
In Proceedings of the IEEE Computer Society Annual Workshop on VLSI,
April 27–28, 2000, Orlando, Florida.

c2000 IEEE. Published in the Proceedings of the IEEE Computer Society Annual Workshop on VLSI, April 27–28, 2000, Orlando, Florida. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966. IEEE.

Fine-Grain Pipelined Asynchronous Adders for High-Speed DSP Applications �

Montek Singh and Steven M. Nowick

Department of Computer Science
Columbia University, New York, NY 10027

fmontek,nowickg@cs.columbia.edu

Abstract
A new asynchronous pipeline scheme (called LPHC), and

two new pipelined asynchronous adder implementations,
are introduced for high-throughput applications such as
DSP’s for multimedia processing. The pipeline scheme is
targeted to dynamic datapaths. A novelty of the approach
is that it uses decoupled control for pull-up and pull-down
stacks. The adders are pipelined at the gate-level and
achieve very high throughput: 930–1023 million additions
per second in a 0:6� CMOS process. These results are
expected to scale to several Gigaoperations per second in
more modern technologies.

1. Introduction
In this paper, two new asynchronous adder designs are in-
troduced. The designs are pipelined at a very fine granu-
larity to achieve high throughput. The implementations are
based on two pipelining schemes: one scheme (LP SR2/1) was
recently introduced [8], while the second (LP HC) is new.

Asynchronous circuits [9] fit naturally with the current
trend towards system-on-a-chip for several reasons. First,
asynchronous design avoids issues related to the distribu-
tion of a global clock: wasteful clock power, unmanageable
clock skew and much design effort. Second, when pipelin-
ing is pushed to the granularity of a single gate (gate-level
pipelining), design of the high-speed clock itself becomes
extremely challenging. Finally, the inherent flexibility of
asynchronous components, which can interface with var-
ied environments at different rates, makes these circuits at-
tractive for reusable components and IPs. Asynchronous
design has recently attracted industry, including the use of
fully-asynchronous 80C51 microcontrollers in commercial
Philips’ pagers (Myna and Fiori), and recent initiatives an-
nounced by Motorola,1 and Sharp, Videonics and Cadence.2

The pipelines in this paper are part of a larger class which
we call lookahead pipelines (LP). The key strategy is one of
anticipation: reacting to, or initiating, certain critical events
earlier by using a more flexible communication between
pipeline stages. In the first protocol, LP SR2/1 [8] (recently
introduced, but without any adder designs), a stage com-
municates not only with the next stage, but with two stages
ahead. The second high-capacity protocol, called LP HC, is
new. Using a decoupled control of precharge and evaluate,

�This work was supported by NSF Award No. CCR-97-34803.
1See http://motorola.com/SPS/MCORE/press 19oct99.html.
2See http://www.digitalproducer.com/pages/videonics first to use -

sharp ele.htm.

every pipeline stage is able to store a distinct data item. In
contrast, in traditional asynchronous dynamic pipelines, al-
ternating stages usually must contain “spacer” tokens. In
each case, high throughput is obtained.

A particular focus is on dynamic logic because of its
high speed and small area. Dynamic pipelines can also be
designed without explicit latches between pipeline stages;
with careful control sequencing, the gates themselves can
function as implicit latches. In spite of these advantages,
however, there is a lack of asynchronous pipeline designs
which take full advantage of dynamic logic. This paper at-
tempts to fill this void.

Initial SPICE simulations of our 32-bit ripple-carry
adders indicate throughputs of 930 million additions/second
for an LPSR2/1 implementation, and 1023 million addi-
tions/second for an LP HC implementation, in a 0:6� CMOS
process. We anticipate that these results will scale to several
Gigaoperations/second in more modern technologies.

The paper is organized as follows. Section 2 provides
some initial background on Williams’ asynchronous PS0
pipelines, and Section 3 reviews our recent LP SR2/1 pipelines.
Section 4 then introduces the new LP HC pipelines and Sec-
tion 5 describes the new pipelined adder designs. Results
are presented in Section 6, and Section 7 gives conclusions.

Related Work. Several synchronous pipelines have been
proposed for high throughput applications. In wave pipelin-
ing, or “maximum rate pipelining,” multiple waves of data
are allowed at any time between two latches [12, 3, 5].
However, this approach requires much design effort, from
the architectural level down to the layout level, for accu-
rate balancing of path delays (including data-dependent de-
lays), and remains vulnerable to process, temperature and
voltage variations. Other approaches include skew-tolerant
domino [2, 1] and self-resetting circuits [6, 1]. All of these
styles have partial asynchronous behavior (e.g., precharge
control or waves of data). They require complex timing con-
straints which are difficult to verify, lack elasticity and still
require high-speed global clock distribution.

