
EURASIP Journal on
Information Security

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10

https://doi.org/10.1186/s13635-019-0094-2

RESEARCH Open Access

Fine-grain watermarking for intellectual
property protection
Stefano Giovanni Rizzo1* , Flavio Bertini2 and Danilo Montesi2

Abstract

The current online digital world, consisting of thousands of newspapers, blogs, social media, and cloud file sharing
services, is providing easy and unlimited access to a large treasure of text contents. Making copies of these text
contents is simple and virtually costless. As a result, producers and owners of text content are interested in the
protection of their intellectual property (IP) rights. Digital watermarking has become crucially important in the
protection of digital contents. Out of all, text watermarking poses many challenges, since text is characterized by a low
capacity to embed a watermark and allows only a restricted number of alternative syntactic and semantic
permutations. This becomes even harder when authors want to protect not just a whole book or article, but each
single sentence or paragraph, a problem well known to copyright law. In this paper, we present a fine-grain text
watermarking method that protects even small portions of the digital content. The core method is based on
homoglyph characters substitution for latin symbols and whitespaces. It allows to produce a watermarked version of
the original text, preserving the anonymity of the users according to the right to privacy. In particular, the embedding
and extraction algorithms allow to continuously protect the watermark through the whole document in a fine-grain
fashion. It ensures visual indistinguishability and length preservation, meaning that it does not cause overhead to the
original document, and it is robust to the copy and past of small excerpts of the text. We use a real dataset of 1.8
million New York articles to evaluate our method. We evaluate and compare the robustness against common attacks,
and we propose a new measure for partial copy and paste robustness. The results show the effectiveness of our
approach providing an average length of 101 characters needed to embed the watermark and allowing to protect
paragraph-long excerpt or smaller the 94.5% of the times.

Keywords: Digital text watermarking, Unicode characters, Copyright protection, Copyright enforcement, Tampering
detection

1 Introduction

The last decades are characterized by the easy availabil-

ity of millions upon millions of digital contents that meet

several kind of users’ needs both in professional activities

and social interactions. An important reason for the pro-

liferation of digital contents among users is the increase

in the usage of online communication platforms, like web-

sites, social media, and cloud file sharing services, to name

a few. All these platforms have introduced changes in the

user habits with respect to digital contents by increasing

the copying and sharing of text, audio, images, and video,

namely digital contents [1].

*Correspondence: strizzo@hbku.edu.qa
1Qatar Computing Research Institute (QCRI) HBKU, Doha, Qatar
Full list of author information is available at the end of the article

While the current digital technologies facilitate the copy

and sharing of these digital contents, this is often an

unattributed copy of others’ work, resulting in amisappro-

priation of their intellectual property. In several contexts,

such as for online newspapers and blogs, the contents’

owners have solid interests in protecting their IP rights,

in order to preserve their business. In particular, there

are different illicit actions concerning these digital con-

tents, like tampering, forgery, theft, and, more simply,

making a copy of both the whole content or part of it.

The problem is more meaningful with text since it is the

main carrier of information (e.g., online news articles,

scientific articles, e-mail, product catalogs) while being

more prone to full or partial misappropriation. Moreover,

findings in [2] demonstrate that the copy and paste func-

tion significantly increase the plagiarism attitude of the

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-019-0094-2&domain=pdf
http://orcid.org/0000-0003-3346-3389
mailto: strizzo@hbku.edu.qa
http://creativecommons.org/licenses/by/4.0/

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 2 of 20

users, that is 13% more likely when copy and paste is

possible.

Up until now, the techniques used to protect IP and

prevent illegal use, like digital rights management (DRM)

and technical protection measures (TPM), also prevent

legal or permitted uses of the copyrighted digital con-

tents [3, 4], by representing a strong limit in terms of

freedom of information and expression of the user. In

[5], Lai and Graber point out the complexity to reach

a fair balance among IP rights and freedom of expres-

sion and information. In particular, the authors compare

the need of the IP owners and privacy and freedom of

choice of the users. These classic digital rights protection

techniques are based on hardware or firmware supports

and proprietary encodings that prevent the user of mak-

ing copies, reading unauthorized copies, or reproducing

it on unauthorized supports. The total prevention of copy

through cryptography and dedicated supports, such as

the content scrambling system for DVD protection [6],

reduces the ability of sharing and distributing the creative

content.

