245

Table 32: Repetition Rate (RR) of the WMT15 (English-
Spanish, news domain, crowdsourced post-edits) and
WMT16 (English-German, IT domain, professional post-
editors) APE Task data.

7.1.3 Baseline

The official baseline results are the TER and

BLEU scores calculated by comparing the raw MT

output with the human post-edits. In practice, the

baseline APE system is a system that leaves all the

test targets unmodified.35 Baseline results are re-

ported in Table 34.

Monolingual translation as another term of

comparison. To get some insights about the

progress with respect to the first pilot task, partic-

ipating systems were also evaluated against a re-

implementation of the approach firstly proposed

by Simard et al. (2007).36 Last year, in fact, this

statistical post-editing approach represented the

common backbone of all submissions (this is also

reflected by the close results achieved by partici-

pants in the pilot task). For this purpose, a phrase-

based SMT system based on Moses (Koehn et al.,

2007) was used. Translation and reordering mod-

els were estimated following the Moses protocol

with default setup using MGIZA++ (Gao and Vo-

gel, 2008) for word alignment. For language mod-

eling we used the KenLM toolkit (Heafield, 2011)

for standard n-gram modeling with an n-gram

length of 5. Finally, the APE system was tuned on

35In the case of TER, the baseline is computed by averag-
ing the distances between each machine-translated sentence
and its human-revised version. The actual evaluation metric
is the human-targeted TER (HTER). For the sake of clarity,
since TER and HTER compute edit distance in the same way
(the only difference is in the origin of the correct sentence
used for comparison), henceforth we will use TER to refer to
both metrics.

36This is done based on the description provided
in (Simard et al., 2007). Our re-implementation, however,
is not meant to officially represent such approach. Discrep-
ancies with the actual method are indeed possible due to our
misinterpretation or to wrong guesses about details that are
missing in the paper.

the development set, optimizing TER/BLEU with

Minimum Error Rate Training (Och, 2003). The

results of this additional term of comparison are

also reported in Table 34.

For each submitted run, the statistical signifi-

cance of performance differences with respect to

the baselines and the re-implementation of Simard

et al. (2007) was calculated with the bootstrap

test (Koehn, 2004).

7.2 Participants

This year, six teams (two more than in the pilot

round) participated in the APE task by submitting

a total of eleven runs. Participants are listed in

Table 33; a short description of their systems is

provided in the following.

Adam Mickiewicz University. This system is

among the very first ones exploring the appli-

cation of neural translation models to the APE

task. In particular, it investigates the following

aspects: i) the use of artificially-created post-

edited data to train the neural models, ii) the log-

linear combination of monolingual and bilingual

models in an ensemble-like manner, iii) the ad-

dition of task-specific features in the log-linear

model to control the final output quality. Con-

cerning the data, in addition to the official train-

ing and development material, the system exploits

the English-German bilingual training material re-

leased for the IT-domain and news translation

shared tasks. The German monolingual common

crawl corpus admissible for these two tasks is also

exploited. This data is used by a “round-trip trans-

lation” approach aimed to artificially create the

huge amount of triples needed to train the neu-

ral models. Such models are attentional encoder-

decoder models (Bahdanau et al., 2014) trained

with subword units (Sennrich et al., 2015) in or-

der to deal with the limited ability of neural trans-

lation models to handle out-of-vocabulary words.

They include both monolingual models trained to

translate from TGT to PE, and cross-lingual mod-

els trained to translate from SRC to PE. An en-

semble is obtained through their log-linear combi-

nation with empirically-set weights (higher for the
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ID Participating team

AMU Adam Mickiewicz University, Poland (Junczys-Dowmunt and Grundkiewicz, 2016)

CUNI Univerzita Karlova v Praze, Czech Republic (Libovický et al., 2016)

DCU Dublin City University, Ireland

FBK Fondazione Bruno Kessler, Italy (Chatterjee et al., 2016)

JUSAAR Jadavpur University, India & Saarland University, Germany

USAAR Saarland University, Germany (Pal et al., 2016)

Table 33: Participants in the WMT16 Automatic Post-editing task.

TGT-to-PE model). Finally, a task-specific feature

based on string matching is added to the log-linear

combination to control the faithfulness of the APE

results with regard to the input. This is done by

penalizing words in the output that do not appear

in the input to be corrected.

Univerzita Karlova v Praze. Also this system

is based on the neural translation model with atten-

tion proposed by Bahdanau et al. (2014) and ex-

tends it to include multiple encoders able to man-

age different input representations. Each encoder

is a bidirectional RNN that takes in input a one-

hot vector for each representation of a word. The

decoder is an RNN which receives an embedding

of the previously produced word as an input in ev-

ery time step together with the hidden state from

the previous time step. The RNNs output is then

used to compute the attention and the next word

distribution. The attention is computed over each

of the encoders separately. The initial state of the

decoder is obtained by a weighted combination of

the encoders final states. To improve the capability

of the network to focus on the edits made by the

post-editors, the target sentence is converted in the

minimum-length sequence of edit operations per-

formed on the machine-translated sentence. For

this purpose, the network vocabulary is extended

adding two more tokens (keep and delete) and the

new representation is made of a sequence of keep,

delete and insert operations, where the insert op-

eration is defined by placing the word itself. The

different inputs used for the APE task submission

are the source sentence and its translation into the

target language and the sequence of edits. The

network is trained using only the task data. To

better handle the complexity of the German target

language, different language-dependent pre- and

post-processing are used, in particular, splitting

the contracted prepositions and articles and sep-

arating some pronouns from their case ending.

Dublin City University. This system is de-

signed as an automatic rule learning system. It

considers four types of editings, i.e. replace-

ment, deletion, insertion and reordering, as gener-

alized replacement (GR) editings. GR editings are

learned from aligning words in source and target

sentences and records replacement pairs and their

corresponding contexts for each source and target

sentence pair. When the source word is empty,

it is of an insertion editing; similarly, when the

target word is empty, it is of a deletion editing.

When the source words and target words in a GR

editing both comprise the same set of words but

with different orderings, it is of a reordering edit-

ing. The word-based GR editings and their gener-

alization which uses POSs to replace their context

words, comprise the whole rule set of GR editings.

There is no linguistic knowledge incorporated in

the system, which therefore can be applied to any

language for post-editing purposes. Three things

are learned from the training set, 1) the GR rules,

2) the precedence ordering of these rules, and 3)

the maximum number of rules to be applied to

a sentence. For each set of GR rules, the prece-

dence ordering can be ranked based on the counts

of replacement words, the counts of their context

words, the lengths of GR editings, the number

of occurrences of GR editings observed in train-

ing set and/or their combinations. In the training

phase, given a set of GR rules, the system will ap-

ply the rules to the training set using different set-

tings of precedence ordering and maximum num-

ber of rules to be applied for each sentence. The

system is trained when one setting is selected if

the system yields the best overall post-edited re-

sults by applying that setting. In the test phase,

the GR rules will be applied to each sentence in

the test set using the trained precedence ordering

and stop when the maximum number of rules to be

applied is met for that sentence.
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Fondazione Bruno Kessler. This system com-

bines the monolingual statistical approaches pre-

viously exploited in Chatterjee et al. (2015a) with

a factored machine translation model that is able to

leverage benefits from both. One is the monolin-

gual statistical translation approach proposed by

Simard et al. (2007). The other is the context-

aware variant proposed by Béchara et al. (2011).