A number of asynchronous pipelines have also been pro-
posed (see [8] for more details). Many suffer from sig-
nificant performance overheads, and few are optimized for
dynamic logic. Two of the fastest styles will not function
correctly with a dynamic pipeline unless there are explicit
latches [4, 13]. In addition, the former has complex timing
assumptions which are not explicitly formalized; in fact, an
early version was unstable due to timing issues.



2. Background: Williams’ PS0 Pipeline
This section gives some brief background on Williams’ PS0
dual-rail asynchronous pipeline [10, 11]. This pipeline is
significantly different from ours, with a dual-rail datapath
(instead of our single-rail) and a more conservative proto-
col (instead of our more timing-optimized ones). Yet, our
design decisions and protocol optimizations can be more
easily understood in the context of this approach.

2.1. PS0 Pipeline Structure
Fig. 1 shows Williams’ PS0 pipeline. Each pipeline stage
is composed of a dual-rail function block and a completion
detector. The completion detectors indicate validity or ab-
sence of data at the outputs of the associated function block.

PCPC PC

F1
D1

F2 F3
D2 D3

Figure 1. Block diagram of a PS0 pipeline

Each function block is implemented using dynamic
logic. The precharge/evaluate control input, PC, of each
stage is tied to the output of the next stage’s completion
detector. Since a precharge logic block can hold its data
outputs even when its inputs are reset, it also provides the
functionality of an implicit latch. Therefore, a PS0 stage
has no explicit latch. Fig. 2(a) shows how a dual-rail AND
gate, for example, would be implemented in dynamic logic;
the dual-rail pair, f1 and f0, implements the AND of the
dual-rail inputs a1a0 and b1b0.

inverter
buffer

PC

f0

f1

b0a0

a1

b1

f=AND(a,b)

n-stack

n-stack

(a)

C
Done

Dual-rail
data

(b)

Figure 2. (a) A dual-rail AND gate in precharge
logic, and (b) a dual-rail completion detector

The completion detector at each stage signals the com-
pletion of every computation and precharge. Validity, or
non-validity, of data outputs is checked by OR’ing the two
rails for each individual bit, and then using a C-element to
combine all the results (Fig. 2(b)). A C-element [10] is a
basic asynchronous state-holding element. The output of

an n-input C-element is high when all inputs are high, is
low when all inputs are low, and otherwise holds its pre-
vious value. It is typically implemented by a CMOS gate
with a series stack in both pull-up and pull-down, and an in-
verter on the output (with weak feedback inverter atttached
to maintain state).

2.2. PS0 Pipeline Protocol
The sequencing of pipeline control is quite simple. Stage N
is precharged when stage N + 1 finishes evaluation. Stage
N evaluates when stage N + 1 finishes reset. (Of course,
the actual evaluation will commence only after valid data
inputs have also been received from stage N � 1.) This
simple protocol ensures that consecutive data tokens are al-
ways separated by reset tokens or spacers.

The complete cycle of events for a pipeline stage is de-
rived by observing how a single data token flows through
an initially empty pipeline. The sequence of events from
one evaluation by stage 1, to the next is: (i) Stage 1 eval-
uates, then (ii) stage 2 evaluates, then (iii) stage 2’s com-
pletion detector detects completion of evaluation, and then
(iv) stage 1 precharges. At the same time, after completing
step (ii), (iii)’ stage 3 evaluates, then (iv)’ stage 3’s comple-
tion detector detects completion of evaluation, and initiates
the precharge of stage 2, then (v) stage 2 precharges, and fi-
nally, (vi) stage 2’s completion detector detects completion
of precharge, thereby releasing the precharge of stage 1 and
enabling stage 1 to evaluate once again. Thus, there are six
events in the complete cycle for a stage, from one evaluation
to the next.

2.3. PS0 Pipeline Cycle Time and Latency
The complete cycle for a pipeline stage, traced above,
consists of 3 evaluations, 2 completion detections and 1
precharge. The analytical pipeline cycle time, TPS0, there-
fore is:

TPS0 = 3 � tEval + 2 � tCD + tPrech

where, tEval and tPrech are the evaluation and precharge times
for each stage, and tCD is the delay through each completion
detector.3

The per-stage forward latency, L, is defined as the time
it takes the first data token, in an initially empty pipeline, to
travel from the output of one stage to the output of the next
stage. For PS0, the forward latency is simply the evaluation
delay of a stage:

LPS0 = tEval

3. High-Throughput Pipelines: LPSR2=1
This section presents LPSR2/1, an asynchronous pipeline style
which we recently introduced [8]. In this style, unlike
Williams’, an early evaluation protocol is used, in which
a pipeline stage receives control information not only from
the subsequent stage, but also from its successor. As a re-
sult, the pipelines have shortened cycle times.

