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Abstract

We report the results of the WMT19 shared

task on Quality Estimation, i.e. the task of

predicting the quality of the output of machine

translation systems given just the source text

and the hypothesis translations. The task in-

cludes estimation at three granularity levels:

word, sentence and document. A novel ad-

dition is evaluating sentence-level QE against

human judgments: in other words, design-

ing MT metrics that do not need a reference

translation. This year we include three lan-

guage pairs, produced solely by neural ma-

chine translation systems. Participating teams

from eleven institutions submitted a variety of

systems to different task variants and language

pairs.

1 Introduction

This shared task builds on its previous seven edi-

tions to further examine automatic methods for es-

timating the quality of machine translation (MT)

output at run-time, without the use of reference

translations. It includes the (sub)tasks of word-

level, sentence-level and document-level estima-

tion. In addition to advancing the state of the art

at all prediction levels, our more specific goals in-

clude to investigate the following:

• The predictability of missing words in the

MT output. As in last year, our data include

this annotation.

• The predictability of source words that lead

to errors in the MT output, also as in last year.

• Quality prediction for documents based on

errors annotated at word-level with added

severity judgments. This is also like in last

year.

• The predictability of individual errors within

documents, which may depend on a larger

context. This is a novel task, building upon

the existing document-level quality estima-

tion.

• The reliability of quality estimation models

as a proxy for metrics that depend on a refer-

ence translation.

• The generalization ability of quality estima-

tion models to different MT systems instead

of a single ones

We present a simpler setup in comparison to last

edition, which featured more language pairs, sta-

tistical MT outputs alongside neural ones, and an

additional task for phrase-based QE. This simpli-

fication reflects a more realistic scenario, in which

NMT systems have mostly replaced SMT ones,

making phrase-level predictions harder.

We used both new data as well as some exist-

ing data from the previous edition of this shared

task. For word and sentence level, we reused the

English-German dataset from last year, but also

added a new English-Russian one. For document

level, we reused last year’s English-French data

for training and validation, but introduced a new

test set from the same corpus. For QE as a met-

ric we ran the evaluation jointly with the WMT19

metrics task, which meant applying the QE sys-

tems to news translation submissions and evaluat-

ing them against the human judgments collected

this year.

2 Tasks

This year we present three tasks: Task 1 for word-

level and sentence-level quality estimation, Task 2

for document-level, and Task 3 for quality estima-

tion as a metric. In contrast to previous editions, in

which there were data from statistical translation

systems, all datasets come from neural machine



translation systems.1

2.1 Task 1

The aim of Task 1 is to estimate the amount of

human post-editing work required in a given sen-

tence. It is comprised of word-level and sentence-

level subtasks, both of which annotated as in last

year.

2.1.1 Word Level

At the word level, participants are required to pro-

duce a sequence of tags for both the source and

the translated sentences. For the source, tokens

correctly translated should be tagged as OK, and

the ones mistranslated or ignored as BAD. For the

translated sentence, there should be tags both for

words and gaps – we consider gaps between each

two words, plus one in the beginning and another

in the end of the sentence. Words correctly aligned

with the source are tagged as OK, and BAD oth-

erwise. If one or more words are missing in the

translation, the gap where they should have been

is tagged as BAD, and OK otherwise.

As in previous years, in order to obtain word

level labels, first both the machine translated

sentence and the source sentence are aligned

with the post-edited version. Machine trans-

lation and post-edited pairs are aligned us-

ing the TERCOM tool (https://github.

com/jhclark/tercom);2 source and post-

edited use the IBM Model 2 alignments from

fast align (Dyer et al., 2013).

Target word and gap labels Target tokens orig-

inating from insertion or substitution errors were

labeled as BAD (i.e., tokens absent in the post-

edit sentence), and all other tokens were labeled as

OK. Similarly to last year, we interleave these tar-

get word labels with gap labels: gaps were labeled

as BAD in the presence of one or more deletion

errors (i.e., a word from the source missing in the

translation) and OK otherwise.

Source word labels For each token in the post-

edited sentence deleted or substituted in the ma-

chine translated text, the corresponding aligned

1This is true for tasks 1 and 2, since task 3 is based on the
MT systems submitted to WMT19 News Translation, which
can potentially use any MT paradigm, including rule-based,
statistical, neural and hybrid approaches.

2For back-compatibility with last year’s datasets, when
computing word-level labels, we disabled shifts in TER-
COM; shifts were allowed for sentence-level label genera-
tion.

source tokens were labeled as BAD. In this way,

deletion errors also result in BAD tokens in the

source, related to the missing words. All other

words were labeled as OK.