The former is more robust and it better general-

izes the learned post-editing rules. The latter is

prone to data sparsity, word alignment and tun-

ing problems due to its richer representation of

the terms. Nevertheless, by integrating knowl-

edge about the source context in the learned rules,

its precision is a good complement to the higher

recall of (Simard et al., 2007). By enabling a

straightforward integration of additional annota-

tion (factors) at the word-level, factored transla-

tion models (Koehn and Hoang, 2007) are used

to leverage such complementarity. In the FBK

system they include part-of-speech-tag and class-

based neural language models (LM) along with

statistical word-based LM to improve the fluency

of the post-edits. These models are built upon

a data augmentation technique (i.e. the exten-

sion of the monolingual parallel corpus with the

post-edits available in the training data), which

helps to mitigate the problem of over-correction

in phrase-based APE systems. One of the submit-

ted runs incorporates a quality estimation model

(C. de Souza et al., 2013, 2014), which aims to

select the best translation between the MT output

and the automatic post-edit.

Jadavpur University & Saarland University.

This system contains three basic components: sta-

tistical APE, word deletion model and word sur-

face form correction model. The final generated

translation is the product of a multi-engine re-

ranking system. The statistical APE component

is based on the phrase-based APE approach of Pal

et al. (2015). MT outputs generally contain four

types of errors: presence of unwarranted words,

wrong word surface form, absence of some rele-

vant words, and wrong word order. The system

tries to address the first two types of errors. The

word deletion model is based on source language

context modelling and target language word dele-

tion frequency in the training data. The surface

form correction model tries to fix the morphologi-

cal errors by generating all possible surface forms

for each root word present in the MT output and

to select the most likely sequence of word sur-

face forms by applying a language model. The

word deletion model and the word surface form

correction model are applied to all the APE out-

puts. Finally, the generated translation candidates

are ranked using a ranking algorithm based on

language model information and a length-based

heuristic. The top ranked output is chosen as the

final APE output.

Saarland University. This system combines the

Operation Sequence Model (OSM) (Durrani et al.,

2011) with the classic phrase-based statistical MT

(PB-SMT) approach. The OSM-APE method rep-

resents the post-edited translation process as a lin-

ear sequence of operations such as lexical genera-

tion of post-edited translation and their orderings.

The translation and reordering decisions are con-

ditioned on n previous translation and reordering

decisions. This technique is able to model both lo-

cal and long-range reorderings that are quite useful

when dealing with the German language. To im-

prove the capability of choosing the correct edit to

process, eight new features are added to the log-

linear model. These features capture the cost of

deleting a phrase and different information on pos-

sible gaps in reordering operations. The monolin-

gual alignments between the MT outputs and their

post-edits are computed using different methods

based on TER, METEOR (Snover et al., 2006) and

Berkeley Aligner (Liang et al., 2006). Only the

task data is used for these submissions.

7.3 TER/BLEU results

The official TER and BLEU results achieved by

participants are reported in Table 34. The sub-

mitted runs are sorted based on the average (case-

sensitive) TER measured on test data, which was

this year’s primary evaluation metric.

Looking at the performance of the two base-

lines, i.e. the raw MT output (Baseline) and the

basic statistical APE approach of Simard et al.

(2007), the latter outperforms the former with both

metrics. This indicates that, under this year’s

evaluation conditions, the MT outputs could be

improved by learning from human post-editors’

work.

Differently from the pilot task (Bojar et al.,

2015), in which none of the runs was able to beat

the baselines, this year half of the participants

achieved this goal by producing automatic post-

edited sentences that result in lower TER (with a
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ID Avg. TER BLEU

AMU Primary 21.52 67.65

AMU Contrastive 23.06 66.09

FBK Contrastive 23.92 64.75

FBK Primary 23.94 64.75

USAAR Primary 24.14 64.10

USAAR Constrastive 24.14 64.00

CUNI Primary 24.31 63.32

(Simard et al., 2007) 24.64 63.47

Baseline 24.76 62.11

DCU Contrastive 26.79 58.60

JUSAAR Primary 26.92 59.44

JUSAAR Contrastive 26.97 59.18

DCU Primary 28.97 55.19

Table 34: Official results for the WMT16 Automatic Post-
editing task – average TER (↓), BLEU score (↑).

maximum of -3.24 points) and higher BLEU score

(up to +5.54 points). All differences with respect

to such baselines are statistically significant. This

suggests that the correction patterns learned from

the data were reliable enough to allow most sys-

tems to effectively correct the original MT output.

The obvious question is whether the improve-

ments observed this year are due to the new data

set (i.e. domain-specific texts and professional

post-edits) or to a real technology jump (i.e. the

use of neural end-to-end APE systems, factored

or operational sequential models). A partial an-

swer is given by the performance of the approach

of Simard et al. (2007), which we run on the data

of both rounds of the APE task with the same im-

plementation. Although its results on the two test

sets are difficult to compare (also due to the differ-

ent language setting), the overall TER scores and

the relative distances with respect to the other sub-

mitted runs can give us some indications.

First of all, on the pilot test set, the basic statis-

tical APE method damaged the original MT out-

put quality, with a TER reduction of about 1 point.

On this year’s data it achieves a small improve-

ment (though statistically significant only in terms

of BLEU). This suggests that, as hypothesized in

Section 7.1.1, the higher repetitiveness featured by

the selected data can facilitate the work of the APE

systems. The new scenario, with repetition rates

for SRC, TGT and PE that are more than twice the

values measured last year (see Table 32), makes

them able to learn from the training data a larger

number of reliable and re-applicable correction

patterns. However, the large improvements ob-

tained this year by the top runs can only be reached

by moving from the basic statistical MT backbone

shared by all last year’s participants to new and

more reliable APE solutions. Indeed, its distance

from the top-ranked systems has increased from

0.6 up to 3.12 TER points. While on one side it

is true that the new data made the task easier, on

the other side the deployed solutions and the in-

creased results’ distance over the basic statistical

APE approach indicate a significant step forward.

In terms of TER and BLEU evaluations, there

are minor differences (only for the lower ranked

systems) between the two rankings. This confirms

that both metrics capture similar linguistic phe-

nomena and the use of n-grams does not show par-

ticular advantages.

7.4 System/performance analysis

Differently from the pilot round, in which TER re-

sults were more concentrated (the difference be-

tween the top and the lowest ranked system was

about 1.5 points), this year systems’ performance

is distributed within an interval of about 7.5 points.

Indeed, the two rankings of Table 34 can be seen

as composed of three blocks: the best system,

the systems scoring around the baselines and the

lower performing systems. Trying to go beyond

rough TER/BLEU measurements and to shed light

on such performance differences, in this section

we focus on a more fine-grained analysis of sys-

tems’ behaviour and the corresponding errors.