3To simplify the presentation, this paper will sometimes assume that all
the pipeline stages have the same evaluation delay and the same precharge
delay, and that all the completion detectors are equally fast. More realistic
HSPICE simulations are presented in the Results section.



aC

+

F1

matched
delay

PC Eval

aC

+

F2

matched
delay

PC Eval

aC

+

F3

matched
delay

PC Eval

P/E P/E P/E

Figure 3. Block diagram of an LPSR2/1 pipeline

The pipeline name indicates that 2 of 3 events in the
stage’s cycle are in the evaluate phase, and 1 event falls in
the precharge phase; “SR” indicates single-rail. (More cor-
rectly, these designs are not always single-rail, since two
rails are sometimes needed in dynamic logic to generate
unate functions. However, in all cases, unlike Williams’
design, no dual-rail completion detectors are used: only
matched delays.)

3.1. Pipeline Structure
Fig. 3 shows the block diagram of an LP SR2/1 pipeline. Like
PS0, each stage has a function block and a control block.
The function block alternately evaluates and precharges.
However, unlike PS0, no dual-rail completion detector is
used. Instead, we use a common bundled data scheme: the
control block generates a bundling signal to indicate com-
pletion of evaluation (or precharge) [9]. The signal passes
through a matched delay timed to equal or exceed the worst-
case latency of the dynamic function block (evaluate and
precharge). The resulting Done output is the stage’s com-
pletion signal, indicating a valid input to the next stage.
Note that for the special case of gate-level pipelines, the
matched delay is usually unnecessary: the stage delay is of-
ten matched by the control block.

The main novelty is that an LP SR2/1 stage, unlike a PS0
stage, now has two control inputs. The stage receives an in-
put not only from the subsequent stage (PC), but also from
its successor (EVAL). This second input enables early eval-
uation; it is the key to achieving a shorter cycle time.

aC
A

B

C +

Z B

A

C

Z

Figure 4. Asymmetric C-element notation

An asymmetric C-element, aC [10], is used to implement
the completion detector. Fig. 4 shows an example. The no-
tation indicates the set (+) and reset (-) enabling conditions.
The remaining unmarked inputs are conditions for both set
and reset. In the given example, B = C = 1 is the set con-
dition,A = B = 0 is the reset condition, and all other input

states result in hold. Arbitrary set and reset conditions can
be specified, as long as they are disjoint.

In the pipeline of Fig. 3, the aC asserts the bundling sig-
nal (high) when two conditions hold: (i) the stage is in the
evaluate phase, and (ii) valid input has arrived (signaled
through matched delay input). The bundling signal is de-
asserted low when only one condition holds: the stage is in
its precharge phase.

3.2. Pipeline Protocol and Performance

We now present the synchronization conditions between
stages. As in PS0, stage N precharges when N + 1 com-
pletes evaluation. However, unlike PS0, stage N will start
its next evaluation early. The idea is to allow stage N to
evaluate as soon as stage N +1 has started precharging, in-
stead of waiting for it to complete precharging. This idea
can be used because a dynamic logic stage entering the
precharge state is insensitive to changes on its inputs.4 Sim-
ilarly, stageN+1 starts to precharge once N+2 has finished
evaluating. Therefore, our new early evaluation condition
is: stage N evaluates when N + 2 completes evaluation.

The pipeline structure directly implements these condi-
tions. The evaluate phase is enabled when EVAL is asserted
high (from N+2), or PC is de-asserted low (from N+1), or
both. The former condition occurs when stage N + 2 com-
pletes its evaluation: this is the “early evaluate” signal. The
latter condition is identical to the conservative evaluation
signal of PS0; its role will be explained below.

The evaluate phase ends, and the precharge phase begins,
when two conditions hold: (i) stage N +1 has completed
evaluation (as in PS0: PC is asserted high), and (ii) stage
N+2 has completed precharging (EVAL is de-asserted low).
The NAND gate in Fig. 3 combines these two conditions.

Interestingly, during LP2/1’s evaluate phase, the early
EVAL signal from stage N + 2 may be non-persistent: it
may be de-asserted low even before stage N has had a
chance to evaluate its new data! The result could be a mal-
function due to glitchy control. However, one-sided timing
constraints are imposed below to ensure a correct evaluate
phase: PC=low will always arrive in time to takeover control

4In general, this property is true of “fully-controlled” or “footed” dy-
namic logic, which we use.



of the evaluate phase, which will then be maintained until
stage N has completed evaluating its inputs (as in PS0).