Evaluation As in last year, systems are evalu-

ated primarily by F1-Mult, the product of the F1

scores for OK and BAD tags. There are sepa-

rate scores for source sentences and translated sen-

tences, with the latter having word and gap tags

interleaved. Systems are ranked according to their

performance on the source side.

Additionally, we compute the Matthews corre-

lation coefficient (MCC, Matthews 1975), a metric

for binary classification problems particularly use-

ful when classes are unbalanced. This is the case

in QE, in which OK tags are much more common

than BAD tags (see Table 2 for the statistics on this

year’s data). It is computed as follows:

S =
TP + FN

N

P =
TP + FP

N

MCC =
TP
N

− SP
√

SP (1− S)(1− P )
,

(1)

where TP , TN , FP and FN stand for, respec-

tively, true positives, true negatives, false positives

and false negatives; and N is the total number of

instances to be classified.

2.1.2 Sentence Level

At the sentence level, systems are expected to pro-

duce the Human Translation Error Rate (HTER),

which is the minimum ratio of edit operations

(word insertions, deletions and replacements)

needed to fix the translation to the number of its

tokens, capped at maximum 1.

In order to obtain the number of necessary op-

erations, we run TERCOM on the machine trans-

lated and post-edit sentences, with a slightly dif-

ferent parametrization (see footnote 2).

Evaluation Also as in last year, systems are pri-

marily evaluated by the Pearson correlation score

with the gold annotations. Mean absolute error

(MAE), rooted mean squared error (RMSE) and

Spearman correlation are also computed.

2.2 Task 2

The goal of Task 2 is to predict document-level

quality scores as well as fine-grained annotations,

https://github.com/jhclark/tercom
https://github.com/jhclark/tercom


Gold annotation

Coup de sifflet Fox 40 CMG classique doigt

officiel Grip

System output

Coup de sifflet Fox 40 CMG classique doigt

officiel Grip

Figure 1: Example of fine-grained document annota-

tion. Spans in the same color belong to the same an-

notation. Error severity and type are not shown for

brevity.

identifying which words and passages are incor-

rect in the translation.

Each document contains zero or more errors,

annotated according to the MQM taxonomy3, and

may span one or more tokens, not necessarily con-

tiguous. Errors have a label specifying their type,

such as wrong word order, missing words, agree-

ment, etc. They provide additional information,

but do not need to be predicted by the systems.

Additionally, there are three severity levels for er-

rors: minor (if it is not misleading nor changes

meaning), major (if it changes meaning), and crit-

ical (if it changes meaning and carries any kind of

implication, possibly offensive).

Figure 1 shows an example of fine-grained error

annotations for a sentence, with the ground truth

and a possible system prediction. Note that there

is an annotation composed by two discontinuous

spans: a whitespace and the token Grip — in this

case, the annotation indicates wrong word order,

and Grip should have been at the whitespace posi-

tion.

The document-level scores, called MQM

scores, are determined from the error annotations

and their severity:

MQM = 1−
nminor + 5nmajor + 10ncrit

n
. (2)

Notice that the MQM score can be negative de-

pending on the number and severity of errors; we

truncate it to 0 in that case. Also notice that, while

the MQM score can be obtained deterministically

from the fine-grained annotations, participants are

3Multidimensional Quality Metrics; see
http://www.qt21.eu/mqm-definition/

definition-2015-12-30.html for details.

Gold R System P

Coup de 0.57 Coup 1

classique 1 CMG classique 0.69

Grip 0 officiel 0

Mean Recall 0.52

Mean Precision 0.56

F1 0.54

Table 1: Scores for the example system output shown

in Figure 1. R stands for recall and P for precision, and

are computed based on character overlap.

allowed to produce answers for both subtasks in-

consistent with each other, if they believe their

systems to work better estimating a single score

for the whole document.

MQM Evaluation MQM scores are evaluated

in the same way as the document-level HTER

scores: primarily with Pearson correlation with

the gold values, and also with MAE, RMSE and

Spearman’s ρ.

Fine-grained Evaluation Fine-grained annota-

tions are evaluated as follows. For each error

annotation asi in the system output, we look for

the gold annotation a
g
j with the highest overlap in

number of characters. The precision of asi is de-

fined by the ratio of the overlap size to the an-

notation length; or 0 if there was no overlapping

gold annotation. Conversely, we compute the re-

call of each gold annotation a
g
j considering the

best matching annotation ask in the system output4,

or 0 if there was no overlapping annotation. The

document precision and recall are computed as the

average of all annotation precisions in the corre-

sponding system output and recalls in the gold out-

put; and therewith we compute the document F1.