7.4.1 System behaviour

A first interesting aspect to analyse is systems’ be-

haviour which, compared to last year, reflects the

larger variety of approaches explored. Does this

variety result in major differences in the correc-

tion strategies/operations? To answer this ques-

tion, we first analysed the submitted runs taking

into consideration the changes made by each sys-

tem to the test instances. Table 35 shows the num-

ber of modified, improved and deteriorated sen-

tences. It’s worth noting that, as observed last

year, for all the systems the number of modified

sentences is higher than the sum of the improved

and the deteriorated ones. This difference is rep-

resented by modified sentences for which the cor-

rections do not yield TER variations. This grey

area, for which quality improvement/degradation

can not be automatically assessed, contributes to

motivate the human evaluation discussed in Sec-

tion 7.5
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Modified Improved Deteriorated

AMU Primary 1,613 935 374

AMU Contrastive 1475 776 386

FBK Contrastive 640 377 148

FBK Primary 654 384 153

USAAR Primary 421 290 74

USAAR Contrastive 499 314 105

CUNI Primary 498 284 138

(Simard et al., 2007) 700 320 253

DCU Contrastive 407 48 314

JUSAAR Primary 1,521 320 835

JUSAAR Contrastive 1,540 326 837

DCU Primary 797 54 651

Table 35: Number of test sentences modified, improved and deteriorated by each submitted run.

Looking at the numbers in Table 35, it be-

comes evident that the overall number of modi-

fied sentences is considerably larger than in the

pilot task. On average, the best run submitted

by each team modified 42.5% sentences. This

amount is much larger than last year, when the

percentage was 18.0%, probably due to the higher

repetitiveness of the data which makes possible

to learn more reliable and applicable correction

rules. The same holds for the average number

of improved sentences, which this year is signif-

icantly larger (18.7% vs. 11% in the pilot). This

trend is confirmed by the performance of our re-

implementation of Simard et al. (2007), which

modified 35% of the sentences (vs. 26% in the

pilot), improving 45% (vs. 11% last year) and de-

teriorating 36% of them (vs. 61%).

These figures, however, vary considerably

across the submitted runs. Among the systems that

improve over the basic statistical APE approach,

the top-ranked one modified an impressive num-

ber of test sentences (80%), which is more than

twice the amount of items changed by the other

submissions. For the same system, the improved

and the deteriorated ones are respectively about

58% and 23% of the total, which is in line with the

other participants that improved the baseline. An

interesting general conclusion that we can draw is

that the neural approach adopted by the top-ranked

system allowed it to better cope with the data spar-

sity issues that affect the other methods (despite

the higher repetitiveness of this year’s data). More

thorough investigations that are beyond the scope

of this overview should verify the hypothesis that

learning and generalising rules from a relatively

small amount of human post-edits is easier with

Figure 10: System Behaviour – TER(MT, APE)

neural models than with pure statistical solutions.

Another aspect that should be checked is whether

the neural solution performs better per se or thanks

to the much larger amount of training data needed

for its deployment.

Further insights about systems’ behaviour can

be drawn from the analysis of Figure 10. It plots

the distribution of the edit operations done by each

system (insertions, deletions, substitutions, shifts)

obtained by computing the TER between the orig-

inal MT output and the output of each system as

reference (only for the primary submissions).

The figure evidences some interesting trends,

starting from the much larger proportion of shifts

made by the top-ranked neural approach. More

than 450 shift operations (9.2% of the total),

in fact, represent the major difference between

the behaviour of the winning system and all the
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Figure 11: System Error – TER(APE, human post-edits)

other submissions (the second-ranked one per-

forms only 26 shifts, 2.5% of the total). It is likely,

but this should be verified, that the available train-

ing data featured correction patterns that the neural

method was able to model and re-apply better than

the other solutions. Overall, the behaviour of the

best system is the most balanced with respect the

three other operations. In total, insertions, dele-

tions and substitutions (respectively 1,132, 1,465

and 1,807) are considerably more that those made

by the other systems and they are more evenly dis-

tributed (23%, 30% and 37% respectively). As a

term of comparison, the second-ranked primary

submission performed much less operations (83

insertions, 652 deletions and 248 substitutions),

with a clear predominance (65%) of deletions that

is common also to other submissions. As a gen-

eral remark, best results seem to be associated with

a rather homogeneous distribution of the types of

correction patterns learned by the system.

7.4.2 System error

Another interesting aspect to analyse is the effect

of the different methods on the types of errors

made by each system. Does the variety in the ap-

proaches result in major differences in the types of

errors made? To answer this question, Figure 11

plots the distribution of the edit operations needed

to transform the output of each system into the

human post-edits available for each test sentence.

Such distribution of systems’ errors is obtained by

computing the TER between their output and the

human post-edits of the original translations as ref-

erence.

The figure does not show visible trends that can

provide us with useful hints. In terms of error dis-

tribution, the task baseline, our re-implementation

of Simard et al. (2007), and the submitted pri-

mary runs show almost identical ratios. Inser-

tions range between 17% and 20% of the total,

deletions range between 23% and 28%, substitu-

tions range between 44% and 49%. The high-

est percentage of substitution errors suggests that

the major problem for all systems is the lexical

choice. Half of the errors in the APE output be-

long to this error category, indicating that learn-

ing the appropriate lexical replacements from hu-

man post-edits is still one of the main challenges.

Comparing the error distribution in the MT base-

line (our ground truth in terms of what has to be

corrected) with the actions actually made by each

system as shown in Figure 10, it is interesting to

emphasise the higher similarity with the distribu-

tions of the operations made by the top-performing

system. “AMU Primary”, indeed, seems to per-

form a slightly larger amount of insertions com-

pared to the total insertions actually needed, while

the other operations are substantially in line with

the expected amount. Based on TER information,

nothing can be said about which of them are actu-

ally correct/wrong. The only conclusions we can

draw at this stage are: i) a good amount of MT

errors is corrected (the global TER decreases), ii)

the actions of the top-performing system are quite

evenly distributed, iii) such distribution is the clos-

est to the distribution of ground truth operations

but iv) errors (missing corrections and/or wrong

corrections) still remain in all classes.

In light of these considerations, we performed

further analysis by evaluating this years’ APE sub-

missions also from another point of view. To this

aim, in the next section we try to understand the re-

lation between the participants’ performance and

the human perception of translation quality.

7.5 Human Evaluation

To assess the quality of APE systems and produce

a ranking based on human judgement, as well as

analyze how humans perceive TER/BLEU perfor-

mance differences between the submitted systems,

two runs of human evaluations were conducted.

The whole evaluation took approximately a month

and was performed mainly by student translators

who annotated the APE systems’ outputs. This

subsection describes the human evaluation pro-
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cedure, gives details about the annotators’ back-

grounds and profiles, and finally presents the re-

sults of the evaluation.

7.5.1 Evaluation Procedure

The two runs of human evaluation were conducted

using the Appraise37 (Federmann, 2012) open-

source annotation platform through the ranking

task interface. A ranking task consists of a source

segment and the outputs of up to 5 anonymized

APE systems randomly selected from the set of

participants and displayed in random order to hu-

man evaluators. The main difference between the

two evaluation runs is the following: for the first

run, the annotators were presented with a transla-

tion reference consisting of the manual post-edit of

the machine-translated source segment, while for

the second run no translation reference was pre-

sented to the human evaluator. For both evaluation

runs, the non-post-edited MT output was included

among the systems to evaluate. For the second

evaluation run, the human post-edited version of

the MT output was included among the systems to

evaluate.

A total of 200 randomly extracted source seg-

ments taken from the test set presented in Table 31

with their corresponding systems’ outputs were

considered for the first evaluation run, while 100
source segments went through the second run. The

decision to consider a larger set of segments for

the first evaluation run is based on the previous

editions of WMT, where human evaluations con-

ducted for the translation tasks included a transla-

tion reference. The smaller scale evaluation for the

second run can be seen as a pilot study, where no

translation reference is given to the annotators and

where the human post-edit is presented as part of

the anonymized systems. The latter setup allows

us to see if APE systems can reach human post-

editing in terms of quality while avoiding evalua-

tion bias towards a reference.

