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The ever-shrinking technology features have as a direct consequence
the increase of defect density in VLSI chips. Going into the nano-
scale era, the fabrication procedures cannot keep improving at the
pace of the aforementioned shrinking of technology features. Fault
Tolerance emerges as a much cheaper solution and it is imperative in
the future to be able to build a reliable system with unreliable compo-
nents. Reconfigurable realization platforms offer the ideal substrate
for such approaches, because of their regularity and reconfigurabil-
ity, which allow for the basic resources to be substitutable, relaxing
the defect-free requirement for the whole chip. Sparing and match-
ing techniques allow for substitution and alternative utilization of
resources respectively, paving the way to the nano-scale era.
Although a significant number of research works have focused on
sparing, very few actually go on to reusing the defective resources
and even in these cases, the characterization is conservative, sac-
rificing more functionality than it needs to. We focus on improv-
ing the particular drawback, by proposing two distinct methods for
high resolution fault diagnosis of reconfigurable logic resources. The
methods are based on the function generator and shift register modes
of operation of an FPGA slice. We choose to decouple the diagno-
sis problem from those of fault detection and localization that have
been extensively researched and in this way relax the fault coverage
requirements for our methods: It is critical to rescue the core func-
tionality of a defective resource with minimal cost, rather than cover
100% of its possible faults. Substitutable Resource Characterization
is performed based on the diagnosis result in a modular manner.
Both diagnostic testers are prototyped on FPGA and applied to a
real Circuit Under Test, with the help of fault injection. The exper-
imental results show that our approach offers the basis for a viable,
low-overhead integrated fault tolerance strategy, which we hope to
continue developing in the near future.
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Introduction 1
T

he reliance of today’s world on computer systems is not something to argue about.
The spread of personal computers is not as important a reason for the above fact,
as the range of applications of Embedded Systems: Ranging from household appli-

cations to space exploration and from gaming consoles to biomedical systems, Embedded
Computers are a dominant factor in shaping the character of modern societies.

The market of Embedded Systems is extremely diverse. Depending on the specific
application, a multitude of factors change, resulting in variations of design and imple-
mentation strategies. That might increase the importance of finding engineers that are
specialized in the target application, but at the same time makes engineers that have a
solid knowledge of general design principles invaluable.

A very good example of applications with special design and implementation require-
ments is the set of applications that have at least one of the following characteristics:

• The system functions in a place where it is difficult to reach, in order to check,
repair or substitute with a new one.

• The surrounding environment is hostile for digital systems, which affects the results
of calculations.

• The application is safety-critical, meaning that the occurrence of an error, regard-
less of how probable this error is, can have catastrophic consequences.

Interestingly enough, two, or even all three of the above characteristics often coexist. For
example, many environments that are hostile to electronics, are also hardly reachable by
humans. Whether a system works in the bottom of the sea, or in space, it is subject to
the above hindrances. Moreover, if the navigation system of a spacecraft fails, it might
mean the premature end of the mission. The umbrella term that engulfs all strategies
and technologies to overcome these difficulties is Fault Tolerance.

Some elementary examples of fault tolerance are error-correcting codes [23] and ma-
jority voting [38]. Error-correcting codes append each basic element of data with a few
extra bits in such a way that one error among the bits of this data element can be
detected and corrected. Majority voting allows a percentage of the components that
compose the system to produce wrong results, temporarily or permanently, by perform-
ing the operations on three or more identical modules and choosing the result produced
by most of them (Figure 1.1).

Fault tolerance techniques evolved over the years and also affected (and were af-
fected by) the realization platforms. This thesis is particularly interested in realization
platforms characterized by regularity, the most widespread example of which are FP-
GAs. FPGAs first appeared in 1985 and dominated the market, starting in the ’90s and
still going on until today [1]. The use of regular structures like FPGAs triggered the

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The elementary majority voter.

development of techniques that focused on the basic block of these structures. These
techniques are called sparing and matching (see next section). Matching in particular
is the motivation behind this thesis, as will be shortly explained. Driven by the match-
ing paradigm, we develop and compare two different methods for characterizing faulty
FPGA basic blocks, which means deciding which functions they can still perform, despite
their faults.

The rest of this introductory chapter is organized as follows: In Section 1.1 we briefly
explain the techniques of sparing and matching, the second of which is the incentive of
this thesis. In Section 1.2 we state with precision the problem that we target. In
Section 1.3 we list the goals we had when we started working on the particular problem.
Finally, in Section 1.4 we present an outline of the rest of the thesis chapters.

1.1 Thesis Incentive

Fault Tolerance has gained a lot of ground in recent years. Except from the special
characteristics of some applications, an important factor for this development is the
shrinking of technology features. Borkar in [9] talks about designing reliable systems
from unreliable components and argues about the outmost importance of orienting en-
gineers towards this paradigm. It is mentioned that in the years to come it will be
increasingly difficult to fabricate a defect-free chip, because the fabrication procedures
cannot decrease the defect density to keep up with the increase of the number of transis-
tors in a given area. It is also pointed out that aging effects (that is, elements that are
not defective in fabrication time but will stop functioning during the system lifetime)
will have as a result the degradation of the system with time, which has to be dealt with.
These two trends are illustrated in Figures 1.2 and 1.3.

To face these new challenges and accomplish to build reliable systems, the main
quality that researchers try to exploit is regularity. As already mentioned, researchers
and engineers working on Fault Tolerance for regular realization platforms, have to also
consider how important the regularity property is. The reason for that is that regularity
makes it very easy to focus any method on the basic block, since this block is always the
same. FPGAs in particular are based on Logic Cells, Slices and Configurable Logic Blocks
(CLBs) and in principal, all blocks (i.e., all Slices) of the same device are identical. These
basic blocks, in the fault tolerance context, are generally called Substitutable Resources.
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Figure 1.2: The shrinking of technology features means that in the future a smaller percentage
of transistors on a given area will function with the desired voltage [9].
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Figure 1.3: Aging Effects are going to become more intense in the future [9].

Both sparing and matching focus on these substitutable resources and are based on
the observation that not all of them have to be functional in order for the whole chip to
work. Indeed, everyone who has designed a system targeted for FPGA, knows that in
the general case not all slices (or CLBs) of the device are utilized. This means that, even
if all the non-utilized blocks happened to be defective, there would be no problem with
the functionality of the system. Thus, both methods start by testing the Substitutable
Resources for permanent defects. They subsequently differentiate themselves by dealing
with these defects in different ways: With sparing, every defective resource is marked as
unusable, while on the contrary, with matching, every defective resource is also charac-
terized (Figure 1.4). Characterizing means finding out the subset of functions that the
defective component can still perform, despite its defect (see Figure 1.5), in order to still
be able to use it [36].

Figure 1.4: Concepts of sparing and matching.
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Figure 1.5: Concept of Substitutable Resource characterization.

It is important to note the difference between the requirements of testing a component
in general and of testing it for characterization: In the former case, it is enough to produce
a go/no go verdict for the whole component, while in the latter we have to find out what
exactly is wrong with it, in order to perform the characterization. The process of finding
the particular fault that caused a component to malfunction is called fault diagnosis and
is naturally more complex than that of go/no go testing. Thus, the tradeoff that exists
between sparing and matching is clear: Sparing is simpler to implement but matching
wastes less potential functionality of the whole device. It should also be noted that
diagnosis can take place either after testing has revealed a component to be faulty, or in
parallel with testing.

1.2 Problem Statement

As it became clear in the previous section, FPGAs are ideal for sparing- and matching-
based techniques. In this section, we will define the particular problem targeted by this
thesis. Through the study of existing literature, we obtained quite a complete picture
of various families of approaches for testing FPGAs, either partly or as a whole, either
with or without Fault Tolerance being considered. We concluded that the dominant
factor in FPGA testing efficiency is that of testing phases [14], meaning the number of
reconfigurations required to fulfill the testing goal, whether this is a go/no go decision
or any degree of fault localization or diagnosis. We came across a significant number of
works that didn’t stop at testing whether the FPGA is fault-free or not, but went on
to locate the basic block in which the fault occurs. The vast majority of these works,
though, considered this level sufficient and did not go on to characterize the faulty
resource. This observation naturally triggered our interest about how easy and how
useful would characterizing be, especially knowing that because of established technology
trends, defect density is going to increase and even small substitutable resources will have
a bigger probability of being faulty.

Another factor that affected the direction of our research, was the definition of the
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FaTES (Fault Tolerant Embedded Systems) research project by the Computer Engineer-
ing group of TU Delft. This thesis came up as an idea during the same meetings from
which the FaTES project originated. Being still in its infancy, FaTES actually aims for
an integrated SoC design methodology that engulfs implementation of Fault Tolerance
strategies at various levels of the system. It features a number of different Fault Toler-
ance scenarios, in which the notion of Substitutable Resources plays an important role
and it is crucial to make as efficient use of these resources as possible. One of our goals
for this thesis is to fit the framework defined by that project.

For the above reasons, we aimed for characterization of FPGA basic blocks. To be
more precise, the exact formulation of the problem is as follows: Assuming that we have
an FPGA slice that we know through previous test results to be faulty, or to have a
high probability of being faulty, in what degree can we characterize it and which set of
configurations can it support despite its fault? We also opted to limit ourselves to only
one or two testing phases (that means none or only one reconfiguration). The relevance of
the aforementioned problem will be even more apparent after we present the pre-existing
related work.

1.3 Thesis Goals

In this section we will define in more detail the goals with which we started this thesis,
in accordance with the problem we defined in Section 1.2. These goals are the following:

• To develop, implement and realize two different methods for conducting fault di-
agnosis on an FPGA slice. The difference of the two methods lies in the core of the
slice, the 2 LUTs, which can be configured, among others, as function generators
or as shift registers. We aim to use each of these configurations in one of the two
methods and observe the advantages and disadvantages that come with each.

• To decouple the problem of fault diagnosis from the previous stages of testing, as
opposed to the vast majority of works that treat testing, localization and diagnosis
as one problem.

• To keep the number of testing phases very low, namely two phases for the function
generator based method and one phase for the shift register based method. In
these 1 to 2 phases we want to achieve as high diagnostic resolution as possible.

• According to the result of the diagnosis, we aim to characterize the slice and decide
which set of functions it can still perform, in such a way that it can be reused with
specific configurations. The characterization should prepare the ground for the
development of an efficient matching algorithm in the near future.

• To apply the methods on a real, physical slice, using fault injection. This is the
best possible verification for our methods.

• To use the lessons learned from the whole process in order to propose a set of
guidelines for a more testable and diagnosis-friendly implementation of the basic
block of the FaTES SoC.
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1.4 Thesis Overview

In this section we present a brief outline of the rest of the thesis chapters.
In Chapter 2 we summarize existing research on topics closely related to this thesis.

Any themes that were merely mentioned in this introduction to help us define the problem
at hand, will also be adequately developed in that chapter. This presentation will solidify
the relevance and significance of the problem we solve.

In Chapter 3 we explain the two methods that we developed in order to achieve the
thesis goals. We will show, regardless of implementation details, that our approaches
can solve the problem that we target.

In Chapter 4, we will focus on the hardware design, analyzing the process of trans-
forming conceptual ideas to real working circuits. We will present the organization of
our system from an engineering point of view and explain how various components work
together to produce the correct results.

In Chapter 5 we will describe the experimental setup, which was based on a working
prototype of the proposed methods, present our experimental results and compare the
two methods using both quantitative and qualitative criteria.

Finally, in Chapter 6, we will summarize the ideas presented in the previous chapters,
list the thesis contributions, state our conclusions from the whole study and share with
the community our ideas for future work.
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n Chapter 1 we stated the problem that this thesis targets, along with the incentive
that led us to research this topic. As it is easily understandable, there are a lot of
topics relevant to the work at hand: Fault diagnosis, FPGA-specific testing methods

and fault tolerance are a few of them. The purpose of this chapter is twofold: First, to
define some basic notions that are required to read the rest of this document and second,
to summarize existing research, the results of which we used for our work.

The presentation of all necessary background information and related work in this
chapter is organized as follows: In Section 2.1 we mention a few important facts about
fault models and testing and go on to present some existing research particularly targeted
for FPGAs. In Section 2.2 we begin by expanding a little on the notion of fault tolerance
as it was introduced in Chapter 1 and go on to present some relevant and useful facts
about the techniques of sparing and (mainly) matching. Before the end of Section 2.2,
we also briefly refer to the FaTES paradigm, a newly-defined project relevant to this
thesis. Finally, in Section 2.3, we summarize the whole chapter and also briefly go back
to the problem statement and justify its significance and relevance.

2.1 The Testing Procedure

The necessary basis for all fault tolerant systems is being able to notice the occurrence of
faults, whether they are temporary or permanent. Only then can the fault subsequently
be contained and dealt with. In this section, we will give an overview of the various
stages of this procedure and clarify the position of our solution in that framework. We
will also elaborate a bit more on fault diagnosis, which is the main objective of this
thesis.

2.1.1 Fault Models

The basic term used for every malfunction of a digital system, like stopping to work
altogether, working outside of its specifications (i.e., working slower), or producing wrong
results is system failure. A system failure is caused by the occurrence of an error, meaning
a misbehavior of a part of the system, i.e. a counter not counting up when it is supposed
to. The root causes of such errors are, as long as this thesis is concerned, physical
defects in the underlying structure of the system. The exact nature of these defects
cannot be easily determined without observing the digital system in depth, i.e. with a
microscope [32].

In order for these defects to be detected and comprehended efficiently, they have to
first be abstracted by more easily approachable descriptions. Fault Models are lists of
possible misbehaviors (called faults) of a digital system that occur as the result of the

7
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presence of a defect [30]. The quality of a fault model is determined by how completely
it covers the possible defects that can occur in the system. Fault models are also differ-
entiated by the level of abstraction they introduce in the description of the misbehavior.
In this section we will mention a few categories of fault models and elaborate on two of
them with examples relevant to this thesis.

The general categories of fault models according to the abstraction level are [30]:

• Electrical Faults: This is the kind of faults that is closer to the level of actual
defects. They are also known as technology-dependent faults. An example electri-
cal fault is a transistor stuck-open fault, meaning that a transistor always behaves
as an open switch.

• Functional Faults: This kind of faults is defined in the Register-Transfer Level
(RTL). The best example of a functional fault is the stuck-at fault for wires (see
next section).

• Behavioral Faults: These faults do not take into account any internal information
of the system or component under test, but just the expected behavior.

2.1.1.1 The single stuck-at fault

A very popular RTL fault model is the single stuck-at fault [30]. It focuses on wires of a
combinational circuit diagram. It models underlying defects as wires of the circuit that
always have the value ‘0’ or the value ‘1’, hence we have the faults “signal” s.a. 0 and
“signal” s.a.1. It is not a very abstract description, in the sense that it closely resembles
the wire defects of short and open.

An example application of the single stuck-at fault model is illustrated in Figure 2.1.
This simple circuit has 10 possible faults under the specific fault model, listed in the first
column of Table 2.1.

Figure 2.1: Example circuit for Section 2.1.

2.1.1.2 Functional Fault Models for Memory

The regularity of memories allows us to use functional fault models to check each memory
cell for a number of possible malfunctions. In this context, a number of single-cell memory
faults are described as follows:

Each fault is described through a fault primitive, which is actually a tuple of 3
elements: < S/F/R > [7]. An example fault primitive is < 0w1/0/− >. The meaning
of each of the tuple members is explained below:
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Table 2.1: Test Vectors and Faulty Responses for the example circuit.

Test Vector 000 110 001 100

Fault Faulty Responses

fault-free 0 1 1 0

f0: A s.a. 0 0 0 1 0

f1: A s.a. 1 0 1 1 0

f2: B s.a. 0 0 0 1 0

f3: B s.a. 1 0 1 1 1

f4: C s.a. 0 0 1 0 0

f5: C s.a. 1 1 1 1 1

f6: a s.a. 0 0 0 1 0

f7: a s.a. 1 1 1 1 1

f8: OUT s.a. 0 0 0 0 0

f9: OUT s.a. 1 1 1 1 1

• S is the sensitizing sequence of the fault. In our example, 0w1 means we should
write an ‘1’ in a cell that now contains a ‘0’ in order to sensitize (trigger the
appearence of) the specific fault.

• F is the fault effect. In our example, 0 means that, even after the write operation,
the faulty memory cell still contains a ‘0’.

• R is a (possible) incorrect read value. In our example, the erroneous ‘0’ in the
memory cell is read correctly, thus R = ‘-’. The R field is meaningful in faults that
describe a malfunction of the read operation.

According to the above analysis, our example fault < 0w1/0/− > represents a mem-
ory cell that cannot transition from 0 to 1. The state diagram of this fault is shown in
comparison to the state diagram of a fault-free cell in Figure 2.2. More single cell faults
are defined and categorized in the same way as our example fault, by Al Ars, van de
Goor et al in [7] and [40]. The fault list that we used in this thesis is shown in Table 2.2.

In addition to the single-cell memory faults, there is also the category of 2-cell faults,
modeling the possible malfunctions of a memory cell because of interference with a neigh-
boring cell. Not having been applied on FPGA testing according to existing literature,
2-cell faults are out of the scope of this thesis.

The most popular family of tests for detecting memory faults is that of march
tests [32]. March tests consist of elements that correspond to one or more memory
operations to be conducted on all memory cells under test. An elementary march test is
the following:

{↑ w0; ↑ r0; ↑ w1; ↑ r1; }

This is a march test of 4 elements. The first element (w0) dictates that the value 0
should be written in all cells and the second (r0) that the value 0 that was just written
has to be read from each cell. Subsequently, the value 1 is also written to and read from
all cells.
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Figure 2.2: State diagrams for fault free and faulty memory cell.

Table 2.2: Memory faults considered in this thesis.

1 < 0/1/− > State Fault 1

2 < 1/0/− > State Fault 0

3 < 0w0/1/− > Write Disturb Fault 1

4 < 1w1/0/− > Write Disturb Fault 0

5 < 0w1/0/− > Transition Fault 0 → 1

6 < 1w0/1/− > Transition Fault 1 → 0

7 < 0r0/0/1 > Incorrect Read Fault 1

8 < 1r1/1/0 > Incorrect Read Fault 0

9 < 0r0/1/1 > Read Destructive Fault 1

10 < 1r1/0/0 > Read Destructive Fault 0

2.1.2 Testing, Localization, Diagnosis and Repair

The general definition of Digital Circuit Testing is the process through which we can
decide whether or not the device under test was fabricated without problems (called
defects) and can provide the expected function. It is not to be confused with design
verification, which happens before fabrication and ensures that the device was designed
correctly in order to perform the said function (see Figure 2.3).

Taking the notion of testing a step further, we observe that, depending on the ap-
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Figure 2.3: Verification and Testing.

plication, the specifics of testing (the method used and the results expected) vary in
ways that will be shortly explained. A chain of four steps exists, after each of which
the procedure can stop if the application expectations are met. These steps are Testing,
Localization, Diagnosis and Repair. The term “testing” is (usually) used to describe the
first step of this procedure, but also (sometimes) to describe the whole procedure, or at
least the first three steps. In this report we try to make use of the former. In this section
we define these four phases and focus a little more on diagnosis, which is the specific
interest of this thesis.

2.1.2.1 Testing

Testing is the most straightforward of the four steps: Its sole purpose is to make a
go/no go decision about a system or subsystem, called Circuit Under Test (CUT). This
is actually sufficient for the vast majority of applications today: When we talk about
testing in general, we usually mean checking a chip directly after fabrication, to decide if
it is to be sold or thrown away. In order for a correct decision to be achieved, the actual
defects are abstracted by faults, as has already been described. Testing methods are out
of scope for this thesis. More about them can be found in [32] and [30].

One important for this thesis notion related to testing, is that of on-line testing [46].
Testing a CUT on-line, means testing it without having to stop the normal operation
of the system to which it belongs. Apparently, this is very important in the case of the
CUT being just a system component (i.e., an FPGA slice) instead of the whole chip.
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The term on-line also applies to the next three steps (localization, diagnosis and repair),
if the application requires them.

2.1.2.2 Localization

Testing, as described above, is sufficient only for systems without any Fault Tolerance
requirements. When dealing with fault tolerant systems, it is required that faults can
be dealt with in such a way that the system will continue to function, as defined by
its specifications. Fault Localization is the first step towards assuring this: Localizing
the fault means determining the component of the system in which the fault in question
resides. Examples of fault localization are determining the faulty processor in a failing
multiprocessor system [10], discovering the fault site in redundant memories [18] and
locating the faulty basic block in a failing FPGA [41].

It is obvious that the term “Localization” is tightly bound with the notion of granu-
larity. For example, “faulty component” in the context of a system realized on multiple
FPGAs, could mean the faulty FPGA, the faulty CLB, the faulty slice, the faulty LUT
or even finer-grain components. Fault localization is also of outmost importance in all
sparing-based Fault Tolerance strategies. As it has been already explained, determining
the faulty component is sufficient if the strategy involves throwing away the substitutable
resource and using a spare resource in its place. If, however, we want a less conservative
approach, fault diagnosis is in order.

2.1.2.3 Diagnosis

Fault Diagnosis involves spotting the exact cause of a failure of the system to accomplish
the specified function. This can mean either the exact fault that triggered the erroneous
response, or even the actual physical defect that caused this fault. The original motiva-
tion behind fault diagnosis was finding the root-cause of chip failures in order to improve
the fabrication procedure and enhance the yield. In this case, the actual physical defect
should be diagnosed, which even involved observation of the chip with a microscope.
Such deep diagnosis is, obviously, out of the scope of this thesis.