The final score is the unweighted average of the

F1 for all documents. Table 1 shows the precision

and recall for each annotation in the example from

Figure 1.

2.3 Task 3

Task 3 on applying QE as a metric had several pur-

poses:

• To find out how well QE results correlate

4Notice that if a gold annotation a
g

j has the highest over-
lap with a system annotation a

s
i , it does not necessarily mean

that as
i has the highest overlap with a

g

j .

http://www.qt21.eu/mqm-definition/definition-2015-12-30.html
http://www.qt21.eu/mqm-definition/definition-2015-12-30.html


with general human judgments of MT qual-

ity. This mainly means shifting the applica-

tion focus of quality estimation from profes-

sional translators (whose primary interest is

the expected number of post-edits to perform,

as estimated by the HTER score) to MT de-

velopers and general users.

• To test the generalization ability of QE ap-

proaches in a massive multi-system scenario,

instead of learning to estimate the quality of

just a single MT system

• To directly compare QE models to MT met-

rics and see how far one can get without a

reference translation, or in other words, how

much does one gain from having a reference

translation in terms of scoring MT outputs

As part of this task sentence-level QE systems

were applied to pairs of source segments and trans-

lation hypotheses submitted to the WMT19 news

translation shared task. System-level results were

also computed via averaging the sentence score

over the whole test set.

Submission was handled jointly with the

WMT19 metrics task. Two language pairs were

highlighted as the focus of this task: English-

Russian and English-German; however, the task

was not restricted to these, and other news transla-

tion task languages were also allowed.

Results of this task were evaluated in the same

way as MT metrics, using Kendall rank corre-

lation for sentence-level and Perason correlation

for system-level evaluations (see (Graham et al.,

2019) for precise details). The overall motiva-

tion was to measure how often QE results agree

or disagree with human judgments on the quality

of translations, and whether references are needed

at all to get a reliable estimate of it.

3 Datasets

3.1 Task 1

Two datasets were used in this task: an English-

German, the same as in last year with texts

from the IT domain; and a novel English-Russian

dataset with interface messages present in Mi-

crosoft applications. The same data are used for

both word-level and sentence-level evaluations.

Table 2 shows statistics for the data. Both lan-

guage pairs have nearly the same number of sen-

tences, but EN-DE has substantially longer ones.

The ratio of BAD tokens in the word-level annota-

tion is also similar in both datasets, as well as the

mean HTER, with a increased standard deviation

for EN-RU.

3.2 Task 2

There is only one dataset for this task. It is the

same one used in last year’s evaluation, but with a

new unseen test set and some minor changes in the

annotations; last year’s test set was made available

as an additional development set. The documents

are derived from the Amazon Product Reviews

English-French dataset, a selection of Sports and

Outdoors product titles and descriptions. The most

popular products (those with more reviews) were

chosen. This data poses interesting challenges for

machine translation: titles and descriptions are of-

ten short and not always a complete sentence. The

data was annotated for translation errors by the

Unbabel community of crowd-sourced annotators.

Table 3 shows some statistics of the dataset. We

see that the new test set has a mean MQM value

higher than last year, but actually closer to the

training data. On the other hand, the average num-

ber of annotations per document is smaller.

3.3 Task 3

Task 3 did not use a specially prepared dataset, as

evaluations were done via the human judgments

collected in the manual evaluation phase of the

news translation shared task.

Suggested training data included last years’

WMT translation system submissions and their

collected human judgments (years 2016–2018), as

well as any other additional resources including

HTER-annotated QE data, monolingual and par-

allel corpora.

4 Baselines

These are the baseline systems we used for each

subtask.

4.1 Word Level

For word-level quality estimation, we used the

NuQE (Martins et al., 2017) implementation pro-

vided in OpenKiwi (Kepler et al., 2019), which

achieved competitive results on the datasets of pre-

vious QE shared tasks. It reads sentence pairs with

lexical alignments, and takes as input the embed-

dings of words in the target sentence concatenated

with both their aligned counterparts in the source



Split Pair Sentences Words BAD source BAD target HTER

Train
EN-DE 13,442 234,725 28,549 (12.16%) 37,040 (7.06%) 0.15 (±0.19)

EN-RU 15,089 148,551 15,599 (10.50%) 18,380 (6.15%) 0.13 (±0.24)

Dev
EN-DE 1,000 17,669 2,113 (11.96%) 2,654 (6.73%) 0.15 (±0.19)

EN-RU 1,000 9,710 1,055 (10.87%) 1,209 (6.17%) 0.13 (±0.23)

Test
EN-DE 1,023 17,649 2,415 (13.68%) 3,136 (8.04%) 0.17 (±0.19)

EN-RU 1,023 7,778 1,049 (13.49%) 1,165 (7.46%) 0.17 (±0.28)

Table 2: Statistics of the datasets used in Task 1. Number of sentences is always the same in source and target;

number of words refer to the source. Values shown for HTER are mean and standard deviation in parentheses.