We carried out six annotation sessions in a con-

trolled environment of approximately 45 to 60
minutes each, divided in two blocks of equal dura-

tion with a small break in between. Prior to the hu-

man evaluation task, we provided annotators with

a pilot study in order to be introduced to the rank-

ing task and be familiarized with the annotation

interface. For each source sentence, five systems’

outputs were randomly selected among the partic-

37https://github.com/cfedermann/Appraise

ipants and the non-post-edited MT output. For the

second evaluation run, the human post-edit was in-

cluded in the random selection of target sentences

to annotate. The human annotators then ranked the

outputs from 1 to 5 (1 being the best) with ties al-

lowed. All source segments were evaluated by at

least 3 annotators. The annotations were then used

with the TrueSkill38 adaptive ranking system to

produce a score for each system based on their in-

ferred means (Sakaguchi et al., 2014). This score

was used to sort and cluster the systems submitted

by the participants, as well as the MT output and

the human post-edit, and produce the final ranking

presented in Section 7.5.3

7.5.2 Annotators Background

A total of 37 annotators participated in the man-

ual evaluation of APE systems, including 30
5th semester B.A. students in the Comparative

Linguistics, Literature, and Translation program

taught in Saarland University.39 The remaining

7 evaluators are expert translators and lecturers

at Saarland University in the Applied Linguis-

tics, Translation and Interpreting department.40

Among the annotators, 34 are native German

speakers with strong English skills and have com-

pleted introductory courses such as translation the-

ory and translation studies, machine translation,

CAT tools, and MT evaluation and post-editing.

The remaining 3 annotators have strong German

skills and have been living in Germany for several

years.

7.5.3 Results

The first and second runs of human evaluation re-

sults are respectively presented in Table 36 and Ta-

ble 37.

The first run shows a preference for the AMU

Primary system compared to the other submis-

sions (Table 36). These results confirm those ob-

tained with the automatic metrics as shown in Ta-

ble 34 and we can see that two systems are above

the Baseline (the raw MT output). The CUNI

Primary and USAAR Primary systems are in the

same cluster with the Baseline, which indicates a

non-significant difference with p ≤ 0.05. Two

systems are in a single cluster below the base-

line, namely JUSAAR Primary and DCU Primary,

being on par with the results obtained using au-

38https://github.com/keisks/wmt-trueskill
39http://fr46.uni-saarland.de/?id=2393
40http://fr46.uni-saarland.de
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# Score Range ID

1 1.967 1 AMU Primary

2 0.033 2 FBK Primary

3 -0.108 3-4 CUNI Primary

-0.191 3-5 USAAR Primary

-0.211 3-5 Baseline

4 -0.712 6-7 JUSAAR Primary

-0.778 6-7 DCU Primary

Table 36: Results of the first run of human evaluation in-
cluding human post-edited MT output as translation refer-
ence. Scores and ranges are obtained with TrueSkill (Sak-
aguchi et al., 2014). Lines between systems indicate clusters
according to bootstrap resampling at p-level p ≤ 0.05 based
on 1, 000 runs. Systems within a cluster are considered tied.

# Score Range ID

1 2.058 1 Human Post-edit

2 0.867 2 AMU Primary

3 -0.213 3-4 CUNI Primary

-0.348 3-6 FBK Primary

-0.374 3-6 USAAR Primary

-0.499 5-7 Baseline

-0.675 6-8 JUSAAR Primary

-0.816 7-8 DCU Primary

Table 37: Results of the second run of human evaluation
without translation reference provided to annotators. Scores
and ranges are obtained with TrueSkill (Sakaguchi et al.,
2014). Lines between systems indicate clusters according to
bootstrap resampling at p-level p ≤ 0.05 based on 1, 000
runs. Systems within a cluster are considered tied.

tomatic metrics. The correlation between auto-

matic metrics and the first manual evaluation run

indicates the reliability of popular MT metrics for

the evaluation of APE systems. On average, an-

notators needed 53 seconds to perform one rank-

ing task, while the fastest ranking was performed

in 18.3 seconds and the slowest one took more

than 4 minutes and 30 seconds (averaged over at

least 3 annotators for the same source segment).

The agreement between annotators on the first run

of evaluation is k = 0.481 according to Fleiss’

Kappa (Fleiss, 1971).

The results of the second run of manual evalua-

tion (Table 37) show that the human post-editing

of MT output is preferred by human annotators

when compared to the other systems’ outputs,

reaching the first position. It indicates that, in spite

of the significant improvements over the original

MT output, none of the submitted APE systems

managed to reach the translation quality achieved

by human post-editing. The second position in

the ranking is reached by the AMU Primary sys-

tem, while a single cluster is ranked third and con-

tains all the remaining systems as well as the Base-

line. This smaller amount of clusters can be due

to the limited scale of the second run of manual

evaluation involving 100 source segments only,

compared with the 200 segments for the first run.

However, this second run shows that the AMU Pri-

mary system is again preferred by human evalua-

tors compared to the other systems without nec-

essarily being closer to the human post-edited MT

output, which is not included as a translation refer-

ence, and thus without biasing human judgements.

The agreement between annotators for the second

run of evaluation is slightly lower compared to

the first run, with a Fleiss’ Kappa of k = 0.466.

For both runs, the inter-annotator agreement is

considered moderate. On average, the annota-

tors needed 60 seconds per ranking task, while the

fastest ranked outputs was completed in 21.7 sec-

onds and the slowest one in 3 minutes.

7.6 Lessons learned and outlook

The objectives of this pilot APE task were to: i)

improve and stabilize the evaluation framework in

view of future rounds, ii) analyze the effect on task

feasibility of data coming from a narrow domain,

iii) analyze the effect of post-edits collected from

professional translators, iv) analyze how humans

perceive TER/BLEU performance differences be-

tween different systems, v) measure the progress

made during one year of research on the APE task.

Concerning the first point, no specific issues

emerged this year calling for major changes. The

overall format, starting from the baselines and the

evaluation metrics adopted, will likely be kept also

for the next round.

As regards points ii) and iii) the positive effect

of domain-specific data and professional-quality

post-edits is evident. Most likely, these favorable

conditions for automatic post-editing will be kept

as well, also because they represent a more stan-

dard translation scenario compared to the generic

news domain.

Regarding point iv), an interesting finding of

the manual evaluation is a correlation between hu-

man judgements and the results obtained with au-

tomatic metrics. This confirms the reliability of

popular MT metrics, namely BLEU and TER, for

APE systems evaluation. Despite the baseline im-

provements and the significant overall TER/BLEU

gains, the feedback from human evaluators regard-
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ing the quality of the APE MT segments is not

fully positive yet, showing that there is still room

for improvement. One explanation for this is prob-

ably related to the domain specificity of the data

set used for this year’s APE shared task. Many

segments contain sets of instructions and com-

mands that are used in user manuals of the IT do-

main and were given to annotators without con-

text. The annotators also pointed out that they con-

sidered difficult to rank very similar segments, as

most APE systems do not make substantial modi-

fications of the MT output, which results in similar

outputs in terms of quality and leads to challeng-

ing comparisons for humans. This aspect is em-

phasized when no translation reference is given to

the annotators. In this case, only the top-ranked

system emerges as a source of corrections that are

significantly better than the baseline (in spite of

the impressive TER and BLEU gains, respectively

up to -3.24 and +5.54 points).

