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Fine Building Segmentation in High-Resolution SAR

Images Via Selective Pyramid Dilated Network
Hao Jing , Xian Sun , Zhirui Wang , Kaiqiang Chen , Wenhui Diao , and Kun Fu

Abstract—The building extraction from synthetic aperture
radar (SAR) images has always been a challenging research topic.
Recently, the deep convolution neural network brings excellent im-
provements in SAR segmentation. The fully convolutional network
and other variants are widely transferred to the SAR studies be-
cause of their high precision in optical images. They are still limited
by their processing in terms of the geometric distortion of buildings,
the variability of building structures, and scattering interference
between adjacent targets in the SAR images. In this article, a unified
framework called selective spatial pyramid dilated (SSPD) network
is proposed for the fine building segmentation in SAR images. First,
we propose a novel encoder–decoder structure for the fine building
feature reconstruction. The enhanced encoder and the dual-stage
decoder, composed of the CBM and the SSPD module, extract
and recover the crucial multiscale information better. Second, we
design the multilayer SSPD module based on the selective spatial
attention. The multiscale building information with different atten-
tion on multiple branches is combined, optimized, and adaptively
selected for adaptive filtering and extracting features of complex
multiscale building targets in SAR images. Third, according to the
building features and SAR imaging mechanism, a new loss function
called L-shape weighting loss (LWloss) is proposed to heighten the
attention on the L-shape footprint characteristics of the buildings
and reduce the missing detection of line buildings. Besides, LWloss
can also alleviate the class imbalance problem in the optimization
stage. Finally, the experiments on a large-scene SAR image dataset
demonstrate the effectiveness of the proposed method and verify
its superiority over other approaches, such as the region-based
Markov random field, U-net, and DeepLabv3+.

Index Terms—Automatic fine segmentation of buildings, L-shape
weighting loss (LWloss), selective spatial pyramid dilated (SSPD)
network, synthetic aperture radar (SAR).

I. INTRODUCTION

T
HE building is a significant topographic object class in

the city and a momentous data layer in the geographic in-

formation system. Building segmentation in geographic remote
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sensing images plays a vital role in the geographic information

system application, which is also a challenging question of great

interest in remote sensing. Automatic extraction of buildings

from aerial remote sensing images is frequently used for survey-

ing and mapping of ground objects, detection of illegal buildings,

urban ecological planning, and regional development.

The synthetic aperture radar (SAR) images are obtained from

all-day and all-weather remote sensing sensors free of the at-

mosphere variation. A great number of advanced works have

been launched depending on the superiority of SAR [1]–[7].

The apparent scattering features of buildings theoretically ensure

the good extraction effect in SAR images. Recent develop-

ments in building segmentation have heightened the need for

fine extraction. However, some works [8], [9] are limited by

low-resolution images, resulting in the chaotic extraction effects.

As the technology develops, the resolution of the SAR images

is higher, and the richer details emerge. To obtain the precise

boundary, positions, and scales of the buildings, it is of great

need to fulfill the fine segmentation of buildings based on the

high-resolution SAR images.

Generally, before the large-scale application of deep learn-

ing, most of the building extraction for SAR images adopt

the methods of designing features and establishing statistical

models, such as the gray level cooccurrence matrix (GLCM)

method and the Markov random field (MRF) model. The existing

researches suggest that the conventional methods are fast and

straightforward to be implemented without the large datasets.

Nevertheless, for areas with substantial feature changes, the

effect of extracting buildings is coarse. The higher level semantic

information is not expressed, which cannot be adapted to the in-

creasingly changeable complex SAR scenes. Recently, benefited

from the wide application of deep convolutional neural networks

in remote sensing [10]–[15], most deep learning-based methods

have been applied to enhance the accuracy and efficiency of

extracting buildings in SAR images [16], [17]. They form an

end-to-end approach that raises the level of the feature extraction

compared to the manual design. The fully convolutional network

(FCN) models or their plain variants are generally relied on

to extract buildings’ features in complex SAR scenes. FCNs

receive images of any size and finally output the classification

score map of the same size by extracting features through several

convolution layers and fusing multiple feature maps. Simply

transplanting FCNs to the SAR building extraction leads to

insufficient learning ability in accurately determining the shape,

size, and location of buildings. Meanwhile, the severe multiscale

characteristic problem can affect the actual extraction capability

due to the complex diversity of building structures. Recent trends

in spatial pyramid have led to a proliferation of studies [18]–[20]
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Fig. 1. (a) Scheme of building extraction in SAR images with FCNs. In
previous feature extraction networks, only convolutional layers are used to
extract features. (b) Spatial pyramid structures such as atrous spatial pyramid
pooling (ASPP) [25], are widely used to solve the multiscale characteristic
problem in FCN improvement schemes. (c) Encoder and decoder structures for
segmentation become a general network. (d) Our method, the spatial pyramid
with adaptive selection and the LWloss strategy are added. The proposed
structure is organized with a novel encoder–decoder based on the dual-stage
decoder. CBM: Context balancing module. SSPD: Selective spatial pyramid
dilated net.

that the spatial pyramid structure is rapidly becoming a key

instrument in the multiscale characteristic problem. However,

the multiscale building extraction performs poorly with the

fragments of large buildings and the absences of tiny buildings

under the actual large remote sensing scenes. It is accepted that

the critical calibration and the selection of multiscale features are

imperative for mitigating the multiscale characteristic problem.

The past years have seen the rapid development of deep learn-

ing in a wide range of fields. Plenty of deep learning methods

are simply transferred to the building extraction [21]–[24] in

the SAR images. As we all know, the double bounce scattering

formed by the grounds and the walls is considered a major

indicator of buildings in high-resolution SAR images. L-shape

features are major areas of interest within the field of building

extraction. In the achievements for the FCN and its variants, the

L-shape features are missing more seriously, which results in

the rough and mixed building boundaries and the high missing

detection for some line objectives of buildings. In addition, the

problem of data imbalance in the process of building extraction

is often ignored. Generally, the building class pixels are much

less than the background class pixels. The cross-entropy loss

function used in the traditional training process can easily cause

that the background pixels occupy the dominant position, which

makes the attention of the network training shift to the dominant

pixels under the condition of data imbalance. In this case, the

model generalization ability is reduced and overfitting. In light of

the deficiencies in the above methods, it is becoming extremely

difficult to develop the fine building segmentation.