In order to overcome the limits of the classic digital

rights protection techniques and meet the various needs

in IP protection field, different approaches are devel-

oped [7]. For instance, while steganography provides tech-

niques to hide new information into the original digital

content, cryptography produces an unreadable version

of the document by applying a kind of permutation or

substitution to the original information. Watermarking

is the most balanced technique for sharing not obfus-

cated information while preserving the copyright [8, 9].

In particular, it ensures copyright protection by applying

a mark to the original digital content, without show-

ing such mark to the readers. Watermarking methods

can be applied in innumerable contexts, such as iden-

tifying unauthorized users, establishing the authorship

of a digital content, monitoring the broadcasting pro-

cess, and distrusting a tampered digital content. Up

to an acceptable distortion, watermarking can be also

adopted to protect dynamically generated contents from

databases [10].

Watermarking an intellectual property allows the free

sharing of a digital content, while binding the artifact with

the original author. When the authorship of a digital con-

tent is misattributed, the original author can claim his/her

authorship or copyright. In this scenario, the author can

extract and show the digital watermark as an irrefutable

proof of authorship, avoiding costs and efforts of more

elaborated and timestamped evidence. At the same time,

the watermark exclude the possibility of unintentional pla-

giarism, in the case when the malicious user appeal to

the lack of originality of the work, that may have lead

to the unrelated creation of the same or very similar

content.

1.1 Problem statement

Out of all digital content watermarking techniques, we

focus on text watermarking. The reason behind our choice

is that textual information represent one of the largest

bunch of digital contents that people can daily share

and explore online, for instance, online newspaper arti-

cles, manuals and guides, social media, andmicroblogging

posts, to name a few.

Furthermore, text messages increase daily and are more

often used for commerce, mobile banking, and govern-

ment communications. In comparison with watermarking

techniques for other digital contents, text watermarking

is the most difficult task, presenting several challenges

mainly because text is not noise-tolerant.

In particular, a text watermarking algorithm must work

with some additional constraints, as short-lengthmessage,

a limited set of transformations in order to preserve read-

ability and a restricted number of alternative syntactic and

semantic permutations [11]. In fact, one of the main prob-

lems concerning textual content, even short text message,

is authorship verification, that is, to verify if a text has been

actually produced by a given author, as he/she claims. If

we exclude that a third-party guarantor is involved in the

verification process, such as an IPR database with certified

timestamps of deposited contents (also known as zero-

watermarking), then some author-dependent data must

be embedded in the text content, such as a unique code

derived from the author’s secret key.

Another peculiarity of text in the context of unautho-

rized copy is that, unlike images, any meaningful excerpt,

like a paragraph, could be copied, and it is difficult to

predict which one. While it is true that in the case of

images, some partial cropping is often applied before

unauthorized re-sharing, the unauthorized copy will still

account for an important percentage of the original image

(with some exceptions, for example in aerial photogra-

phy). Instead, in the context of text, it is very common

to copy only few sentences, which may not be subse-

quent in the original document andmay account for a very

small percentage of it (e.g., one paragraph from a book).

This can be seen as a special case of a deletion attack,

in which most of the watermarked document is deleted

and only some paragraphs or sentences are left, motivat-

ing the need of a fine-grain approach able to embed the

watermark in as many sub-portions of text as possible.

The concept of a fine-grain protection of text content is

well known in copyright law: it is common to claim intel-

lectual property rights on small portions of larger works,

and there is a vast literature involving several trials and

studies [12] trying to define at which fine-grain level an

intellectual work can be copyrighted. This known scenario

however has not been addressed so far in the text water-

marking literature. It also makes the text length constraint

even stricter, because the watermark has to be embedded

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 3 of 20

in smaller parts of the text content. Additional issues arise

if we must be able to verify a copied text that is straddling

partially two watermarked portions.