In terms of progress over the last year, this was a

successful follow-up. More participants, some of

which new, resulted in a larger variety in the sub-

mitted systems. Those pursuing the phrase-based

approach that dominated the pilot round managed

to improve over this common backbone in dif-

ferent ways. Other teams introduced interesting

novelties, bringing also into the APE framework

the popularity of neural approaches. The tangi-

ble result is represented by the large improvements

over the (last year unbeaten) baseline achieved by

most of the systems. Such gains indicate the good

potential of APE systems to improve MT output

in black-box conditions and motivate further re-

search and developments.
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(2016b). Results of the WMT16 Metrics Shared

Task . In Proceedings of the First Conference on

Machine Translation, Berlin, Germany. Associ-

ation for Computational Linguistics.

Bradbury, J. and Socher, R. (2016). MetaMind

Neural Machine Translation System for WMT

2016. In Proceedings of the First Conference

on Machine Translation, Berlin, Germany. As-

sociation for Computational Linguistics.

Buck, C., Heafield, K., and Van Ooyen, B. (2014).

N-gram counts and language models from the

common crawl. LREC, 2:4.

Buck, C. and Koehn, P. (2016). Findings of

the WMT 2016 Bilingual Document Alignment

Shared Task. In Proceedings of the First Con-

ference on Machine Translation, Berlin, Ger-

many. Association for Computational Linguis-

tics.

C. de Souza, J. G., Buck, C., Turchi, M., and

Negri, M. (2013). FBK-UEdin participation to

the WMT13 Quality Estimation shared-task. In

Proceedings of the Eighth Workshop on Statis-

tical Machine Translation, pages 352–358.

186



C. de Souza, J. G., González-Rubio, J., Buck, C.,
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Costa-jussà, M. R., España Bonet, C., Mad-

hyastha, P., Escolano, C., and Fonollosa, J.

A. R. (2016). The TALP–UPC Spanish–English

WMT Biomedical Task: Bilingual Embed-

dings and Char-based Neural Language Model

Rescoring in a Phrase-based System. In Pro-

ceedings of the First Conference on Machine

Translation, Berlin, Germany. Association for

Computational Linguistics.

Cuong, H., Frank, S., and Sima’an, K. (2016).

ILLC-UvA Adaptation System (Scorpio) at

WMT’16 IT-DOMAIN Task. In Proceedings

of the First Conference on Machine Transla-

tion, Berlin, Germany. Association for Compu-

tational Linguistics.

Ding, S., Duh, K., Khayrallah, H., Koehn, P., and

Post, M. (2016). The JHU Machine Transla-

tion Systems for WMT 2016. In Proceedings

of the First Conference on Machine Transla-

tion, Berlin, Germany. Association for Compu-

tational Linguistics.

Duma, M.-S. and Menzel, W. (2016). Data Selec-

tion for IT Texts using Paragraph Vector. In Pro-

ceedings of the First Conference on Machine

187



Translation, Berlin, Germany. Association for

Computational Linguistics.

Durrani, N., Schmid, H., and Fraser, A. (2011). A

joint sequence translation model with integrated

reordering. In Proceedings of the 49th Annual

Meeting of the Association for Computational

Linguistics: Human Language Technologies-

Volume 1, pages 1045–1054. Association for

Computational Linguistics.
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A Pairwise System Comparisons by Human Judges

Tables 40–46 show pairwise comparisons between systems for each language pair. The numbers in each

of the tables’ cells indicate the percentage of times that the system in that column was judged to be better

than the system in that row, ignoring ties. Bolding indicates the winner of the two systems.

Because there were so many systems and data conditions the significance of each pairwise compar-

ison needs to be quantified. We applied the Sign Test to measure which comparisons indicate genuine

differences (rather than differences that are attributable to chance). In the following tables ⋆ indicates sta-

tistical significance at p ≤ 0.10, † indicates statistical significance at p ≤ 0.05, and ‡ indicates statistical

significance at p ≤ 0.01, according to the Sign Test.

Each table contains final rows showing how likely a system would win when paired against a randomly

selected system (the expected win ratio score) and the rank range according bootstrap resampling (p ≤
0.05). Gray lines separate clusters based on non-overlapping rank ranges.
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ONLINE-B – .47⋆ .43‡ .39‡ .39‡ .38‡ .36‡
UEDIN-NMT .53⋆ – .45‡ .43‡ .41‡ .40‡ .39‡

UEDIN-PBMT .57‡ .55‡ – .46† .45‡ .39‡ .41‡
UEDIN-SYNTAX .61‡ .57‡ .54† – .49 .44‡ .44‡

ONLINE-A .61‡ .59‡ .55‡ .51 – .47⋆ .47⋆
JHU-PBMT .62‡ .60‡ .61‡ .56‡ .53⋆ – .46†

LIMSI .64‡ .61‡ .59‡ .56‡ .53⋆ .54† –

score .58 .37 .09 -.08 -.18 -.32 -.46
rank 1-2 1-2 3 4-5 4-6 5-7 6-7

Table 38: Head to head comparison, ignoring ties, for Romanian-English systems
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UEDIN-NMT – .48 .43⋆ .40† .36‡ .42† .38‡ .31‡ .37‡ .34‡ .28‡ .25‡
QT21-HIML-SYSCOMB .52 – .44 .41† .44 .40† .41† .30‡ .25‡ .28‡ .22‡ .22‡

KIT .57⋆ .56 – .52 .44 .47 .43⋆ .36‡ .35‡ .41† .33‡ .34‡
UEDIN-PBMT .60† .59† .48 – .49 .47 .57⋆ .39‡ .36‡ .32‡ .32‡ .34‡

ONLINE-B .64‡ .56 .56 .51 – .49 .49 .41† .37‡ .35‡ .28‡ .36‡
UEDIN-LMU-HIERO .58† .60† .53 .53 .51 – .50 .43⋆ .37‡ .38‡ .30‡ .29‡

RWTH-SYSCOMB .62‡ .59† .57⋆ .43⋆ .51 .50 – .42⋆ .38‡ .42⋆ .34‡ .31‡
LIMSI .69‡ .70‡ .64‡ .61‡ .59† .57⋆ .58⋆ – .48 .43⋆ .47 .35‡

LMU-CUNI .63‡ .75‡ .65‡ .64‡ .63‡ .63‡ .62‡ .52 – .52 .42† .40†
JHU-PBMT .66‡ .72‡ .59† .68‡ .65‡ .62‡ .58⋆ .57⋆ .48 – .50 .42†

USFD-RESCORING .72‡ .78‡ .67‡ .68‡ .72‡ .70‡ .66‡ .53 .58† .50 – .39‡
ONLINE-A .75‡ .78‡ .66‡ .66‡ .64‡ .71‡ .69‡ .65‡ .60† .58† .61‡ –

score .44 .43 .20 .15 .14 .13 .12 -.15 -.22 -.26 -.43 -.56
rank 1-2 1-2 3-7 3-7 3-7 3-7 3-7 8-10 8-10 8-11 10-12 11-12