In the Fault Tolerance context, diagnosis focuses on detecting the exact fault that
caused the CUT to fail. In accordance with localization being a requirement for sparing-
based Fault Tolerance strategies, diagnosis is necessary for the characterization of a
substitutable resource, which makes matching-based strategies possible. After the spe-
cific fault that caused a substitutable resource to fail becomes known, the functions that
this component cannot perform anymore can be determined, which is the definition of
characterization. After that is accomplished, a suitable function can be mapped on the
component.

It is natural that the terms “localization” and “diagnosis” are interchangeable in
existing literature. One reason for this is that the actual meaning of both depends heavily
on the granularity, as already has been established for localization. Also for diagnosis,
its meaning is different when we talk about spotting the physical defect and determining
the fault caused by that defect. Even when focusing on the fault, the abstraction level of
the fault model affects the meaning of “diagnosis”. As a result, either of the two terms
can be used in place of both, combined with the term “diagnostic resolution” [35].
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As fault diagnosis is the object of this thesis, we will now categorize some general
diagnosis methods and define some important relevant notions, as they are presented in
books [32] and [30].

The most important, for this thesis, definitions on fault diagnosis are listed below:

• Diagnostic Accuracy is defined as the proportion of all CUTs that are diagnosed
accurately.

• Diagnostic Resolution is defined as the average number of faults that are iden-
tified by the diagnosis process as possible causes of the CUT failure. By this
definition, the minimum and ideal value for diagnostic resolution is 1, meaning
that the diagnostic method reduced the set of possible causes of failure to only one
fault of the fault list.

• Fault-free and faulty response: The fault-free response is the response of a
version of the CUT without any faults, if all the test vectors are applied to it.
For the example circuit of Figure 2.1 and for the sequence of test vectors listed in
Table 2.1, the fault-free response is “0110”. Also, for every fault (fi) in the fault
list, a faulty response is defined as the response of a version of the CUT with fi in
it. For example, for the same circuit and test vectors, the faulty response of the
fault “a s.a. 1” is “1111”.

• Error response: Based on the faulty response for every fault fi in the fault list,
the error response is defined to be equal to ‘1’ when the faulty response for fi is
different than the fault-free response and equal to ‘0’ otherwise. For example, the
error response of the fault “a s.a. 1” is “1001”. See also Table 2.3 for the difference
between faulty and error response.

• Fault Dictionary: A fault dictionary is a list with one entry for each fault in the
fault list. Depending on the size of the fault list, the size of the responses and the
available memory, the format of this entry varies, defining the following kinds of
fault dictionaries:

– Complete fault dictionary: The entry corresponding to each fault is the fault’s
error response (or equivalently, its faulty response).

– Reduced fault dictionaries: The entry corresponding to each fault is more
compact than the corresponding entry of a complete dictionary. A good ex-
ample of a reduced dictionary is the pass-fail dictionary, which lists the vectors
that cause failures for each fault, instead of the complete faulty response on
all outputs of the CUT for each vector.

• Diagnostic Tree: The diagnostic tree is a structure that keeps the decisions
needed to be made by the diagnostic method after the appliance of every test
vector. When the CUT fails a vector, the corresponding branch contains the set
of faults that are suspects for having caused the particular failure. The leaves
of the tree correspond to final results of the diagnosis. They enclose the same
information with the respective entry of the fault dictionary, but in general the
result is produced faster.

Fault Diagnosis methods are categorized as follows [32]:
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Table 2.3: Difference between faulty response and error response. The error response is ‘1’
whenever the faulty response is different than the fault-free response.

Fault-free response 0110

Faulty response 1111

Error response 1001

• Cause-effect diagnosis: This strategy for fault diagnosis relies on the CUT being
simulated once with the presence of each fault of the fault model. That means that
diagnosis starts by predicting the faulty behavior (effect) of the CUT for each one
of the faults that is present in the chosen fault model (cause). This is the strategy
that we choose for our diagnosis method, because of the small size of our CUT,
which meant that running all the fault simulations was manageable. Cause-effect
diagnosis is further categorized as follows:

– Post-test diagnostic fault simulation: This strategy starts by applying
all the test vectors to the CUT, comparing the response to that of a fault-free
CUT and locating the bits of the response that are erroneous. Subsequently,
fault simulation takes place for every fault for the first test vector only. The
faults that do not fail or fail at different bits than the CUT, are dropped
from the fault list. This procedure continues until the required diagnostic
resolution is achieved.

– Fault dictionary based diagnosis: This strategy starts by simulating the
CUT for every fault in the fault list and storing the faulty response, along
with the fault-free response, in a fault dictionary, as it was defined before. For
every CUT, the test vectors are then applied and the responses gathered and
compared with the entries of the fault dictionary, in order to make a decision
about which fault (if any) is present in the CUT.

– Diagnostic tree based diagnosis: Simulations for faulty versions of the
CUT happen before the method is applied, just like in dictionary based di-
agnosis. Afterwards, the test vectors are applied to the CUT, but when the
CUT produces a faulty response, the set of possible faults is reduced to the
ones that could cause the particular failure. The procedure continues, pos-
sibly even adapting the next test vectors to the particular set of suspected
faults, until the desired diagnostic resolution is achieved. We chose to use the
strategy of a diagnostic tree, because it was relatively simple to perform all
fault simulations in design-time and because it generally terminates sooner
than the dictionary strategy and produces the same results.

• Effect-cause diagnosis: This fault diagnosis strategy is more suitable for fault
models that contain a bigger number of faults. Diagnosis starts from the erroneous
response of the CUT (the effect) and, according to that, the faults of the fault
model (possible causes) that couldn’t be present in the CUT are eliminated. This
procedure is continued until the required diagnostic resolution is achieved.
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2.1.2.4 Repair

The final step of every Fault Tolerance strategy is actually dealing with the fault at
hand. Of course, the actual defect cannot be fixed (or in the best case fixing it is
very expensive), since the technology features are very small to interfere with, but it
can be worked around in ways that we have already mentioned. For example, in the
case of a sparing-based Fault Tolerance strategy, repair happens after fault localization
by throwing away the faulty resource and mapping the functionality that it used to
perform on a spare resource. On the contrary, in the case of a matching-based strategy,
repair happens after diagnosis by mapping a suitable function on the faulty resource. In
any case, after the stage of repair, the system has to keep functioning under the given
specifications.

2.1.3 FPGA Testing

In this section, we will summarize existing solutions for testing FPGAs. We will focus on
methods relevant to the work done in this thesis. In general, FPGA testing methods tend
to cover more than one stage of the testing procedure, as it has already been described.
Fault localization in particular is achievable by the majority of existing works, making
use of the FPGA regular structure.

Since before 2000, researchers treat the problem of FPGA testing as different than
chip testing in general, because of the FPGA special structure. Some basic characteristics
of FPGAs that affect testing are summarized below [14]:

• FPGAs are regular structures: The fact that FPGAs consist of repeating the same
functional unit, hints researchers to separate the problems of:

– Testing one such basic unit.

– Finding a scheme to feed the test vectors to the maximum possible number
of basic units and analyze the results in the fastest and/or cheapest possible
way.

• FPGAs are heterogeneous structures: For this reason researchers treat testing of
different parts of the FPGA as different problems. The basic parts that various
methods target independently are the following:

– The basic logic block.

– The interconnection resources.

– The special parts, such as I/O terminals and programming circuitry.

• FPGAs are reconfigurable devices. Research on FPGA testing cannot ignore the
impact of every specific configuration on the testing process. In particular:

– Every specific configuration limits the set of faults that can be tested, by
making some faults redundant, meaning that they do not affect the output
of the circuit and thus, they cannot be tested. The redundant faults cannot
be ignored, though, because under another configuration they will not be
redundant.
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– On the other hand, testing engineers can shape the configuration in such
a way that it simplifies the testing problem. The smart choice of testing
configuration is, actually, the core of all proposed methods.

This thesis focuses on testing and diagnosing the FPGA basic blocks. For this reason,
testing of interconnection resources and of special circuitry is out of scope. Some good
techniques for testing the interconnection resources are presented by Lombardi, Huang
et al in [44] and [29].

Returning to the subproblem of testing the FPGA logic resources, there is a great
number of publications before and until 2003, on testing SRAM-based FPGAs. All of
these methods are summarized in this 2003 survey by Doumar and Ito [14]. Various
methods are enumerated, most of which share the following common characteristics:

• Every approach starts with a basic method of testing a single logic block. This
is based on configuring the LUT appropriately and controlling the data flow by
configuring the multiplexers appropriately. These characteristics change from test-
ing configuration to testing configuration, in order to check different sets of faults
and cover the entire fault model. Every testing configuration defines a testing
phase [24], with the number of phases being the decisive factor for the time needed
to test the whole logic block, since reconfiguration is needed to go from one phase
to the next.

• During each of these phases, LUTs are configured as function generators, with the
XOR and XNOT functions. These functions allow checking of the memory cell
faults as well as address line faults [24].

• Every approach uses a clever scheme in order to use the basic method on as many
basic blocks as possible at the same time. This defines a number of testing sessions
needed to test the whole FPGA. It is clear that the number of sessions is a decisive
factor for the time needed to test the whole FPGA [24] [41].

• Most approaches started as mere fault detection methods, aiming for a go/no go
decision for the whole FPGA, but were later appended with new publications and
upgraded to diagnosis methods. Diagnosis in this context means spotting the faulty
basic block, having in mind yield improvement by introducing redundant FPGAs
in the same manner as redundant memories. As an example, [15] is a diagnosis
version of [13]. In the context of this thesis, this level of diagnostic resolution
corresponds to fault localization, since it can support sparing-based fault tolerance
strategies.

The aforementioned methods have also important differences, resulting to the follow-
ing categorizations:

• In some methods the tests are applied from outside the chip, while on others testing
is conducted in a Built-In Self-Test (BIST) manner. The advantage of BIST in
FPGAs is that it does not have any area overhead, since part of the FPGA can
be configured as the tester, while the rest is the unit under test. The parts can be
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interchanged between different testing sessions. A good example of this approach
for fault detection and localization is presented by Wang and Tsai in [41]. The
basic principle of BIST is illustrated in Figure 2.4.

• Some methods choose to be restricted by the existing FPGA structure, while others
propose changes that can be made to this structure in order to make it more testing-
friendly (Design for Testability, DFT). An example DFT method by Liu et al is
presented in [28]. The authors use two extra transistors between each pair of
successive basic blocks and one extra primary pin, to test whole rows and columns
of the FPGA. In [14], the authors observe that this technique can be used also for
fault localization, if the row and column results are combined.

• Fault models differ from approach to approach and from component to component.
For example, at the time of the publications, internal implementation details of
multiplexers inside the basic blocks were not known to the researchers, thus most
of them adopted a functional fault model for them. For this reason, hybrid fault
models are a very popular choice, usually combining the stuck-at fault model for
wires with functional fault models for the rest of the components. A good example
of using a hybrid fault model is [24] by Huang et al.

Figure 2.4: The BIST principle for FPGA testing: During the first testing session some blocks
are tested (CUTs), while others accommodate Vector Generators and Response Analyzers (VGs
and RAs). During the second session, the roles of the blocks are interchanged.

An important observation made by the authors of the 2003 survey [14], is that re-
searchers tend to factitiously reduce the number of testing phases required, by reducing
the circuitry that is tested, making the comparison of different methods difficult. They
specifically claim that methods which really test the basic block exhaustively require at
least 8 and up to 21 test phases, while methods that claim to reduce the number of
phases to 6 or even 4, do not really check the functionality of the block. In this thesis,
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we consciously reduce the functionality to be checked, since we are performing diagnosis
and can afford to sometimes mark the CUT unusable when diagnosis fails to spot the
exact fault. Thus, even with a simplified list of faults, our methods are applicable and
useful.

One particular work of the design for testability family proposes that the testing
configurations are shifted inside the FPGA, in order to bridge the different testing phases.
In order to achieve that, the configuration memory should be modified in such a way that
configuration data can be freely shifted through it. Note that, although not explicitly
mentioned, this doesn’t only include LUT bits, but also multiplexer configuration bits
and other parts of the configuration. The method is expanded for testing also routing
resources [13], and for spotting the faulty basic block [15].

FPGA testing research naturally went on also after 2003. Researchers tried to make
use of modern partial reconfiguration capabilities of the devices, in order to make the
procedure more efficient. Niamat et al in [31] and Sundararajan et al in [39] both made
use of the Xilinx JBits toolkit for partial reconfiguration, to provide defect tolerance by
avoiding at run-time the blocks that were discovered to be defective at test-time.

Furthermore, Dutton and Stroud in [17], used the lessons of more than 10 years
of experience on the research field to completely test a Xilinx Virtex-5 FPGA in 17
configuration phases and also locate the fault on the LUT or flip-flop that it occurs.
It is interesting to note that, even with fewer phases than other relevant works, the
configuration time remains the dominant factor of the total testing time.

One of the most interesting works on FPGA testing, localization and diagnosis was
done by Abramovici, Stroud, Emmert et al in the framework of the Roving STARs
paradigm [4]. We choose to present more about this in Section 2.2.1.

From our literature review on FPGA testing, we drew the following useful conclusions
for designing our methods:

• The number of testing phases, due to reconfiguration time, is still dominant in de-
riving the total testing time, even with partial reconfiguration in play. We decided
to diagnose as many faults as possible with only 1 or 2 configurations.

• Built-in self-test approaches for FPGAs have reduced cost, since the area used for
the Test Pattern Generator and the Response Analyzer can be used for normal
system functionality once the testing/diagnosis is complete. We chose, for this
reason, to accommodate our tester on-chip.

• Results of Design for Testability methods cannot be directly compared with results
of methods that are limited by real device features, since they have no common
frame of reference. In our opinion, DFT should come as a result of the difficulties
we face when we design a method for real devices and this is what we chose to do
in this thesis: We develop methods restricted by the real device characteristics and
record our observations as DFT proposals.

• LUTs of the same slice should be configured with complementary contents during
the testing configurations, in order to set up testing of the rest of the slice, mainly
multiplexers. Also, realizing functions as XOR and XNOT on the LUTs helps the
detection of address faults. We adopted the first of these rules and used the second
as a guideline for building our own LUT configuration for testing.
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2.2 Fault Tolerance

Fault Tolerance is, as it has already been established in Chapter 1, a cornerstone for
standing up to the challenges of many Embedded Systems applications. Examples of
such applications are:

• Space applications.

• Avionics.

• Biomedical applications, i.e. medical implants.

• Safety systems in transportation and racing.

• Nuclear plant control systems.

In general, fault tolerance refers to containment of both temporary and permanent
faults. It is the shrinking of IC features combined with the increasing popularity of
regular realization platforms that triggered the spreading of the term “defect tolerance”,
used explicitly for permanent faults, like in [36]. In this thesis we deal only with per-
manent faults, thus both “fault tolerance” and “defect tolerance” will be used with the
same meaning. Some solutions on dealing with temporary faults on FPGAs can be found
in [27], [34], [21] and [45].

In this section, we will elaborate on the notions of sparing and matching through
some example publications and also briefly refer to the newly defined FaTES paradigm.

2.2.1 Sparing and Matching

The majority of the FPGA testing works presented in section 2.1.3 set the stage for the
development of system-level sparing-based fault tolerance techniques. A simple example
of a strategy to make use of the fault localization capabilities of these methods, is pre-
sented in [26], where groups of four substitutable resources form one tile. Any function
requiring 3 of these resources can be mapped on this tile and use the fourth basic block
as a spare. The technique is illustrated in Figure 2.5. Note that the four blocks that form
a tile can very well be the four slices that form a CLB in many FPGAs, like Virtex-II.

Many sparing implementation strategies revolve around shifting the placement of
substitutable resources altogether, in order to avoid the defective part. Different methods
are proposed for that, varying in respect with the spread of spare resources on the
resource grid and the choice of the shifting direction. For example, in [11], Hanchek and
Dutt propose two different distributions of spares, called king and horse distribution,
which allow the configuration to be shifted in 8 or 4 different directions respectively, in
order to avoid the faulty resource.

Despite the impressive range of existing sparing techniques, few researchers actually
move to the next step of reusing defective FPGA resources. Outside the FPGA domain,
a good example of a coarse-grain matching-based technique is presented by Kim et al in
[25]. They perform low-resolution diagnosis on programmable processors and use them
only for suitable applications. The actual matching problem is treated as a scheduling
problem, since any given application can be mapped on a subset of processing units only.
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Figure 2.5: A simple sparing strategy. The 4 basic blocks of the tile are used as 3 effective blocks
and one spare. If one of the blocks is defective, the function is mapped on the other 3. The
4 possible mappings of a simple function, depending on which of the 4 blocks is defective are
depicted [26].

The best example of a work that actually focuses on reusing FPGA faulty resources,
is the roving STARs (Self-Testing Areas) paradigm by Abramovici, Stroud, Emmert et
al [4]. The basic idea of their approach is to have a small area of a few basic blocks roving
around the whole FPGA for testing, diagnosis and fault tolerance purposes. These few
logic blocks test each other through 15 different configuration phases and also test the
surrounding interconnect resources. In [4] they define this basic idea and present the
different testing phases, each of which corresponds also to one mode of operation for the
basic block. By observing with which modes of operation the CUT actually failed, they
also implicitly perform some characterization, such that the resource can subsequently
be used as a spare for a suitable function.

The roving STARs paradigm was further developed through more publications.
In [20], the way to deal with detected faults is described by using a spare from the
neighborhood of the faulty block. Also, there is the option of the faulty block continu-
ing to perform the originally intended function, if it can still support it. Also, different



2.2. FAULT TOLERANCE 21

distributions of spares are tried. In [6] the testing strategy is enhanced to make testing
faster and increase diagnostic resolution. In [5] the interconnection testing approach
is presented. In [2], all the above improvements are brought together in an integrated
approach, and more effort is put in reusing a faulty resource, both for its original in-
tended function or as a spare for another suitable function. In [3], delay faults are also
dealt with. Finally, in [19] the effect of partially reusing faulty blocks is tested through
benchmarks and proven to provide a significant improvement.

It has to be noted that the biggest difficulty that matching-based strategies face, is
the actual matching phase itself [36]. The set of functions to be mapped and the set
of the available substitutable resources (fault-free and faulty) form two distinct sets of
nodes, constituting a bipartite graph. Each function is able to be mapped on a number of
the available resources. A link is present in the graph between a function and a resource,
if the function can be mapped on this resource (Figure 2.6a). In order for the mapping
to be completed, a matching of this graph has to be calculated (Figure 2.6b).

Figure 2.6: The matching problem: (a) is the bipartite graph of functions to be mapped and
the available resources. Notice that resource R2 is fault-free. (b) is a successful matching of the
graph.

The matching problem can be solved in O(R2.5) time [22]. The matching problem is
relevant also in other research fields, like network switch scheduling [12], for which it is
solved according to the characteristics of each application. A suitable heuristic may be
feasible for the case of matching functions to resources, reducing the complexity of the
problem.

2.2.2 The FaTES project framework

An important driving force behind this thesis was the definition of the FaTES (Fault
Tolerant Embedded Systems) research project. In fact, the thesis topic was defined in
the same meetings from which the project definition originated.

The FaTES SoC is designed from scratch with the notion of fault tolerance governing
all design decisions. It is assumed that the bigger part of the SoC is fault-prone and
a reliable system has to be built by using the unreliable resources appropriately. To
achieve that, existing fault tolerance techniques are going to be combined with new ones
and integrated in a system that will implement fault tolerance at different levels.

In the above context, many different fault tolerance scenarios are going to be con-
sidered. For example, consider the existence of a 32-bit integer adder in the fault-prone
part of the SoC. The following are two possible scenarios:
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• The adder is discovered to be faulty by software-implemented tests (for example,
through duplicated instructions [33]). Subsequently, the operating system contin-
ues to apply a pre-defined set of inputs to the adder, in order to determine which
part of the adder (i.e., which 4-bit part) is to blame for the fault. This 4-bit
part corresponds to a few reconfigurable substitutable resources, one of which is
guaranteed to contain a fault.

• The adder is self-checking, based on the idea of each functional cell (essentially,
each bit position of the adder) checking its neighboring functional cell [16]. One of
the functional cells is discovered by its neighbor to be faulty. This cell corresponds
to a few (probably to one) reconfigurable substitutable resource(s), (at least one
of) which is guaranteed to be faulty.

The above scenarios are both good examples of the usefulness of the method we de-
velop in this thesis: The local diagnosis method can be applied to the faulty substitutable
resource(s), which can be characterized and reused by a different kind of component.

2.3 Summary and Thesis Significance

In this chapter we gave an overview of notions that are required in order to understand
the content of this thesis and of research related to our work. A few basic facts about
fault models and specifically the functional memory models that we will use were ex-
plained. The sequence of testing, localization, diagnosis and repair was overviewed and
our method was categorized as a cause-effect, tree-based scheme. Enough research on
FPGA testing and fault localization was presented and related to our work

After the discussion of this chapter, the relevance and significance of the problem
targeted by this thesis is more apparent. The specific areas in which the present work
aims to improve over existing ones are summarized below:

• All FPGA-targeted methods begin from testing and expand up to the point they
can. Some of them achieve only testing, many of them achieve fault localization and
a few go on to diagnosis and characterization. This has as a result the obligation
to cover the entire functionality of the basic logic block, primary and secondary.
By decoupling the diagnosis problem by the rest, we are allowed a more relaxed
approach: There is no need for our methods to cover 100% of the basic block
functionality. It is sufficient to check the core functionality with a minimal cost,
since this is enough for accommodating the vast majority of possible functions to
be mapped on the resource. Checking the rest of the functionality would induce
a cost too big for the benefit it will provide. A direct advantage of this relaxed
approach is the reduction of testing phases required.