1.2 Contribution

In this paper, we propose a structural text watermarking

method for intellectual property protection1. The method

protects the whole document as well as smaller excerpt

of it, up to a minimum size of excerpt that depends

on the specific characters of the text. Nevertheless, it is

fair with respect to the concerns regarding communica-

tive freedom and privacy of the users, without altering

the content of the text or embedding explicit author-

related data. More precisely, the proposed method is

invisible and content-preserving and belongs to the frag-

ile and non-blind classes. In practice, it is able to embed

a password-based watermark without altering the con-

tent and preserving the length, ensuring data protection

against the copy and paste of even small excerpt of text.

The embedding process consists of two phases. In the

first one, the watermark is generated by applying a hash

function that combines the user (author) password and

the structural characteristics of the text. In the second

phase, that is the core of our methodology, the water-

mark is embedded into the original text by exploiting

homoglyph characters. Homoglyph characters, as sym-

bols, numbers, and letters, look very similar on the screen

and in print; nevertheless, their low-level encoding is

completely different. More precisely, the Unicode con-

fusable characters, namely the homoglyph characters, are

listed by Unicode Consortium and look confusingly simi-

lar from each others [13]. In practice, we replace a subset

of characters of the original text with an indistinguish-

able latin homoglyph symbol, with a substitution process

driven by the watermark bits sequence. The password

allows to verify the authorship since only the actual author

of the text can correctly regenerate the watermark.

The proposed method has the following four new sig-

nificant features:

1 It leaves visually indistinguishable original text, in

other words, the watermark is not noticeable by the

user.

2 The length of the original text is preserved, no matter

how short is it.

3 It can be continuously applied to small excerpts of a

longer text, protecting a document at a fine-grain

level against the copy and paste of text portions

4 It allows to cryptographically bind each text excerpt

to the original source document.

The visually indistinguishable features strongly depend

on the font used. However, we will show in the evaluation

section how the homoglyph characters allow to cover the

most used font families. The length preservation feature

is quite complex to ensure when the algorithm operates

on short texts. The proposed method is able to embed

a watermark while preserving the text length with very

short texts (theoretically a minimum of 22 symbols).

The minimum length depends on the text content,

as only a subset of characters can be substituted to

embed the data. In order to establish the minimum length

requirement on real text examples, we provide the results

of an extensive experiments on 1.8 million of New York

Times articles [14]. The results show that, on average,

101 characters are sufficient to embed the watermark pre-

serving the length and visible aspects of the original text.

Despite paragraphs can be very short or having few con-

fusable symbols that can be replaced, themethod allows to

watermark very short excerpt, shorter than a single para-

graph of New York Times articles for the 94.5% of the

times, meaning that it ensures data protection when only

a single paragraph or a smaller excerpt of it is copied and

pasted. The combination of these two features allows to

use our text watermarking method in several new con-

texts, for instance, word and pdf documents, online news-

paper articles, short message communications, e-mails,

microblogging platforms, and social networks posts.

The fine-grain watermarking method of the proposed

approach allows for the first time to protect small excerpt

of text, by repeatedly embedding the watermark across

the document. This is made possible by the short length

requirements of the approach and has two valuable con-

sequences: (i) it is possible to extract the watermark even

when it is “broken” between two watermark sequences,

and (ii) each excerpt is bound to the source document and

can be traced back to it.

In order to evaluate the fine-grain property of the

method and compare it with current methods, we propose

also a novel measure for the robustness to partial copy and

paste.

The rest of the paper is organized as follows. In

Section 2, we provide a small background in water-

marking, in order to classify the methods and show

the features usually required to a watermarking algo-

rithm. In Section 3, we review the literature works

related to text watermarking methods. In Section 4, we

describe our text watermarking method, including water-

mark generation, embedding, extraction, and authorship

verification. We discuss the evaluations of our method

in Section 5. Some concluding remarks are made in

Section 6.