Table 39: Head to head comparison, ignoring ties, for English-Romanian systems
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UEDIN-NMT – .42‡ .41‡ .36‡ .36‡ .37‡ .35‡ .35‡ .35‡ .36‡ .33‡ .14‡
JHU-PBMT .58‡ – .45‡ .45‡ .43‡ .44‡ .42‡ .40‡ .41‡ .40‡ .38‡ .13‡
ONLINE-B .59‡ .55‡ – .47⋆ .46† .46‡ .45‡ .45‡ .44‡ .42‡ .43‡ .16‡

TT-BLEU-MIRA .64‡ .55‡ .53⋆ – .49 .47† .47† .45‡ .45‡ .42‡ .45‡ .15‡
TT-AFRL .64‡ .57‡ .54† .51 – .49 .47† .43‡ .46‡ .45‡ .44‡ .16‡

TT-NRC-NNBLEU .63‡ .56‡ .54‡ .53† .51 – .50 .46‡ .47‡ .43‡ .46† .16‡
TT-NRC-MEANT .65‡ .58‡ .55‡ .53† .53† .50 – .46† .48† .47‡ .45‡ .15‡

TT-BEER-PRO .65‡ .60‡ .55‡ .55‡ .57‡ .54‡ .54† – .49 .49 .47⋆ .17‡
PJATK .65‡ .59‡ .56‡ .55‡ .54‡ .53‡ .52† .51 – .50 .47⋆ .18‡

TT-BLEU-MERT .64‡ .60‡ .58‡ .58‡ .55‡ .57‡ .53‡ .51 .50 – .48 .19‡
ONLINE-A .67‡ .62‡ .57‡ .55‡ .56‡ .54† .55‡ .53⋆ .53⋆ .52 – .19‡

CU-MERGEDTREES .86‡ .87‡ .84‡ .85‡ .84‡ .84‡ .85‡ .83‡ .82‡ .81‡ .81‡ –

score .61 .31 .20 .11 .09 .09 .07 .03 .00 .00 -.07 -.148
rank 1 2 3 4-6 4-7 4-7 5-8 7-10 8-10 8-10 11 12

Table 40: Head to head comparison, ignoring ties, for Czech-English systems
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UEDIN-NMT – .38‡ .31‡ .33‡ .33‡ .35‡ .31‡ .26‡ .25‡ .27‡ .22‡ .25‡ .28‡ .26‡ .21‡ .20‡ .11‡ .07‡ .00‡ .01‡

NYU-MONTREAL .62‡ – .43‡ .42‡ .41‡ .37‡ .33‡ .38‡ .36‡ .37‡ .34‡ .36‡ .31‡ .37‡ .30‡ .21‡ .14‡ .09‡ .01‡ .00‡

JHU-PBMT .69‡ .57‡ – .45‡ .47† .47 .38‡ .37‡ .37‡ .38‡ .36‡ .35‡ .35‡ .36‡ .35‡ .28‡ .10‡ .12‡ .01‡ .00‡

CU-CHIMERA .67‡ .58‡ .55‡ – .49 .46⋆ .43‡ .40‡ .39‡ .40‡ .39‡ .39‡ .40‡ .39‡ .39‡ .30‡ .12‡ .10‡ .01‡ .00‡

CU-TAMCHYNA .67‡ .59‡ .53† .51 – .45† .42‡ .41‡ .41‡ .40‡ .40‡ .39‡ .39‡ .38‡ .39‡ .29‡ .16‡ .11‡ .01‡ .00‡

UEDIN-CU-SNTX .65‡ .63‡ .53 .54⋆ .54† – .49 .48 .47 .47⋆ .49 .45† .46† .44‡ .40‡ .37‡ .16‡ .14‡ .01‡ .00‡

ONLINE-B .69‡ .67‡ .62‡ .57‡ .58‡ .51 – .48⋆ .46‡ .48† .44‡ .44‡ .48⋆ .46‡ .41‡ .38‡ .15‡ .12‡ .01‡ .00‡

TT-BLEU-MIRA .74‡ .62‡ .63‡ .60‡ .59‡ .52 .52⋆ – .49 .46⋆ .46† .46† .43‡ .47⋆ .43‡ .39‡ .12‡ .13‡ .01‡ .00‡

TT-BEER-PRO .75‡ .64‡ .63‡ .61‡ .59‡ .53 .54‡ .51 – .51 .47 .47⋆ .46† .47† .46⋆ .40‡ .14‡ .11‡ .01‡ .00‡

TT-BLEU-MERT .73‡ .63‡ .62‡ .60‡ .60‡ .53⋆ .52† .54⋆ .49 – .48 .48 .48 .48 .44‡ .39‡ .11‡ .14‡ .01‡ .00‡

TT-AFRL2 .78‡ .66‡ .64‡ .61‡ .60‡ .51 .56‡ .54† .53 .52 – .47 .48⋆ .48 .43‡ .42‡ .14‡ .11‡ .00‡ .00‡

TT-AFRL1 .75‡ .64‡ .65‡ .61‡ .61‡ .55† .56‡ .54† .53⋆ .52 .53 – .48 .49 .45† .42‡ .14‡ .10‡ .00‡ .00‡

TT-DCU .72‡ .69‡ .65‡ .60‡ .61‡ .54† .52⋆ .57‡ .54† .52 .52⋆ .52 – .51 .42‡ .44‡ .12‡ .14‡ .01‡ .00‡

TT-FJFI .74‡ .63‡ .64‡ .61‡ .62‡ .56‡ .54‡ .53⋆ .53† .52 .52 .51 .49 – .47 .44‡ .13‡ .15‡ .01‡ .00‡

ONLINE-A .79‡ .70‡ .65‡ .61‡ .61‡ .60‡ .59‡ .57‡ .54⋆ .56‡ .57‡ .55† .58‡ .53 – .42‡ .20‡ .15‡ .03‡ .00‡

CU-TECTOMT .80‡ .79‡ .72‡ .70‡ .71‡ .63‡ .62‡ .61‡ .60‡ .61‡ .58‡ .58‡ .56‡ .56‡ .58‡ – .29‡ .23‡ .02‡ .00‡

TT-US’R-’-MERT .89‡ .86‡ .90‡ .88‡ .84‡ .84‡ .85‡ .88‡ .86‡ .89‡ .86‡ .86‡ .88‡ .87‡ .80‡ .71‡ – .49 .05‡ .01‡

CU-MTREES .93‡ .91‡ .88‡ .90‡ .89‡ .86‡ .88‡ .87‡ .89‡ .86‡ .89‡ .90‡ .86‡ .85‡ .85‡ .77‡ .51 – .04‡ .00‡

TT-US’R-MIRA .100‡ .99‡ .99‡ .99‡ .99‡ .99‡ .99‡ .99‡ .99‡ .99‡ .100‡ .100‡ .99‡ .99‡ .97‡ .98‡ .95‡ .96‡ – .07‡

TT-US’R-HARM .99‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .100‡ .99‡ .100‡ .93‡ –

score .59 .42 .34 .30 .30 .22 .19 .16 .15 .15 .13 .13 .13 .12 .07 -.02 -.43 -.54 -.113 -.132

rank 1 2 3 4-5 4-5 6-7 6-7 8-11 8-12 8-13 9-14 9-14 9-14 11-14 15 16 17 18 19 20

Table 41: Head to head comparison, ignoring ties, for English-Czech systems
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UEDIN-NMT – .38‡ .34‡ .36‡ .34‡ .34‡ .32‡ .31‡ .19‡ .21‡
ONLINE-B .62‡ – .50 .48 .49 .44† .43‡ .40‡ .30‡ .28‡
ONLINE-A .66‡ .50 – .52 .48 .44† .44† .44† .32‡ .25‡