Split Documents Sentences Words MQM Annotations

Train 1,000 6,003 158,393 29.47 (± 24.42) 23.17 (± 29.46)

Dev 200 1,301 33,959 19.29 (± 23.28) 28.11 (± 42.94)

Test 2018 268 1,640 46,564 18.11 (± 23.52) 27.74 (± 35.04)

Test 2019 180 949 26,279 26.60 (± 26.80) 19.24 (± 23.94)

Table 3: Statistics of the datasets used in Task 2. The column Annotations shows the average number of annotations

per document in the dataset. The values for MQM and Annotations are the mean with standard deviation in

parentheses

and neighboring words. It then applies linear lay-

ers and an RNN to the embedded vectors, out-

putting a softmax over OK and BAD tags.

4.2 Sentence Level

The sentence-level baseline is a linear regressor

trained on four features computed from word-level

tags. At training time, it computes the features

from the gold training data; at test time, it uses the

output produced by the word-level baseline. We

found this setup to work better than training the

regressor with the automatically generated output.

The features used are:

1. Number of BAD tags in the source;

2. number of BAD tags corresponding to words

in the translation;

3. number of BAD tags corresponding to gaps

in the translation;

4. number of tokens in the translation.

During training, we discarded all sentences with

an HTER of 0, and during testing, we always an-

swer 0 when there are no BAD tags in the in-

put. This avoids a bias towards lower scores in the

case of a high number of sentences with HTER 0,

which is the case in the EN-RU data.5

5While in principle sentences with no BAD tags should

4.3 Document Level

For the document-level task, we first cast the prob-

lem as word-level QE: tokens and gaps inside an

error annotation are given BAD tags, and all oth-

ers are given OK. Then, we train the same word-

level estimator as in the baseline for Task 1. At

test time, for the fine-grained subtask, we group

consecutive BAD tags produced by the word-level

baseline in a single error annotation and always

give it severity major (the most common in the

training data). As such, the baseline only produces

error annotations with a single error span.

For the MQM score, we consider the ratio of

bad tags to the document size:

MQM = 1−
nbad

n
(3)

This simple baseline contrasts with last year,

which used QuEst++ (Specia et al., 2015), a QE

tool based on training an SVR on features ex-

tracted from the data. We found that the new base-

line performed better than QuEst++ on the devel-

opment data, and thus adopted it as the official

baseline.

have an HTER of 0, this is not always the case. When pre-
processing the shared task data, word-level tags were deter-
mined in a case-sensitive fashion, while sentence-level scores
were not. The same issue also happened last year, but unfor-
tunately we only noticed it after releasing the training data for
this edition.



4.4 QE as a Metric

The QE as a metric task included two baselines,

both unsupervised. One relied on pre-trained

vector representations and consisted of com-

puting cross-lingual sentence embeddings (using

LASER: Artetxe and Schwenk, 2018) for the

source segment and the hypothesis translation and

using their cosine similarity as the measure of sim-

ilarity between them. Pre-trained LASER models

were used and no other training or tuning was per-

formed.

The second baseline consisted of using bilin-

gually trained neural machine translation systems

to calculate the score of the hypothesis transla-

tion, when presented with the source segment as

input. Thus, instead of decoding and looking for

the best translation with the MT models, we com-

puted the probability of each subword in the hy-

pothesis translation and used these to compute the

overall log-probability of the hypothesis under the

respective MT model.

5 Participants

In total, there were eleven participants for all three

tasks, though not all participated in all of them.

Here we briefly describe their strategies and which

sub-tasks they participated in.

5.1 MIPT

MIPT only participated in the word-level EN-

DE task. They used a BiLSTM, BERT and a

baseline hand designed-feature extractor to gen-

erate word representations, followed by Condi-

tional Random Fields (CRF) to output token la-

bels. Their BiLISTM did not have any pre-

training, unlike BERT, and combined the source

and target vectors using a global attention mech-

anism. Their submitted runs combining the base-

line features with the BiLSTM and with BERT.