A complete cycle of events, from one evaluation of stage
F1 to the next, can be simulated in Fig. 3. Assume no
matched delays are required for the gate-level pipeline, i.e.
the aC completion detector already matches the stage’s de-
lay. The simulation consists of three events: (i) stage F1

evaluates, (ii) stage F2 evaluates and, through the NAND,
asserts the precharge control of stage F1, then (iii) stage F1

precharges. Concurrently, after completing step (ii), we also
have (iii)’ stageF3 evaluates and, through the NAND, asserts
an “early evaluate” of stage F1, thus terminating precharge
and initiating the next evaluate phase (in the next step).
Thus, the cycle time is:

TLPSR2=1 = 2 � tEval + taC + tNANDB

where tEval is the evaluation delay of a stage (gate), and taC
and tNANDB are the delays of the aC element and NAND gate,
respectively. The latency of a stage is: LLPSR2=1 = tEval.

3.3. Special Issues
The pipeline uses two optimizations that take advantage of
the innate property of dynamic logic. The first is aimed at
reducing the cycle time; the second is aimed at decreasing
latency.

The first optimization is to produce an early done sig-
nal: to tap the Done signal to the previous stage from be-
fore the matched delay, instead of after the matched delay
(see Fig. 3). For footed dynamic logic, it is safe to indi-
cate completion of precharge as soon as the precharge cycle
begins: during precharge, the stage is effectively isolated
from changes at its inputs. Similarly, completion of evalua-
tion can be indicated soon after the stage begins to evaluate
on valid inputs; at this point, the outputs are effectively iso-
lated from a reset of the inputs.

The second optimization is to allow an early precharge-
release. In dynamic logic, a function block can be
precharge-released before new valid inputs arrive. Once in-
puts finally arrive, the block (and corresponding aC com-
pletion element) will start evaluating. Thus, in our design,
precharge release of the function block is decoupled from
the arrival of the inputs.

3.4. Timing Constraints
One-sided timing constraints must be satisfied for correct
operation. We found, in practice, that these timing con-
straints are easily satisfied. Below is a brief summary; for
more details, see [8].
Precharge Width. LPSR2/1 pipelines have a shorter
precharge phase than PS0 pipelines since the start of the
evaluation phase is advanced. A minimum precharge width
must be enforced. Considering the earlier simulation, the
precharge width of stage N is bounded by the comple-
tion detector delay in stage N + 2, which terminates the
precharge with the next “early evaluate” signal. In practice,
the precharge phase benefits from the extra inverter delay
which the EVAL=high signal must go through at the inputs
of the NAND gate.

tPrechN � taC + tINV

In our experience, this constraint is easily satisfied.

Safe Takeover. For correct operation in the evaluation
phase, the “takeover” signal from stage N + 1 (PC=low)
must arrive at the inputs of the NAND gate before the non-
persistent EVAL from stage N + 2 is de-asserted low. This
requirement ensures a glitch-free evaluation phase when
early evaluation is used.

An equation can be derived assuming that stage N + 2
has just completed evaluation, which starts the early eval-
uation of state N (EVAL=1). Stage N + 1 will produce
the desired takeover signal, PC=low, from a path through
its NAND gate and aC element. Concurrently, EVAL will
be de-asserted low once N + 2 precharges, i.e. from a path
throughN+3’s aC element, andN+2’s NAND gate and aC
element, and finally, an inverter to N ’s NAND gate. Thus, to
maintain uninterrupted evaluation, the takeover should ar-
rive at least a setup time, tsetup, before EVAL is de-asserted:

tNANDB + taC + tsetup � taC + tNANDB + taC + tINV

Assuming all stages are similar, this constraint becomes:

tsetup � taC + tINV

This constraint is also easily satisfied. Hold time and other
constraints are discussed in [8].

4. High-Capacity Pipelines: LPHC
This section presents our second pipeline design, LP HC,
which is targeted toward high storage capacity. This new
pipeline is capable of storing as many distinct data tokens
as the number of stages. In contrast, conventional latch-free
dynamic pipelines, such as PS0 and LPSR2/1, only have half
the storage capacity: for correct operation, a “reset spacer”
must separate adjacent data tokens.

There has been another recent asynchronous pipeline ap-
proach which uses novel latch structures to improve the
storage capacity [7]. However, the throughput of this
scheme is worse than that of Williams’ PS0, though it is still
an improvement over a more conservative PC0 scheme [10].

4.1. Overview
Our new LPHC pipeline combines both asynchronous and
self-resetting features. A novelty is that it decouples the
control of pull-up and pull-down. A dynamic gate is now
controlled by two separate inputs, pc and eval.5 Using
these signals, unlike traditional approaches, a stage is driven
through three distinct phases in sequence: evaluate, isolate
and precharge. In the isolate phase, a stage holds its outputs
stable irrespective of any changes at its inputs. As a result,
adjacent pipeline stages are capable of storing distinct data
items.

The remainder of this section presents the structure, pro-
tocol, implementation, and performance and timing analy-
sis of LPHC pipelines.