UEDIN-SYNTAX .64‡ .52 .48 – .50 .46⋆ .47 .40‡ .29‡ .29‡
KIT .66‡ .51 .52 .50 – .45† .47 .43‡ .31‡ .27‡

UEDIN-PBMT .66‡ .56† .56† .54⋆ .55† – .48 .44‡ .33‡ .31‡
JHU-PBMT .68‡ .57‡ .56† .53 .53 .52 – .47 .31‡ .29‡
ONLINE-G .69‡ .60‡ .56† .60‡ .57‡ .56‡ .53 – .37‡ .34‡

JHU-SYNTAX .81‡ .70‡ .68‡ .71‡ .69‡ .67‡ .69‡ .63‡ – .50

ONLINE-F .79‡ .72‡ .75‡ .71‡ .73‡ .69‡ .71‡ .66‡ .50 –

score .81 .25 .21 .19 .17 .04 .02 -.12 -.67 -.93
rank 1 2-5 2-5 2-5 2-6 5-7 6-7 8 9 10

Table 42: Head to head comparison, ignoring ties, for German-English systems
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UEDIN-NMT – .46 .34‡ .41‡ .31‡ .31‡ .31‡ .29‡ .32‡ .27‡ .27‡ .31‡ .28‡ .25‡ .22‡
METAMIND .54 – .41‡ .40‡ .33‡ .36‡ .35‡ .35‡ .34‡ .33‡ .29‡ .34‡ .30‡ .29‡ .30‡

UEDIN-SYNTAX .66‡ .59‡ – .44† .35‡ .39‡ .35‡ .33‡ .41‡ .38‡ .27‡ .36‡ .25‡ .27‡ .27‡
NYU-UMONTREAL .59‡ .60‡ .56† – .39‡ .48 .41‡ .45⋆ .41‡ .44† .37‡ .39‡ .38‡ .35‡ .34‡

ONLINE-B .69‡ .67‡ .65‡ .61‡ – .49 .51 .49 .49 .48 .46† .42‡ .38‡ .38‡ .32‡
KIT-LIMSI .69‡ .64‡ .61‡ .52 .51 – .53 .48 .50 .45 .47 .42‡ .39‡ .42‡ .43†
CAMBRIDGE .69‡ .65‡ .65‡ .59‡ .49 .47 – .47 .53⋆ .46⋆ .42‡ .48 .39‡ .43‡ .42‡

ONLINE-A .71‡ .65‡ .67‡ .55⋆ .51 .52 .53 – .47 .49 .47⋆ .44‡ .38‡ .37‡ .36‡
PROMT-RULE-BASED .68‡ .66‡ .59‡ .59‡ .51 .50 .47⋆ .53 – .48 .46† .47⋆ .42‡ .39‡ .41‡

KIT .73‡ .67‡ .62‡ .56† .52 .55 .54⋆ .51 .52 – .46† .44‡ .40‡ .42‡ .41‡
JHU-SYNTAX .73‡ .71‡ .73‡ .63‡ .54† .53 .58‡ .53⋆ .54† .54† – .48 .42‡ .46⋆ .42‡

JHU-PBMT .69‡ .66‡ .64‡ .61‡ .58‡ .58‡ .52 .56‡ .53⋆ .56‡ .52 – .43‡ .47 .47

UEDIN-PBMT .72‡ .70‡ .75‡ .62‡ .62‡ .61‡ .61‡ .62‡ .58‡ .60‡ .58‡ .57‡ – .45⋆ .48
ONLINE-F .75‡ .71‡ .73‡ .65‡ .62‡ .58‡ .57‡ .63‡ .61‡ .58‡ .54⋆ .53 .55⋆ – .48
ONLINE-G .78‡ .70‡ .73‡ .66‡ .68‡ .57† .58‡ .64‡ .59‡ .59‡ .58‡ .53 .52 .52 –

score .49 .39 .28 .16 -.00 -.01 -.02 -.02 -.03 -.04 -.13 -.15 -.25 -.32 -.34
rank 1 2 3 4 5-10 5-10 5-10 5-10 5-10 6-10 11-12 11-12 13-14 13-15 14-15

Table 43: Head to head comparison, ignoring ties, for English-German systems
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UEDIN-PBMT – .50 .48 .49 .40‡ .36‡ .38‡ .32‡ .21‡
ONLINE-G .50 – .51 .47⋆ .39‡ .41‡ .38‡ .30‡ .23‡
ONLINE-B .52 .49 – .50 .39‡ .36‡ .34‡ .35‡ .22‡
UH-OPUS .51 .53⋆ .50 – .42‡ .38‡ .38‡ .34‡ .24‡

PROMT-SMT .60‡ .61‡ .61‡ .58‡ – .46† .46† .42‡ .28‡
UH-FACTORED .64‡ .59‡ .64‡ .62‡ .54† – .50 .47 .28‡
UEDIN-SYNTAX .62‡ .62‡ .66‡ .62‡ .54† .50 – .46† .29‡

ONLINE-A .68‡ .70‡ .65‡ .66‡ .58‡ .53 .54† – .34‡
JHU-PBMT .79‡ .77‡ .78‡ .76‡ .72‡ .72‡ .71‡ .66‡ –

score .42 .40 .39 .33 .01 -.11 -.13 -.28 -.102
rank 1-4 1-4 1-4 1-4 5 6-7 6-7 8 9

Table 44: Head to head comparison, ignoring ties, for Finnish-English systems
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ONLINE-G – .50 .49 .47⋆ .46⋆ .38‡ .43‡ .39‡ .33‡ .34‡ .32‡ .30‡ .33‡
ABUMATRAN-NMT .50 – .48 .43⋆ .46⋆ .41‡ .43‡ .35‡ .37‡ .38‡ .35‡ .36‡ .34‡

ONLINE-B .51 .52 – .50 .46⋆ .41‡ .40‡ .41‡ .38‡ .35‡ .38‡ .33‡ .31‡
ABUMATRAN-COMBO .53⋆ .57⋆ .50 – .48 .38‡ .45† .40‡ .38‡ .38‡ .37‡ .37‡ .37‡

UH-OPUS .54⋆ .54⋆ .54⋆ .52 – .45† .47 .45† .42‡ .38‡ .39‡ .39‡ .37‡
ABUMATRAN-PBSMT .62‡ .59‡ .59‡ .62‡ .55† – .47 .51 .47 .42‡ .41‡ .42‡ .41‡
NYU-UMONTREAL .57‡ .57‡ .60‡ .55† .53 .53 – .50 .46⋆ .44‡ .44‡ .45† .41‡

ONLINE-A .61‡ .65‡ .59‡ .60‡ .55† .49 .50 – .47 .42‡ .40‡ .37‡ .43‡
JHU-PBMT .67‡ .63‡ .62‡ .62‡ .58‡ .53 .54⋆ .53 – .47 .46⋆ .43‡ .43‡