2 Background in watermarking

In this section, we provide a small background in water-

marking methods. This is important as it will help in

understanding the reasons behind the design of our

method.

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 4 of 20

In accordance with the literature [15], watermarking

methods can be categorized as follows:

• Readable or detectable—The watermarking is

readable if the user can clearly read it. It is instead

detectable if a detection function can be used to check

if a watermark exists or not, but it cannot be read.
• Visible or invisible—A visible watermarking is

visually perceptible by the user. Contrary, the

watermarking is invisible if it is hidden in the original

digital content and it does not noticeable by the user.

A visible watermark may be not readable, that is, a

user can visually detect it but cannot read its content.
• Blind or non-blind—If the original digital content is

not needed in the extraction process, the

watermarking is blind. Otherwise, the watermarking

belongs to non-blind category.
• Simple or multiple—If a watermark can be applied

only once the watermarking is simple. Otherwise, a

multiple watermarking can be embedded more than

one time without affecting the whole process.
• Fragile, semi-fragile, and robust—A fragile

watermark is detectable and can be altered or erased;

thus, it is used for integrity authentication. On the

flip side, a robust watermark is detectable and not

erasable and it is most suitable for copyright

protection. A semi-fragile watermarking is suited for

content authentication.

In [16], the researchers identify several features usually

required to a watermarking method. Verifiability repre-

sents the ability to irrefutably prove the ownership of the

digital content. Data payload represents the maximum

number of bits of extra information that can be embed-

ded in the original digital content. Robustness represents

the ability to resist to processing operations and attacks,

as security is the capacity to not be altered or removed

without having full knowledge of the watermark or the

embedding process. Finally, computational cost is the cost

required in embedding and extraction process.

Out of all digital content watermarking techniques, text

watermarking is the most challenging. Text has a low

embedding bandwidth and allows only a restricted num-

ber of alternative syntactic and semantic permutations.

Text watermarking algorithms can be classified as follows:

• Zero-watermarking techniques—Instead of

watermarking the text, some characterizing features

of the text are stored on a third-party authority server,

such as an Intellectual Property Rights (IPR) database.
• Image-based techniques—Firstly, the text is

transformed into an image, then the watermark is

embedded into the image. Obviously, this approach

modifies the nature of the original document; in

other words, it cannot be considered a pure text

watermarking method. However, it has some

interesting features, as length preservation and

language independent.
• Syntactic techniques—These methods transform the

language-depending structures in order to hide the

watermark. Typically, the sentences have different

language-depending structures that make the process

easier.
• Semantic techniques—These methods use verbs,

nouns, prepositions, and even spelling and grammar

rules to permute the contents and embed the

watermark.
• Structural techniques—These methods exploit

double letter occurrences, word shift and line shift

encoding, and Unicode standard to embed the

watermark. They are one of the most recent

methodologies with which the original text is not

altered.

3 Related works

The text watermarking approaches with actual water-

mark embedding are usually classified into three main

categories [15, 17]: image-based, syntactic, and semantic.

In this categorization, the zero-watermarking approaches

are often not considered as no watermark is actually

applied; however, this alternative solution is getting more

attention lately and it is important to understand the

difference between the zero-watermarking and content-

preserving methods. A recent survey [18] considers

instead the structural, linguistic, and statistics as the three

main categories. After highlighting the core ideas, advan-

tages, and disadvantages of the mentioned approaches,

we will focus on the structural methods. Unicode-based

methods such as the proposedmethod belong to this latter

class.

3.1 Zero-watermarking

The first important dichotomy in text watermark-

ing works, and watermarking in general is the one

between zero-watermarking techniques and the more

common “non-zero” or embedding watermarking tech-

niques. Zero-watermarking aims at extracting character-

izing information from a digital content, for example,

from a picture or a song, and then store this information

into an Intellectual Property Right (IPR) database [19].

Embedding watermarking instead aim at embedding in

the digital content a payload related to the author or to the

content itself (e.g., the author name, a company logo, the

keyed hash of the content with the author’s password).