5Note that the pc and eval signals of this section are different from the
PC and EVAL signals of LP SR2/1 pipelines. Whereas PC and EVAL were
first combined using a NAND gate and then used inside the dynamic gate,
pc and eval are here directly used as two separate gate inputs.



F1

aC
+
-
+

Stage
Controller

pc eval

T

matched
delay S

F2

aC
+
-
+

Stage
Controller

pc eval

matched
delay

F3

aC
+
-
+

Stage
Controller

pc eval

matched
delay

Figure 5. Block diagram of an LPHC pipeline

4.2. Structure
Fig. 5 shows a block diagram of a LP HC pipeline. Each stage
consists of three components: a function block, a comple-
tion detector and a stage controller. Much like LP SR2/1, the
function block alternately produces data tokens and reset
spacers for the next stage, and the completion detector indi-
cates completion of the stage’s evaluation or precharge. The
third component, the stage controller, generates the decou-
pled signals, pc and eval, which control the function block
and completion detector.

n-stack

output

pceval

Figure 6. Details of a stage function block

Fig. 6 shows one gate of a function block in a pipeline
stage. The pc input controls the pull-up stack and the eval
input controls the “foot” of the pull-down stack. Precharge
occurs when pc is asserted low and eval is de-asserted low.
Evaluation occurs when eval is asserted high and pc is de-
asserted high. When both signals are de-asserted, the gate
output is effectively isolated from the gate inputs; this is the
“isolate phase.” To avoid a short circuit, pc and eval are
never simultaneously asserted.

As in our earlier design, an asymmetric C-element, aC,
is used as a completion detector. The detector’s output is set
when the stage has begun to evaluate, i.e., when two condi-
tions occur: the stage is in evaluate phase (eval is high), and
the previous stage has supplied valid input (completion de-
tector output of previous stage is high). Its output is reset
when the stage is enabled to precharge (pc asserted low).
Thus, precharge will immediately reset the completion de-
tector’s output, while evaluate will only set the detector’s

output if valid data inputs have also arrived.
The aC element output is again fed through a matched

delay, which (combined with the completion detector)
matches the worst-case path through the function block. As
indicated earlier, for a gate-level pipeline, the matched de-
lay is often unnecessary: the aC delay already matches the
function block delay.

The resulting completion signal T (of stage F2 in the
figure), in turn, is fed to three components: (i) the previous
stage’s controller, indicating current stage’s state, (ii) the
current stage’s controller (through the matched delay), and
(iii) the next stage (through the matched delay).

The stage controller will be discussed shortly, after pre-
senting the desired protocol.

4.3. Protocol
A pipeline stage simply cycles through three phases, as
shown in Fig. 7. After it completes its evaluate phase, it
then enters its isolate phase and subsequently its precharge
phase. As soon as precharge is complete, it re-enters the
evaluate phase again, completing the cycle.

The novelty of the approach is seen in the protocol which
governs the interaction between stages. Unlike PS0 and
LPSR2/1 pipelines, there is now only one explicit synchro-
nization point between stages. Once a stage N + 1 has
completed its evaluate phase, it enables the previous stage
N to perform its entire next cycle: precharge, isolate, and
evaluate new data item. In contrast, Williams’ PS0 uses two
explicit synchronization points between adjacent stages: for
start of evaluation and for start of precharge. Likewise, our
LPSR2/1 design uses two explicit synchronization points, but
signaled from two distinct stages: from N + 1 (to start
precharge) and from N + 2 (to start evaluation).

As usual, there is one additional implicit synchronization
point: the dependence of stage’s N + 1’s evaluation on its
predecessor N ’s evaluation. A stage cannot produce new
data until it has received valid inputs from its predecessor.
Both of the synchronization points are shown by causality
arcs in Fig. 7.

The introduction of the isolate phase is the key to the
protocol. Once a stage finishes evaluation, it immediately
isolates itself from its inputs by a self-resetting operation—
regardless of whether this stage will soon be allowed to en-



Eval

Isolate

Precharge

Eval

Isolate

Precharge

Stage N Stage N+1

(pc=1
eval=1)

(pc=1
eval=0)

(pc=0
eval=0)

Figure 7. Sequence of
phases in a stage cycle, and
interaction between stages

(a)

pc+ eval+

pc-

eval-

S+

S-

(Start
Evaluate)

(Evaluate
Complete)

(Isolate)

(Start
Precharge)

(Precharge
Complete)

T+

T-

(Evaluate of
N+1 Complete)

(Precharge of
N+1 Complete)

T+

T-

pc+ eval+

pc-

eval-

S+

S- ok2pc-

ok2pc+

(b)

Figure 8. Petri-net specification of pipeline stage con-
troller: (a) before, and (b) after state variable inser-
tion. S and T are controller inputs, pc and eval are
outputs, and ok2pc is a state variable.

ter its precharge phase. Subsequently, its predecessor can
not only precharge, but even safely evaluate the next data
token, since the current stage will remain isolated.