UH-FACTORED .66‡ .62‡ .65‡ .62‡ .62‡ .58‡ .56‡ .58‡ .53 – .49 .46⋆ .47
AALTO .68‡ .65‡ .62‡ .63‡ .61‡ .59‡ .56‡ .60‡ .54⋆ .51 – .51 .46⋆

JHU-HLTCOE .70‡ .64‡ .67‡ .63‡ .61‡ .58‡ .55† .62‡ .57‡ .54⋆ .49 – .47⋆
UUT .67‡ .66‡ .69‡ .63‡ .63‡ .59‡ .59‡ .57‡ .57‡ .53 .54⋆ .53⋆ –

score .36 .31 .29 .23 .15 -.01 -.01 -.01 -.14 -.22 -.28 -.30 -.35
rank 1-3 1-4 1-4 3-5 4-5 6-8 6-8 6-8 9-10 9-12 10-13 10-13 11-13

Table 45: Head to head comparison, ignoring ties, for English-Finnish systems
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PROMT-RULE-BASED – .38‡ .34‡ .33‡ .33‡ .31‡ .26‡ .31‡ .20‡ .26‡ .21‡ .07‡
AMU-UEDIN .62‡ – .44† .51 .46⋆ .45⋆ .33‡ .35‡ .32‡ .31‡ .28‡ .14‡

ONLINE-B .66‡ .56† – .50 .46 .46 .33‡ .37‡ .36‡ .36‡ .26‡ .11‡
UEDIN-NMT .67‡ .49 .50 – .50 .43‡ .40‡ .36‡ .35‡ .35‡ .30‡ .14‡

ONLINE-G .67‡ .54⋆ .54 .50 – .46⋆ .40‡ .41‡ .39‡ .38‡ .33‡ .13‡
NYU-UMONTREAL .69‡ .55⋆ .54 .57‡ .54⋆ – .50 .42‡ .43‡ .43‡ .38‡ .16‡

JHU-PBMT .74‡ .67‡ .67‡ .60‡ .60‡ .50 – .43† .46⋆ .40‡ .37‡ .20‡
LIMSI .69‡ .65‡ .63‡ .64‡ .59‡ .58‡ .57† – .51 .45⋆ .40‡ .20‡

ONLINE-A .80‡ .68‡ .64‡ .65‡ .61‡ .57‡ .54⋆ .49 – .47 .42‡ .17‡
AFRL-MITLL-PHRASE .74‡ .69‡ .64‡ .65‡ .62‡ .57‡ .60‡ .55⋆ .53 – .41‡ .20‡
AFRL-MITLL-VERB-A .79‡ .72‡ .74‡ .70‡ .67‡ .62‡ .63‡ .60‡ .58‡ .59‡ – .25‡

ONLINE-F .93‡ .86‡ .89‡ .86‡ .87‡ .84‡ .80‡ .80‡ .83‡ .80‡ .75‡ –

score .78 .30 .26 .25 .20 .10 -.01 -.07 -.10 -.14 -.31 -.126
rank 1 2-4 2-5 2-5 3-5 6 7-8 7-10 8-10 9-10 11 12

Table 46: Head to head comparison, ignoring ties, for English-Russian systems
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AMU-UEDIN – .51 .44† .47 .41‡ .37‡ .38‡ .34‡ .35‡ .16‡
ONLINE-G .49 – .47 .44† .41‡ .38‡ .41‡ .35‡ .36‡ .18‡

NRC .56† .53 – .47 .45† .40‡ .39‡ .38‡ .34‡ .19‡
ONLINE-B .53 .56† .53 – .49 .44† .42‡ .41‡ .36‡ .22‡

UEDIN-NMT .59‡ .59‡ .55† .51 – .45† .46⋆ .40‡ .44‡ .23‡
ONLINE-A .63‡ .62‡ .60‡ .56† .55† – .48 .47 .45† .22‡

AFRL-MITLL-PHRASE .62‡ .59‡ .61‡ .58‡ .54⋆ .52 – .45† .46† .25‡
AFRL-MITLL-CONTRA .66‡ .65‡ .62‡ .59‡ .60‡ .53 .55† – .50 .29‡

PROMT-RULE-BASED .65‡ .64‡ .66‡ .64‡ .56‡ .55† .54† .50 – .23‡
ONLINE-F .84‡ .82‡ .81‡ .78‡ .77‡ .78‡ .75‡ .71‡ .77‡ –

score .44 .42 .32 .25 .15 .03 .02 -.11 -.16 -.138
rank 1-2 1-3 2-4 3-5 4-5 6-7 6-7 8-9 8-9 10

Table 47: Head to head comparison, ignoring ties, for Russian-English systems

O
N

L
IN

E
-B

O
N

L
IN

E
-G

O
N

L
IN

E
-A

T
B

T
K

-S
Y

S
C

O
M

B

P
R

O
M

T
-S

M
T

Y
S

D
A

JH
U

-S
Y

N
T

A
X

JH
U

-P
B

M
T

P
A

R
F

D
A

ONLINE-B – .44† .45⋆ .35‡ .32‡ .31‡ .21‡ .20‡ .17‡
ONLINE-G .56† – .47 .38‡ .36‡ .31‡ .19‡ .19‡ .19‡
ONLINE-A .55⋆ .53 – .41‡ .40‡ .35‡ .24‡ .15‡ .16‡

TBTK-SYSCOMB .65‡ .62‡ .59‡ – .47 .46 .26‡ .23‡ .23‡
PROMT-SMT .68‡ .64‡ .60‡ .53 – .46 .30‡ .29‡ .21‡

YSDA .69‡ .69‡ .65‡ .54 .54 – .32‡ .27‡ .26‡
JHU-SYNTAX .79‡ .81‡ .76‡ .74‡ .70‡ .68‡ – .47 .42⋆

JHU-PBMT .80‡ .81‡ .85‡ .77‡ .71‡ .73‡ .53 – .44
PARFDA .83‡ .81‡ .84‡ .77‡ .79‡ .74‡ .58⋆ .56 –

score .82 .65 .56 .21 .12 .00 -.67 -.76 -.93
rank 1-2 1-3 2-3 4-5 4-6 5-6 7-8 7-9 8-9

Table 48: Head to head comparison, ignoring ties, for Turkish-English systems
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ONLINE-G – .45 .41† .31‡ .26‡ .30‡ .25‡ .23‡ .16‡
ONLINE-B .55 – .46 .34‡ .29‡ .29‡ .30‡ .22‡ .18‡
ONLINE-A .59† .54 – .42† .38‡ .40‡ .29‡ .25‡ .25‡

YSDA .69‡ .66‡ .58† – .43† .44† .40‡ .34‡ .31‡
JHU-HLTCOE .74‡ .71‡ .62‡ .57† – .46 .45 .35‡ .35‡

TBTK-MORPH-HPB .70‡ .71‡ .60‡ .56† .54 – .45⋆ .44† .41‡
CMU .75‡ .70‡ .71‡ .60‡ .55 .55⋆ – .38‡ .42†

JHU-PBMT .77‡ .78‡ .75‡ .66‡ .65‡ .56† .62‡ – .41†
PARFDA .84‡ .82‡ .75‡ .69‡ .65‡ .59‡ .58† .59† –

score .76 .61 .37 .05 -.12 -.19 -.29 -.54 -.66
rank 1-2 1-2 3 4 5-6 5-7 6-7 8-9 8-9

Table 49: Head to head comparison, ignoring ties, for English-Turkish systems
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