In the zero-watermarking process, no actual watermark

is applied to the content or embedded in the content,

which is left untouched. The association between the con-

tent and the author does not rely on the watermark, but

on the proof from a trusted authority.

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 5 of 20

Copious literature has emerged in recent years propos-

ing zero-watermarking techniques on text [20–23] as an

alternative solution to cope with the two orthogonal chal-

lenges of text watermarking: hiding information in small,

unnoisy data and keeping the content unaltered to the

human eye. In zero-watermarking, this is addressed by

avoiding the embedding of any watermark whatsoever.

Zero-watermarking techniques can be seen as a form of

dimensionality reduction, and in fact, they are often based

on well known dimensionality reduction techniques [24].

The clear advantages of dimensionality reduction are that

the performance for similar content search is improved

and the storage needed on the IPR database is reduced.

However, in terms of security and IP protection, the same

result can be obtained by simply storing the original con-

tent as it is, without extraction, and then applying a

similarity technique (like the SSIMmethod for images [25]

or structure-level, word-level, and character-level similar-

ities in text [26]) to efficiently identify duplicates when the

format has been altered.

A collateral shortcoming of zero-watermarking is that

the identity of the author of watermarked content must be

preventively registered on a third-party authority, leading

to privacy issues.

3.2 Image-based methods

The image-based text watermarking is the most

researched approach to text watermarking and the earli-

est one to be investigated, with the first techniques dating

back to the mid-1990s [27, 28].

In this approach, a printed text is first scanned as an

image, or as a screenshot in the case of digital text, and

then a watermark is applied on this image. For example, in

grayscale images of text document, the watermark payload

is embedded by tuning the luminance of pixels accord-

ingly to the watermark data [29] or by modifying the edge

direction histograms to carry the watermark signal [30]. A

robust embedding can be obtained by slightly shifting the

text elements horizontally or vertically: a text element can

be a word, to which a shift of few pixels to the right or to

the left can embed an information, or can be a text line

or block, shifter up and down with the same purpose [31,

32]. Similar results can be obtained by altering the spaces

between words to encode the watermark data [33, 34].

Other methods are based on the alteration of single char-

acters [31], some focus on smaller detail such as strokes

and serifs of the characters and work by prolonging them

[35], and others, more simply, alter the character in their

size by change the scale depending on the watermark

content [36].

There are two important shortcomings of image-based

methods. The first is that text must be shared as an image,

in an image file format (e.g., PNG, JPEG, or TIFF), or as

printed paper or through fax machines, which is nowdays

less practical and not very common. The second is that

text can be still reconverted to plain text by manual re-

typing or using an OCR software, leaving behind in the

process any trace of the watermark.

Overall, while it is a strong solution for printed papers

and scanned documents, image-based text watermarking

may become less and less relevant in the future because

digital media is increasingly preferred to printed paper

both for reading and sharing text contents.

3.3 Syntactic methods

Syntactic methods for text watermarking works on the

syntax of natural language text, by altering its structure

to embed a watermark. The first common step is to build

the syntactic tree of a sentence, after which some syntac-

tic operations like clefting, passivization, or activization

are applied in order to encode the watermark bits [37].

Clefting is the process of transforming a simple sentence

into a more, unnecessarly complex one, for example, the

simple sentence I like champagne can be transformed into

champagne is what I like (the what clefting) or into it is

champagne that I like (the it clefting) [38]. Passivization

is the transformation from the active to the passive form

of verbs as from, for example, Tom kicked the bucket to

the bucket was kicked by Tom, while activization is the

opposite process. There are also other morpho-syntactic

transformations that can be also applied that are con-

sidered to preserve the original meaning: the linguistic

notion of possession for instance can be written either

with using the preposition “of” or using the suffix “-s” [39].

The low embedding capacity, that is the ratio between

the text length and the length of the watermark that

can be embedded, is a limit of these methods. Contexts

of use where the length of the text is limited, such as

mobile phones SMS texts or Twitter posts are inherently

excluded.