There are two benefits of this protocol: (a) higher
throughput, since a stage N + 1 can evaluate the next data
item even before N has begun to precharge; and (b) higher
capacity for the same reason, since adjacent pipeline stages
are now capable of simultaneously holding distinct data to-
kens, without requiring separation by spacers.

4.4. Stage Controller
A formal specification of the stage controller is given in
Fig. 8(a). This specification can be easily deduced from the
sequence of phases in a stage cycle (Fig. 7). The controller
of stage N has two inputs, S and T, which are the “done”
outputs of stage N and stage N+1 respectively (see Fig. 5),
and it has two outputs, pc and eval, which drive stage N .

The specification of Fig. 8(a) is actually too concurrent to
be directly synthesizable. Intuitively, the enabling condition
for precharging stage N is ambiguous: N has evaluated a
data item and is entering the isolate phase (S high), and N+
1 has then evaluated the same item (T high). The problem is
that, ifN+1 is blocked or slow, it may continue to maintain
its high T output, while stage N processes an entire new
data input (precharge then evaluate). In this case, the signals
S and T again are both high, but now N and N + 1 have
distinct tokens: since N + 1 has not absorbed the new data,
stage N must not be precharged.6

This problem is easily solved by adding a state vari-
able, ok2pc, implemented by an asymmetric-C element (see
Fig. 8(b)). This variable effectively records whether stage
N + 1 has absorbed a data item: it is reset immediately af-
ter stage N precharges (S low), and is only set again once
N + 1 has undergone a subsequent precharge (T low).

6More formally, the specification does not satisfy the complete state
coding (CSC) property.

NAND3

S

T pc

aC
S

T ok2pc+

S evalINV

Figure 9. Stage Controller Implementation

Fig. 9 shows an implementation of the controller of
Fig. 8(b). The implementation is very simple, with the
three signals—pc, eval and ok2pc—each implemented us-
ing a single gate. The controllers directly implement the
conditions described above and in the previous subsection.

4.5. Pipeline Cycle Time and Latency
A complete cycle of events for stage N can be traced in
Fig. 5. From one evaluation by N to the next, the cycle
consists of three operations: (i) stage N evaluates, (ii) stage
N + 1 evaluates, which in turn enables stage N ’s controller
to assert the precharge input (pc=low) of N , (iii) stage N
precharges, the completion of which, passing through stage
N ’s controller, enables N to evaluate once again (eval as-
serted high).

Assume that no extra matched delays are required for
the gate-level pipeline, i.e. that the completion detector
and other delays already match the gate’s evaluate and
precharge. Then, in the notation introduced earlier, the de-
lay of step (i) is tEval, the delay of step (ii) is taC + tNAND3,
and the delay of step (iii) is tPrech + tINV. Here, tNAND3 and
tINV are the delays through the NAND3 and the inverter, re-
spectively, of Fig. 9. Thus, the pipeline cycle time is:

TLPHC
= tEval + tPrech + taC + tNAND3 + tINV



A stage’s latency is simply the evaluation delay of the stage:
LLPHC

= tEval.

4.6. Timing Constraints
State Variable. LPHC pipelines require a one-sided timing
constraint for correct operation. The signal ok2pc goes high
once the current stage has evaluated, and the next stage has
precharged (ST=10). Subsequently, T goes high as a result
of evaluation by the next stage. For correct operation, ok2pc
must complete its rising transition before T goes high:

tok2pc" < tEval + tINV

In practice, this contraint was very easily satisfied.
Precharge Width. As in LPSR2/1, an adequate precharge
width must be enforced. In this design, the constraint is
partly enforced by the bundling constraint: the aC ele-
ment and the (optional) matched delay, together, must have
greater delay than the worst-case precharge time of the
function block. Hence, the S input to the NAND3 in Fig. 9
will be maintained appropriately.

However, there is one additional constraint on precharge
width: the T input to the same NAND3 must not be de-
asserted. Suppose T just went high. At this point, stage
F1’s NAND3 starts the precharge of F1 (in Fig. 5). Con-
currently, T will only be reset after a path through F3’s aC
element, F2’s NAND3 and aC and F1’s NAND3:

tNAND3 + tPrechN � taC + tNAND3 + taC + tNAND3

Assuming all stages are similar, this constraint becomes:

tPrechN � taC + taC + tNAND3

This final constraint is also easily satisfied.
Isolate Phase. The inverter in Fig. 9 is used to isolate after
evaluate. The bundling constraint already ensures that the
isolate phase does not start too early.

5. Example: Pipelined Ripple-Carry Adder
As a case study, two versions of a gate-level pipelined adder
were implemented using LPSR2/1 and LPHC styles. A 32-bit
ripple-carry adder was selected, since its design is simple
and yet amenable to very fine-grain pipelining. Both adders
are suitable for high-throughput applications such as DSP’s
for multimedia processing.