• Since we focus on one basic logic block, our characterization scheme does not stop
at detecting the faulty component within the basic block, i.e. the faulty LUT or
flip-flop. Our diagnosis reduces the set of possible faults to only one, or in the
worst case, a few faults, allowing us to define modes of degradation that sacrifice
as little functionality as possible to partially reuse the faulty block. For example,



2.3. SUMMARY AND THESIS SIGNIFICANCE 23

we detect specifically the faulty bit of a LUT, which in the FPGA domain is very
important for reusing it.

• Since modern fault tolerance strategies have to be applied in runtime, we have to
make sure that they burden the system as little as possible. Using this observation,
we aimed for diagnosing as many faults as possible in a few cycles only, because
this will be very significant in real circumstances, within the framework of a fault
tolerance oriented system, like the one defined in the FaTES research project.

• Although we are completely bound by the characteristics of present day devices,
we propose a set of guidelines that a fault tolerance oriented system should follow
in order to be more testing- and diagnosis-friendly. This is significant because
especially design for diagnosis is not considered in devices that are in the market
today.

In the following chapter it is time to analyze the core of this work, which is the two
different fault diagnosis methods.





Method 3
W

ith all necessary information adequately presented, the stage is set for the descrip-
tion of our diagnosis methods. In order to have a frame of reference, we worked
on the basic block of a real device, the Virtex-II Pro FPGA. The methods are

targeted for a Virtex-II Pro slice that is known to be faulty, but can also be applied on
a small number of slices, at least one of which is faulty. The goal is to reduce the set of
possible faults to a few, even only one, except from the case that further disambiguation
induces extra costs without actually serving graceful degradation.

It is important to note that most methods described in Chapter 2 that actually
perform basic block characterization, treat testing, localization and diagnosis as a single
problem. Testing by itself requires a multitude of phases (at least 6 for testing, but 15 in
the case that testing and diagnosis are treated as a joint process). Diagnosis is performed
by observing which of these phases caused the CUT to fail. Each phase defines a mode
of operation, and the result of diagnosis is a list of failing such modes. Example modes
of operation are:

• The slice configured as shift register.

• The slice configured as function generator with flip-flop.

These modes will be better explained later.

As opposed to existing works, our method decouples the problem of diagnosis from
that of testing and localization. The motivation for that was partly the fact that in mod-
ern fault tolerant systems, localization does not necessarily happen through conventional
testing, but also through alternative means, like the cases of software-implemented fault
tolerance and self-testing modules. The existence of scenarios the result of which is one
or a few substitutable resources with at least one fault, means that there is usefulness in
our approach.

Before we go on to the detailed description of the 2 methods, we remind the reader
that our approach is that of cause-effect, diagnostic tree based diagnosis. Cause-effect
means that we performed fault simulations for all possible faults before the actual diag-
nosis procedure and the error responses are known in run-time. Diagnostic tree based
means that, after every step of the process, the set of possible faults is reduced accord-
ing to the known error responses and the testing strategy adapted in order to yield the
best possible performance results. The reasons for which we chose this approach are the
following:

• Because the CUT is relatively small, as is the corresponding list of faults, it was
manageable to perform all simulations of faulty versions beforehand. We started
designing the system with the knowledge of all faulty responses.

25
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• Our method is targeted to be applied on-line, meaning without interrupting the
normal operation of the system. For this purpose, it is critical that the result
of diagnosis is known as early as possible. This is the reason we preferred the
diagnostic tree approach, which allows diagnosis of faults as early as possible.

The diagnosis scheme is illustrated in Figure 3.1.

Figure 3.1: Adaptive diagnosis strategy according to the diagnostic tree approach. Based on the
CUT response, the response analyzer decides on the next test vectors to be applied.

This chapter is organized as follows: In Section 3.1 the CUT, which is the central
object of this thesis, is described in detail. In the subsections, each component of the
CUT is described individually and the choice of fault model for each one of them ex-
plained and justified. In Section 3.2 the method based on configuring the slice as a
function generator is explained, while in Section 3.3 the method based on configuring
the slice as a shift register is described. Finally, in Section 3.5 the basic characteristics of
both approaches are summarized and a general comparison is performed. The complete
comparison, however, will take place in Chapter 5.

3.1 The Virtex-II FPGA Slice

As was already mentioned, the substitutable resource chosen to be diagnosed and char-
acterized in this thesis is the slice of the Xilinx Virtex-II Pro FPGA device. The criteria
behind this choice are listed below:

• All devices have similar basic structure and the characteristics for a fault diag-
nosis method are the same for different devices. Thus, we chose a device that is
simpler compared to, i.e. Virtex-5. This allowed us to focus on the methodology
concepts, without adding unneeded complexity that wouldn’t increase the value of
the research.

• It is our opinion that a basic reconfigurable block implemented for testability and
easy characterization and matching, should be closer to the smaller implementation
of the Virtex-II Pro basic block, compared to other devices mentioned above. Our
initial opinion proved to be correct, as will be explained in time. This, of course,
refers solely to testability. There is a reason for devices going towards LUTs with
more inputs, but this is for purposes of efficient design mapping and not testability.
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In this section the basic structure of the Virtex-II slice will first be presented. Subse-
quently, each component will be analyzed separately and the choice of fault model for it
explained. The way that each of these fault models is covered by both the configuration
and the input test vectors will be shown and how all of them come together through a
bottom-up approach.

3.1.1 Slice simplified model

It is important to mention once more that the purpose of this work is to make fault-
prone component degrade more gracefully than the conventional approach of altogether
marking the component as unusable when one fault is detected on it. In this context,
not every sub-component of the substitutable resource has to be extensively tested. It
is, however, important to verify the core functionality of the resource, in order to make a
sound claim of reusability. Indeed, anyone who has designed and implemented systems
on an FPGA, knows that most slices are used in the “normal” way, meaning that some
logic is mapped on their Look-Up Tables and, optionally, the output of this logic is
registered in the slice flip-flops.

The simplified version of the slice that was used in this thesis, which is essentially
our CUT, is shown in Figure 3.2 [42]. The functionality of each sub-component, from
which the realization capabilities of the slice are derived [43], is briefly explained below.

• The two Look-Up Tables (G-LUT and F-LUT) are the heart of every slice. Each
of them is basically composed of 16 1-bit entries and 4 address lines that can be
used to asynchronously read and synchronously write each of the 16 data. The
Look-Up Table is a versatile component that can realize the following functions:

– Any arbitrarily defined boolean function of four inputs.

– A shift register of up to 16 bits.

– A RAM block of 16 1-bit elements, which can be one of the N slices of a RAM
block of 16 N − bit elements.

• The MUXF5 and MUXFX multiplexers. The MUXF5 is used to combine the out-
puts of the 2 LUTs. In this way the slice can realize a boolean function of 5 inputs,
the fifth one being the control signal of the multiplexer. The MUXFX, depending
on the location of the slice, can be MUXF6, MUXF7 or MUXF8. A MUXF6 com-
bines the outputs of 2 different MUXF5 etc, forming a boolean function of 6, 7 or
8 inputs respectively.

• The two storage elements (G REGISTER and F REGISTER). They can be used
as standalone flip-flops receiving and storing any 1-bit data that is needed, or more
specifically to register the outputs of the LUTs, terminating a combinational logic
path.

• The configuration multiplexers, labeled ROUTING Y, ROUTING X, DYMUX and
DXMUX. ROUTING Y and ROUTING X choose which data to propagate to the
Y and X outputs respectively:
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Figure 3.2: The Virtex-II slice simplified diagram.

– The output of the respective LUT, which is the output of a 4-input boolean
function, or

– the combination of two or more LUTs, which is essentially the output of a 5-,
6-, 7- or 8-input boolean function.

The DYMUX and DXMUX multiplexers choose which data to input to the Y and
X storage elements respectively:

– The output of the respective ROUTING multiplexer, which is essentially the
logic product of the combinational part of the slice, or
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– a datum directly input to the slice, through the BY and BX inputs.

Apart from the components present in the simplified slice diagram presented above,
there are a few special features that we do not test in this thesis. These features include:

• Fast carry chain support.

• Arithmetic dedicated gates.

• A second set of address lines for each LUT, allowing it to realize dual-port memory.

Excluding the out-of-scope features of the slice, the rest will one by one be approached
in the following sections, from a diagnosis point of view, with the purpose of choosing a
fault model for each of them.

3.1.1.1 The Look-Up Tables

The two Look-Up Tables are the basic components of every slice and generally the basis of
the FPGA principle: They can implement any combinational logic of up to 4 inputs and
one output. They are composed of 16 memory cells (GDATA 0 to 15 and FDATA 0 to
15), 4 address lines that can address each of the memory cells independently (GADDR
0 to 3 and FADDR 0 to 3), and one output (GD and FD) on which the bit that is
read appears. Additionally, when configured as a shift register, each of the LUTs also
receives a bit to be shifted in (GSHIFTIN and FSHIFTIN) and a shift enable control
signal (GENABLE and FENABLE). Note that the enable signal is actually common,
meaning that when both G-LUT and F-LUT are configured as shift registers, they allow
(or deny) a shift operation on the same cycles. Also, note that on the GD or FD output
still the value of the cell determined by the address lines appears. This creates the option
of a serial-in, serial-out shift register of fixed length (by keeping the address locked at
a constant value) and of a serial-in shift register which can output any of its bits on
any cycle (by changing the value of the address). There is also an output on each shift
register (GQ15 and FQ15) on which the contents of DATA15 always appear. This is
mainly used to connect more than one 16-bit shift registers in order to form a bigger
one.

The 16 LUT entries are tested using the memory fault models listed in Table 2.2.
As the entries are essentially SRAM cells, we have chosen this functional fault model,
in order to check whether or not they can perform the basic operations that they are
supposed to (read and write) without problems. In this way, we don’t have to know
more about the realization details of every cell. Note that one of the basic differences
of the two proposed methods is the way in which they deal with the memory faults, as
well as the ability to cover all 10 of them. Further details about this are presented in
the method description and evaluation.

There are two reasons why testing of memory cells is the determining factor for the
number of clock cycles needed to check the whole slice:

• There are 16 memory cells in each LUT and on every clock cycle we can only read
one of them.
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• In order to cover the faults listed in Table 2.2, we need to at least read both possible
values from each cell.

Thus, at least 32 cycles are needed, plus the time required to switch between the two
values, which varies between the two proposed methods. For this reason, the challenge
of both methods was to be able to complete all other necessary tests in the time frame
imposed by the memory cells test.

The addressing of the memory is checked by treating the 4 address lines as wires
and checking each of them for the s.a. 0 and the s.a. 1 fault. It is important to note
that these faults are checked by inspecting the read output and comparing it with the
contents of the memory cell that was supposedly read during that clock cycle. In that
sense, the resources used to diagnose the address line faults and the memory cell faults
are the same. The two methods deal with this limitation in different ways. The starting
point of both of them is the effect that each address line fault has on the behavior of
the read operation. These effects are summarized in Table 3.1. We assume that the 16
memory cells are read in order, from 0 to 15. For each address line fault, the actual
order of reads that eventually happen is listed. Notice that ADDR(X) s.a. 0 faults cause
the actual address to be smaller than the intended address, for values of the intended
address that include ADDR(X) = ‘1’. Respectively, ADDR(X) s.a. 1 faults cause the
actual address to be bigger than the intended address, for values of the intended address
that include ADDR(X) = ‘0’. The key to distinguishing memory cell faults from address
line faults is that the former kind always causes only one incorrect result when reading
all contents of the LUT, whereas the latter kind causes more than one incorrect result
with a suitable configuration.

3.1.1.2 The Multiplexers

Multiplexers of the Virtex-II slice have the duty of managing the outputs of the logic
element (the LUT). As mentioned before, there are two different kinds of multiplexers
in the slice, the difference being the availability of the control signal in run-time. The
control inputs of MUXF5 and MUXFX are accessible during run-time, since they are the
extra inputs of a more-than-4-input boolean function. On the other hand, the configu-
ration multiplexers’ control input is defined in configuration time and will never change
unless a reconfiguration is performed. From the diagnosis standpoint, though, and more
specifically regarding fault models, all these multiplexers are treated in the same way.

Our starting point for choosing a suitable fault model for the multiplexers was the
fact that we didn’t have any information about its internal structure. For this reason, we
opted for a functional fault model. The truth table of a multiplexer is seen in Table 3.2.
A complete functional fault model could be used, according to which all 8 combinations
of inputs should be applied to the multiplexer and the output checked to verify the
correct function. In this way, we could make sure that the multiplexer works properly,
regardless of its internal structure.

However, by orienting our thought towards graceful degradation, we opted for a
more relaxed functional fault model. Notice that in this section we talk only about
faults coming from within the multiplexer. The inputs and outputs are tested as wires,
as will be explained in Section 3.1.1.4. Our first observation was about the faults denoted
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Table 3.1: Effects of address line faults on the effective read address.

Fault Actual Read Address

Fault-
free

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADDR(0)
s.a. 0

0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14

ADDR(0)
s.a. 1

1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15

ADDR(1)
s.a. 0

0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13

ADDR(1)
s.a. 1

2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15

ADDR(2)
s.a. 0

0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11

ADDR(2)
s.a. 1

4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15

ADDR(3)
s.a. 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ADDR(3)
s.a. 1

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

Table 3.2: Multiplexer truth table. Faults considered explicitly by the multiplexer fault model
are in bold.

IN1 IN2 CTRL OUT (fault-free) OUT (faulty)

0 0 0 0 1

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 1 0

1 0 1 0 1

1 1 0 1 0

1 1 1 1 0

in rows 1 and 2 of Table 3.2. It is extremely unlikely for known realizations that only
one of these faulty behaviors appears. The same is true for faults of rows 7 and 8.
Additionally, in the more likely case of faults 1 and 2 (or 7 and 8) to exist at the same
time, the misbehavior will be detected on the output wire. From a graceful degradation
standpoint, the presence of any of the above faults would probably render the multiplexer
unusable, thus they don’t have to be explicitly diagnosed. We decided not to consider
input combinations 1, 2, 7 and 8.

Following the above reasoning, we focused on the cases that the two inputs of the
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multiplexer are different, corresponding to rows 3, 4, 5 and 6 of Table 3.2. In other words,
we check whether or not the multiplexer is able to choose the correct input. As a result,
we consider the case that the multiplexer is unable to select input IN1 (corresponding
to the control signal being stuck at 1) and the case that it is unable to select input
IN2 (corresponding to the control signal being stuck at 0). The majority of all other
misbehaviors is covered by checking the input and output wires of the multiplexer.

3.1.1.3 The Storage Elements

The next element that needed to be examined and a fault model chosen for it, was the
storage element (flip-flop) of every half of the slice. As with every other slice component,
we opted for a functional model to check if the flip-flops can function as expected. The
approach we chose in this case was pretty straightforward: We fed the flip-flops with the
sequence 01100 (or 10011), to check if all possible transitions (0 → 0, 0 → 1, 1 → 0 and
1 → 1) of the flip-flop are problem-free. This approach for flip-flops is also used in scan
design testing [30], to check the scan chain before testing the surrounding logic. It is
also important to note that if the flip-flop is viewed as a single memory cell, the above
sequence covers all faults of Table 2.2.

Also notice that it is not important which transition the flip-flop fails to support. The
input sequence of the flip-flop in run-time cannot be predicted. Thus, from a graceful
degradation standpoint, every flip-flop fault renders the flip-flop unusable.

3.1.1.4 The Wires and Fanout Branches

Except from the important components of the slice, there are wires connecting them.
It is very important to also consider these wires in formulating the diagnosis method.
From a functional point of view, a faulty wire can have serious effects on the slice correct
functioning. From a graceful degradation standpoint, it is important to spot the faulty
wire, since it can give us information about which parts of the slice have to be marked as
unusable. Focusing on the wires is also important because they cover some misbehaviors
not covered by the individual components’ fault models, because their internal realization
details are unknown.

For diagnosing wire faults, we chose the very popular model of the single stuck-at
fault. Thus, two faults are defined for each of the circuit wires, namely “wire” s.a. 0
and “wire” s.a. 1. When a fanout branch is encountered, it is treated as 3 separate wires.

After all fault models were chosen, we could proceed to create the list of faults to
be checked (Table 3.3). Let us note at this point that the 10 memory faults for each
individual cell have been grouped together in 2 faults: MF0 means that a memory fault
occurred resulting in a ‘0’ being read from a cell that is supposed to contain an ‘1’ and
MF1 is a memory fault resulting in an ‘1’ being read from a cell that is supposed to
contain a ‘0’. In the general case, it is not important to know exactly which memory
fault occurred. The memory cell, in any case, is only usable if it is configured to the
value that will eventually be read from it (more on that in Section 3.4). There is a small
exception to this rule, which will be explained in Section 3.3. Also note that, as is visible
in Figure 3.2, the SHIFTIN (G or F), bypass input of the flip-flop (BY or BX) and the
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control signal of the function-combining multiplexer (FXCTRL and F5CTRL) of each
half of the slice are essentially the same input and as such they are diagnosed.

With the diagram of the CUT and the set of possible faults known, we can devise
a strategy to diagnose each one of them. Since different groups of faults have different
characteristics, they have different effects on the CUT function. We will now explain how
each fault appears on the outputs of the CUT, assuming that only a single fault is present
at a time, as is common practice in many related FPGA testing works. These unique
properties are the starting point for developing the two methods, each time adapting to
the specifics of the situation:

• Memory faults appear on at least one output only when we read the contents of
the faulty memory cell, which means only during one cycle. This singular effect of
memory faults is what makes them easy to diagnose.

• Address line faults potentially appear on an output of the CUT on half the cycles
of the process, as explained in Table 3.1. Whether or not this potential appearance
manifests, depends on the contents of the intended-to-be-read cell and the actually-
being-read cell. When they are different, the fault appears on the output. This
special property is used in different ways for each of the two methods and allows
the formulation of distinct faulty responses depending on the specific address line
fault.

• Faults of multiplexers, have been reduced, as explained in Section 3.1.1.2, to faults
of their control signals. By trying to keep the inputs of each multiplexer comple-
mentary, we make sure that they appear on the output on every cycle. Even when
it is not always possible to keep the multiplexer inputs complementary, the re-
sponse is faulty on every cycle that this is possible, still defining a unique property
for multiplexer faults.

• Faults of wires force the output that lies on the transitive fanout of the faulty wire
to be fixed to a steady value. Even when the wires pass through a multiplexer, we
know during which cycles they are selected and it is during these cycles that the
respective outputs assume a steady value. Although it is trivial to conclude that
the fault is on some wire, it is often harder to tell the exact wire. This is achieved
by observing which outputs are affected by the fault.

• Faults of storage elements are diagnosed on the cycle that the faulty transition is
supposed to occur.

• Any conflict between different faults, meaning that different faults have the same
faulty response is, according to the above properties, temporary. The specific fault
can eventually be diagnosed by applying the correct test vectors.