5.2 ETRI

ETRI participated in Task 1 only. They pretrained

bilingual BERT (Devlin et al., 2019) models (one

for EN-RU and another for EN-DE), and then fine-

tuned them to predict all the outputs for each lan-

guage pair, using different output weight matri-

ces for each subtask (predicting source tags, target

word tags, target gap tags, and the HTER score).

Training the same model for both subtasks effec-

tively enhanced the amount of training data.

5.3 CMU

CMU participated only in the sentence-level task.

Their setup is similar to ETRI’s, but they pretrain

a BiLSTM encoder to predict words in the target

conditioned on the source. Then, a regressor is fed

the concatenation of each encoded word vector in

the target with the embeddings of its neighbours

and a mismatch feature indicating the difference

between the prediction score of the target word

and the highest one in the vocabulary.

5.4 Unbabel

Unbabel participated in Tasks 1 and 2 for all lan-

guage pairs. Their submissions were built upon

the OpenKiwi framework: they combined linear,

neural, and predictor-estimator systems (Chollam-

patt and Ng, 2018) with new transfer learning ap-

proaches using BERT (Devlin et al., 2019) and

XLM (Lample and Conneau, 2019) pre-trained

models. They proposed new ensemble techniques

for word and sentence-level predictions. For Task

2, they combined a predictor-estimator for word-

level predictions with a simple technique for con-

verting word labels into document-level predic-

tions.

5.5 UTartu

UTartu participated in the sentence-level track of

task 1 and in task 3. They combined BERT (De-

vlin et al., 2019) and LASER (Artetxe and

Schwenk, 2018) embeddings to train a regression

neural network model. The output objective was

either HTER for task 1 or the direct assessment

human annotations from WMT 2016–2018. In

addition to pre-trained embeddings as input fea-

tures they also used a log-probability score ob-

tained from a neural MT system. Finally, their sys-

tems were pre-trained on synthetic data, obtained

by taking all of the WMT submissions from earlier

years and using chrF (Popović, 2015) as the syn-

thetic output. The approach is described in greater

detail in (Yankovskaya et al., 2019).

5.6 NJUNLP

NJUNLP participated only in the sentence-level

EN-DE task. In order to generate word repre-

sentation vectors in the QE context, they trained

transformer models to predict source words condi-

tioned on the target and target words conditioned

on the source. Then, they run a recurrent neural

network over these representations and a regressor



on their averaged output vectors.

5.7 BOUN

BOUN turned in a late submission. For word-level

predictions, they used referential machine transla-

tion models (RTM), which search the training set

for instances close to test set examples, and try

to determine labels according to them. For sen-

tence level, they used different regressors trained

on features generated by their word-level model.

For document level, they treat the whole document

as a single sentence and apply the same setup.

5.8 USAAR-DFKI

USAAR-DFKI participated only in the sentence-

level EN-DE task, and used a CNN implementa-

tion of the predictor-estimator based quality esti-

mation model (Chollampatt and Ng, 2018). To

train the predictor, they used WMT 2016 IT do-

main translation task data, and to train the estima-

tor, the WMT 2019 sentence level QE task data.

5.9 DCU

DCU submitted two unsupervised metrics to task

3, both based on the IBM1 word alignment model.

The main idea is to align the source and hypothe-

sis using a model trained on a parallel corpus, and

then use the average alignment strength (average

word pair probabilities) as the metric. The vari-

eties and other details are described in (Popović

et al., 2011).

5.10 USFD

The two Sheffield submissions to the task 3 are

based on the BiRNN sentence-level QE model

from the deepQuest toolkit for neural-based QE

(Ive et al., 2018). The BiRNN model uses two

bi-directional recurrent neural networks (RNNs)

as encoders to learn the representation of a

¡source,translation¿ sentence pair. The two en-

coders are trained independently from each other,

before being combined as the weighted sum of the

two sentence representations, using an attention

mechanism.

The first variant of our submission, ’USFD’, is a

BiRNN model trained on Direct Assessment data

from WMT’18. In this setting, the DA score is

used as a sentence-level quality label. The sec-

ond variant, ’USFD-TL’, is a BiRNN model pre-

viously trained on submissions to the WMT News

task from 2011 to 2017, with sent-BLEU as a qual-

ity label. We only considered the best performing

submission, as well as one of the worst performing

one. The model is then adapted to the downstream

task of predicting DA score, using a transfer learn-

ing and fine-tuning approach.