Aiming at these issues and considering the building features

and mechanism in SAR images, we propose a unified framework

called selective spatial pyramid dilated (SSPD) net for the fine

building segmentation in SAR images. As shown in Fig. 1(d)

specifically, we improve the multiscale context fusion and re-

construction by the instrumental SSPD module and the novel

dual-decoder. The L-shape weighting loss (LWloss) is employed

to give more attention to the L-shape footprint elements and their

nearby elements. We demonstrate the effectiveness of our model

in the fine building segmentation on a Gaofen-3 satellite SAR

dataset, and achieve the 91.2% accuracy performance on the test

set without any postprocessing.

In brief, our principal contributions are summarized as fol-

lows.

1) For the multiscale characteristic issue, we design a mul-

tilayer SSPD module combining the channel selection

and the branch selection, which offers a comprehensive

feature representation of adaptive nonlinear aggregation.

The SSPD module enhances the spatial pyramid’s multi-

scale feature selection and reconstructs the spatial feature

relationship, which promotes the adaptive fine extraction

of the SAR buildings.

2) A novel encoder–decoder structure is proposed based on

the dual-stage decoder. The context balancing module

(CBM) and the SSPD module are involved in the multi-

level semantic information fusion and construction, which

is conducive to the restoration of the complete shape and

location of buildings.

3) The newly LWloss function is designed to focus on the

ignored L-shape footprint and line objectives. Compared

with the cross-entropy loss function that treats all the

pixels equally, our loss function gives higher weight to

the more crucial L-shape footprint pixels with dynamically

distance adjustment. It also alleviates the class imbalance

problem.

4) Compared with other optical transplanted models, our

proposed unified framework focuses on the characteristic

SAR building features and amelioration that are not valued

in ordinary networks. It is more competitive for fine seg-

mentation of variable-scale buildings in large SAR scenes,

whether in terms of visual effects or quantitative metrics.

The experiments on a large-scene SAR image dataset indicate

that SSPD-net achieves the better building extraction accuracy

and visual effects compared with the popular semantic segmen-

tation methods and the conventional methods, which proves the

advantages of the proposed method.

The remainder of our work is organized as follows. In Sec-

tion II, we briefly illustrate the related tasks, including feature-

based methods, model-based methods, and deep convolutional

neural methods in building segmentation. Next, we pay attention

to the proposed framework in Section III, including the SSPD

module, the dual-stage decoder, and the LWloss. The details and

conclusions of the experiments are discussed in Section IV and

Section V. Finally, Section VI concludes this article.

II. RELATED WORK

Since our work mainly refers to the fine building segmentation

in SAR images, we briefly review the related studies in this field.

It has previously been observed that the conventional building

extraction approaches for SAR images can be divided into two

categories, i.e., the feature-based and the model-based. The

feature-based group is to extract the brightness, texture, border,

and mixing characteristics from the SAR images. The Fourier

power spectrum [26], the Gabor filter analysis [27], the MRF
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model texture description [28], [29], and the GLCM texture mea-

sure [30], [31] are commonly used. In [31], the GLCM is applied

to extract texture features for building area segmentation in SAR

images. To obtain the texture images similarly, a set of heuristic

Gabor filter sets [27] are designed. The scale-invariant feature

transform (SIFT) algorithm for SAR images (SAR-SIFT) [32] is

proposed to solve the image registration problems with different

incident angles. These features are frequently combined with

methods such as the nonsupervised cluster analysis. Commonly,

the complicated objects in SAR images cannot be fully described

by the low-level features, and an enormous gap between them

and the high-level semantic expressions exists. Furthermore, the

low-level features only represent the pixel-level information,

which is greatly affected by the multiplicative noise.

On the other hand, the model-based category is to establish

the statistical distribution model of the SAR images, which com-

bines the spatial background information for segmentation, in-

cluding MRF [29], Fisher distribution [33], logarithmic normal

distribution [34], and generalized Gaussian distribution [35]. In

the early k-means [36] and gamma models, the feature spatial

representation is only considered, but the spatial interaction is

not taken into account. The primary spatial context constraint

works in the region-based MRF model [37], but it will lead to

oversegmentation, especially in building areas. Tison et al. [33]

employ Fisher distribution to model the ground objects of SAR

images (especially for buildings) and combine the statistical

model with MRF to realize the classification of ground objects.

However, the detailed information is constantly lost in the re-

sults, and some attached blocks emerge. Xia et al. [38] propose

an MRF model on region adjacent graph (MRF-RAG) to correct

the edge error resulting from the oversegmentation algorithm.

Plenty of semantic inconsistencies in the building areas exist

yet. When it comes to the highresolution SAR images, these

models can no longer accurately describe the detailed and bright

spot texture structure exhibited by the buildings. Moreover, the

predefined statistical distribution model may not be suitable for

broad regions with different characteristics.

In addition to designing the features and the models, how

to design a good classifier is also the focus. The classification

methods are summarily divided into three categories: Unsuper-

vised learning, semisupervised learning, and supervised learn-

ing. There exists no labeled samples in unsupervised learning

with the goal of inferring the internal structure in a set of

data. The common algorithms for SAR building segmentation

or other object classification consist of k-means clustering and

principal component analysis, etc. There is a general lack of a

current method to compare the performance of the algorithms.

The semisupervised learning understands the remaining large

amount of unlabeled data by learning a small amount of la-

beled data. Many commonly used semisupervised methods have

been applied to SAR object classification, such as transductive

support vector machine, graph-based anchor graph regulariza-

tion [39], and squared-loss mutual information regularization

for multiclass probabilistic classification based on manifold

assumption [40]. In the case of very small labeled data, Protopa-

padakis et al. [41] use the semisupervised learning approaches

as the loss function throughout the training of neural networks,

which can be beneficial to pixel level segmentation tasks on

a limited dataset. Compared with the semisupervised learning,

the supervised approaches applies sufficient labeled samples

to fit the relationship between input and output. The logistic

regression, naive Bayes, support vector machine, random forest,

neural network, and other methods are also drawn into the SAR

image segmentation. Significantly, the dimension reduction can

make the data features dense and eliminate data redundancy

when faced with excessive input dimensions. Makantasis et

al. [42] propose tensor-based linear and nonlinear models for

hyperspectral image classification, which is also an available

solution.