After the framework description has been completed, it is time to proceed to the de-
scription of the methods themselves. Each of them targets the faults of Table 3.3, aiming
to yield the best achievable diagnostic resolution in the least possible time. Although
our designs perform fault diagnosis, from this point henceforth, we are going to refer to
them as “testers” for convenience.
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Table 3.3: Complete list of faults

Complete list of faults

f0: FXINA s.a.0 f38: GDATA5 MF0 f76: FADDR(1) s.a.0 f114: FENABLE s.a.0
f1: FXINA s.a.1 f39: GDATA5 MF1 f77: FADDR(1) s.a.1 f115: FENABLE s.a.1
f2: FXINB s.a.0 f40: GDATA6 MF0 f78: FADDR(2) s.a.0 f116: FD s.a.0
f3: FXINB s.a.1 f41: GDATA6 MF1 f79: FADDR(2) s.a.1 f117: FD s.a.1

f4: FXIN/
BY/GSHIFTIN s.a.0

f42: GDATA7 MF0 f80: FADDR(3) s.a.0 f118: XMUX1 s.a.0

f5: FXIN/
BY/GSHIFTIN s.a.1

f43: GDATA7 MF1 f81: FADDR(3) s.a.1 f119: XMUX1 s.a.1

f6: FXOUT s.a.0 f44: GDATA8 MF0 f82: FDATA0 MF0 f120: XMUX2 s.a.0
f7: FXOUT s.a.1 f45: GDATA8 MF1 f83: FDATA0 MF1 f121: XMUX2 s.a.1

f8: FX s.a.0 f46: GDATA9 MF0 f84: FDATA1 MF0 f122: MUXCTRLX s.a.0
f9: FX s.a.1 f47: GDATA9 MF1 f85: FDATA1 MF1 f123: MUXCTRLX s.a.1

f10: YMUX1 s.a.0 f48: GDATA10 MF0 f86: FDATA2 MF0 f124: X s.a.0
f11: YMUX1 s.a.1 f49: GDATA10 MF1 f87: FDATA2 MF1 f125: X s.a.1
f12: YMUX2 s.a.0 f50: GDATA11 MF0 f88: FDATA3 MF0 f126: DY s.a.0
f13: YMUX2 s.a.1 f51: GDATA11 MF1 f89: FDATA3 MF1 f127: DY s.a.1
f14: MUXCTRLY

s.a.0
f52: GDATA12 MF0 f90: FDATA4 MF0 f128: DYCTRL s.a.0

f15: MUXCTRLY
s.a.1

f53: GDATA12 MF1 f91: FDATA4 MF1 f129: DYCTRL s.a.1

f16: Y s.a.0 f54: GDATA13 MF0 f92: FDATA5 MF0 f130: GQ s.a.0
f17: Y s.a.1 f55: GDATA13 MF1 f93: FDATA5 MF1 f131: GQ s.a.1

f18: GENABLE s.a.0 f56: GDATA14 MF0 f94: FDATA6 MF0 f132: YQ s.a.0
f19: GENABLE s.a.1 f57: GDATA14 MF1 f95: FDATA6 MF1 f133: YQ s.a.1
f20: GADDR(0) s.a.0 f58: GDATA15 MF0 f96: FDATA7 MF0 f134: Y REG 0 → 0
f21: GADDR(0) s.a.1 f59: GDATA15 MF1 f97: FDATA7 MF1 f135: Y REG 0 → 1
f22: GADDR(1) s.a.0 f60: GD s.a.0 f98: FDATA8 MF0 f136: Y REG 1 → 0
f23: GADDR(1) s.a.1 f61: GD s.a.1 f99: FDATA8 MF1 f137: Y REG 1 → 1
f24: GADDR(2) s.a.0 f62: ENABLE s.a.0 f100: FDATA9 MF0 f138: DX s.a.0
f25: GADDR(2) s.a.1 f63: ENABLE s.a.1 f101: FDATA9 MF1 f139: DX s.a.1
f26: GADDR(3) s.a.0 f64: F5IN1 s.a.0 f102: FDATA10 MF0 f140: DXCTRL s.a.0
f27: GADDR(3) s.a.1 f65: F5IN1 s.a.1 f103: FDATA10 MF1 f141: DXCTRL s.a.1
f28: GDATA0 MF0 f66: F5IN2 s.a.0 f104: FDATA11 MF0 f142: FQ s.a.0
f29: GDATA0 MF1 f67: F5IN2 s.a.1 f105: FDATA11 MF1 f143: FQ s.a.1
f30: GDATA1 MF0 f68: F5CTRL/

BX/FSHIFTIN s.a.0
f106: FDATA12 MF0 f144: XQ s.a.0

f31: GDATA1 MF1 f69: F5CTRL/
BX/FSHIFTIN s.a.1

f107: FDATA12 MF1 f145: XQ s.a.1

f32: GDATA2 MF0 f70: F5OUT s.a.0 f108: FDATA13 MF0 f146: X REG 0 → 0
f33: GDATA2 MF1 f71: F5OUT s.a.1 f109: FDATA13 MF1 f147: X REG 0 → 1
f34: GDATA3 MF0 f72: F5 s.a.0 f110: FDATA14 MF0 f148: X REG 1 → 0
f35: GDATA3 MF1 f73: F5 s.a.1 f111: FDATA14 MF1 f149: X REG 1 → 1
f36: GDATA4 MF0 f74: FADDR(0) s.a.0 f112: FDATA15 MF0
f37: GDATA4 MF1 f75: FADDR(0) s.a.1 f113: FDATA15 MF1
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3.2 The Function Generator Based Method

As it has already been mentioned, the difference between the two methods we developed,
is mainly the manner in which the “heart” of the CUT, namely the two LUTs, are
configured. In the first method, as its name suggests, the LUTs are configured as function
generators, each of them realizing a 4-input boolean function. This actually is the most
usual approach throughout the existing literature, since multi-phase approaches configure
the LUTs as function generators during most of the phases. This assumingly happens
because it is the most frequent manner of configuration for the LUT. Testing the LUT in
the mode that it will usually be used is considered by researchers to be a better indication
on whether or not it works properly.

Following this trend, we also started our efforts to solve the problem at hand by
configuring the LUT as a function generator. We took into account the fault models
that need to be covered in order to derive a suitable 16-bit configuration for each LUT.
As already mentioned, we used a bottom-up approach to derive the LUT configurations.
Since our tester is able to terminate when drawing a definite conclusion, we want to
push the diagnosis of as many faults as possible to as early cycles as possible, in order
to reduce the average running time. Thus, the first test patterns are going to be critical,
since they have to expose many faults in different parts of the CUT. In general, the
function generator based method is based on techniques that are popular in existing
literature, but adapted to the needs of our fault model and to the goal of diagnosis.

The configuration of the LUT as a function generator has as a direct consequence the
need of two testing phases. Indeed, to fulfill the requirement of reading both possible
values from each memory cell of the LUT, we need, after reading the original values, to
reconfigure it to the exact complementary values. The need for a second phase is also
what incited the development of the second method, to eliminate this need. This will
become obvious after Section 3.3. The need for reconfiguration also urged us to diagnose
as many faults as possible in the first phase, in order to reduce the percentage of CUTs
that require a second phase.

3.2.1 Partitioning of the Faults

As it can be seen in Figure 3.2, the CUT has 6 outputs. Each fault on a component of
the circuit can affect a subset of these outputs. In general, the set of fault sites that a
fault on a given site can affect is called the transitive fanout of this fault. For example,
output Y is in the transitive fanout of (the faults of) wire YMUX2, whereas output X
is not. By observing the natural partitioning of functionality among the parts of the
slice, we decided to use it in order to have each output be responsible to diagnose a
well-defined subset of the faults. In other words, we partitioned the faults among the
outputs of the circuit under test.

Another tool we used to achieve the partitioning was the control signal of the slice
multiplexers. By keeping the control signal of each multiplexer to a fixed value, we
essentially transform it to a short-circuit of the selected input to the output, at the same
time cutting off the non-selected input. By this cutting-off, the circuit is separated in
independent parts. In Figure 3.3 the partitioning of the CUT during the first phase can
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be seen, while in Figure 3.4 the respective partitioning during phase 2 is depicted.

Figure 3.3: The CUT partitioning for phase 1 of the function generator method.

A consequence of keeping the multiplexer signals to a fixed value during the whole
phase, is that the non-selected input wire of the multiplexer becomes untestable for this
phase. Also, from the two possible faults of the control signals, one becomes untestable.
For example, by fixing the value of the MUXF5 control signal to ‘0’ during phase 1, the
faults of signal F5IN2 and F5CTRL s.a. 0 become untestable. Thus, the testing of the
multiplexers that are used for the partitioning (that is all except the MUXFX), have to
be divided between the two phases. Additionally, in order to actually be able to detect
the testable fault of the control signal (i.e. the F5CTRL s.a. 1 in the example case of
phase 1) we have to keep the two inputs of the multiplexer complementary as often as
possible. This guided us to opt for complementary configurations between the two LUTs
during the same phase, since they are both inputs of MUXF5.
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Figure 3.4: The CUT partitioning for phase 2 of the function generator method.

3.2.2 Deriving the LUT Configurations

The decision of the two LUTs being configured with complementary contents was the
starting point for deriving their actual contents. The second step was defining the
addressing scheme. Since all contents of each LUT have to be read exactly once during
each phase, our decision was to address the LUTs with a 4-bit counter, as is common
practice in many function generator based techniques. Following these decisions, we had
to move on to the actual contents.

Focusing on the F-LUT, the first constraint came from the fact that the test for the F-
REGISTER has to be applied as early as possible. Since in the first phase the F-register
is tested with the output of the F-LUT, the lower-addressed bits of the configuration
sequence (bits 0 to 4) should be 10011. Bits 0 to 4 of the G-LUT were accordingly
determined to be 01100.

The most important purpose, though, of the LUT configuration is to help diagnose
the address line faults. Remember that, since memory faults cause one bit of the response
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Table 3.4: Detection of the address line faults according to the chosen LUT configuration. A
red entry denotes a difference between the intended and actual read address that appears on
the LUT output, while a green entry denotes a difference between the intended and actual read
address that goes unnoticed.

Contents 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1

Fault Actual Read Address

Fault-
free

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADDR(0)
s.a. 0

0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14

ADDR(0)
s.a. 1

1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15

ADDR(1)
s.a. 0

0 1 0 1 4 5 4 5 8 9 8 9 12 13 12 13

ADDR(1)
s.a. 1

2 3 2 3 6 7 6 7 10 11 10 11 14 15 14 15

ADDR(2)
s.a. 0

0 1 2 3 0 1 2 3 8 9 10 11 8 9 10 11

ADDR(2)
s.a. 1

4 5 6 7 4 5 6 7 12 13 14 15 12 13 14 15

ADDR(3)
s.a. 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ADDR(3)
s.a. 1

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

to be erroneous, we have to make sure that each address line fault causes at least two er-
roneous responses. An erroneous response occurs when the contents of the cell intended
to be read are different than the contents of the cell eventually being read. Referring to
Table 3.1, it can be verified that the first 5 bits of the configuration sequence already offer
adequate information to diagnose the faults of ADDR(0), since DATA(0) 6= DATA(1)
and DATA(2) 6= DATA(3). The same holds true for the faults of ADDR(1), since
DATA(0) 6= DATA(2) and DATA(1) 6= DATA(3). To trigger the appearance of
faults of ADDR(2), we set DATA(5) 6= DATA(1) and DATA(7) 6= DATA(3). Fi-
nally, to sensitize the faults of ADDR(3) as early as possible and also not confuse them
with the ADDR(1) faults, we set DATA(8) 6= DATA(0), DATA(9) 6= DATA(1) and
DATA(10) 6= DATA(2). The rest of the bits are not important and are set to the same
value for convenience (0 for the G-LUT and 1 for the F-LUT). In Table 3.4 we revisit
Table 3.1, this time marking in red a read operation that happens on the wrong address
and becomes apparent in the output and in green a wrong read operation that goes
unnoticed with the particular LUT contents. According to this, all address line faults
produce different faulty responses.

The result of the process described above was the complete configurations for the
G- and F-LUTs. To sum up, during the first phase the G-LUT is configured to
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the value (bit 0 to 15) “0110001110000000” and the F-LUT respectively to the value
“1001110001111111”. During the second phase, the two configurations are interchanged.
Having completed the formulation of the testing configuration (consisting of the LUT
configurations and the multiplexer control signals), we have to list specifically the faults
diagnosed on each output during each of the phases.

3.2.3 Deriving the Diagnostic Trees

Partitioning of the CUT allowed us to distribute the complexity of diagnosis over the
different outputs. Indeed, as will be in detail explained in Chapter 4, instead of having
one complex Response Analyzer (RA) to process all the outputs of the CUT, there is one
relatively simple RA attached to every output, processing this single-bit output. This
also simplifies the diagnostic trees, which otherwise would be unmanageable to formulate
manually.

In this section we will offer an overview of the duties that correspond to each response
analyzer of the function generator based method.

3.2.3.1 Phase 1 Response Analysis

During the first phase, there are essentially 5 partitions of the CUT, corresponding to
the outputs FX and Y, X, F5, YQ and XQ.

The FX and Y Response Analyzer: This is actually the only RA that examines
two outputs of the CUT instead of 1. This does not critically affect the complexity, since
the FX/Y RA performs only a few checks: It is responsible for completely checking the
MUXFX multiplexer, which is the only one that doesn’t need to have a fixed value for
its control signal, also for checking the ROUTING Y multiplexer with its control signal
set to ‘0’ and finally for the faults of the following wires: FXINA, FXINB, FXOUT, FX,
YMUX1 and Y.

To manage these tests, the inputs of this partition (FXINA, FXINB and FXCTRL)
are given the values listed in Table 3.2, corresponding to the multiplexer test as it was
defined in Section 3.1.1.2. This is done in order to complete the MUXFX test, but it is
proven enough to diagnose every other fault as well. In detail, the different responses of
every fault are explained below:

• Both FXCTRL faults appear on FX and Y, as always choosing the FXINA or
always choosing the FXINB input. Namely, FXCTRL s.a. 0 will cause the output
to be “0011”, while the presence of FXCTRL s.a. 1 will cause the output “1100”.

• Faults of FXINA and FXINB will appear on both outputs only when FXCTRL
chooses the faulty input. For example, the fault FXINA s.a. 0 will cause an output
of “1000”, while FXINB s.a. 0 will cause “0001”.

• FXOUT faults will appear on both outputs as a constant ‘0’ or constant ‘1’ output.

• FX faults will appear in the same way only on output FX itself.
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• YMUX1 and Y faults will appear only on output Y. Note that faults of these 2
wires can not be distinguished with the setup of phase 1.

• The fault MUXCTRLY s.a. 1 appears on the Y output, since the YMUX2 input
of the ROUTING Y multiplexer is always complementary to YMUX1.

Figure 3.5: The FX/Y diagnostic tree for the first phase. Test vectors are visible on the non-
leaf nodes, while the CUT responses annotate the branches. Alternative vectors to distinguish
between faults are shown in red. Leaf nodes contain the RA conclusion, which is shown in blue
when a 2nd phase is required for further disambiguation.

The resulting diagnostic tree can be seen in Figure 3.5. Every level of the diagnostic
tree corresponds to one clock cycle of the testing procedure. The nodes correspond
to test vectors in the order FXINA, FXINB, FXCTRL, while the links between them
are annotated by the response of the particular partition to this test vector. The leaf
nodes, that are also shown in different color, correspond to conclusions of the RA. When
reaching a leaf node, no further diagnosis can be performed during this phase. Notice
that when a faulty response occurs, for which it can not immediately be concluded
which the fault that caused it was, an alternative test vector has been occasionally
determined, which is suitable for distinguishing between the faults that actually could
have caused the faulty response. These alternative vectors are shown in red. We also
show the fault-free path, which corresponds to always receiving a fault-free response
and continuing with the predefined vectors. This is in general the form and structure of
all diagnostic trees that will be presented in this chapter, excluding the fact that only
for this tree the response is 2-bit, while for every other tree it is single-bit.
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The F5 Response Analyzer: This RA is responsible for diagnosing all address
faults of the G-LUT and also half the memory faults, corresponding to the configuration
of phase 1. It is also responsible for testing only the s.a. 0 fault for the control signal of
the MUXF5 multiplexer and, finally, for the faults of wires GD, F5IN1, F5OUT and F5.
To achieve that, a 4-bit counter addresses the G-LUT, resulting in a read operation on

Figure 3.6: The F5 and X diagnostic tree for the first phase. The tree is annotated with the values
relevant for the F5 partition. The tree for the X partition would be annotated with the exact
complimentary values on the branches and every leaf node would diagnose the corresponding
fault of the X partition, as they are listed in green color.
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all its entries. The different faults will appear on output F5 in the following ways:

• The address line faults appear on the output on the cycles marked in red for each
of them in Table 3.4.

• The memory faults cause exactly one bit of the output to be faulty. The clock
cycle on which the faulty response appears denotes the LUT memory cell that is
faulty.

• The fault F5CTRL s.a. 1 makes the exact complementary of the fault-free response
to appear on the output. It is, thus, very easily recognizable.

• The faults of wires GD, F5IN1, F5OUT and F5 appear on the output as a response
of constant ‘0’ or constant ‘1’. No further clarification is possible with the setup
of phase 1.

The resulting diagnostic tree can be seen in Figure 3.6. The numbers in the non-leaf
nodes are the read address for the particular cycle, which is the test vector for this
partition. Notice that a decision about the presence of a fault or about possible
alternative vectors is not made on every clock cycle. Such choices are made on cycles
1, 2, 5 and 8, because these are the cycles that address line faults of line 0, 1, 2 and
3 respectively appear. In this sense, those cycles are a kind of checkpoints for the
diagnosis process. On each checkpoint the RA decides, by inspecting a window of the
response, whether the response is fault-free, or there was some faulty response which
has to be resolved to a specific diagnosis. The tree is denser during the first cycles,
since we made every possible effort to push as many outcomes as possible closer to
the beginning of the process. In fact, starting on cycle 10, every faulty response is
automatically resolved to be caused by a memory fault, since memory faults have to be
checked one at a time.

The X Response Analyzer: This RA actually has identical duties with the F5
RA. It has to diagnose all address line faults and half the memory faults of the F-LUT,
the MUXCTRLX s.a. 0 fault for the ROUTING X multiplexer and the faults of wires
FD, XMUX2 and X. All of these faults are diagnosed on output X in exactly the same
way that the corresponding faults on output F5 were diagnosed. Notice that faults FD,
XMUX2 and X all have the same faulty responses and cannot be further clarified with
the setup of phase 1.

As a result of this symmetry, the diagnostic tree for output X is exactly identical
to that of output F5. In Figure 3.6, the faults corresponding to the X output on every
cycle are shown in green color.

The YQ Response Analyzer: This RA is responsible mainly for checking the
faults of the G REGISTER. Additionally, it has to check the fault DYCTRL s.a. 1
of the DYMUX multiplexer and the faults of wires DY, GQ and YQ. These faults are
differentiated on the YQ output in the following way:

• In the presence of DYCTRL s.a. 1, the F5CTRL/BY input appears on the YQ
output, making it easy to recognize.
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• The 0 → 0 and 1 → 1 transition faults produce distinct faulty responses on the
YQ output.

• The s.a. 0 fault of DY, GQ and YQ, as well as the 0 → 1 transition fault of the
flip flop coincide regarding their faulty responses. The same happens with the s.a.
1 faults of DY, GQ and YQ, as well as the 1 → 0 transition fault of the flip flop.
These fault groups can not be further clarified with the setup of phase 1.

Figure 3.7: The YQ diagnostic tree for the first phase. As YQ is a passive partition, meaning
that it does not contain any primary inputs of the CUT, there are no test vectors in the non-leaf
nodes.

The resulting diagnostic tree is shown in Figure 3.7. Notice that this tree does not
have a test vector value in each node, since this partition does not contain any primary
inputs of the CUT. Also, changing the inputs that eventually propagate to the DY input
of the DYMUX multiplexer would not offer any significant gain in efficiency, since the
test takes only a few cycles anyway. Also notice that the tree starts on cycle 1 instead
of cycle 0, because the flip-flop delays its input for one cycle, causing no meaningful
output during the first cycle (cycle 0).

The XQ Response Analyzer: The XQ RA is almost identical to the YQ RA.
The only difference is that, since F5CTRL/BX is kept at value ‘0’ for the whole phase
1, the fault DXCTRL s.a. 1 coincides with the s.a. 0 fault of wires DX, FQ and XQ.
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Figure 3.8: The XQ diagnostic tree for the first phase. The node annotated with a star denotes
the change of F5CTRL/BX to ‘1’ for the next clock cycle, in order to distinguish the DXCTRL
s.a. 1 fault from others that otherwise have the same response.

For this purpose, when the response of this fault group appears on the XQ output, the
input F5CTRL/BX is changed to ‘1’ for 1 clock cycle, to diagnose the fault DXCTRL
s.a. 1, since this would be impossible during phase 2. This results in the diagnostic tree
of Figure 3.8.

Summary of phase 1: Before we go on to derive the diagnostic trees for phase 2,
we will recap the result of phase 1. Each fault of our fault list belongs to one of the
following categories after phase1:

• Completely diagnosed: These faults are diagnosed with certainty. In the occur-
rence of one of these faults, there is no need for a second phase. The completely
diagnosed faults are:

– All address line faults of both LUTs.

– Half of the memory faults of each LUT.
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– Both faults of the MUXFX multiplexer.

– One of the two faults of every other multiplexer.

– The faults of wires FXINA, FXINB, FXOUT and FX.

– Half of the storage element faults.

• Partially Diagnosed: Some groups of faults, though detected, produce the same
response and it cannot be clarified which of the faults in the group caused this
faulty response. These fault groups have to be revisited during phase 2:

– The faults of wires YMUX1 and Y.

– The faults of wires GD, F5IN1, F5OUT and F5.

– The faults of wires FD, XMUX2 and X.

– The faults of wires DY, GQ and YQ, as well as two of the four transition
faults for the G REGISTER.

– The faults of wires DX, FQ and XQ, as well as two of the four transition faults
for the F REGISTER.

• Not Sensitized: These faults are redundant, hence untestable, under the current
configuration. They have to be sensitized and diagnosed during phase 2:

– One of the two faults of every multiplexer except MUXFX.

– The faults of the wires YMUX2, F5IN2 and XMUX1.

– Half of the memory faults of each LUT, corresponding to the configuration
values of phase 2.

The way that phase 2 deals with the faults of the last 2 categories will be explained
in the next section.

3.2.3.2 Phase 2 Response Analysis

The efficiency of the function generator based method depends heavily on whether or
not a conclusion can be drawn during the first phase. If this does not happen, the
consequence is a big time penalty. The diagnosis, though, has to proceed anyway and
this is the role of phase 2. The setup for phase 2 is summarized in the following points:

• The two LUT configurations are interchanged, resulting in the LUT contents being
complementary compared to them of phase 1.

• The control bit of every multiplexer excluding MUXFX, is set to a fixed value
complementary to that of phase 1. We refer the reader to Figure 3.4 for the
resulting partitioning of the circuit. As a result of this partitioning, phase 2 consists
of 4 response analyzers, processing the data of outputs Y, YQ, X and XQ.

• MUXFX and all its inputs and outputs as well as output FX are ignored through
this phase, since all their faults have been completely diagnosed.