5.11 NRC-CNRC

The submissions from NRC-CNRC (kiu Lo, 2019)

included two metrics submitted to task 3. They

constitute a unified automatic semantic machine

translation quality evaluation and estimation met-

ric for languages with different levels of available

resources. They use BERT (Devlin et al., 2019)

and semantic role-labelling as additional sources

of information.

6 Results

The results for Task 1 are shown in Tables 4,

5, 6 and 7. Systems are ranked according

to their F1 on the target side. The evalua-

tion scripts are available at https://github.

com/deep-spin/qe-evaluation.

We computed the statistical significance of the

results, and considered as winning systems the

ones which had significantly better scores than all

the rest with p < 0.05. For the word-level task, we

used randomization tests (Yeh, 2000) with Bonfer-

roni correction6 (Abdi, 2007); for Pearson corre-

lation scores used in the sentence-level and MQM

scoring tasks, we used William’s test7.

In the word-level task, there is a big gap be-

tween Unbabel’s winning submission and ETRI’s,

which in turn also had significantly better results

than MIPT and BOUN. Unfortunately, we can-

not do a direct comparison with last year’s results,

since i) we now evaluate a single score for target

words and gaps, which were evaluated separately

before, and ii) only two systems submitted results

for source words last year.

The newly proposed metric, MCC, is very well

correlated with the F1-Mult. If we ranked sys-

tems based on their (target) MCC, the only differ-

ence would be in the EN-RU task, in which BOUN

would be above the baseline. Since this metric was

conceived especially for unbalanced binary clas-

sification problems, it seems reasonable to use it

as the primary metric for the next editions of this

shared task.

6We adapted the implementation from
https://gist.github.com/varvara-l/

d66450db8da44b8584c02f4b6c79745c
7We used the implementation from https://github.

com/ygraham/nlp-williams

https://github.com/deep-spin/qe-evaluation
https://github.com/deep-spin/qe-evaluation
https://gist.github.com/varvara-l/d66450db8da44b8584c02f4b6c79745c
https://gist.github.com/varvara-l/d66450db8da44b8584c02f4b6c79745c
https://github.com/ygraham/nlp-williams
https://github.com/ygraham/nlp-williams


Target Source

Model F1 MCC F1 MCC

† UNBABEL Ensemble 0.4752 0.4585 0.4455 0.4094

UNBABEL Stacked 0.4621 0.4387 0.4284 0.3846

ETRI BERT Multitask A 0.4061 0.3778 0.3946 0.3426

ETRI BERT Multitask B 0.4047 0.3774 0.396 0.3446

MIPT Neural CRF Transformer 0.3285 0.2896 0.2662 0.1811

MIPT Neural CRF RNN 0.3025 0.2601 0.26 0.1748

Baseline 0.2974 0.2541 0.2908 0.2126

BOUN RTM GLMd* 0.1846 0.1793 0.0957 0.0372

Table 4: Word-level results for EN-DE. † indicates the winning system.* indicates late submissions that were not

considered in the official ranking.

Target Source

Model F1 MCC F1 MCC

† UNBABEL Ensemble 2 0.478 0.4577 0.4541 0.4212

† UNBABEL Ensemble 0.4629 0.4412 0.4174 0.3729

† ETRI BERT Multitask A 0.4515 0.4294 0.4202 0.3732

ETRI BERT Multitask B 0.43 0.4082 0.4114 0.3644

Baseline 0.2412 0.2145 0.2647 0.1887

BOUN RTM GLMd* 0.1952 0.2271 0.0871 0.0698

Table 5: Word-level results for EN-RU. † indicates the winning systems. * indicates late submissions that were not

considered in the official ranking.

Model Pearson Spearman

† UNBABEL Ensemble 0.5718 0.6221

CMULTIMLT 0.5474 0.5947

NJUNLP BiQE BERT Ensemble 0.5433 0.5694

NJUNLP BiQE 0.5412 0.5665

ETRI 0.526 0.5745

Baseline 0.4001 0.4607

UTARTU LABE -0.319 -0.3768

UTARTU LABEL 0.2487 0.2531

USAAR-DFKI CNNQE 0.2013 0.2806

BOUN RTM1* 0.4734 0.5307

BOUN RTM2* 0.1799 0.2779

Table 6: Sentence-level results for EN-DE. † indicates the winning system. * indicates late submissions that were

not considered in the official ranking.