In recent years, deep neural networks are gradually being

applied to the image interpretation of natural scenes and remote

sensing scenes. The deep learning methods have gradually re-

placed the traditional SAR segmentation methods, on account

of meeting the requirements of the fine extraction of buildings

and other objects in high-resolution SAR images. It is worth

mentioning that the application of deep learning heightens the

ability of the feature extraction and makes the precision of the

ground objects extraction significantly improved in the SAR

images [16], [43]–[46]. Yao et al. [47] successfully apply FCNs

to the semantic segmentation in the SAR images and classify

the landuse, water, buildings, and natural areas. Although the

FCN can accept the input images in any size, lots of spatial

information is lost, leading to a coarse segmentation result.

Considering the multiscale feature of the SAR images, Duan

et al. [48] present a multiscale convolutional neural network for

the SAR semantic segmentation, and the labeling consistency

is obtained in most of the terrains. Nevertheless, the model

with shallow network structure merely makes the simple scale

transformation of the input information, which leads to insuf-

ficient extraction of the practical information. In contrast, as

one of the most advanced neural networks, DeepLabv3+ [49]

utilizes several parallel atrous convolutions at different rates

called atrous spatial pyramid pooling (ASPP) to capture more

sufficient context information. Compared with some previous

convolution structures, ASPP which has emerged as a powerful

tool, can mainly extract multi-scale buildings accurately and

efficiently. There is a growing body of researchers that recognize

the importance of exploring the spatial dependence [50], [51]

and representing the spatial feature correlation with integrat-

ing learning mechanism [52]–[54]. In particular, the spatially

dependent guidance for the multiscale features performs cru-

cially for the adaptive feature selection in the complex context

information and large variations. Besides, the encoder–decoder

structure [55], [56] has always been an advanced model in the

field of image segmentation, which can extract and restore the

features wholly and quickly. In U-net [55], the features are

concatenated in the channel layers on the equal level of the

encoder and the decoder. This is effective for preserving the

semantic information of SAR image extraction, but the feature

fusion is still inadequate.

III. METHODS

A. Framework

Building segmentation in complex SAR scenes is interfered

with other complex backgrounds and multiscale characteristics
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Fig. 2. SSPD-net structure. K: Kernel size. D: Dilation rates. OS: Output stride.

of buildings. Traditional classifiers or artificial features are grad-

ually tired of coping with the high-resolution complex scenes.

However, some general advanced neural networks have been

verified to be effective for target detection and scene classifi-

cation of remote sensing scenes, although the utilization and

mining of specific features in SAR images are not sufficient.

Therefore, our unified framework is designed with popular

encoder–decoder structure. The overall structure of SSPD-net

for SAR building segmentation is illustrated in Fig. 2, which

consists of two parts: The encoder and dual-decoder. As an

encoder with moderate parameters, ResNet34 [57] has the out-

standing feature extraction ability and computation speed. The

convolution unit is based on the residual blocks composed of

3 × 3 kernel convolution layers, which have a low computation

cost. The output stride is 32. The output spatial resolution of

the last convolution layer of the encoder is 32 times smaller

than that of the input image, which contributes to extracting

the denser features. To utilize a dual-decoder to recover the

characteristics of the target in stages is an innovative approach.

The basic SAR features obtained from the backbone network are

sent to the dual-decoder consisting of the CBM and the SSPD

module. In the Decoder1, the extracted SAR image features by

the CBM are comprehensively characterized and reconstructed

to close up to the adaptive feature balancing, thus supporting the

feature recovery in the Decoder2. A multiscale building attention

mechanism is established by the SSPD module, which fully

integrates and adaptively selects multiscale building features

to recover building details more finely in the Decoder2. To

increase the guidance of the buildings’ double bounce scattering

characteristics to the network, a weight mask is added to the

common loss by employing the LWloss. Our method extracts

the location and profile of potential buildings in SAR images in

the inference stage directly and accurately.

B. Dual-Stage Decoder Based on the CBM and SSPD Module

In DeepLabv3 [25], the decoder is a 16 times upsampling

module, which is directly amplified by the last feature map. In

this case, the decoder is not very effective in restoring the details

of objects. Considering the semantic information contained in

different output layers of the encoder, we propose a capable

two-stage decoder, as shown in Fig. 2. First, the output feature

maps of the five layers are in different scales with the corre-

sponding output stride, 2, 4, 8, 16, and 32, respectively. They are

resized to the same spatial resolution with bilinear interpolation

upsampling and concatenated, as shown in Fig. 3. We adopt

an average compression strategy to balance the high-level and

Fig. 3. Direct amplifier and the CBM structure of the Decoder1.

the low-level semantic information. The number of channels per

layer is reduced to r by 1× 1 convolution. The above operation is

named as the CBM, while the hyperparameter r and the average

compression strategy will be discussed in Section IV-D3. The

CBM is equivalent to five skip connections between the encoder

and the decoder structures at the same time. We reckon that the

CBM is better than the behavior of gradually upsampling from

high-level semantic information. It creates more information

paragraphs that preserve the high-frequency information in the

smoothing process.

The second stage of the decoder is the SSPD module, which

can further extract and refine the multiscale semantic informa-

tion. In DeepLabv3 [25], ASPP uses the atrous convolution at

different rates for multiscale probing features and aggregates

contextual information. It shows that the features extracted

at each rate are processed in a separate branch and then are

merged to generate the final result. However, the fusion lacks the

guiding information, which leads to the independent process of

resampling the features extracted from each scale. Incorporating

the spatial and the channel attention into the network is necessary

to enhance the multiscale feature selection and expression. The

squeeze and excitation operations are utilized to reconstruct

the interdependence and suppression in the feature channels of

the spatial pyramid module. As Fig. 4 exhibits, the branches

of the spatial pyramid module are amplified to nine, and their

receptive fields are nested. With the selection operations, the spa-

tial pyramid branches are recalibrated following the multiscale

information of the targets. And all the ordinary convolutions are

displaced by the dilated depthwise separable convolutions [58].