46 CHAPTER 3. METHOD

• During phase 2, almost every faulty response can easily be resolved in the few
following cycles, without the need of calculating alternative input vectors. For this
reason, we decided to keep the vector generator simple and not use any alternative
vectors.

• In the case that phase 1 terminated with partial diagnosis, a seed is given to
the circuitry of phase 2, denoting that the only duty of phase 2 is to resolve the
ambiguity, instead of checking for the whole pool of faults it otherwise has to.

The diagnosis process of the second phase is in detail explained through the
description of duties of the 4 response analyzers:

The Y Response Analyzer: In the case of phase 1 resulting to partial diagnosis,
this RA has a duty in the following two cases:

• Phase 1 terminated denoting the presence of fault on wire YMUX1 or wire Y: In
this case, a faulty response on Y means that the fault is actually on Y, whereas
a fault-free response means that the fault is on YMUX1, which is untestable in
phase 2.

• Phase 1 terminated denoting the presence of fault on one of wires GD, F5IN1,
F5OUT and F5. In this case, faulty response on Y means that the fault is on wire
GD, while fault-free response means that it is in one of the other wires.

In the case of no partial diagnosis produced by phase 1, the Y RA has to diagnose
the following faults:

• The second half of the G-LUT memory faults, in exactly the same way that the
first half is diagnosed during phase 1.

• The fault MUXCTRLY s.a. 0, which appears as an output complementary to the
expected one on output Y.

• The faults of wire YMUX2, which are obvious on output Y combined with the
absence of seed from phase 1.

The resulting diagnostic tree is shown in Figure 3.9.

The X Response Analyzer: If phase 1 produced partial diagnosis of the faults on
wires FD, XMUX2 and X, the X RA has to clarify it during phase 2. If the response
during phase 2 is fault-free, it means that the fault is on wire XMUX2, which is untestable
during phase 2. If a faulty response is observed on X, it means that the fault was on
one of the wires FD and X. In this case, after the 16 first cycles, the control signal of
MUXF5 is changed to ‘0’ and the output is observed for 2 more cycles. If the output is
still faulty, the fault is on X itself, else it is on wire FD.

In case the first phase didn’t produce partial diagnosis, the duties of the X RA are
identical to those of the Y RA. Specifically, the X RA has to diagnose the second half of
the F-LUT memory faults, the fault MUXCTRLX s.a. 1 and the faults of wire XMUX1.
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Figure 3.9: The Y diagnostic tree for the second phase, in the case that no partial diagnosis seed
is produced by phase 1.

The only difference to the Y RA is that the MUXCTRLX s.a. 1 is not as easy to diagnose
as the MUXCTRLY s.a. 0, since both inputs of the ROUTING X multiplexer are driven
by the F-LUT during phase 2. For this reason, after the first 16 cycles, the control
signal of MUXF5 changes to 0 and propagates the G-LUT output to XMUX1, which is
complementary to the F-LUT output that is fed to XMUX2 and allows the diagnosis of
MUXCTRLX s.a. 1.

The resulting diagnostic tree is shown in Figure 3.10.

The YQ Response Analyzer: In case phase 1 terminated with a partial diagnosis
related to the G REGISTER component, this RA has to decide if the flip-flop is usable
through the direct input FXCTRL/BY or unusable at all. If the response is also faulty
in phase 2, it means that the fault detected by phase 1 is either a flip-flop transition
fault or a fault on one of the wires GQ and YQ. In this case, the flip-flop is unusable
altogether. If the response during phase 2 is fault-free, the fault is on wire DY and the
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Figure 3.10: The X diagnostic tree for the second phase in the case that no partial diagnosis seed
is produced by phase 1. The starred address test vectors after cycle 15 denote that the G-LUT
is addressed instead of the F-LUT.

flip-flop is usable through the direct input.

In case there was no partial diagnosis during phase 1, this RA only has to check the
fault DYCTRL s.a. 0. This is easily done by observing the response, since we have set
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the FXCTRL/BY input to be complementary to DY. No diagnostic tree is required for
this single decision.

The XQ Response Analyzer: In case phase 1 terminated with a partial diagnosis
related to the F REGISTER component, this RA has to decide if the flip-flop is com-
pletely unusable or only usable through the F5CTRL/BX input. This check is performed
in exactly the same way as in the YQ RA.

In case there was no partial diagnosis during phase 1, this RA only has to check the
fault DXCTRL s.a. 0. This is done by observing the XQ output on a cycle that DX
is 0, in order for the DXMUX inputs to be complementary, since F5CTRL/BX is set
constantly to 1. No diagnostic tree is required for this single decision.

3.3 The Shift Register Based Method

The function generator based method, as it was completely explained in the previous
section, was our first attempt to solve the problem of fault diagnosis and characterization
of the Virtex-II FPGA slice. Although it offered good diagnostic resolution, especially
on the wires and multiplexers, it had a number of drawbacks, summarized below:

• Its performance is bound by the reconfiguration stage, which, as shown even in
recent works, dominates the total testing time when there are different phases.

• It does not detect all 10 memory faults in our fault model for each cell. Namely,
although both state faults, incorrect read faults and read destructive faults are
covered, only one of the write disturb faults and one of the transition faults are
checked, because of the static manner in which data is stored in the LUT when it
is configured as a function generator. In order to achieve detection of all 10 faults,
more than two phases would be needed, since the function generator configuration
does not allow writing on the memory cells during the testing.

• It does not check all the functionality supported by the simplified slice diagram
shown in Figure 3.2. More specifically, it does not check the ENABLE wires, thus
not making sure that the slice can be configured as a shift register.

The above drawbacks hinted us to look for an alternative solution to our problem.
We chose to try the other basic mode of operation of the slice, namely the shift register.
According to the drawbacks mentioned above, this new approach obviously had the
following advantages:

• Since it allows for the memory cells to be written during the normal operation and
not only through configuration, it is free from reconfiguration overhead.

• The ability to change the LUT contents with the shift operation, also means that
a memory test can be devised to cover all 10 memory faults of the chosen model
easily and quickly.

• Since the slice is configured as a shift register, this mode of operation is obviously
checked. On top of that, the shift register mode completely overlaps the function
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generator mode, since it uses the same memory cells, the same asynchronous read
operation and the same address lines for it.

Of course, the solutions to the problems mentioned above, also come together with
some new complications, that make the comparison of the two methods interesting. The
most important such complications are listed below:

• Although the shift register mode allows us to modify the LUT contents during
the normal testing operation, it does not allow the same for the configuration
multiplexers’ control signals. Thus, if we keep the testing procedure in one phase,
we cannot test one of the two faults for each of the configuration multiplexers. We
also cannot test the input that is not selected.

• The presence of two phases in the function generator based method also allowed
us to distinguish between some wire faults that appear on the same output in the
same way. With the shift register method, this is not always possible.

• Stacking the diagnosis of all faults in one phase somewhat complicates the diag-
nostic trees, resulting in increased hardware complexity.

The basic guidelines of the method development were the same as the function gen-
erator based method: The circuit is partitioned by using the configuration multiplexers’
control signals and a different response analyzer detects the faults that can be observed
on each output. Upon encountering a faulty response, the response analyzer behaves
adaptively, changing the subsequent test vectors whenever an efficiency gain is possible.
Since these characteristics are common among the 2 methods, we will present the shift
register method by focusing mainly on the differences between them. We will illustrate
the partitioning for the shift register method, then explain the memory test that we de-
veloped and finally, list the duties of each response analyzer and derive the corresponding
diagnostic trees.

3.3.1 Partitioning of the Faults

The partitioning we performed to setup for the shift register method is shown in Fig-
ure 3.11. Notice that the main difference from the first method is that the multiplexer
MUXF5 is not used for the partitioning, but its control signal (F5CTRL) is used as a
variable input, to allow complete test of the MUXF5, since this is possible. Since we can
test the flip-flops only in one mode (driven by the LUTs or driven directly), we choose
to drive them by the LUT outputs, since this is the way we have seen them used more
often in FPGA realizations. Also, the G and F LUT outputs are propagated to the Y
and X slice outputs respectively. This way, the basic combinational logic functionality
of the slice is checked, which is realizing 4-input boolean functions. Together with the
complete MUXF5 test, this means that also the ability to accommodate 5-input boolean
functions is checked.

The above partitioning defines the existence of 6 response analyzers. The duties and
resulting diagnostic trees of each of them will be explained in Section 3.3.3. Before that,
the test patterns of the two shift registers will be derived in Section 3.3.2, to formulate
the memory test.
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Figure 3.11: Partitioning of the CUT for the shift register method.

3.3.2 The Memory Test

The most important aspect of the shift register method is the way in which it deals with
memory faults. It was observed after designing the function generator method that it can
not cover all 10 memory faults defined by our fault model. One of the main incentives
for developing the shift register method was to improve in this respect.

Since now we have access to the contents of the LUTs, we opted for developing a
variation of a march test [40], to cover the memory faults. Our write access to the cells
is not conventional memory write access, but rather shift-in access. That meant that
we had to come up with a way to apply the march test by using the shift operation.
Details about those developments will be presented in the following three sections. In
these sections we will focus on the F-LUT, but the G-LUT test is exactly identical, with
all bit values complementary
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3.3.2.1 March Test Formulation and Application

The march test on which we relied to cover all memory faults is the following:

{↑ (w0, w1, w1, r1); ↑ (w0, w0, r0)}

The march test covers all 10 faults of the fault model. To be more specific, the first
half of the test detects half of the faults as follows:

• The state fault which causes constant state ‘0’ is detected when reading 1 from
each cell, because the cell will always have the value ‘0’.

• The write disturb fault 1w1 is detected because the second write of 1 will cause
the cell to flip to 0 before being read.

• The transition fault 0w1 will be detected because neither “w1” operation will
succeed and the contents of the cell will remain 0 until the read operation.

• The read destructive fault < 1r1/0/0 > is detected because the read operation will
flip the contents of the cell to 0.

• The incorrect read fault < 1r1/1/0 > is detected because the read operation gives
wrong result on the shift register output.

The other half of the faults is detected in exactly the same way by the second half
of the test.

The application of the aforementioned march test has to be managed through the
combination of the synchronous shift-in operation and the asynchronous read operation.
Actually, the shift-in operation is more suitable than a normal write operation for imple-
menting the “w0” or “w1” elements of the test, because it is enough to shift in a single
‘0’ or ‘1’ and this value will be written in every cell in succession, as the shifting of more
bits takes place. It is then enough to read the value from each cell on the correct clock
cycle that it arrives. Thus, to implement the first half of the march test, we follow the
steps listed below:

• We set the ENABLE input of the shift register to ‘1’.

• We shift in successively the values ‘0’, ‘1’ and ‘1’, to implement the “w0, w1, w1”
elements of the test.

• On the cycle that the second ‘1’ is shifted in position 0 of the shift register, we
read this position to implement the “r1” element of the test.

• Every next cycle, we increase the read address by 1 and keep reading the ‘1’ from
all positions of the shift register.

Notice that it is not important what values we shift in the register after the three that
we explicitly mentioned. We determined these values accordingly, in order to efficiently
diagnose the address line faults. This technique, along with the way we checked the rest
of the LUT faults, will be illustrated in the next section.
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3.3.2.2 Finalizing the LUT test

Except from the memory cell faults, the method has to cover all other faults related to
the LUT, which is now configured as a shift register. Specifically, there are address line
faults as well as faults of the ENABLE and SHIFTIN inputs of the LUT. Remember that
we want to push the diagnosis of these faults as early as possible within the procedure.

In order to efficiently cover the address line faults, we played with the initialization of
the shift register. The contents were initialized to ‘0’, except from position 15 (the highest
position), which was initialized to ‘1’. Before the shifting of new contents commences,
we read position 15 once, this way sensitizing all the ADDR(X) s.a. 0 faults. Of course,
a faulty response of ‘0’ at this point does not necessarily mean an address line fault (it
can mean a memory fault of cell 15, or a s.a. 0 fault of the LUT output), but what
is important at this point is to uncover as many faults as possible. Clarifying between
them is possible in the next few cycles.

After sensitizing half the address faults, we focus on the ENABLE s.a. 1 fault. To
uncover the existence of this fault, we have to keep ENABLE = ‘0’ and SHIFTIN = ’1’.
In this way, if ENABLE is s.a. 1, we will read ‘1’ from position 0, instead of the ‘0’
to which we initialized it. After this operation, we keep ENABLE = ‘0’ for two more
cycles, which helps us clarify any possible faulty response during this first part of the
test. Subsequently, we switch ENABLE to ‘1’ and start shifting in the appropriate values
to commence with the march test. When reading the first ‘1’ from position 0, we also
uncover the second half of the address line faults, that is ADDR(X) s.a. 1. In the first
cycles of the march test, we also uncover the existence of the ENABLE s.a. 0 fault, since
it will cause the state of the shift register to always remain the same. Finally, the faults
of SHIFTIN will also be uncovered during this phase.

The above procedure is illustrated in Table 3.5. The state of the shift register is
shown for each cycle and the read address noted. Notice that behind the two 1s that
we shift in for starting the march test, we occasionally shift in more 1s to help clarify
between different address line faults. Also, on cycle 21, the second half of the march test
begins. The whole test lasts a maximum of 38 cycles, which is a little more than 2 ∗ 16.

The insertion of these special few cycles in the beginning of the procedure, somewhat
complicates the march test in respect with cell 0 and cell 15. The way to overcome this
problem is explained in the next section.

3.3.2.3 Boundary Conditions

We borrow the term Boundary Conditions from the study of electromagnetic fields. It
is used to describe the special equations that are true on the boundaries of a region that
is under the effect of an electromagnetic field. For example, to calculate the intensity of
a field on a rectangle, some equations are used, but some extra equations are needed to
calculate the intensity on the edges of the rectangle. Likewise, in our case, by reading
cell 15 and cell 0 of the LUTs before starting the march test, we might have uncovered
some of the memory faults of these cells, a fact that has to be taken into account before
starting the actual march test. These special cases are analyzed in this section.

Notice that the actual march test response starts being available on cycle 5, when the
“w0, w1, w1” elements of the test have been completed for cell 0 and the “r1” operation
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Table 3.5: The shift register state on every cycle of the shift register method.

Read Address 15, 0, 0, 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

State(15) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
State(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
State(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
State(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
State(11) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
State(10) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
State(9) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1
State(8) 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0
State(7) 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
State(6) 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
State(5) 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
State(4) 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
State(3) 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
State(2) 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
State(1) 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
State(0) 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Cycle 0, 1, 2, 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Read Address 15 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

State(15) 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
State(14) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
State(13) 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
State(12) 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
State(11) 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
State(10) 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
State(9) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
State(8) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
State(7) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
State(6) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
State(5) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
State(4) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
State(3) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
State(2) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
State(1) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
State(0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cycle 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

starts. But cell 0 has been read also during cycles 1 to 4. Thus, every distinct memory
fault might have been already uncovered and they have to be examined independently:

• The state fault which causes constant state ‘0’ is sensitized on cycle 4, when the
first ‘1’ is read from cell 0.

• The incorrect read < 1r1/1/0 > and read destructive < 1r1/0/0 > faults are also
triggered during cycle 4, since we try to read ‘1’ from cell 0.

• The transition fault 0w1 also causes the response of cycle 4 to be faulty, since ‘1’
has been written on top of ‘0’ and is subsequently read.

• The write disturb fault 1w1 appears on cycle 5, as normally scheduled by the march



3.3. THE SHIFT REGISTER BASED METHOD 55

test.

• The state fault which causes constant state ‘1’, is sensitized on cycle 1, when we
try to read ‘0’ from the cell.

• The incorrect read < 0r0/0/1 > and read destructive < 0r0/1/1 > faults are also
uncovered on cycle 1 in the same way.

• The transition fault 1w0 is detected on cycle 21, since we write ‘1’ on top of ‘0’
and subsequently read the cell.

• The write disturb fault 0w0 is detected on cycle 22, as normally scheduled by the
march test.

The case of cell 15 is somewhat simpler, because only one extra read is performed on
it in the beginning of the procedure:

• The state fault which causes constant state ‘0’ is sensitized on cycle 0, when we
try to read ‘1’ from cell 15.

• The incorrect read < 1r1/1/0 > and read destructive < 1r1/0/0 > faults are also
uncovered on cycle 0, when we read ‘1’ from the cell.

• The rest of the faults are detected on the normal schedule of the march test.

With the above analysis available, it was possible to derive the diagnostic trees. The
rest of the cells are only read within the framework of the march test, thus being tested
exactly in the way described in Section 3.3.2.1.

One final observation about the memory test is the different effect of the incorrect
read faults < 0r0/0/1 > and < 1r1/1/0 > compared to all other faults. While every
other fault actually corrupts the contents of the memory cell, the incorrect read only
affects the output. According to this, the cell is potentially capable to take part in a
shift register, as long as it is never read, since it will correctly allow the contents to
shift through. This statement only holds in the case of a shift register with fixed input
address. The shift register method is able to distinguish the incorrect read fault from
all other faults, by performing an extra read operation in the next cell when a memory
fault is detected. If the fault propagates from cell to cell, then it is not an incorrect read
fault.

3.3.3 Deriving the Diagnostic Trees

After the complete formulation of the method, it was time to proceed to the design
of the diagnostic trees for each response analyzer. The shift register method uses 6
independent RAs, one for every primary output of the circuit. The duties and the way
that each RA draws a valid conclusion will be summarized in this section.

The FX Response Analyzer: This RA is almost identical to the FX/Y RA of
phase 1 of the function generator method, but it observes only output FX. It checks
both faults of the MUXFX multiplexer, and the wires FXINA, FXINB, FXOUT and FX
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Figure 3.12: The FX diagnostic tree for the shift register method.

in exactly the same way. The only differences are that it can not distinguish between
FXOUT and FX faults and it is not responsible for YMUX2 and Y faults. The resulting
diagnostic tree is shown in Figure 3.12.

The Y Response Analyzer: This RA’s main duty is to check all features of the
G-LUT. Additionally, it has to check the MUXCTRLY s.a. 0 fault of the ROUTING
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Figure 3.13: The Y and X diagnostic tree for the shift register method. The tree for the X
partition is shown, while the corresponding faults of the Y partition, listed in green color, are
diagnosed with the exactly complimentary responses. Also see Figures 3.14 to 3.17 for subtrees
1 to 4.

Y multiplexer and the faults of wires GD, YMUX2 and Y. Each category of faults is
diagnosed as follows, based on the method characteristics that have been explained in
the previous sections:

• The memory faults are detected by the march test, one cell every cycle. Upon
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Figure 3.14: Subtree 1 of the Y and X diagnostic tree for the shift register method.

diagnosis of a memory fault, one more read operation is performed in the next cell,
to decide whether or not the fault propagates.

• Address line faults are detected on cycle 0 (the ADDR(X) s.a. 0 faults) and on
cycle 4 (the ADDR(X) s.a. 1 faults). The specific fault is clarified in the following
cycles, by shifting in the appropriate data and reading the appropriate positions.

• The ENABLE s.a. 0 fault is diagnosed because the state of the shift register
remains always the same, while the ENABLE s.a. 1 is diagnosed in the first few
cycles, if the state of the register changes although it is not supposed to.

• The SHIFTIN faults are diagnosed because the output is fixed to a steady value
after ENABLE is set to ‘1’ and the shifting operation starts.

• The faults of all wires appear as a steady value on the output from the beginning
of the process.
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Figure 3.15: Subtree 2 of the Y and X diagnostic tree for the shift register method.

The resulting diagnostic tree is shown in Figures 3.13 to 3.17. This is the most
complicated tree we had to build.

The X Response Analyzer: This RA has duties exactly identical to the Y RA:
Checking every feature of the F-LUT, the MUXCTRLX s.a. 0 fault of the ROUTING
X multiplexer and the faults of wires FD, XMUX2 and X. Each category of these faults
is checked in exactly the same way as in the Y RA, thus the X RA uses the same
diagnostic tree of Figures 3.13 to 3.17.

The YQ Response Analyzer: This RA is responsible for checking faults of the G
REGISTER storage element, the DYCTRL s.a. 1 fault of the DYMUX multiplexer and
the faults of wires DY, FQ and YQ. Each of these faults is diagnosed as follows:

• The faults of G REGISTER are diagnosed on the first occurrence of each of the
four possible transitions of the flip-flop.
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Figure 3.16: Subtree 3 of the Y and X diagnostic tree for the shift register method.

• DYCTRL s.a. 1 is checked on the cycles that FXCTRL/BY is different than DY.

• The faults of all wires are observed directly on YQ, as a steady value.

The resulting diagnostic tree is shown in Figure 3.18.

The XQ Response Analyzer: This RA has duties exactly identical to the YQ
RA: It has to check faults of the F REGISTER storage element, the DXCTRL s.a. 1
fault of the DXMUX multiplexer and the faults of wires DX, FQ and XQ. All the faults
are diagnosed in exactly the same way as in the YQ RA, thus the XQ RA uses the same
diagnostic tree presented in Figure 3.18.

The F5 Response Analyzer: This RA is responsible to check both faults of the
MUXF5 multiplexer and the faults of wires F5IN1, F5IN2, F5OUT and F5. It achieves
this as follows:

• The inputs of MUXF5 are always complementary, thus checking this multiplexer
is trivial.
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Figure 3.17: Subtree 4 of the Y and X diagnostic tree for the shift register method.