Model Pearson Spearman

† UNBABEL Ensemble 2 0.5923 0.5388

† UNBABEL Ensemble 0.5889 0.5411

ETRI 0.5327 0.5222

CMULTIMLT 0.4575 0.4039

CMULTIMLT 2 0.4292 0.3628

UTARTU LABEL 0.4014 0.3364

Baseline 0.2601 0.2339

UTARTU LACLAS 0.0424 0.1735

BOUN RTM 1* 0.2817 0.2067

BOUN RTM 2* 0.2314 0.1082

Table 7: Sentence-level results for EN-RU. † indicates the winning system. * indicates late submissions that were

not considered in the official ranking.

Model F1

UNBABEL BERT 0.48

Baseline 0.38

Table 8: Document-level fine grained annotation re-

sults for EN-FR

Model Pearson

UNBABEL LINBERT 0.37

UNBABEL BERT 0.37

Baseline 0.35

BOUN RTM 1* 0.22

BOUN RTM 2* 0.05

Table 9: Document-level MQM results for EN-FR. †

indicates the winning system. * indicates late submis-

sions.

In the sentence-level task, Unbabel achieved

again the best scores, but with a tighter gap to the

other participants. For EN-RU, their second sub-

mission is statistically tied to ETRI’s first. Com-

paring to last year’s results in EN-DE, in which the

best system had a Pearson correlation of 0.51 and

the median was 0.38, we see a great improvement

overall. This is likely due to the more powerful

pre-trained models, such as BERT and ELMo, that

are common now.

In task 2 on document-level QE, Unbabel

achieved the best scores again. Unbabel was also

the only participant in the fine-grained annotation

subtask, but surpassed the baseline by a large mar-

gin. As for the MQM scoring, last year used a

different test set, making results not directly com-

parable, but the best system achieved a Pearson

correlation of 0.53. The test set this year is ar-

guably easier because its mean MQM is closer to

the training set (see Table 3).

Results for Task 3 on QE as a metric and are

presented in Tables 10–15. These include system-

level and segment-level evaluations; results for

all language pairs of WMT19 News Translation

are presented; full comparison between reference-

based and referenceless metrics can be found in

the metrics evaluation campaign (Graham et al.,

2019).

On system-level UNI/UNI+ (UTartu) and

YiSi-2/YiSi-2-srl (NRC-CNRC) show perfor-

mance very close to reference-based BLEU and

chrF, with the Pearson correlation even being

marginally better than BLEU in single cases. The

other metrics fall behind somewhat; the LASER

and LogProb baselines mostly fall behind the sub-

missions and reference-based metrics, especially

for translations into English.

Segment-level results are much less optimistic,

with most results into English being below 0.1

(practically no correlation) and 0.2 from En-

glish. A notable exception is YiSi-2/YiSi-2-srl

for English-German and German-Czech, where its

Kendall τ correlation is very close to sentBLEU,

but still behind chrF.

Overall we can conclude from task 3 that

reference-free metrics are not yet reliable enough

to completely replace reference-based metrics,

though some results show promise.



Model DE-EN FI-EN GU-EN KK-EN LT-EN RU-EN ZH-EN

LASER 0.247 - - - - 0.310 -

LogProb 0.474 - - - - 0.488 -

ibm1-morpheme 0.345 0.740 - - 0.487 - -

ibm1-pos4gram 0.339 - - - - - -

UNI 0.846 0.930 - - - 0.805 -

UNI+ 0.850 0.924 - - - 0.808 -

YiSi-2 0.796 0.642 0.566 0.324 0.442 0.339 0.940

YiSi-2 srl 0.804 - - - - - 0.947

BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899

chrF 0.917 0.992 0.955 0.978 0.940 0.945 0.956

Table 10: Results of task 3: system-level Pearson correlations between the submitted metrics and human judgments

on all translation directions into English. LASER and LogProb are the baselines. The reference-based BLEU and

chrF metrics are provided for comparison.

Model EN-CS EN-DE EN-FI EN-GU EN-KK EN-LT EN-RU EN-ZH

LASER - 0.871 - - - - 0.823 -

LogProb - 0.569 - - - - 0.661 -

ibm1-morpheme 0.871 0.870 0.084 - - 0.810 - -

ibm1-pos4gram - 0.393 - - - - - -

UNI 0.028 0.841 0.907 - - - 0.919 -

UNI+ - - - - - - 0.918 -

USFD - 0.224 - - - - 0.857 -

USFD-TL - 0.091 - - - - 0.771 -

YiSi-2 0.324 0.924 0.696 0.314 0.339 0.055 0.766 0.097

YiSi-2 srl - 0.936 - - - - - 0.118

BLEU 0.897 0.921 0.969 0.737 0.852 0.989 0.986 0.901

chrF 0.990 0.979 0.986 0.841 0.972 0.981 0.943 0.880

Table 11: Results of task 3: system-level Pearson correlations between the submitted metrics and human judgments

on all translation directions from English. LASER and LogProb are the baselines. The reference-based BLEU and

chrF metrics are provided for comparison.