5.1. Adder Datapath
Each stage of a ripple carry adder consists of a full-adder,
which has three data inputs (operandsA and B, and carry-in
Cin) and two outputs (carry-out Cout, and Sum). The logic
equations are:

Sum = A�B � Cin
Cout = AB + ACin + BCin

Since exclusive-or needs both true and complemented val-
ues of its operands, our implementation uses two rails each
to represent A;B;Cin and Cout:

Sum = (a1b0 + a0b1)cin0

+ (a1b1 + a0b0)cin1

cout1 = a1b1 + (a1 + b1)cin1

cout0 = a0b0 + (a0 + b0)cin0

In both designs, each of the three outputs, Sum, cout1 and
cout0 , was implemented using a single dynamic gate.

5.2. Adder Control
Interestingly, unlike our pipeline structures, the pipelined
adder is a non-linear structure. A stage now merges three
distinct input streams: the two data operands and the carry-
in. Therefore, our pipeline structures must be extended to
handle multiple sources. In particular, since each full-adder
stage represents a synchronization point of multiple input
streams, it must have the capability to handle multiple bun-
dled inputs (i.e., “request” signals).

To somewhat simplify our design, it was assumed that
the inputs A and B belong to one shared data stream with
a common bundling signal reqab. The Cin input along
with reqc forms the other stream. Thus, only two input
streams are assumed: data operands and carry-in. In prac-
tice, this is a reasonable assumption in many applications
where operands come from the same source. If this assump-
tion does not hold, our approach can be extended to handle
three independent threads.

+

P/E

reqab
reqc

matched
delay reqout

(a)

aC+

done

aCreqab
reqc

pc matched
delay reqouteval

+
+
+

(b)

done

Figure 10. The modified completion detectors
for (a) LPSR2/1 adder, and (b) LPHC adder

Fig. 10 shows the modified completion detectors. The
detectors now synchronize on both the data inputs (reqab)
and the carry-in (reqc). Each additional request signal is
accommodated by adding one transistor to the pull-down
stack of the asymmetric C-element of the completion block.
The resulting done output signal is forked to three desti-
nations: as “acknowledgments” to the stage that sent the
carry-in and to the stage that sent the operands, and also as
a “request” to the next stage.

Finally, a shift-register is attached to each adder stage to
accumulate the stream of sum bits coming out of that stage,
as is done in Williams’ self-timed divider [10]. Once all
the sum bits for an addition operation are available, they
can be read off in parallel, one bit from each shift-register.
The shift-registers can themselves be built as asynchronous
pipelines according to either of the pipeline schemes of this
paper.

6. Results
This section presents the results of HSPICE simulations of
our two new pipelined adders: LP SR2/1 and LPHC.

6.1. Experimental Setup
The 32-bit ripple carry adders were simulated in HSPICE
using a 0:6�m HP CMOS process with operating condi-
tions of 3.3V power supply and 300ÆK. Special care was
taken to optimize the transistor sizing for high-throughput.
The precharge PMOS transistors in each dynamic gate had
a W=L ratio of 18�=2�. The NMOS transistors in the eval-
uation stack were so sized that the effective width of the



Cycle Time, T Throughput
Adder tEval tPrech taC tNANDB tNAND3 tINV 106 items
Design (ns) (ns) (ns) (ns) (ns) (ns) Analytical Formula (ns) per sec.

LPSR2/1 0.28 0.24 0.28 0.22 2 � tEval + taC + tNANDB 1.07 930
LPHC 0.26 0.23 0.26 0.12 0.11 tEval + tPrech + taC + tNAND3 + tINV 0.98 1023

Table 1. The performance of the LPSR2/1 and LPHC adders.

n-stack was 1=3 that of the p-stack. Furthermore, for each
of the designs, it was ensured that the timing constraints of
Sections 3 and 4 were comfortably met.

6.2. Simulation Results
Table 1 summarizes the simulation results. For each de-
sign, the table lists the overall cycle time as well as its
breakdown into components: stage evaluation time (tEval),
stage precharge time (tPrech), the delay though the comple-
tion block (taC), as well as the delays through the control
gates (tNANDB, tNAND3 and tINV). Finally, the table lists the
throughput of each adder in million operations per second.

The throughputs of the adders are quite good: 930
and 1023 million operations per second. Interestingly, the
throughput using our new high-capacity structure (LP HC) is
10% faster than using our earlier high-throughput structure
(LPSR2/1). This improvement can be attributed to two factors.
First, after cancelling similar terms from the analytical cy-
cle times of LPHC and LPSR2/1, the new scheme is left with the
relatively smaller tPrech term, compared with the somewhat
larger tEval term that remains in the latter. Second, LP HC has
slightly smaller tEval and tPrech values than in LP SR2/1; this
difference occurs because LPSR2/1 has heavier loading on the
bundling output, which must be forked off to two previous
stages instead of one.