• Faults of F5IN1 and F5IN2 are visible on the output only during cycles that the
faulty wire is chosen.

• Faults of F5OUT and F5 are detected as a steady value of the output.

The resulting diagnostic tree is shown in 3.19. This RA also helps in a special case:
If it detects a fault on F5IN1 and the Y RA has detected a fault on one of the wires
GD, YMUX2 and Y, then the actual fault is surely on GD. This is the only case that
results of different RAs are combined to make a final diagnosis. The same is true for
faults of FD and F5IN2.

This concludes our complete description of both developed methods. In the final
portion of this chapter, we will explain how diagnosis results are used to characterize the
slice.

3.4 Characterization and Graceful Degradation

As was mentioned many times throughout this thesis, the purpose of fault diagnosis is
to eventually characterize the faulty FPGA slice, so that it can be reused in a suitable
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Figure 3.18: The YQ and XQ diagnostic tree for the shift register method. The tree for partition
XQ is shown, while the corresponding faults of partition YQ, listed in green color, are diagnosed
with the exactly complimentary responses.

mode of operation. In this section we will explain how this is done.

In previous works regarding graceful degradation, a list of modes of operation is de-
fined. For example, a mode of operation is to configure the slice as a function generator,
without the use of the storage elements (in this case, it is purely combinational). Ac-
cording to the fault that is diagnosed, each of these modes of operation is marked as
suitable or not for the basic block.

In this work, we opted for a slightly different approach. We defined a set of modes of
degradation, each of which describes which function(s) the basic block can not perform.
In our opinion, in this way matching can be performed relatively easily, by inspecting
one, or a few bits of the intended configuration bit stream. All modes of degradation
and the faults that result to each of them according to both methods are listed in
Table 3.6. As will be explained in the next chapter, the characterization is performed
independently from the diagnosis. If someone decides that another set of modes of
degradation is needed, or another manner of characterization, he can still use the result
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Figure 3.19: The F5 diagnostic tree for the shift register method.

of our diagnosis methods to do so.

3.5 Summary

In this chapter we approached the core concepts of this thesis. We analyzed the two
methods that were developed in the process, by explaining in detail how each of them
was built step by step.

Our first method was based on the function generator configuration of the slice.
This is the most frequent configuration, both in testing methods and during the normal
operation of the FPGA. The resulting diagnostic trees were relatively simple and the
diagnostic resolution very good. The lack of access to the configuration bits unfortunately
meant that at least 2 phases were needed to complete the test and even more if all memory
faults are expected to be covered. These drawbacks guided us to the development of our
second method.

Our second method revolved around a shift register configuration for the slice. By
doing that, we gained access to the configuration bits of the LUTs, which allowed us to
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Table 3.6: Modes of graceful degradation.

MODE: CODE METHOD 1
FAULTS

METHOD 2
FAULTS

DESCRIPTION

M0(a): 0000000 Fault-free - The CUT is fault-free in respect with the faults that are
checked with the function generator method. Thus, it can
support all functions that are tested by this method.

M0(b): 0000000 - Fault-free The CUT is fault-free in respect with the faults that are
checked with the shift register method. Thus, it can sup-
port all functions that are tested by this method.

M1: 0100100 f0, f1, f2, f3, f4,
f5, f6, f7

f0, f1, f2, f3, f4,
f5, f6, f7, f8, f9

MUXFX not functional, output FX not usable. Signal
YMUX1 not usable, hence ROUTING Y multiplexer us-
able only with MUXCTRLY = ‘1’.

M2: 0100101 f8, f9 - Output FX not usable.
M3: 0100110 f10, f11, f15 - ROUTING Y multiplexer usable only with MUXCTRLY

= ‘1’.
M4: 0100011 f12, f13, f14 - ROUTING Y multiplexer usable only with MUXCTRLY

= ‘0’.
M5: 0100111 f16, f17 f12, f13, f16,

f17
Output Y not usable. Y flip-flop only usable directly
through input BY (DYCTRL = ‘1’).

M6:
001M3M2M10

G-LUT 8 ad-
dress faults

G-LUT 8 ad-
dress faults

G-LUT only usable as a 3-variable function generator, ex-
cluding the faulty address line. 8 different modes are en-
coded. M3M2 encode the faulty line and M1 denotes s.a.
0 or s.a. 1 fault.

M7:
1M50M3M2M1M0

G-LUT 32
memory faults

G-LUT 32
memory faults

G-LUT entry needs to be configured to the faulty value.
32 different modes are encoded. M5M3M2M1 encode the
faulty memory cell and M0 denotes the forced configura-
tion value.

M8: 0100000 f60, f61 f60, f61 G-LUT not usable. MUXCTRLY has to be configured to
‘0’.

M9: 0100001 f64, f65, f66,
f67, f68, f69,
f70, f71

f64, f65, f66,
f67, f68, f69,
f70, f71, f72,
f73

MUXF5 not usable. Output F5 not usable. Output X can
only be driven by the F-LUT (MUXCTRLX = ‘1’).

M10: 0100010 f72, f73 - Output F5 not usable.
M11:
001M3M2M11

F-LUT 8 ad-
dress faults

F-LUT 8 ad-
dress faults

F-LUT only usable as a 3-variable function generator, ex-
cluding the faulty address line. 8 different modes are en-
coded. M3M2 encode the faulty line and M1 denotes s.a.
0 or s.a. 1 fault.

M12:
1M51M3M2M1M0

F-LUT 32
memory faults

F-LUT 32
memory faults

F-LUT entry needs to be configured to the faulty value.
32 different modes are encoded. M5M3M2M1 encode the
faulty memory cell and M0 denotes the forced configura-
tion value.

M13: 0110000 f116, f117 f116, f117 F-LUT not usable. Outputs F5 and X not usable. X flip-
flop only usable directly (DXCTRL = ‘1’).

M14: 0110011 f118, f119, f123 - ROUTING MUX X can only propagate the F-LUT output
to output X (MUXCTRLX = ‘1’).

M15: 0110001 f120, f121, f122 - ROUTING MUX X can only propagate MUXF5 output
to output X (MUXCTRLX = ‘0’).

M16: 0110010 f124, f125 f120, f121,
f124, f125

Output X not usable. X flip-flop only usable directly,
through input BX (DXCTRL = ‘1’).

M17: 0101010 f126, f127, f129 f129 Y flip-flop only usable directly, through input BY (DYC-
TRL = ‘1’).

M18: 0101000 f128 - Y flip-flop only usable through logic output Y (DYCTRL
= ‘0’).

M19: 0101011 f130, f131,
f132, f133,
f134, f135,
f136, f137

f126, f127,
f130, f131,
f132, f133,
f134, f135,
f136, f137

Y flip-flop not usable. YQ output not usable.

M20: 0111000 f138, f139, f141 f141 X flip-flop only usable directly, through input BX (DX-
CTRL = ‘1’).

M21: 0111010 f140 - X flip-flop only usable through logic output X (DXCTRL
= ‘0’).

M22: 0111001 f142, f143,
f144, f145,
f146, f147,
f148, f149

f138, f139,
f142, f143,
f144, f145,
f146, f147,
f148, f149

X flip-flop not usable. XQ output not usable.

M23: 0000001 - f18, f19 G-LUT unable to be used as shift register.
M24: 0000010 - f114, f115 F-LUT unable to be used as shift register.
M25: 0000011 - f62, f63 Both LUTs unable to be used as shift registers.
M26: N/A - - Slice not usable at all.



3.5. SUMMARY 65

produce very good memory tests in one phase and in a number of cycles almost identical
to that of the first method. The limitation of only one phase meant that we couldn’t
get as good diagnostic resolution on the wire faults as the first method. The importance
of this drawback depends on the characterization scheme that is chosen. Also, this
method can draw a definite conclusion on the ability of the slice to be used as a function
generator, whereas the first method can not do the same for the shift register mode.

In the following chapter we will explain various implementation details through block
and circuit diagrams, before we proceed to actually evaluating and comparing the 2
methods in Chapter 5.





Hardware Implementation 4
U

p to now in this report we tried to as adequately as possible set the research frame-
work, define the problem at hand and describe our solution to it. Our description
of the solution was completely independent of technology and implementation de-

tails. One can decide to apply it in a completely different manner than we did in this
thesis. For example, we opted for an on-chip implementation (in other words, a BIST
approach), but this is not imperative, just a better choice in our point of view. That
said, the time has come to explain how we transitioned from the diagnosis method design
(the process through which we derived the diagnostic trees) to actual hardware imple-
mentation (a working system that produces the correct results). That is the purpose
of this chapter, which represents the engineering part of our work, while Chapter 3 was
dedicated to the research aspect.

This chapter is organized as follows: We will begin by presenting a high-level organi-
zation of the system in Section 4.1 and go on to describe the role and internal structure
of each main component in Section 4.2. In Section 4.3 we will approach some miscella-
neous topics that required our attention throughout the development and in Section 4.4,
we will summarize the chapter and prepare the ground for the next phase, which is the
method evaluation.

4.1 System Organization

As we already pointed out a few times, the core concept of implementing fault diagnosis
in our approach is that of a diagnostic tree. The basic advantage of this approach is that
it can support an adaptive diagnosis strategy, by identifying the set of suspect faults
after each fragment of the CUT response becomes known and making a decision as soon
as possible. In some cases, it is even profitable to modify the upcoming test vectors in
order to target the suspect faults specifically and reach the conclusion even sooner. This
means that the response analyzer should give some feedback to the vector generator, in
order to determine the subsequent steps. This was illustrated in Figure 3.1.

In this section we provide a more detailed, but still high-level description of the
system. In Figure 4.1 the general block diagram of the system is given. This is a general
version, valid for both methods that were described in Chapter 3. The system consists
of a set of response analyzers, each being responsible for a partition of the circuit under
test, as was explained adequately in Section 3.2.1 and a system controller, coordinating
the operation of the RAs. The duties and internal structure of the RAs and the controller
will be explained in the next section.
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Figure 4.1: Tester Block Diagram.

4.2 Function and Implementation of modules

As was established in the previous section, there are two core components in our system:
The response analyzers and the system controller. In this section, we will go on to list
the duties and illustrate the implementation of each of them separately.

4.2.1 Response Analyzers

From a computational standpoint, the response analyzers are the core of our testers.
They have to assess the response of the CUT and draw conclusions about the presence
or absence of faults. The complete list of tasks appointed to the RAs is the following:

• Collecting the response of the respective CUT partition.

• Comparing the response to the expected one and deciding, on every step of the
process, if the response of the partition is fault-free, or a fault is present in it.

• Using a window of the partition’s response (1 to 4 bits, depending on the specific
RA) to adapt the diagnosis strategy by choosing an alternative vector to be applied
to the CUT.

• Ultimately producing a diagnosis result according to the diagnostic tree. This
result can either be that the partition is fault-free, or the specific fault (or set of
few faults) that the partition suffers from.

• Keeping the controller updated about its state: That includes notifying the con-
troller when it is done and the result it produces is valid, but also when it detects
the presence of some fault in the partition, before actually diagnosing which fault
exactly it is. In the latter case, the controller will be able to notify the rest of
the RAs that the fault is detected and there is no need for them to continue the
process.

The general implementation of the response analyzer is shown in Figure 4.2. Note
that not all features are present in all RAs. For example, the RAs that correspond to
passive CUT partitions (partitions without any primary input), never produce alternative
test vectors. On every cycle, one bit of CUT response is added to the response window,
and the oldest bit is thrown away. The response window register, when more than one



4.2. FUNCTION AND IMPLEMENTATION OF MODULES 69

Figure 4.2: Response Analyzer Implementation.

bit, is realized as a small serial-in parallel-out shift register. Subsequently, the value of
the test counter (which denotes the step of the process that is currently commencing)
together with the response window, are input to a combinational logic block that takes
all decisions listed above. The results of this logic module are stored in the output
registers and reach the system controller within the next clock cycle. To complete the
description of the RA, the following remarks have to be made, referring to Figure 4.2:

• The TEST STOP output is raised as soon as the very first faulty response of the
CUT partition is observed. This is enough to conclude that the fault lies within
this partition and that the rest of the RAs can stop. Notice that a RA that has
been ordered to stop, cannot order others to stop, because that would include the
RA that issued the original STOP command. Also notice that the STOP input is
fed forward to this combinational stage, without being registered in the RA input.
It is important that RAs are ordered to stop as soon as possible, because there
are a few faults that eventually cause faulty responses to other partitions. A good
example of such an instance is a fault in the Y (or X) partition causing a faulty
response to be observed also on the YQ (or XQ) partition, since it will probably
propagate through the flip-flop.

• The ALT VECTOR output carries potential alternative vectors to the system con-
troller, according to faulty responses observed here. The ALT MUX output ac-
tually notifies the controller that it should use the alternative vectors instead of
the predefined ones. The present value of ALT MUX is used by the combinational
logic part, because it is an easy way to tell if the process continues on the fault-free
path (as seen on the diagnostic trees of Chapter 3) or not.

• Once the RA decides that it is done, it raises the DONE output. DONE will always
stay raised after that time. Except from reaching a diagnosis conclusion for the
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partition in question, a RA can also be DONE by being told to STOP.

• The fault-free response for every RA is a vector of 0s. In this way, when the RA is
done, the response can be locked to the valid value by the simple scheme shown in
Figure 4.2. As soon as DONE is raised, RESP cannot change its value anymore.

As it was already mentioned in this section, all outputs of each RA go to the system
controller. The way that the controller processes them is discussed in the following
section.

4.2.2 System Controllers

While the RAs are the computational core of the system, the system controllers assume
the lead role in organizational matters. The list of tasks that each controller is responsible
for is as follows:

• Collecting all outputs of various RAs.

• Keeping a test counter that indicates the step that the diagnosis process is presently
at and feeding that value (or part of it, when not all is necessary) to the RAs.

• Feeding the CUT with test vectors. The controller also has to substitute the
predefined test vectors with alternative test vectors, when some RA dictates a
change of diagnosis strategy.

• Ordering RAs to stop when another RA detected the presence of a fault in its
partition.

• Detecting that the diagnosis process or phase is done, when all RAs raise their
DONE signals.

• Combining all RESP outputs of the RAs, to calculate a mode of degradation, thus
characterizing the CUT.

• (Only for phase 1 of the function generator method): Deciding whether or not a
second phase is needed. If it is, check for possible partial diagnosis and produce a
seed to be passed to phase 2.

• (Only for phase 2 of the function generator method:) Receiving the seed, if any,
from phase 1 and determining the duties of the various RAs according to it.

The hardware implementation of the system controller is shown in 4.3. The following
remarks complete the description of the system controller implementation:

• The predefined test vectors are multiplexed with the alternative test vectors with
the help of the VECTOR MUX input coming from the RAs. This happens for each
response analyzer that produces alternative vectors. Note that the predefined test
vectors are stored in advance, except from the address vectors, that are derived
from the value of the test counter as follows:
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Figure 4.3: System Controller Implementation.

– During phase 1 of the function generator method, the standard address vectors
are the value of the test counter on every cycle, since the counter counts from
0 to 15 and on every cycle we read the corresponding LUT bit.

– During phase 2 of the function generator method, the standard address vectors
are the value of the test counter from cycle 0 to cycle 15. The 4 remaining
vectors for cycles 16 and 17 (2 for each LUT) are stored like any other vector.

– Regarding the shift register method, we observed that the address vector starts
from value 15, then becomes 0 and after a few cycles it starts incrementing by
1 on every cycle. When it reaches 15, it returns to 0 and after 1 more cycle
it starts counting up to 15 again. Based on this behavior, we addressed the
LUTs with a 4-bit cyclic counter, initialized to 15, with a count enable signal.
When the address vector remains 0 for some cycles, the count enable signal
has to be kept to ‘0’. In this way, we had to store the values of the count
enable signal instead of the 4-bit values of the address vectors.

• The STOP signal for each RA is produced by an OR operation between the
TEST STOP signals of all other RAs.

• The PHASE/PROCESS DONE signal is produced by an AND operation between
all DONE signals coming from the RAs.

• The characterization stage does not interfere at all with any other calculation and
is easily substitutable by any other characterization scheme. In our approach, we
calculate one value for every RA. If the RA’s partition was fault-free, the resulting
value is a vector of 0s. The eventual value for MODE is the bitwise OR between
all individual values corresponding to a different RA each. The encoding that was
chosen for the modes resulted in a very low complexity logic module for calculating
them. When phase 1 of the function generator method terminates with partial
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diagnosis, a partial, temporary mode is also produced, with only 1 or 2 bits being
under dispute, to be resolved during phase 2. When phase 1 terminates without
partial diagnosis, the value of MODE is also kept to a vector of 0s.

• In the presence of a seed from phase 1, the controller of phase 2 of the function
generator method, uses that seed to order the unneeded RAs to stop directly and
also to adjust the test vectors for the needed RAs accordingly.

This concludes the implementation description of the system in general. In the next
section, we focus on a few more implementation topics that were significant in realizing
the system.

4.3 Other Implementation Details

There were a few points of the implementation process that are significant and require
some attention, but do not fall into the categories of the previous sections. In this
section we will cover these last details, in order to give a complete picture of the system
implementation. In Section 4.3.1 we will describe how we wrapped identical RAs in order
to reduce hardware complexity, in Section 4.3.2 we will explain the choice of fault and
mode encoding, while in Section 4.3.3, we will illustrate the system pipeline, according
to what has been explained so far.

4.3.1 Wrapping Identical Response Analyzers

Going back to Sections 3.2.3 and 3.3.3, we remind the reader that there were a few
pairs of RAs with completely symmetrical sets of faults to check and an one-to-one
correspondence of faults that had exactly complementary faulty responses. In other
words, for RAs A and B, for every fault in the list of RA A there was exactly one fault
in the list of RA B with exactly complementary faulty response and vice versa. Also,
their fault-free responses were exactly identical. These RAs actually shared the same
diagnostic trees.

This fact, combined with our assumption for a single fault per slice, incited us to use
the symmetry in order to reduce hardware complexity. Since both RAs share the same
diagnostic tree, there is no need for both of them to be realized. One alone can resolve
the tree, with the help of a small wrapper that has the following duties:

• Check if the responses of both partitions that are tested are fault-free. This can
be done with an XOR operation between the two responses, since if a fault oc-
curs, it will occur only in one of them, causing them to be identical instead of
complementary.

• When a response is faulty, determine the partition that produced it and notify the
single RA about it.

• Always feed to the RA the appropriate response in order to make the correct
diagnosis. Essentially, the single RA always checks one of the two partitions in
question, say partition A. When partition A fails, the faulty response has to be
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given to the RA, whereas when partition B fails, the response of the corresponding
failure of partition A has to be produced.

The three instances of pairs of symmetrical RAs that were wrapped and combined
in one, are explained below. The reader is advised to return to Sections 3.2.3 and 3.3.3
if he doesn’t remember the symmetry of duties between the two members of each pair.

The F5 and X RAs during phase 1 of the function generator method: The
wrapper’s inputs are the responses of the two partitions and the address test vector. The
wrapper consists of:

• A generator of the fault-free value of F5 for the given test vector.

• A multiplexer choosing between the actual F5 response and its complement.

• A small combinational logic block that checks the 2 responses and the fault-free
value of F5 and chooses accordingly which input of the multiplexer to propagate
to the RA.

The block diagram of the wrapper can be seen in Figure 4.4.

Figure 4.4: The RA Wrapper

The combinational logic block drives the multiplexer according to Table 4.1. For
each combination of F5, X and F5 CORRECT, the corresponding choice is explained in
the last column. The control signal of the multiplexer is also the FAULT LOCATOR
output of the wrapper, denoting the partition of the fault. The complement of this value
can be used instead, if it is more convenient for the fault encoding.

The Y and X RAs of the shift register method: This RA is special, because
on top of the other duties it takes care of a special case. The Y and X partitions of the
shift register method contain the faults of wires GENABLE and FENABLE respectively,
which have complementary faulty responses and can be detected in the usual way. How-
ever, if the origin wire ENABLE is faulty, it is going to affect both X and Y outputs,
causing the XORing between them to signify the absence of a fault.

The way we chose to deal with this problem was to transfer responsibility for it to the
F5 RA. Indeed, the ENABLE faults will affect both F5IN1 and F5IN2. For verification
about the F5 RA detecting this fault see the leaf nodes f62 and f63 in Figure 3.19.
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Table 4.1: F5/X Wrapper logic truth table. The meaning of the occurrence of every input
combination is explained in the last column.

F5 X F5 CORRECT LOCATOR TO RA EXPLANATION

0 0 0 0 F5 F5 is correct, X is faulty. Send
F5 to RA, to represent the
corresponding fault of X.

0 0 1 1 F5 X is correct, F5 is faulty. Send
F5 to RA, because it is faulty.

0 1 0 0 F5 Both F5 and X are correct.
Send F5 normally.

0 1 1 DON’T CARE Will never happen.

1 0 0 DON’T CARE Will never happen.

1 0 1 0 F5 Both F5 and X are correct.
Send F5 normally.

1 1 0 1 F5 X is correct, F5 is faulty. Send
F5 to RA, because it is faulty.

1 1 1 0 F5 F5 is correct, X is faulty. Send
F5 to RA, to represent the
corresponding fault of X.