Model DE-EN FI-EN GU-EN KK-EN LT-EN RU-EN ZH-EN

LASER -0.024 - - - - 0.022 -

LogProb -0.096 - - - - -0.035 -

ibm1-morpheme -0.074 0.009 - - 0.069 - -

ibm1-pos4gram -0.153 - - - - - -

UNI 0.022 0.202 - - - 0.084 -

UNI+ 0.015 0.211 - - - 0.089 -

YiSi-2 0.068 0.126 -0.001 0.096 0.075 0.053 0.253

YiSi-2 srl 0.068 - - - - - 0.246

sentBLEU 0.056 0.233 0.188 0.377 0.262 0.125 0.323

chrF 0.122 0.286 0.256 0.389 0.301 0.180 0.371

Table 12: Results of task 3: segment-level Kendall τ correlations between the submitted metrics and human

judgments on all translation directions into English. LASER and LogProb are the baselines. The reference-based

sentBLEU and chrF metrics are provided for comparison.



Model EN-CS EN-DE EN-FI EN-GU EN-KK EN-LT EN-RU EN-ZH

LASER - 0.147 - - - - -0.24 -

LogProb - -0.119 - - - - -0.158 -

ibm1-morpheme -0.135 -0.003 -0.005 - - -0.165 - -

ibm1-pos4gram - -0.123 - - - - - -

UNI 0.060 0.129 0.351 - - - 0.226 -

UNI+ - - - - - - 0.222 -

USFD - -0.029 - - - - 0.136 -

USFD-TL - -0.037 - - - - 0.191 -

YiSi-2 0.069 0.212 0.239 0.147 0.187 0.003 -0.155 0.044

YiSi-2 srl - 0.236 - - - - - 0.034

sentBLEU 0.367 0.248 0.396 0.465 0.392 0.334 0.469 0.270

chrF 0.455 0.326 0.514 0.534 0.479 0.446 0.539 0.301

Table 13: Results of task 3: segment-level Kendall τ correlations between the submitted metrics and human

judgments on all translation directions from English. LASER and LogProb are the baselines. The reference-based

sentBLEU and chrF metrics are provided for comparison.

Model DE-CS DE-FR FR-DE

ibm1-morpheme 0.355 0.509 0.625

ibm1-pos4gram - 0.085 0.478

YiSi-2 0.606 0.721 0.530

BLEU 0.941 0.891 0.864

chrF 0.974 0.931 0.864

Table 14: Results of task 3: system-level Pearson cor-

relations between the submitted metrics and human

judgments on all translation directions without English

involved. The LASER and LogProb baselines were

not computed for these language pairs. The reference-

based BLEU and chrF metrics are provided for com-

parison.

Model DE-CS DE-FR FR-DE

ibm1-morpheme 0.048 -0.013 -0.053

ibm1-pos4gram - -0.074 -0.097

YiSi-2 0.199 0.186 0.066

sentBLEU 0.203 0.235 0.179

chrF 0.326 0.284 0.275

Table 15: Results of task 3: segment-level Kendall τ

correlations between the submitted metrics and human

judgments on all translation directions without English

involved. The LASER and LogProb baselines were

not computed for these language pairs. The reference-

based sentBLEU and chrF metrics are provided for

comparison.

7 Conclusions

We presented our findings in this year’s shared

task on translation quality estimation. This year,

the main novelties were a new task that assesses

quality estimation as a metric (Task 3), a new sub-

task related to document-level quality estimation

(Task 2) where the goal is to predict error anno-

tations and their severities, and a new dataset for

English-Russian used in Task 1.

Following similar trends in other NLP tasks, a

common choice from the participants this year was

the usage of contextual and pre-trained embedding

models such as BERT and XLM along with trans-

fer learning, which includes the systems that ob-

tained the best results. In the future, we plan to

implement some strategies to reduce the gap for

participants to enter Task 2, as this year we only

had two participants. One possibility is to make

available pre-processed data or word-level predic-

tions, so that participants can focus more easily on

document-level details.
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