We do not yet have a direct comparison with recent
synchronous approaches, since we have not implemented,
sized and simulated comparable designs. However, it is
worth noting that one of the best new synchronous fine-
grain pipeline styles has significantly lower performance.
In [5], a wave-steering approach is proposed to build syn-
chronous gate-level pipelines from decision diagrams. The
minimum reported clocking period for correct functionality
after optimized device sizing was 1.4 ns in 0.5�. Our LP HC

adder is 42% faster in 0.6� technology.
Additional expected benefits of our asynchronous

pipelined adders over synchronous versions, especially for
system-on-a-chip, are that they: (a) accommodate varied in-
put and output rates (useful as a reusable component, for in-
terfacing with different IPs); (b) only consume (non-trivial)
power in the active portions of the adder (no clock gat-
ing required); and (c) avoid problems of high-speed clock
distribution issues. The latter benefit should be especially
useful when re-implementing our designs in more modern
processes of <0.2�, where clock rates of several Gigahertz
would be required.

7. Conclusions
This paper has introduced a new asynchronous gate-level
pipelining scheme, and two new pipelined adder implemen-

tations, for high-throughput applications. The novelty of
our approach is two-fold: (i) decoupled control for the pull-
up and pull-down of dynamic gates, and (ii) only a sin-
gle explicit synchronization point between adjacent pipeline
stages. Simulation of our pipelined adder designs shows
that the increased concurrency results in extremely high
throughput. In addition, the simulations demonstrate that
the one-sided timing constraints for our pipelines are very
easily satisfied in practice. We expect our control latencies
to be competitive with the overheads of wave-pipelined ap-
proaches [12], and yet our pipelines are more robust and
require much less design effort. In more modern technolo-
gies, we expect our pipelines to deliver a throughput of sev-
eral Gigaoperations/second.
Acknowledgments. The authors gratefully acknowledge
Naeem Abbasi and Prof. Ken Shepard for their help with
simulations. We also benefited from helpful discussions
with Michael Theobald and Tiberiu Chelcea.

References
[1] A. Dooply and K. Yun. Optimal clocking and enhanced testability for

high-performance self-resetting domino pipelines. In ARVLSI’99.
[2] D. Harris and M. Horowitz. Skew-tolerant domino circuits. IEEE

JSSC, 32(11):1702–1711, Nov. 1997.
[3] W. Liu, C. T. Gray, D. Fan, W. J. Farlow, T. A. Hughes, and R. K.

Cavin. A 250-MHz wave pipelined adder in 2-�m CMOS. IEEE
JSSC, 29(9):1117–1128, Sept. 1994.

[4] C. Molnar, I. Jones, W. Coates, J. Lexau, S. Fairbanks, and I. Suther-
land. Two FIFO ring performance experiments. Proceedings of the
IEEE, 87(2):297–307, Feb. 1999.

[5] A. Mukherjee, R. Sudhakar, M. Marke-Sadowska, and S. Long.
Wave steering in YADDs: a novel non-iterative synthesis and lay-
out technique. In Proc. DAC, 1999.

[6] V. Natayanan, B. Chappell, and B. Fleischer. Static timing analysis
for self resetting circuits. In Proc. ICCAD, 1996.

[7] M. Renaudin, B. Hassan, and A. Guyot. New asynchronous pipeline
scheme: Application to the design of a self-timed ring divider. IEEE
JSSC, 31(7):1001–1013, July 1996.

[8] M. Singh and S. Nowick. High-throughput asynchronous pipelines
for fine-grain dynamic datapaths. In Proc. Intl. Symp. Adv. Res.
Async. Circ. Syst. (ASYNC), 2000.

[9] C. van Berkel, M. Josephs, and S. Nowick. Scanning the technology:
Applications of asynchronous circuits. Proceedings of the IEEE,
87(2):223–233, Feb. 1999.

[10] T. Williams. Self-Timed Rings and their Application to Division. PhD
thesis, Stanford University, June 1991.

[11] T. Williams and M. Horowitz. A zero-overheadself-timed 160ns 54b
CMOS divider. IEEE JSSC, 26(11):1651–1661, Nov. 1991.

[12] D. Wong, G. De Micheli, and M. Flynn. Designing high-performance
digital circuits using wave-pipelining. IEEE TCAD, 12(1):24–46,
Jan. 1993.

[13] K. Yun, P. Beerel, and J. Arceo. High-performance asynchronous
pipeline circuits. In Proc. Intl. Symp. Adv. Res. Async. Circ. Syst.
(ASYNC), 1996.