This solution also meant that the truth table for the FAULT LOCATOR logic in this
particular wrapper has to be slightly changed to take care of this special case. The revised
truth table is shown in Table 4.2. The wrapper is otherwise identical to the rest, with
X and Y being in place of F5 and X respectively, and the block labeled F5 CORRECT
GENERATOR now being a X CORRECT GENERATOR

The YQ and XQ RAs of the shift register method: This wrapper is identical
to the first one, with XQ in the place of F5 and YQ in the place of X. Of course,
the block labeled F5 CORRECT GENERATOR in Figure 4.1 is now a XQ CORRECT
GENERATOR.

4.3.2 Fault and Mode Encoding

Another critical aspect for the system performance is the manner in which every response
analyzer encodes the diagnosis result and also the scheme with which the modes of
degradation are encoded. These decisions affect the complexity of the logic that decides
on the output of the RAs, as well as the conversion of the diagnosis result to mode of
degradation.

A good example of encoding choice is the F5/X RA for phase 1 of the function
generator method. In Table 4.3 we show the diagnosis result response, along with the
resulting mode of degradation for each outcome. According to that correspondence, the
logic that converts diagnosis response to mode of degradation is very simple. This is
illustrated in the code fragment of Figure 4.5. We see that most of the bits of the mode
can be calculated with one LUT, which is the minimum logic complexity for FPGA
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Table 4.2: X/Y Wrapper logic truth table. The meaning of the occurrence of every input com-
bination is explained in the last column.

X Y X CORRECT LOCATOR TO RA EXPLANATION

0 0 0 0 X X is correct, Y is faulty. Send
X to RA, to represent the cor-
responding fault of Y.

0 0 1 1 X Y is correct, X is faulty. Send
X to RA, because it is faulty.

0 1 0 0 X Both X and Y are correct.
Send X normally.

0 1 1 0 X ENABLE fault present. Send
X to RA to absorb the fault,
since another RA will find it.

1 0 0 0 X ENABLE fault present. Send
X to RA to absorb the fault,
since another RA will find it.

1 0 1 0 X Both X and Y are correct.
Send X normally.

1 1 0 1 X Y is correct, X is faulty. Send
X to RA, because it is faulty.

1 1 1 0 X X is correct, Y is faulty. Send
X to RA, to represent the cor-
responding fault of Y.

realizations.
The same simplicity is preserved for the encoding of every RA’s results.

4.3.3 System pipeline

In the block diagrams presented in Section 4.2, the places where data is stored are clearly
visible. These registers divide the whole circuit in a number of combinational paths. The
integrated system pipeline is shown in Figure 4.6.

Notice the importance of feeding forward the STOP signals, so we can instruct RAs to
stop in time, in order for them not to corrupt the final response by erroneously detecting
a fault that has propagated in their partition from a site outside of it. The critical path
of this pipeline in both methods is the logic of the RAs, producing the diagnosis result
that is subsequently converted to a mode of degradation.

4.4 Summary

In this chapter, we focused on the engineering qualities of this work. We described the
process of going from a generic method description that is shown to potentially work
in Chapter 3, to real, working circuits. We first described the system organization in a
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Table 4.3: Fault and mode encoding for the F5/X Response Analyzer of the first phase of the
function generator method.

Fault Fault Code Resulting Mode and Code

Memory faults L1A3A2A1A0 M7/M12: 1A3LA2A1A0V (A3 to A0 de-
note the faulty cell, L denotes the LUT
containing the faulty cell and V denotes
the value of the memory fault)

Address faults L01L1L0V M6/M11: 001L1L0V L (L1L0 denotes the
faulty address line, V denotes the faulty
value and L denotes the LUT that has the
defective address line.)

f69/f122 L00001 M9/M15: 01L0001 (L denotes the parti-
tion that contains the fault)

{f60, f64, f70, f72} /
{f116, f120, f124}

L00100 M8/M13: 01L0000 (L denotes the parti-
tion that contains the fault)

{f61, f65, f71, f73} /
{f117, f121, f125}

L00100 M8/M13: 01L0000 (L denotes the parti-
tion that contains the fault)

fault-free case 000000 M0(a): 0000000

F5X_MODE(6) <= I_F5X_RESPONSE(4); -- 0 LUTs

F5X_MODE(5) <= (I_F5X_RESPONSE(4) XNOR I_F5X_RESPONSE(3)) AND

(I_F5X_RESPONSE(4) OR I_F5X_RESPONSE(2) OR I_F5X_RESPONSE(1) OR I_F5X_RESPONSE(0));

-- 2 LUTs

F5X_MODE(4) <= ‘1’WHEN (I_F5X_RESPONSE(4 DOWNTO 3) = "01") ELSE

I_F5X_RESPONSE(5); -- 1 LUT

F5X_MODE(3) <= ‘0’WHEN (I_F5X_RESPONSE(4 DOWNTO 3) = "00") ELSE

I_F5X_RESPONSE(2); -- 1 LUT

F5X_MODE(2) <= ‘0’WHEN (I_F5X_RESPONSE(4 DOWNTO 3) = "00") ELSE

I_F5X_RESPONSE(1); -- 1 LUT

F5X_MODE(1) <= ‘0’WHEN (I_F5X_RESPONSE(4 DOWNTO 3) = "00") ELSE

I_F5X_RESPONSE(0); -- 1 LUT

F5X_MODE(0) <= I_F5X_RESPONSE(0) WHEN (I_F5X_RESPONSE(4 DOWNTO 3) = "00")

ELSE

I_F5X_RESPONSE(5) WHEN (I_F5X_RESPONSE(4 DOWNTO 3) = "01") ELSE

F_LUT_CORRECT XNOR I_F5X_RESPONSE(5); -- Complement of LUT expected value

-- 2 LUTs

Figure 4.5: Simple conversion of diagnosis result to mode of degradation according to Table 4.3

high level and subsequently focused on each component and went into as much detail as
necessary to give the reader a complete picture of how we implemented the testers. We
tried to focus on some of the problems we faced during the implementation phase and
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Figure 4.6: The System Pipeline

the solutions we devised to get over them.
In the next chapter, the two methods will be evaluated, mainly compared to each

other. We will use both qualitative (i.e. scalability) and quantitative (i.e. performance)
criteria in order to draw conclusions about their usefulness in the defined framework.





Evaluation 5
H

aving completed the detailed description of our two methods, in terms of both
design and implementation, it is time to proceed to the evaluation of the work. As
will be shortly explained, we went on to create a prototype of our system, working

on an FPGA board that is available in the Computer Engineering laboratory. Through
this prototype, our realized tester is applied to a real Virtex-II Pro slice. This prototype
was a major goal of this thesis from the beginning, since we wanted to approach a real-life
scenario as much as possible with the available equipment.

Except from the results of these experiments, it is also important to assess the work in
respect to a number of qualitative criteria, such as scalability and adaptability. Together
with the quantitative experiment results, after this chapter a complete picture of the
thesis results will have been formed.

This chapter is organized as follows: In Section 5.1, we describe our experimental
setup and how we went all the way from simulations to prototyping to verify the func-
tionality of our testers. In Section 5.2, we list and interpret the numbers that came
as a result of the aforementioned experiments. In Section 5.3 we assess both methods
in respect with specific qualitative criteria: Scalability, adaptability, applicability and
graceful degradation potential. In Section 5.4, we list a set of guidelines for a more
diagnosis-friendly implementation of the basic reconfigurable logic block. Finally, in
Section 5.5 we summarize this chapter.

5.1 Experimental Setup

Our verification procedure naturally started from simulations before going on to the
realization of a working prototype. This whole process is presented in this section.

5.1.1 Simulation

Our tester was described in VHDL. The first step of design verification had to be per-
formed through extensive simulations. We created a model of the fault-free CUT and
modified it accordingly for every fault, thus producing 150 models, one for the pres-
ence of every fault. Subsequently, we connected the tester to the CUT model and ran
simulations for the fault-free and each of the faulty models. Any uncovered problems
were corrected and each time that the tester was modified, the simulation procedure had
to start from the beginning, because the modification might have created a problem in
an already simulated case. When 151 consecutive simulations for each of the 2 testers
were completed, we considered the simulation complete. Some indicative simulation
waveforms are shown in Figures 5.1 to 5.6.
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Figure 5.1: Response of the first phase for a fault free CUT. When the PHASE DONE signal is
raised, the GO PHASE2 signal is ‘1’, causing a second phase to occur.

Figure 5.2: Response of the second phase for a fault free CUT. When the DONE signal is raised,
the RESPONSE is a vector of zeroes, denoting a fault-free CUT.

Figure 5.3: Detection of fault f21 with the function generator method. This fault is diagnosed
during phase 1. Thus, when PHASE DONE is raised, GO PHASE2 is ‘0’ and subsequently the
DONE signal is raised one clock cycle later. The correct MODE is also produced.

5.1.2 Emulation

After completing the simulation stage we were confident that the testers were designed
correctly. The next step was to make sure that our VHDL code is synthesizable and
functions as intended on an actual FPGA.

Using the Xilinx University Program Virtex-II Pro Development System (XUP
Virtex-II Pro), we realized the code that was used for simulations. That meant that
we had the final realization of the testers connected to a model of the CUT, since the
synthesis and implementation tools were not able to translate our VHDL model of the
slice to an actual, physical slice on the Virtex-II Pro. We used both a fault-free CUT
model and selected faulty ones. Thus, in this emulation stage we made sure that our
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Figure 5.4: Detection of fault f61 with the function generator method. This fault is diagnosed
in phase 2, thus when PHASE DONE is raised, GO PHASE2 is ‘1’ and subsequently a second
phase starts. A temporary MODE is also produced, which is slightly modified during phase 2 to
take its final value. Note that both phases take only a few cycles, because the diagnostic trees
resolve the particular fault very quickly.

Figure 5.5: Response of the shift register method for a fault free CUT. When the DONE signal
is raised, the MODE is a vector of zeroes, denoting the absence of a fault.

Figure 5.6: Detection of fault f34 with the shift register method. When the DONE signal is
raised, the correct MODE is also produced.

tester was synthesizable and functional. The final step was to use the tester to test a
real CUT, that is a physical Virtex-II slice instead of a hardware model of it.

5.1.3 Realization and Prototyping

The missing piece to have a complete prototype of the tester working in natural condi-
tions, was to form a CUT exactly like we defined it in Section 3.1 and apply our tester
to it.

To build the CUT we used the Xilinx FPGA Editor tool. We designed the CUT
completely manually, by inserting the desired configuration for the function generator
method (phases 1 and 2) and for the shift register method to one of the slices of the
Virtex-II FPGA. In this way, we produced a hard macro for each case, which is a com-
plete, synthesized, placed and routed design, that can be used in bigger designs as a black
box component. We instantiated this correct version of the CUT inside our VHDL code,
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in place of the VHDL CUT model and realized the complete system on the device. After
fixing some minor problems related to the correct manual configuration of the CUT and
interfacing with the tester, we got the correct tester response for the fault-free case.

In order to apply the tester also on real faulty versions of the CUT, we had to perform
fault injection. We deliberately configured the CUT with faults, essentially performing
fault injection through the bitstream [8]. Examples of faults that are easily injected are
mentioned below:

• Faults of the CUT inputs can be injected by feeding an input with a constant
‘0’ or ‘1’, instead of the correct test pattern. Note that these faults include the
all-important address line faults.

• LUT contents can be configured to the wrong value. The tester still expects to
read the correct value from it, so we are able to check if the correct faulty outcome
is produced.

• Configuration multiplexers can be easily configured to select their other input than
the one they are supposed to, thus forcing the tester to diagnose the fault.

Selected faults were injected in all these ways and the tester produced the correct
response in all cases. By this stage, we considered the prototyping complete.

During both the emulation and realization stages, we used some features of the XUP-
Virtex-II board to perform debugging: Four LEDs and four general purpose switches
used for user input. Our debugging scheme is illustrated in Figure 5.7. We used the
switches to multiplex 16 different 4-bit elements and observe any of them on the LEDs.
If we needed to probe some transitive state of the system, we had to store it in special
registers at the correct time during the system operation. In this way, we created a
64-bit debugging file which was sufficient to give us adequate information without the
need to often reconfigure the FPGA, a process that took approximately 7 minutes.

Based on the above experiments, we gathered results for both testers. These results
will be presented in the following section.

5.2 Quantitative Measures

The purpose of the experiments described in the above section was not only to verify the
system’s correct function, but also to collect some measurements in order to evaluate the
methods quantitatively. The metrics that we used in order to do that are listed below:

• The area cost of the system.

• The performance of the system, measured through both the achieved frequency
and the average latency.

• The quality of the performed diagnosis, by calculating the diagnostic accuracy and
diagnostic resolution of each method.

The area cost of the system is measured in Virtex-II slices. Our methods are based
on the Built-in Self-Test (BIST) principle, thus they are realized on slices completely
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Figure 5.7: Debugging scheme for the emulation and prototyping stages.

identical as the one they test. It is interesting to see how many such units are needed
to diagnose the faults of one. The area cost of the first method is 250 slices, while that
of the second is 272 slices. The difference is due to the fact that the diagnostic trees of
the second method are in average more complex, because there is no distribution of the
faults between two phases.

For a moderately sized device, like the xc2vp30 that we used, this is slightly under
the 2% of the available logic resources, and that is without packing unrelated logic on
one slice, which can reduce the area cost if there is such a need. The tester is supposed
to be used repeatedly, each time a problematic slice is spotted by any means. As one of
the important components of implementing fault tolerance, we think this is a reasonable
overhead cost. The key to keeping the fault tolerance overhead to a low level in the
future is a cheap module performing function-to-resource matching.

The best achievable clock frequency for the function generator method is 109.9 Mhz,
while for the shift register method it is 102.8Mhz. This difference is again due to the fact
that the diagnostic trees of the second method are somewhat more complex, requiring
logic expressions with more inputs.

The latency for each method depends on the outcome, so it has to be calculated for
the average case. In Table 5.1 we list how many faults are diagnosed on every cycle for
the function generator method and in Table 5.2 we do the same for the shift register
method. The cumulative percentage of faults diagnosed on every cycle, as it derives from
these tables, is illustrated in Figure 5.8 The cycle on which each fault is diagnosed can
be taken from the respective diagnostic trees, increased by 4 cycles due to the system
4-stage pipeline. To calculate the average latency for a faulty CUT, we consider all fault
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Table 5.1: Distribution of diagnosed faults between cycles for the function generator method.

Cycle Faults Cycle Faults

5 1 RC + 6 17

6 3 RC + 7 8

7 5 RC + 8 8

8 24 RC + 9 2

9 2 RC + 10 2

10 6 RC + 11 2

11 4 RC + 12 2

12 0 RC + 13 2

13 4 RC + 14 2

14 6 RC + 15 2

15 2 RC + 16 2

16 2 RC + 17 2

17 2 RC + 18 2

18 2 RC + 19 2

19 2 RC + 20 2

20 2 RC + 21 10

RC + 5 6 RC + 22 4

sites (wires, multiplexer control signals, memory cells and flip-flops) to have the same
probability to be faulty. Consequently, to calculate the latency for a faulty CUT in
cycles, we use the following formula:

Lfaulty =

∑N
i=1 di ∗ (i + Trci ∗ f)

D

Whereas, to calculate the latency for a faulty CUT in nanoseconds, we use the
following:

Lfaulty =

∑N
i=1 di ∗ (i/f + Trci)

D

where:

• i is the cycle index, ignoring the possible reconfiguration phase.

• N is the total number of cycles each method takes, ignoring the possible reconfig-
uration time.

• di is the number of faults diagnosed on cycle i.

• D is the total number of faults diagnosed by each method.

• Trci is 0 for cycles before the reconfiguration. This includes all cycles of the
shift register method. For cycles following the reconfiguration, it is equal to the
reconfiguration time (TRC) in nanoseconds.
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Table 5.2: Distribution of diagnosed faults between cycles for the shift register method.

Cycle Faults Cycle Faults

5 2 24 2

6 10 25 4

7 13 26 2

8 10 27 0

9 7 28 2

10 14 29 2

11 6 30 2

12 8 31 2

13 6 32 2

14 4 33 2

15 2 34 2

16 2 35 2

17 2 36 2

18 6 37 2

19 2 38 2

20 2 39 2

21 2 40 2

22 2 41 2

23 2 42 4

• f is the operating frequency of each method.

The Reconfiguration time was estimated according to [37] to be 8547ns. According to
that and the above formulas, the average latency for a faulty CUT (Lfaulty) is calculated
to be 0.5 ∗ 8547 ∗ f + 21.8 cycles, or 4769ns for the function generator method and 17.5
cycles or 170ns for the shift register method. The critical impact of the reconfiguration
on the latency of the function generator method is obvious. In the case of a fault-free
CUT, the methods will have to run until the end, thus the latency in this case (Lff ) is
8547∗f +42 cycles or 8929ns for the function generator method and 42 cycles or 407.4ns
for the shift register method. The overall average latency depends on the probability of
the CUT to be faulty (Pfaulty) or fault-free (Pff ) and is calculated as follows:

L = Pff ∗ Lff + Pfaulty ∗ Lfaulty

The average latency in nanoseconds for both methods and for Pfaulty =
1, 1/2, 1/4, 1/8 and 1/16 are summarized in Table 5.3 and illustrated in Figure 5.9.
In addition, in Figure 5.10, we illustrate the same results for the case of applying the
method sequentially to all 160 the slices of a column of the FPGA with only one recon-
figuration, which is a more fair measure for the function generator method, since one
column is the minimum partial reconfiguration fragment for Virtex-II Pro.

The diagnostic accuracy for the function generator method and a faulty CUT
(ACCfaulty) is 0.96 (96%), according to the assumption that each fault site has the
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Figure 5.8: Cumulative percentage of diagnosed faults on every cycle for the function generator
method (a) and for the shift register method (b).

Table 5.3: Average Latency for both methods and various values of Pfaulty .

Pfaulty Method 1 Latency (ns) Method 2 Latency (ns)

1 4769 170

1/2 6835 289

1/4 7869 348

1/8 8385 377

1/16 8667 393

same probability to produce a fault. The missing accuracy is due to the inability to
diagnose faults of the ENABLE signals of the shift registers with this method. The
overall accuracy depends again on the probability of the CUT to be faulty, since a fault-
free CUT is always accurately diagnosed. Thus, the diagnostic accuracy is calculated as
follows:

ACC = Pff ∗ 1 + Pfaulty ∗ ACCfaulty

For the shift register method, the value of ACCfaulty is 0.95 (95%). The miss-
ing accuracy is due to the inability of this method to detect half the faults of con-
figuration multiplexers. The diagnostic accuracy for both methods and Pfaulty =
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Figure 5.9: Comparative Latency graph for the two methods.

Figure 5.10: Comparative Latency graph for the two methods applied on a whole column of
slices. Because of the big number of slices, the effect of the reconfiguration diminishes.

1, 1/2, 1/4, 1/8 and 1/16 are summarized in Table 5.4 and illustrated in Figure 5.11.
The diagnostic resolution for the function generator method is 1.25. This value is

derived as follows:

• 126 faults are fully diagnosed.

• 18 faults are diagnosed in groups of 3.

Thus, there are 126 cases that the set of possible faults contains only one element and 18
cases that it contains 3 elements. The average number of elements in the set of possible

Table 5.4: Diagnostic Accuracy for both methods and various values of Pfaulty.

Pfaulty Method 1 Accuracy Method 2 Accuracy

1 0.96 0.947

1/2 0.98 0.973

1/4 0.99 0.987

1/8 0.995 0.993

1/16 0.9975 0.997



88 CHAPTER 5. EVALUATION

Figure 5.11: Diagnostic Accuracy for both methods and various values of Pfaulty .

Table 5.5: Summary of quantitative measurements.

Measure Method 1 Method 2

Area 250 slices 272 slices

Frequency 109.9Mhz 102.8Mhz

Latency (faulty CUT) 4,769 ns 170 ns

Latency (Pfaulty = 1/4) 7,869 ns 348 ns

Diagnostic Accuracy (faulty CUT) 0.96 0.947

Diagnostic Accuracy (Pfaulty = 1/4) 0.99 0.987

Diagnostic Resolution 1.25 1.37

faults is 1.25. Note that almost all missing resolution is due to grouping together of faults
that wouldn’t provide any extra graceful degradation potential if further distinguished.

For the shift register method, the diagnostic resolution is derived as follows:

• 112 faults are fully diagnosed.

• 16 faults are diagnosed in sets of 2.

• 6 faults are diagnosed in sets of 3.

• 8 faults are diagnosed in sets of 4.

The resulting value, calculated in the same way that was explained for the function
generator method, is 1.37. This method has worse diagnostic resolution, because it is
not able to distinguish between some wire faults in one phase.

All quantitative measurements are summarized in Table 5.5. For the latency and
diagnostic accuracy, we use the value Pfaulty = 1, which corresponds to the original
formulation of the problem (1 slice that is known to be faulty) and Pfaulty = 1/4, which
corresponds to applying the methods on the 4 slices that constitute one CLB in Virtex-II
Pro and one of them turns out to be faulty.
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5.3 Qualitative Measures

Except from the measurements that we took during the experiments described in Sec-
tion 5.1, the two proposed methods have also to be assessed according to qualitative
criteria. The criteria we use are scalability, adaptability, applicability and graceful degra-
dation potential.

5.3.1 Scalability

As it has been clearly stated very early in this report, the proposed methods target a
single FPGA basic logic block that is known to be faulty, or on a set of a few such blocks
at least one of which is faulty. In other words, it follows up the stages of fault detection
and localization. It is thus very important to explore the potential scalability of the
methods when applied on n slices. It is especially important to consider the case of 4
slices, since they form one CLB, which is the next level block in the FPGA hierarchy.