Other disadvantages of syntactic methods comes from

the alteration of the content. The assumption that differ-

ent syntactic forms have the same meaning is not always

true [40]: in the previous example, Tom kicked the bucket

has an idiomatic interpretation, while its passive form has

only a literal one.

3.4 Semantic methods

By exploiting the similarity of the meaning of different

words, it is possible to replace words with their synonyms

[41]. The systematic substitution of words depending on

the watermark data results in a non-blind watermark

embedding. This semantic approach can be also mixed

with syntactic approach [42] to obtain an overall higher

embedding capacity.

Other semantic techniques work on the sentence level

semantic, leveraging the implicit presuppositions of each

sentence [43, 44]. A presupposition is a sort of implicit

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 6 of 20

information that follows directly from a sentence, usually

a fact that must be true in order for the sentence to make

sense. For example, in the statement Jane likes her white

car, the presupposition is that Jane has a car. By keeping

the samemeaning, the statement can be rephrased as Jane

has a white car and she likes it. It is therefore possible

to add the presupposition explicitly, or in other cases to

remove it, in order to encode watermark data.

The semantic methods share some of the shortcomings

of the syntactic methods. Like in the case of syntactic

methods, the author’s content can be strongly altered in

order to embed the watermark. Also, they depend on the

language and on the correctness of written text.

3.5 Structural methods

Structural methods include all those methods that do not

alter the text content but only its structure, intended as

underlying representation or as features regarding visual

rendering. They have more recently emerged that embed

watermark or hidden payloads by changing the underlying

encoding of symbols or adding invisible symbols, without

actually altering the readable content of the text.

The Unicode standard has several different symbols for

whitespaces, some of different width, others practically

identical. By putting many of these whitespace symbols at

the end of a paragraphs, or by filling an empty line, rela-

tively long payloads has been hidden in Microsoft Word

documents [45].

A similar technique based on different Unicode whites-

paces has been effectively applied to watermark Arabic

language text, by using a different Unicode whitespace

between words depending on the bits of the watermark’s

binary representation [46].

A more recent method uses instead multiple ASCII

whitespaces to embed a covert message [47] for PDF

steganography. The techniques works on justified text and

is able to embed 4 bits for each host line, where a host line

is a line with at least 9 normal spaces and 3 wider spaces.

Apart from whitespaces, the Unicode standard also pro-

vides some totally invisible symbols, which are provided

as zero-width whitespaces. These symbols, together with

whitespaces, have been exploited to watermark HTML

pages [48, 49] andmore generally to hide hiddenmessages

in the text [50].

As mentioned earlier, these methods have the impor-

tant advantage of keeping the original content unaltered,

but without transforming the text to an image, or rely-

ing on an external database. The above structural methods

are blind, meaning that the original text is not needed in

order to extract the watermark. This, together with the

easiness of removing multiple whitespaces, makes these

approaches fragile in both malicious and benign attacks.

This is particularly true for methods that uses consecu-

tive whitespaces and whitespaces before or after the whole

text, because it has been shown that many digital plat-

forms and social media automatically remove them [51].

This can also happen through selection for copy and paste:

selection may easily exclude the white portion where the

watermark is embedded.

Apart from whitespaces, homoglyphs ad invisible char-

acters, some image based where lines or words are slightly

shifted without altering the text content [52, 53] have been

also considered as structural methods [54].

4 Our approach

The proposed method for text watermarking can be cat-

egorized as a structural method; therefore, it preserves

both the appearance and the content without converting

the text into image and without the need of a third-

party IPR database. Our approach compute a watermark

depending on the original text and a password, both given

by the author, then it replaces the symbols and whites-

paces with visually equivalent symbols, according to the

watermark binary data.