Finally, the two 3 × 3 convolutions are employed to refine the

features. These operations (in the particular SSPD module) play

a crucial role in the fine segmentation of SAR buildings.
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Fig. 4. Illustration of the receptive fields with respect to different scale diver-
sity for different branches of spatial pyramid dilated convolution. K: Kernel size.
D: Dilation rates. RF: Size of the receptive field of the corresponding branch.

C. Multilayer Spatial Pyramid Dilated Convolution Module

Based on Channel Selection and Branch Selection

The SSPD is the central unit, mapping the input X ∈
RH×W×C to feature maps Y ∈ RH×W×C . We propose fusion,

squeeze, excitation, and selection operations, especially in fu-

sion pyramid modules, which provide global information access

and calibration feature responses at the channel level with the

appropriate receptive fields. Consequently, the SSPD is a feature

refinement network that is sensitive to multiscale information,

during which the feature learning of channel selection and

branch selection constraints is carried out according to the

multiscale information of the target.

1) Channel and Branch Selection: In Fig. 5, the merged

feature map is denoted asX ∈ RH̃×W̃×C̃ in the Decoder1. Each

parallel dilated convolution layer is regarded as a unit d, and all

the pyramid convolution units are combined as a super module

D = [d1, d2, . . .d9]. D has the kernel convolution with different

sizes and various dilated rates. In order to adjust the size of

the receptive field, different branches of D are squeezed after

fusion to generate the channel statistics. Then, different branches

are finally selected through the established relational model, as

shown in Fig. 5.

Fusion: In SSPD, for any input X ∈ RH̃×W̃×C̃ , we first con-

duct nine transformations using nine kernel convolution F1 −
F9 : X1 −X9 → U1 − U9 ∈ RH×W×C with different sizes.

The whole F is composed of atrous depthwise separable con-

volutions, and their kernel convolution size and dilated rates

are shown in Fig. 4. The information flow is first merged from

the multiple branches. Note that the number of output feature

channels per branch is 48. The fusion result of multiple branches

is obtained by channelwise summation, as

U = U1 ∪ U2 · · · ∪U9. (1)

Squeeze: Subsequently, we symbolize each channel layer with

a channel descriptor z ∈ Rc. That is, the information in the

H ×W spatial dimension on each channel is compressed into

a number to generate the channel statistics. As shown in (2), the

global average pooling (ap) is used to calculate the cth element

of z

zc = Fap (uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc(i, j) (2)

where uc ∈ RH×W .

Excitation: A concise feature s is created based on two full-

connected layers [50]. The relationship between the channels

is modeled with the feature s, so as to adaptively establish the

expression of the inhibition or the promotion of channels. The

expression relationship of the modeling feature s can be used

for soft selection of the pyramid branches. The conduct of such

modeling is flexible and nonlinear

s = Ffc(z) = σ (W2δ (W1z)) (3)

where δ stands for ReLU function [59], W1 ∈ R
C
r
×C , W2 ∈

RC×C
r , and σ stands for sigmoid function. The default r value

is set as 16 with the purpose of forming a general dimensionality

reduction layer in the fully connected (fc) layers.

Selection: The concise feature s obtained by the excitation

operation can be considered as a set of mapping channel weights.

As shown in (4), it recalibrates the rich semantic information in

different scales to obtain the final output Y (Y = [y1, y2. . .yc])
in the SSPD module, which achieves the selection for the nine

branches. The coexistence of inhibition and promotion works in

the 48 channels inside the branches, which can also be regarded

as the soft self-attention mechanism of convolution response on

channels

yc = sc · uc. (4)

The concise feature s and the feature mapping U are channel-

wisely multiplied.

In addition to the channelwise selection above, the branch

selection can also be performed in another way. In the fusion

operation, provided that elementwise is summed, the fusion

results of multiple branches will be expressed as follows:

Ũ = U1 + U2 · · ·+U9. (5)

Furthermore, Ũ is squeezed and excited according to the equiv-

alent operation by (2) and (3), respectively

z̃c = Fap (ũc) =
1

H ×W

H∑

i=1

W∑

j=1

ũc(i, j) (6)

s̃ = Ffc(z̃) = σ (W2δ (W1z̃)) . (7)

The concise feature s̃ obtained by (6) and (7) guides the

selection of multiscale information on different branches, which

uses the softmax operation

ai =
es̃i

∑i=9
i=1 e

s̃i
,
∑

i

ai = 1 (8)

where ai represents the branch weight of Ũi. The final output

feature map is weighted by the attention weight on different

branches, which is

yc =
i=9∑

i=1

aiũi. (9)

The comparison of the experimental results brought by two

different fusions of branches is shown in Section IV-D1.

2) Dilated Depthwise Separable Convolution in SSPD: It is

observed that the atrous depthwise separable convolution [60],

[61] is applied to the SSPD module. Dilated convolution [62] is a

powerful convolution tool with the exponential growth receptive
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Fig. 5. Multilayer pyramid dilated convolution module based on channel selection and branch selection.

field and the linear increase of parameter number. It can process

the input feature maps with a higher precision while the size is

maintained by the dilated convolution, and the dense prediction

of target details is implemented. For 2-D signals, the dilated

convolution is brought to the input feature maps P , and the

output feature mappings Q are

Q[i] =
∑

k

P [i+ r · k]F [k] (10)

where F stands for the convolutional filters, r is the dilated

rate, and k is the skip stride of the dilated convolution. As

shown in Fig. 4, the combined pyramid convolutional filter

fields are obtained. Thus, multiscale context information can

be captured for multiscale information for buildings from an

adaptive selection of a wider input perspective.

Unlike conventional convolution, the depthwise separable

convolution [63]–[65], consisting of the depthwise convolution

and the pointwise convolution, has a lower parameter quantity

and operation cost. The depthwise convolution performs inde-

pendent convolutions on each channel of the input layers, and

the quantity of output channels is the same as that of the input.

And then, the pointwise convolution makes a weighted combi-

nation in depth. The computational complexity of the model is

significantly reduced by combining the depthwise convolution

and the pointwise convolution. The dilated depthwise separable

convolution in SSPD can make the model lightweight accord-

ingly. Simultaneously, the high model property is maintained.