Both methods scale with identical complexity, since they are based on the same
general structure and design principles. In the somewhat optimistic case that we know
exactly one of the n slices to be faulty, scaling of the methods can be performed with
constant complexity (O(1)) for both area cost and latency. Indeed, a tester like the
ones implemented in this thesis can be used, along with a wrapper that examines the
responses of the n basic blocks to detect the presence of a fault in one of them and also to
inform the tester in which block the fault is. The functioning principle of the wrapper is
identical to the ones presented in Section 4.3.1. The area cost of the wrappers of course
depends on n, but for reasonable values of n it is smaller than that of the tester. The
latency of such a setup is identical to that of the method being applied to one slice only.

It is more important, however, to consider the more consistent, according to the
framework we set for this thesis, case of every slice under test being potentially faulty,
since we started our study with an assumed fault density of one fault per slice. In this
case we cannot assume that the first occurrence of a fault in one of the slices means
that the rest of the slices are fault-free. In this case, there are the following two extreme
options for scaling the tester, which define a design space:

• Only one tester can be used, together with a wrapper that detects the presence
of a fault in one of the slices. Note that this wrapper is similar to the one used
in the previous case, but not identical, since it has to support the occurrence of
faults in more than one slices simultaneously. Whenever a fault is detected, the
testing procedure for the rest of the slices must be paused and the fault in question
resolved, before the process is resumed for the rest of the slices. In this case,
the area cost remains constant (O(1)), but the latency is O(n) for n slices to be
diagnosed.

• A number of testers equal to n can be used, one for each slice to be diagnosed. In
this case the area cost of the system is obviously O(n), but the latency is constant.

In this design space, any number of independent testers can be used, each of which
is in charge of an equal number of slices. In any case, the Area-Latency Product scales
with O(n) complexity, with n being the number of slices to be diagnosed.
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5.3.2 Adaptability

Another important characteristic of the proposed methods is their good adaptability
to different reconfigurable devices. The guidelines used to diagnose different faults are
applicable to the common basic block structure of most commercial FPGAs. The basic
components of all such blocks are the same: LUTs, multiplexers and flip-flops. Also,
the roles of the components are identical: LUTs can implement (among others) logic
functions and shift registers, the multiplexers are used to combine and route the results
of the logic, while the flip-flops are used to implement the sequential part of every system.

As far as the function generator method is concerned, a suitable configuration for the
LUTs can be formulated in order to check memory faults, address line faults and also
help with the diagnosis of the rest of the slice components, except from the LUT. In fact,
for bigger LUT sizes (i.e. the ones of the Virtex-5 devices), it is easier to accommodate
all tests, but the worst-case latency is bigger, since it is determined by the size of the
LUT.

For the shift register method, the faults of address lines, wires and multiplexers
are taken care of using the read operation on the boundary memory cells of the shift
register, which can be performed regardless of the register length. The march test for
the rest of the memory cells does not depend at all on the slice structure. Note that
every non-controllable multiplexer in the slice, means 3 faults that cannot be detected
by the shift register method, one control signal fault and 2 faults of the non-selected
multiplexer input, just like it has been explained for the non-controllable multiplexers
of the Virtex-II slice.

5.3.3 Applicability

While designing the methods, we made every effort possible to be completely bounded
by the characteristics of real today’s devices. This meant that both methods are di-
rectly applicable on actual FPGA slices with minimal effort, as proven by our working
prototypes.

There was, however, one issue we encountered during the realization stage, that has
to be mentioned and addressed. It turns out that the inputs FXINA and FXINB of
the slice are not directly, globally controllable, while the outputs FX and F5 are not
directly, globally observable. This happens because these inputs and outputs, together
with the FXMUX and F5MUX multiplexers, are used to combine 2 to 16 LUTs, in order
to implement functions of 5 to 8 inputs. For this purpose, the FX and F5 outputs are
connected to FXINA and FXINB inputs of neighboring slices, depending on the position
of each slice within the CLB. Thus, the aforementioned outputs have to be propagated
through neighboring slices in order to eventually be globally observable, while the inputs
have to be accessed through neighboring slices in order to be globally controllable.

In our prototype we used neighboring slices to recreate the exact method as it is
described in Chapters 3 and 4. To achieve that, we needed 7 more slices to be activated
except from the one under test. Except from the area overhead, this can mean that
the method cannot be applied on more than one slices simultaneously as explained in
Section 5.3.1, since in that case the neighboring slices cannot be used for propagating the
non-observable and access the non-controllable signals. This can be solved by excluding
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from the tests the parts defined by these inputs and outputs, which are the following:

• The signals themselves, FXINA, FXINB, FX and F5.

• The FXMUX multiplexer.

These features correspond to the upper part of the slice and the F5 output. Note
that the F5MUX multiplexer can still be tested through the X output, since its inputs
are controllable and also that the F5 output needs only one neighboring slice to be
propagated through, which is not prohibitive. The really problematic part of the slice in
this respect is the one defined by FXINA, FXINB and FX.

The issue explained above hinted us that the chain of F5MUX and FXMUX multi-
plexers of neighboring slices has to be checked separately from the rest of the features.
Our next approach will surely be in this direction.

5.3.4 Graceful Degradation

The graceful degradation potential of each method has already been summarized in
Section 3.4 and specifically in Table 3.6. In this section we briefly assess this potential
of both methods in comparison to existing works and to each other.

Characterization in related work is still, in our opinion, on a conservative level.
After testing, the failing configurations are used with the possible addition of a few more
diagnosis configurations to determine which component of the basic block actually is
faulty. Subsequently, a function is mapped on this basic block that does not use the
faulty LUT or storage element [2].

In our approach, we opt for a different approach. We diagnose the fault that is present
with as good resolution as possible and, for each fault, we define a mode of degradation
that describes what the slice can not do because of the presence of this fault. In this
way, we do not sacrifice more functionality than it is actually necessary. The difference
between sparing, conservative matching and our approach is conceptually illustrated in
5.12. As explained in Section 3.4, we are optimistic that our approach is not going to
critically complicate the stage of matching functions to resources.

Examining the two methods in comparison to each other, it has to be noted that
the faults diagnosed by the function generator method are more efficiently distributed
among the modes of degradation in Table 3.6 than the ones diagnosed by the shift register
method. The reason for this is the inability of the second method to distinguish between
some wire faults, in which case the existence of all faults in the resulting group have to be
assumed present. This, however, is less important than the inability of the first method
to test the slice configured as a shift register, combined with the reduced coverage of
memory faults.

5.4 Design for Testability Guidelines

From the beginning of this thesis, one of our basic goals was to use the lessons we took
throughout the development of the diagnosis methods, in order to provide some guide-
lines for a more diagnosis-friendly implementation of the substitutable reconfigurable
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Figure 5.12: Conceptual Graph comparing sparing and matching with different degrees of diag-
nostic resolution.

resource. These guidelines are applicable to all reconfigurable hardware devices, but
they are mainly meant to be used in the framework of the FaTES research project. Our
conclusions are summarized below:

• The slice LUTs should be smaller than 16 bits, which means 8 bits, since the
size has to be a power of 2 and 4 bits would be too small. Of course, 8-bit
LUTs were never considered for commercial FPGAs, but that was not due to
reasons associated with fault tolerance, but for reasons of efficient implementation
of boolean functions. From a diagnosis (and actually, also testing) standpoint,
however, we have established that a determining factor for the overall latency,
especially for methods of one or a few phases, is the size of the LUTs, since their
contents have to be read one by one. In our methods, the surrounding logic and
storage elements have been almost completely tested in the first 8 cycles.

• There should be write access to the whole configuration bitstream, at least during
the testing and diagnosis procedure. This is particularly important for multiplexer
control signals, which have to be kept to a steady value, unless time-consuming
reconfiguration takes place. If these control signals behaved as variable inputs of
the CUT, the shift register method in particular could achieve a diagnostic accuracy
of 100% and resolution almost equal to 1.

• All primary inputs of the basic block should be directly controllable and all the
outputs should be directly observable from any other logic resource of the device.
This modification would solve the applicability problems that we faced in our
methods and were described in Section 5.3.3.

• It would help the testing and diagnosis process if there was the ability of swapping
the contents of the two LUTs, or complementing all of their contents, without
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Table 5.6: Comparison of the two proposed methods.

Measure Method 1 Method 2

Area +

Frequency +

Latency ++

Diagnostic Accuracy ≈ ≈

Diagnostic Resolution ≈ ≈

Scalability = =

Adaptability = =

Applicability = =

Graceful Degradation +

partial reconfiguration. This would eliminate the need for reconfiguration that is
present in the function generator method.

5.5 Summary

In this chapter we provided complete evaluation of both proposed methods, in respect
to all relevant criteria. We concluded that the function generator method scores slightly
better in terms of area cost and highest achievable frequency, but it falls back critically
in terms of average latency, also because of the reconfiguration cost. The two methods
have similar diagnostic accuracy and resolution, but the missing diagnostic accuracy of
the first method is more detrimental to fault tolerance than this of the second method.
On the qualitative side, both methods are equally scalable, adaptable and applicable.
As for the graceful degradation potential, the shift register method is preferable due to
the fact that it covers both the shift register and function generator modes of operation,
while diagnosing the slice with the function generator method means that, regardless of
the result, the shift register functionality has to be sacrificed. In Table 5.6 we summarize
the strong and weak points of each method. According to the preceding analysis, if we
were to choose one of them for basing an integrated fault tolerance technique on, we
would choose the shift register method.

In comparison to existing techniques, our methods are certainly more costly in ab-
solute area numbers, but because of their reusability throughout the whole lifetime of
the device, the area percentage of a moderately-sized device that they occupy is quite
low, a bit less than 2% of the xc2vp30 device. In terms of the quality of diagnosis, we
are in most cases able to determine the exact fault that is present, contrary to existing
approaches that determine the faulty component. This, in turn, uncovers a lot of grace-
ful degradation potential that was not present in previous works. Also, by decoupling
the diagnosis problem from that of fault detection and localization, we relaxed the re-
quirement for 100% fault coverage and decided that rescuing the most frequently used
functionality of the basic block is sufficient for efficient fault tolerance. This allowed us
to restrain ourselves to 1 or 2 testing phases only, critically reducing the time needed for
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diagnosis.
Overall, we are confident that we provided a viable approach for efficient fault tol-

erance. More problems that have to be independently addressed in the future, in order
to complete the fault tolerance framework that we started defining in this thesis will be
briefly presented in the next chapter, along with a summary of the whole report.
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T

hroughout this report, we attempted to provide an as complete as possible picture
of the work that we did in the MSc thesis framework. The problem at hand is well
defined based on existing work and current research trends; the proposed methods

are adequately explained and shown to produce a solution for the problem at hand; the
experiments we conducted are described and relevant results gathered and illustrated.
We made every effort possible to be consistent, accurate and complete, through explain-
ing the reasons for every choice we made, stating advantages and drawbacks of all our
decisions and generally placing our research in the framework already defined by already
established knowledge.

This chapter provides the conclusion to this thesis. In Section 6.1 a chapter by chapter
summary of this report is attempted, which can also be used as a source for locating a
particular topic within the report. In Section 6.2 the main contributions of the thesis
are listed, according to both our starting expectations and the actual results. Finally,
in Section 6.3 interesting future prospects are introduced, to complete the interfacing of
the present work with other relevant ones.

6.1 Summary

In this section, we remind the reader of the most important facts stated in this report
and provide a detailed revision of its structure.

We began in Chapter 1, by justifying the importance of fault tolerance for a wide
range of computing applications. We went on to stress the anticipation of researchers
that this importance will increase in the near future because of the ever-shrinking tech-
nology features in Section 1.1. The difference between the widespread, but relatively
conservative, sparing and the more efficient matching techniques is also explained as
motivation for the work.

Subsequently, the problem targeted by this thesis is defined in Section 1.2. Specifi-
cally, the proposed methods target to diagnose the existing fault in an FPGA basic logic
block that is known, through prior testing, to be faulty. They can also be applied on a
relatively small number of such blocks, at least one of which is known to be faulty. Also,
according to the diagnosis result, characterization of the logic block has to be performed.
In other words, the subset of functions that the faulty block can still accommodate de-
spite its defect is determined. A detailed list of the thesis goals, based on this problem
statement is given in Section 1.3.

The purpose of Chapter 2 was twofold: First, to define basic notions and terms,
essential for understanding the rest of the report, i.e. terms relevant to fault diagnosis
and second, to summarize existing research that is relevant with the problem at hand. In
Section 2.1.1, the notion of fault models as abstractions of actual defects was introduced,

95
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and a few specific models important for this thesis (for wires and memory cells) presented.
The family of march tests to deal with the memory faults was also briefly introduced.

Subsequently, in Section 2.1.2, the tasks relevant to fault detection and tolerance
were explained in the order they actually happen: Testing, Localization, Diagnosis and
Repair. Special attention was paid to diagnosis, as it is the actual object of this thesis.
Necessary relevant terminology is defined: The meaning of diagnostic accuracy and
resolution, fault-free, faulty end error responses, fault dictionaries and diagnostic trees is
explained. Also, a categorization of existing fault diagnosis methods is provided, and our
approach categorized as cause-effect, diagnostic tree based diagnosis. The basic reason
for this choice is the relatively small size of the CUT, which allows for all the fault
simulations to be performed a priori.

In Section 2.1.3, related work on FPGA testing is summarized. The special char-
acteristics of FPGAs (regularity, heterogeneous nature and reconfigurability) are listed
and their effect on the testing strategies explained. It is stated that Built-in Self-Test
approaches are profitable when applied on FPGA testing, because of the non-existing
area overhead. Useful conclusions are drawn from the whole analysis and the advan-
tages of different methods are subsequently combined, whenever possible, to develop our
methods. The number of testing phases (reconfigurations) is spotted as the dominant
factor in determining testing time, which hinted us to reduce the number of phases as
much as possible. That was possible by decoupling the diagnosis problem from that of
fault detection and localization, which are extensively addressed by previous works and
effectively dropping the requirement of full fault coverage.

In Section 2.2 we attempt to solidify the fault tolerance framework, which enhances
the significance of the thesis. The suitability of regular, reconfigurable realization plat-
forms for fault tolerance is stressed and the techniques of sparing and matching explained
in more detail, also through related research. The relevance of the targeted problem is
further supported by the existence of systems built from scratch with fault tolerance in
mind, one of which is the newly-defined paradigm of the FaTES research project. Finally,
is Section 2.3, all arguments for the thesis significance and relevance are summarized.

After setting the framework, it was time to proceed to the development details of the
proposed methods themselves, in Chapter 3. In Section 3.1, the simplified model of our
CUT, which is the Virtex-II Pro slice, was described. Each component was individually
approached to define its functionality and a suitable fault model was determined for each
of them, based on realistic assumptions and diagnosis requirements. From these fault
models, the complete list of faults to be checked was derived. The section concluded
with the guidelines that help us distinguish faults of different kinds by observing the
effect they have on the CUT outputs. Based on these guidelines, our methods could
subsequently be explained.

Section 3.2 is about the development of the function generator method. In Sec-
tion 3.2.1 the partitioning of the CUT, in order to simplify the diagnosis procedure, was
explained. The most important part was determining the suitable LUT configurations
in order to accommodate the diagnosis of memory, address line, multiplexer, storage el-
ements and wire faults. The chosen fault models posed restrictions to the configuration
contents and an appropriate solution was found in Section 3.2.2. Based on this analysis
and on the guidelines for diagnosing different fault that were already determined in the
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previous section, the procedure of deriving the diagnostic trees was explained in detail
in Section 3.2.3.

The drawbacks of the function generator method were our motivation for developing
a different method, based on a shift register configuration of the slice. This procedure
is explained in the beginning of Section 3.3, followed by the partitioning of the faults
for this new method in Section 3.3.1. Subsequently, the basic characteristic of the shift
register method is unfolded in Section 3.3.2, which is the formulation and application of
a march test to check the memory faults. Finally, in Section 3.3.3 all the above analysis
is particularized to specific diagnostic trees.

Chapter 3 is concluded by explaining how a diagnosis outcome results in characteri-
zation of the slice in Section 3.4.

In Chapter 4, we present the hardware implementation of the resulting testers that
realize the proposed methods. In Section 4.1, the high-level organization of the system
is presented, based on two substantial components: The response analyzers and the sys-
tem controller. In Section 4.2, internal details of those two components are discussed, by
mentioning the duties of each one and explaining how they are carried out. Finally, in
Section 4.3, miscellaneous implementation topics are discussed: How identical response
analyzers are implemented only once and wrapped to accommodate more than one parti-
tion; how the diagnosed faults and resulting modes of degradation are efficiently encoded;
and how the system is pipelined to allow for a higher operating frequency and better
distribution of calculations within it.

Finally, in Chapter 5, the presented work is evaluated and the results illustrated
and analyzed. In Section 5.1, the experimental setup is described and all conducted
experiments listed, beginning from simulations up to the realization of a working proto-
type. Subsequently, in Section 5.2, all measurements taken during the aforementioned
experiments are organized and interpreted. It is shown that the methods achieve at
least 95% diagnostic accuracy and a diagnostic resolution close to 1. Also, the defective
slice is successfully characterized in 170 to 8500 ns. The area cost of the realized testers
is not prohibitive for a system with hard fault tolerance requirements. Eventually, in
Section 5.3, the proposed methods are assessed in respect to a set of qualitative criteria:
Scalability, adaptability, applicability and graceful degradation potential. The proposed
methods are shown to score well on all these measures, constituting a basis for a viable
integrated fault tolerance approach, which we hope to complete with future works.

6.2 Thesis Contributions

The main problem targeted by this thesis was the fast, high-resolution fault diagnosis
and subsequent characterization of an FPGA slice that is known to be faulty, or belongs
to a set of a few slices at least one of which is known to be faulty. Through working on
this well defined framework, we achieved the following main contributions:

• The design and implementation of two distinct methods for fault diag-
nosis: Both methods provide high-resolution fault diagnosis of a Virtex-II Pro
FPGA slice, based on a hybrid fault model which consists of suitable fault models
for every component of the slice.
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• The decoupling of the diagnosis problem from those of fault detection
and localization: Contrary to existing research which tends to address these
problems in an integrated manner, we solved the diagnosis problem separately,
taking advantage of the fact that an abundance of existing methods is able to spot
the defective component. In this way, we were able to restrict ourselves to only
one or two diagnostic configurations of the CUT, since missing some faults or not
testing some special features of the slice can not affect its correct functioning.

• A matching-aware characterization scheme: We performed characterization
of the slice based on the diagnosis result, in a modular and efficient manner. In-
deed, if a different characterization scheme is chosen in the future, it can seamlessly
replace the existing one and use the same diagnosis result. Our characterization
scheme, in turn, sets the stage for the development of an efficient matching heuris-
tic, that can assign functions to defective slices by inspecting only a few bits of the
intended configuration bitstream.

• The preparatory work for an integrated fault tolerance scheme, possibly
in the framework of the FaTES research project: The resulting testers were
prototyped on an actual Virtex-II Pro device and applied on one of its slices. Fault
injection through the bitstream was used to verify the correctness of the developed
methods. Applicability issues were encountered, which taught us valuable lessons,
both for developing more efficient methods in the future and for proposing a set
of guidelines to design a more diagnosis-friendly basic logic block for the FaTES
project (Design for Testability).

6.3 Future Work Suggestions

In the process of working on this thesis, we came across a number of interesting problems
and prospects, which could be good starting points for future works. The main such
prospects are summarized below:

• Extension of the proposed methods: The proposed methods can be extended,
in order to perform fault diagnosis on all the slice features. For the purposes of
this thesis, we excluded some special features, like fast carry chains and arithmetic
dedicated gates. Although this was a conscious choice, it is still interesting to
explore the extra cost of checking the complete functionality.

• Development of new methods based on the drawbacks of the proposed
ones: While applying the proposed methods on a real slice, we encountered some
problems due to the realization details of the slice. We are confident that it will
be profitable to develop a special method for testing the chain of MUXF5 and
MUXFX multiplexers, which are used to realize boolean functions of 5 to 8 inputs.
This method has to be constrained by the LUT configurations described in this
thesis, in order to be able to be combined with either of the proposed methods for
the rest of the slice features.
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• A complete design of an easily testable substitutable reconfigurable re-
source: Based on the guidelines that came as a conclusion from this thesis, a
complete implementation of a substitutable resource should be proposed, to be
used in the framework of the FaTES research project. This work should address
the same problems that we did in this thesis, from a Design for Testability stand-
point, instead of being restricted by the characteristics of existing devices.

• The development of an efficient heuristic for matching functions to de-
fective resources: Our characterization scheme is aware of the fact that it will be
followed-up by an algorithm which will efficiently facilitate the reuse of defective
blocks. This matching algorithm has to be based on adaptability and precomputa-
tion, in order to achieve matching times that are not prohibitive for the application
fault tolerance requirements.

6.4 Conclusion

As a conclusion, we would like to state our strong belief that the proposed methods,
especially the shift register method, have great potential of being a critical component
in an integrated fault tolerance scheme. Fault tolerance by using regular reconfigurable
structures is a very popular research field and we are happy to offer even the minimum
contribution to it. We hope to have the chance in the near future to continue the
work that we started in this thesis, possibly by solving some of the problems stated in
Section 6.3.
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