Following the watermarking features and categoriza-

tions so far presented in related works, our approach is:

• Invisible (totally or partially): The readable content is

kept, while the symbols can be replaced by their

homoglyph. The changes applied to the text are not

noticeable to the human reader, to a certain degree of

analysis. Visibility depends strictly on the font used:

some fonts may represent the similar symbol in the

same exact way, thus making it impossible to visually

distinguish the two, others may implement slightly

different strokes or serifs or, in the case of

whitespace, slightly different widths.
• Detectable, fragile, and non-blind: As for all the

content-preserving watermarks in text, the content

can be simply re-typed thus losing the embedded

watermark. By knowing the set of homoglyphs used,

it is also possible to detect the watermark and expose

the embedded data. However, this data would be

useless without the author’s password and original

complete text needed for verification (see Section 4.5),

so the attacker cannot prove the ownership using the

extracted data. The requirement for the original

complete text makes our approach non-blind, but it

hold only in the cases when an excerpt of text has

been copied, and not the whole text.
• Content and length preserving: The whole

embedding process works by replacing the symbols

with visually indistinguishable homoglyphs;

therefore, everything, from letters to sentences, is

preserved. An important feature is that our method is

length preserving: the related works on structural

watermarking with Unicode add multiple invisible

symbols. This results in an overhead in the original

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 7 of 20

text and can be an issue in context where the number

of characters is limited. Moreover, this can make the

watermark detection simpler by comparing the

number of readable symbols with the size of the text.

On the contrary, our approach preserves also the

length of the text because, when a substitution

happens, one symbols is replaced with another

symbol, keeping the same total number of symbols.

Besides its general properties, our method show

several advantages in comparison with other non-zero-

watermarking techniques. It is more efficient because it

implements a mapping symbol-to-symbol which is much

simpler than NLP techniques where a syntax tree must be

built or complex semantic analysis must be carried.

From the perspective of the range of application, it can

be applied to most software and web platforms, because it

does not depend on a particular file format [45] or markup

language [48], but it is only dependent on Unicode sup-

port. The method does not use consequent whitespaces

or rely on specific invisible symbols [48, 55]. This is a

great advantage when the text is posted online, as most

online platforms apply several filters to the incoming text.

Moreover, it has been shown the set of symbols used

in our method can pass through several instant messen-

gers, webmail services, and social media without getting

filtered, allowing robust online applications [51].

Lastly, it is more robust against the partial selection

in copy and paste, because unlike other structural meth-

ods [45, 48] where the whitespaces symbols are appended

between new lines, at the beginning or at the end of the

text, in our approach, the watermark is embedded across

all the text and is part of the text. This means that it is

much more difficult to avoid copying also the watermark

in the process.

4.1 Unicode confusables

TheUnicode standard consists of more than 120 thousand

symbols, among which some are very similar or totally

indistinguishable. Despite these symbols have a different

numerical code and different Unicode name, thus a sepa-

rate purpose or meaning, the fonts with Unicode support

depict them with the same aspect. These symbols are

often called homoglyphs.

This similarity between symbols is a well-known secu-

rity threat, because they may be used to deceive users into

clicking on fake links or may avoid spam filters by altering

the words with spurious symbols. For this reason, the Uni-

code Consortium maintain a list of the above confusable

symbols [13], which is publicly available2.

In our approach, we exploit the similarity of Unicode

homoglyphs to seamlessly replace them accordingly to

the bits of a payload. More specifically, the payload is

the watermark of the text. To better clarify the approach,

let us suppose that each symbol of the alphabet has a

“common” version and a much less usual clone, with a dif-

ferent underneath Unicode value. Then, we could encode

a binary string by using the common symbols to express

“0” and the clone symbols to express “1.” In this way, we

would be able to encode 1 bit for each symbol in the text.

After the encoding, we can also decode the binary string

by looking at the Unicode: if the decoder finds a common

symbol will produce a “0” ; otherwise, if the clone symbol

has been used, it will produce a “1.”

The real scenario is different from the above example,

because only some symbols have a related homoglyph.We

identified these duplicate symbols for some letters of the

latin alphabet and for some punctuation in Table 1. More-

over, in Table 2, we consider the sets of whitespaces that

the Unicode standard provides as homoglyphs, thus using

them to encode bits.

In order to find out the most similar symbols, we tested

their homoglyphs under the most used font families in

modern desktop and web applications, obtaining imper-

ceptible differences in most used sans-serif fonts. The

reader can find the evaluation results on fonts in Section 5.