D. L-Shape Weighting Loss

The backscattering signal intensity of the buildings is the

superposition of the backscattering signals from various parts of

the building. Among them, corner reflector, layover, and shadow

are important features of SAR buildings. Many segmentation

errors in SAR images are resulted by the scattering and imaging

mechanism. For instance, large buildings usually appear as

strong linear or L-shaped echoes in SAR images due to the

strong double bounce reflection toward the direction of radar

incidence angle, which means that in some cases, only two

edges of the buildings can be clearly observed by the SAR.

Nevertheless, the segmentation results of many convolutional

models still have some defects, such as boundary deletion and

roughness, especially when the large buildings are extracted.

According to the different representations of L-shape, we in-

troduce visual interpretation assistance to classify three types

of building targets on the Gaofen-3 SAR images. As illustrated

Fig. 6. (a) Surface objectives. (b) Line objectives. (c) Complex objectives.

TABLE I
EXTRACTION EFFECTS OF U-NET IN THREE BUILDING OBJECTIVES

The bold entities are the highest scores in each comparison.

in Fig. 6, there are three representations for buildings in SAR

images: Surface objectives, line objectives, and complex objec-

tives. Generally, complex objectives have complex structures

and high-backscattering intensity. Correspondingly, both sur-

face objectives and line objectives, with the L-shape footprint,

have a low proportion in all building backscattering areas. Based

on the U-net experiments, the extraction results for three building

objectives are shown in Table I.

The accuracy and missing alarm rate of surface and line

objectives are worse than that of complex objectives. We hold

that the complex objectives cause strong attention in neural

network training. Simultaneously, the surface and line objectives

are easily ignored in feature learning, resulting in a high-missing

alarm rate and the unfinished edge of buildings. A novel loss

function is proposed to extract the surface and line targets of

SAR buildings effectively. In the process of network training, the

L-shape footprint terrain pixels are given a high weight mask to

enhance the training attention of the surface and line objectives.

First, the edge detection algorithm is applied to the SAR image

to detect a strong echo similar to the angular reflector. Then

the global Hough transform and the local Hough transform with

the moving window are performed to extract the indicator to

buildings such as the L-shape and the linear features. Next, the

intersections of L-shape scattering are determined by utilizing

the orthogonal line structures. And the appropriate intersections



6614 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 7. Extraction of the L-shape footprint pixels.

are selected for subregion clipping. For each cropped subregion,

the rectangular-package method [66] is applied to extract the

L-shape footprint accurately. Finally, the L-shape footprint is

mapped to the original image space according to the slope angles

θ and the lengthsL of the detected lines, and the original location

for the subregion. At this point, the set of all the L-shape terrain

elements is obtained, as shown in Fig. 7.

The Euclidean distance from this pixel to the set of L-shape

footprint terrain pixels is then calculated for each pixel. The final

weight is calculated based on the Gaussian weight contributed

by all the L-shape footprint pixels to this pixel, as follows:

wp = 1 + w0

∑

q∈M

1

σ
√
2π

e−
(xp−xq)2+(yp−yq)2

2σ2 (11)

wherew0 is the penalty factor for L footprints. M is the collection

of L footprint terrain elements and (xp, yp) is the coordinates of

the pth pixel. σ can affect the size of M region.

Furthermore, the issue of class imbalance is common in

building extraction. The cross-entropy loss, generally used in

image segmentation, is defined as

L = −
∑

N

ytruelog (ypred) (12)

where ytrue represents the true label of each pixel, and ypred

represents the prediction probability of each pixel. It evaluates

the class prediction for each pixel vector equally. Considering

the dominant background pixels guiding the training attention,

we add the soft dice coefficient loss [67] to restrain the class

imbalance. The final defined loss function is

L = −
∑

N

wpytruelog (ypred) + wp −
2wp

∑
N

ytrueypred

∑
N

y2true +
∑
N

y2pred

.

(13)

The soft dice coefficient loss is multiplied by the penalty factor

separately for each category, and the final result is then averaged

to normalize the loss.

IV. EXPERIMENTS

A. Dataset

Due to the low-resolution and small scales, the data used

in the previous related work [47], [48] lack accurate labels,

which is not suitable for our fine extraction method. Researchers

also lack the publicly available SAR datasets for the building

extraction. Hence, to facilitate the research for the fine building

extraction on high-resolution SAR images, we build a new

dataset to evaluate the effectiveness of the proposed method. We

collect the urban images acquired from the Gaofen-3 satellite

by the spotlight mode. All the images are single-band and

single-polarized. The spatial resolution is 1 m, which ensures the

Fig. 8. Partial visualization of high-resolution SAR images of GaoFen-3
satellite. The typicality of these groups of pictures is that small and large
buildings exist concurrently, and their respective dense and sparse states exist.
(a)–(d) SAR images. (e)–(h) Corresponding ground truth.

quality of the annotation. The SAR images are labeled referring

to the corresponding optical remote sensing images and verified

by experts. The positive annotations are buildings, and other

pixels are the background class. The images are cropped into

512 × 512 pixels with a total of 279. 80% images of the dataset

are used for training and the rest are for testing. The portion of

the dataset is shown in Fig. 8.

B. Implementation

The proposed network is operated on the NVIDIA p100 GPU

based on PyTorch [68]. The amount of training data is expanded

to 1674 by the image morphological transformation, including

random horizontal and vertical folding, rotating, arbitrary scal-

ing, random migration, and accidental lifting. These operations

effectively increase the amount of data and weaken the tendency

of overfitting caused by insufficient raw data. The expanded

slices are disorganized and randomly fed into the network. The

size of each batch is 5 for 250 epochs. The pretraining ResNet34

on ImageNet [57] is adapted to the encoder. The initialization

weight of the decoder follows the default uniform distribution

of PyTorch [68]. The momentum is 0. The adaptive learning rate

optimization algorithm named Adam [69] is applied to train the

network. The betas are (0.9, 0.999), and the weight decay is 0.

The initialization learning rate is 0.001. When the training loss

is stable, the learning rate is reduced five times manually. Our

model adopts end-to-end training.

C. Evaluating Metrics

The experimental results are evaluated based on several

widely used indicators, as follows:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(14)

F1 =
2× Precision × Recall

Precision + Recall
(

Precision =
TP

TP + FP
,Recall =

TP

TP + FN

) (15)



JING et al.: FINE BUILDING SEGMENTATION IN HIGH-RESOLUTION SAR IMAGES 6615

TABLE II
ABLATION RESULTS OF DUAL-STAGE DECODER

TT denotes the training time.

mIoU =
1

2
×

TP

TP + FP + FN

+
1

2
×

TN

TN + FP + FN

(16)

fwIoU = P (P ) ·
TP

TP + FP + FN

+ P (N) ·
TN

TN + FP + FN

(17)

where TP refers to all the correctly classified building pixels.

TN is all the correctly classified background pixels. FP denotes

all the building pixels that do not have the correct classification,

and FN represents all the background pixels that do not have

correct classification. OA indicates the ratio of all the correctly

classified buildings and background pixels to all the classified

pixels. F1 and mIoU can reflect and evaluate the effect based

on the above metrics. FwIoU sets the weight in line with the

frequency of the building areas and the background areas on

the basis of IoU, which enhances the impact on the category

frequency.

D. Ablation Studies

In this section, we successively focus on the decoder design,

the different improvements in SSPD, and the channel compres-

sion strategy. A series of ablation experiments are carried out to

study the effectiveness of SSPD-net. Both the training strategies

and the data enhancement way are the same as the methods

described in Section IV-B.

1) Design and Selection of Dual-Stage Decoder: For De-

coder1, we have two designs. As shown in Fig. 3, the direct

amplifier (DA) receives the output from the last layer of the

encoder (output stride = 32). The CBM is employed to receive

the output of five encoder layers (output stride=2, 4, 8, 16, 32).

In Decoder2, we set ASPP as a baseline.

Baseline: The first-row block in Table II includes the results of

a simple 16-time upsampling using bilinear interpolation (DA).

In the CBM, five outputs are concurrently normalized to the

identical size (output stride = 2) using bilinear interpolation.

Both the DA and the CBM connect two 3 × 3 kernel convo-

lutional layers for feature refinement. The experimental results

reveal that the CBM significantly advances the performance, but

the running time is not obviously increased.

Adding ASPP: We verify the feasibility of a dual-stage de-

coder using ASPP as the Decoder2. The comparison of rows 3

and 4 in Table III exhibits that ASPP helps to improve OA and

mloU by 0.4% and 1%, respectively, when the CBM is used as

Decoder1. Similarly, when the DA is applied as Decoder1, OA

and mIoU, respectively, increase by 2% and 5% due to ASPP.

Adding SSPD: We evaluate the two scenes proposed in Sec-

tion III-C at the last row block in Table IV. SSPD (U) represents

the fusion of 9 branches in the channel concatenation and the

channelwise selection of branches. SSPD (+) embodies the

fusion of 9 branches in element summation and the selection

of branches in softmax operators. The differences in the experi-

mental effects resulting from SSPD (U) and SSPD (+) are shown

in Table IV. The results of this study indicate that SSPD (U) im-

proves capability by about 2% with a slight increase in running

time and complexity. The partial segmentation results are shown

in Fig. 9. The results of the DA are jagged and incoherent. The

large sawtooth of buildings in the CBM segmentation is gone,

but the small buildings are partially missing, and they tend to

stick together. After adding the ASPP, the segmentation result is

evidently advanced but is slightly inferior to SSPD owing to the

occasional breakup inside the buildings. It is interesting to note

that SSPD (+) and SSPD (U) have a less visual difference, but

the latter has smoother segmentation and lower missing alarm

of small buildings.

2) Effectiveness of Internal Improvements in SSPD: In this

section, we further explore the design of the Decoder2. The

baseline is the selective pyramid convolution module that con-

tains the first seven branches (two branches with kernel=5 are

removed) without dilated convolution. The contrast experiments

are based on Decoder1 = CBM and SSPD (U). As illustrated

in Table V, the experimental results imply that the added larger

kernel convolution (kernel=5) promotes the segmentation prop-

erty. The dilated convolution is found to cause better behavior

than ordinary convolution. Compared with the baseline, the

mIoU brought by the larger kernel and the dilated convolution

increases by 0.7% and 1%, respectively. The current important

finding is that under the condition of keeping the performance,

replacing the dilated convolution with dilated depthwise separa-

ble convolution significantly reduces the model complexity and

lowers the computing load on the hardware.

3) Channel Compression: The compression quantity r intro-

duced in the Decoder1 is a hyperparameter, which compresses

the number of channels of output feature maps in the encoder.

To find the optimal balance between the capability and the

complexity, we implement the experiments in different r values

for SSPD-net. Table VI shows the influences for a range of

different r values on the experimental effect. The experiments

demonstrate that the monotone increase of r cannot lead to

the linear growth of performance. According to the accuracy

and calculation cost, r = 48 is an optimal choice. In summary,

Table VII shows the statistics of the final segmentation results

after compression of different proportions of high-level and low-

level channel information. The different levels are represented

by feature maps with different sizes in Table VII. The feature

map of the higher level is smaller. These experimental results

suggest that the balanced high-level and low-level information

fusion has the best segmentation effect. In our structure, the equal

compression of high-level and low-level semantic information

is the final choice.

4) Improvement of the L-Shape Weighting Loss Function: In

the experimental study, comparing LWloss with cross-entropy

loss (CEloss) indicates that the former can heighten the precision

of building extraction, especially for the optimized boundary

of linear objectives. This result may be explained by the fact
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TABLE III
ABLATION RESULTS OF DUAL-STAGE DECODER

TABLE IV
ABLATION RESULTS OF DIFFERENT SSPDS

Fig. 9. Segmentation results of different combinations in dual-stage decoder over the urban areas. (a) SAR image. (b) Ground truth. (c) DA. (d) CBM. (e) DA
+ ASPP. (f) CBM + ASPP. (g) CBM + SSPD(+). (h) CBM + SSPD(U). The yellow circles in the diagram represent obvious defects in the segmentation results of
some methods, such as (c) jaggies, (f) breakage, (e) deletion, (d) adhesion, and etc.

TABLE V
EFFECTS OF DIFFERENT SSPD DESIGNS. K: KERNEL

TABLE VI
EFFECTS IN DIFFERENT r VALUES

that the LWloss can guide the training attention of the L-shape

features and raise the effectiveness of building segmentation.

In Fig. 10, we intuitively see that the extraction boundary of

the building is more definite, and some of the missing building

edges are supplemented in the LWloss results. For experiments

with the cross-entropy loss function, the L-shape objectives’

extraction boundary is confused and unclear with both deletions

and dilations. The prediction results with LWloss, by contrast,

are more sensitive to L-shape features, and the missing detection

of some small L-shape targets decreases. At the same time,

the boundary determination is much clearer, which reduces the

boundary adhesion of the side-by-side buildings. Further, as

shown in Table VIII, one interesting finding is that the IoU of the

building class is higher than the mIoU of that, which confirms

that the LWloss has a specific inhibition for the data imbalance.

Meanwhile, LWloss has good portability for other networks.
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TABLE VII
EFFECTS OF DIFFERENT RATIO OF HIGH AND LOW LAYER CHANNEL INFORMATION FUSION

The level of the layer is negatively correlated with the size of the feature map (FP).

TABLE VIII
PERFORMANCE COMPARISON BETWEEN DIFFERENT LOSS FUNCTIONS

Fig. 10. Extraction effects of partial linear objectives with different loss
functions in SSPD-net. Each column from left to right. (a) Input images. (b)
Extraction results with cross-entropy loss. (c) Extraction results with LWloss.
(d) Ground truths.

The overall accuracy and the mIoU with the L-shape weighting

loss for several networks are lifted, as shown in Table VIII. The

optimal building extraction performance is achieved in SSPD-

net with the LWloss. It should be noted that the convergence

time of model training is increased by 22%. On the whole, the

proposed loss function alleviates the data imbalance problem

in the SAR building segmentation and improves the extraction

effect of linear objectives at the cost of extra time, which is

acceptable.

In addition, the proposed LWloss function is based on the

distance calculation and the weighted superposition of the set of

L-shape footprint terrain pixels extracted from SAR images. The

ablation experiments are conducted on the accuracy of extracting

the L-shape footprint pixels. The comparing methods of extract-

ing the L-shape footprint set are discussed, including utilizing

the constant false alarm rate (CFAR) algorithm combined with

the log-normal (LN) distribution probability density function to

TABLE IX
PERFORMANCE COMPARISON BETWEEN DIFFERENT EXTRACTION OF THE

L-SHAPE FOOTPRINT SETS

extract linear features of buildings, utilizing the CFAR detector

and power ratio (PR) method to extract buildings, utilizing the

morphological profiles (MP) and the difference morphological

profiles (DMP) [70] to extract the morphological information.

Meanwhile, the addition and subtraction sets of the L-shape

footprint pixels extracted by the proposed method are compared.

This process is carried out by the corrosion and expansion opera-

tions. Regarding the weighting factor of the L-shape footprints in

(11), the weighted Euclidean distance based on the exponential

weight function is also used to compare the performance of the

different feasible LWloss functions. We define it as LW-Eloss,

as shown in (18), where λ is set to 1

L = −
∑
N

wpytruelog (ypred) + wp −
2wp

∑
N

ytrueypred

∑
N

y2
true+

∑
N

y2
pred

wp = 1 + w0

∑
q∈M

λe−λ[(xp−xq)
2+(yp−yq)

2].
(18)

The experiment results are shown in Table IX. The first-row

block in Table IX shows that different traditional methods of

extracting the L-shape footprint set perform well in overall

accuracy and other evaluating metrics than the CEloss function.

However, the change of each method is about 1%, which is

not obvious enough. In addition, the results of the increase or
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TABLE X
COMPARISON OF SEGMENTATION RESULTS OF DIFFERENT MODELS

The computational cost is evaluated with FLOPs, i.e. floating point operations [78]. 1 GFLOPs = 109 FLOPs.

Fig. 11. Example training curves of several methods on the Gaofen-3 dataset.
The SSPD-net exhibits the stable optimization characteristics and gains the best
training performance.

decrease operations on the L-shape footprint set generated by the

proposed method are revealed in the second-row block. Though

some metrics show a slight decrease, the effects are better than

the CEloss function. Generally, extracting the L-shape footprint

set and generating the distance loss function make a relatively

large contribution to the building extraction, while the slight

increase, decrease, and morphological change of the L-shape

footprint set have a little impact on the building extraction.

Besides, LW-Eloss generates a loss function based on the ex-

ponential weight distance, whose test metrics are 1% lower than

those of the proposed loss function based on the Gaussian weight

distance. Finally, LWloss is considered to be used to guide the

network training attention.

E. Comparison With Other Methods

In comparison, other methods are tested based on the same

Gaofen-3 satellite SAR dataset, including the 2-Mode [71],

OTSU [72], Threshold-histogram [73], K-means [36], the con-

ventional MRF [74], the improved MRF (PMRF) [75], U-

net [55], Linknet [76], DeepLabv3+ [49], and PSPnet [77].

Considering the apparent contrast between targets and back-

grounds, two global single threshold segmentation methods,

the OTSU [72] and the 2-Mode [71], are added to observe

the optimal solution under the customary criterion, such as

the maximum intraclass variance and gray histogram. The

PMRF [75] mainly adds a multiscale MRF image pyramid

model based on the MRF [74]. What matters is the case that the

conventional MRF and the PMRF both follow the experimental

settings in [75]. Moreover, the lightweight Linknet [76] and

the PSPnet [77] with capable global context aggregation are

augmented for the sake of fully verifying our advantages over

other advanced deep convolutional models.

The example training curves for different algorithms are

depicted in Fig. 11. It can be observed that the proposed

method yields the most stable improvement throughout the

whole optimization process. Their experimental results are listed

in Table X, and the corresponding segmentation examples are

shown in Figs. 12 and 13. Although the MRF model does not

require training and is extremely fast in the test process, it

contains little semantic information of the SAR buildings, and

the segmentation results are rough. In contrast, the abundant

semantic information is contained in the SSPD-net with 14%

higher accuracy. For the manifestation of the U-net method,

the large holes exist in the interior of the buildings. In the

Linknet segmentation results, some small buildings adhere and

the boundaries are difficult to distinguish. Certain medium-sized

buildings are missing in DeepLabv3+ segmentation images. A

flow of PSPnet is the inability to extract a large number of dense

small buildings. Compared with the current advanced U-net,

Linknet, DeepLabv3+, and PSPnet methods, our method (SSPD-

net) obtains the best accuracy, F1, mIoU, and fwIoU. Further-

more, the results of this study show that SSPD-net achieves the

effect of fine building segmentation. Simultaneously, it does not

increase the parameter complexity and not lower the running

speed. Finally, the segmentation effect of our method on the

large-scene SAR image is shown in Fig. 14.

V. DETAILED ANALYSIS

A. Design and Selection of Dual-Stage Decoder

We evaluate the performance of the dual-stage decoder in

Table IV. The results show that the combination of CBM and

SSPD achieves the finest segmentation with the ResNet-based

encoder. Compared with the direct amplifier, the CBM combines

more full semantic information of both high and low layers

simply and directly. The model capability will be better with
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Fig. 12. Segmentation results of different methods. From top to bottom, from left to right, the images in turn are as follows. (a) SAR. (b) 2-mode. (c) OTSU. (d)
Threshold-histogram. (e) MRF. (f) PMRF. (g) U-net. (h) Linknet. (i) DeepLabv3+. (j) PSPnet. (k) SSPD-net. (l) Ground truth. The defects of some deep learning
methods are marked in yellow circles in the graph.

an equal compression strategy. For Decoder2, the experiments

further corroborate the advantages of SSPD over ASPP. This

discrepancy could be attributed to the channel and the branch

selection attention for SSPD instead of the spatial pyramid

structure. The obvious finding to emerge from Fig. 9 is that

SSPD can better divide the building boundary between small and

large buildings than the general spatial pyramid pooling module.

Another important finding is that the channel-based soft branch

selection [SSPD(U)] is more effective than the hard-selection

branch mode [SSPD(+)]. A possible explanation for this might

be due to the channel attention concentration of the former to

the target.

B. Effectiveness of Internal Improvements in SSPD

For the details of SSPD, we add the branches with large

kernel convolution and dilated depthwise separable convolution,

which increases the mIoU by 0.8% and 0.7%, respectively. The

branches with large kernel convolution effectively supplement

the convolution probing fields of the spatial pyramid mod-

ule. Each complementary nesting combination of convolution

branches exerts a pivotal part in multiscale information extrac-

tion. The dilated depthwise separable convolution calculates the

feature mapping with higher sampling density to restore the full

resolution feature maps so that the computed feature mapping

is denser. This improvement gives the whole network a more

profitable receptive field. Besides, from Table V, the increase

of model complexity mainly lies in the addition of large kernel

branches, while the dilated depthwise separable convolution has

a small effect on the model parameters. Compared with other

models [49], [55], our network has also achieved superior model

lightweight, which effectively improves its extensibility.

C. Channel Attention Analysis

In order to prove the effects of the proposed SSPD, we

observe the attention weight of SSPD under different building

scales. Fig. 15 shows the visualization effects of the feature

maps for some samples containing small buildings and large

buildings in the output layers. The first four patches are samples

dominated by small buildings and the last four dominated by

large buildings. When the input is an SAR image with the small

building dominant, the network attention is mostly focused on
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Fig. 13. Local area presentation of segmentation results (see the yellow circle in Fig. 12) for different methods. Each column from left to right belongs to the
following methods. (a) U-net. (b) Linknet. (c) DeepLabv3+. (d) PSPnet. (e) SSPD-net. (f) ground truth.

Fig. 14. Fine building segmentation on the large-scene SAR image. The left is the original image and the right is the segmentation image by SSPD-net.

the small buildings. Conversely, attention reverses. The attention

value distributions of two random samples on all branches in

SSPD are shown in Figs. 16 and 17, where the two samples

are patches including some small buildings and large buildings,

respectively. The channel activation value for most of the small

receptive fields in SSPD is high for the minor targets. As the

target object size increases, the channel activation of the large

receptive fields rises, which seems to be consistent with our

expected network selectivity.

D. Interpretation of the L-Shape Weighting Loss

As shown in Fig. 18, we plot the attention maps for the

SSPD-net with the CEloss and the LWloss. The LWloss results
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Fig. 15. Feature maps for small and large buildings. (a) and (b) SAR images
with small buildings. (c) and (d) SAR images with large buildings. (e) and
(f) Feature maps corresponding to the (a) and (b). (g) and (h) Feature maps
corresponding to the (c) and (d).

Fig. 16. Attention value of the channels in small and large buildings. (a) and
(b) Image of small buildings and its groudtruth. (c) Attention distribution of
small buildings samples on all branches. (d) and (e) Image of large buildings
and its groudtruth. (f) Attention distribution of large buildings samples on all
branches.

Fig. 17. Mean attention difference in small and large buildings.

show that the attention division between the buildings and the

background areas is distinct, and especially the attention to the

linear objectives rises in the network. In the CEloss results,

some line objectives and small buildings are easily affected by

other complex structures and thus missing the sensitivity to some

easily neglected structures, although the boundary extraction of

some large buildings is acceptable. Table VIII illustrates that the

LWloss is suitable for some current segmentation networks and

has a guaranteed improvement in extraction precision and other

metrics. The LWloss has good potential for the fine building

segmentation in SAR images.

Fig. 18. Comparison of the CEloss and the LWloss. Each row from top to
bottom: (a)–(d) CEloss results. (e)–(h) LWloss results.

VI. CONCLUSION

In this article, a unified framework named SSPD-net is pro-

posed for the fine building segmentation in SAR images based on

the selective attention mechanisms. We design the dual-decoder,

the CBM, and the advanced SSPD convolution module. The

multibranch information is fused and reselected to conform to

the multiscale extraction with the specific building attention.

Additionally, in light of the building features and SAR imaging

mechanism, the LWloss for the fine building extraction is estab-

lished to promote the attention on the L-shape footprint char-

acteristics of buildings. The extraction effects of linear targets

are enhanced, and the class imbalance problem in the training

process is restrained with the LWloss. The experimental results

on a high-resolution SAR dataset demonstrate the superiority of

our approach.
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