4.2 Watermark generation with password

Before going into details of the watermark embedding

method, we first describe how the watermark is gener-

ated. We want the watermark to be a function of the

original text and the author’s identity so that we can (i)

Table 1 Encoding bits for latin letters and punctuation symbols

Bit 0 Bit 1

Symbol Original code Duplicate code

- 0x002d 0x2010

; 0x003b 0x037e

C 0x0043 0x216d

D 0x0044 0x216e

K 0x004b 0x212a

L 0x004c 0x216c

M 0x004d 0x216f

V 0x0056 0x2164

X 0x0058 0x2169

c 0x0063 0x217d

d 0x0064 0x217e

i 0x0069 0x2170

j 0x006a 0x0458

l 0x006c 0x217c

v 0x0076 0x2174

x 0x0078 0x2179

Subset of confusable symbols used to encode the watermark. Original and
duplicate code is shown for each symbol

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 8 of 20

Table 2 Encoding bits for whitespace symbols

Whitespace Bits Unicode

Space 000 0x0020

En quad 001 0x2000

Three-per-em space 010 0x2004

Four-per-em space 011 0x2005

Punctuation space 100 0x2008

Thin space 101 0x2009

Narrow no-break space 110 0x202f

Medium mathematical space 111 0x205f

Encoding for whitespace symbols and related Unicode value. In order to encode 3
bits in a single whitespace, 8 different whitespaces are used in total

prove that the watermark is related to the original text and

(ii) assure that only the author who generated the water-

mark can verify it. These requirements can be satisfied

by a cryptographic keyed hash function such as SipHash

[56]. SipHash is a function that takes in input a variable-

length message and a secret key and produces in output a

binary string of a fixed size. This binary string is a mes-

sage authentication code (MAC) in message exchange:

only using the same secret key it is possible to recre-

ate the same MAC and authenticate the message. We

use the MAC as a watermark in order to add an addi-

tional security layer to the watermarking schema: while

it may be possible for attackers to extract the watermark,

they will not be able to prove the authorship of that

watermark.

Other non-keyed hash function can be also used for

the same purpose [57]; however, SipHash is specifically

designed to securely authenticate short messages produc-

ing a small but robust code of 64 bit. This is particularly

suitable in our context of fine-grain watermarking, as we

want the watermark to be as small as possible to embed

it in small excerpt of a text while retaining cryptographic

robustness. Nevertheless, our embedding approach does

not depend on a specific hash function or, more gen-

erally, watermark generation method; for this reason, in

Section 5, we evaluate the embedding method using other

hash functions of different MAC length.

The watermark generation is shown in Fig. 1, where

the cryptographic keyed hash function takes in input the

original text t and the password k producing in output

the 64 bit string, representing the watermark. Only who

owns the password used for generating the watermark and

the original text will be able to prove the authorship by

replicating the generation process. The robustness of this

authorship verification process is ensured by the strength

of the hash function.

4.3 Unicode watermark embedding

The watermark, generated using the keyed hash function,

is then embedded through symbols replacement, follow-

ing the proposed approach in Algorithm 1. By replacing

original symbols and whitespaces with identical or almost

identical Unicode symbols, the algorithm embeds the

watermark binary string producing a new text which is

indistinguishable from the original.

More specifically, the algorithm scans the text starting

from the first character, looking for a confusable symbol,

that is, a symbol or whitespace that has a duplicate in

the Unicode standard. The mapping between confusable

symbols and watermarked bit is shown for clarity in Fig. 2.

When a confusable symbol is found, this is replaced with

its homoglyph or kept depending on the next bit of the

watermark, starting from the leftmost bit. The Unicode

codes of symbols used when the bit is 0 and when the bit

is 1 are shown in Table 1. It must be noted that the usage

of original symbols to embed the bit 0 and duplicate to

Fig. 1 Generation of the watermark bits. Given the original text t and a secret password k, the SipHash function generates a cryptographic hash,
representing the watermark w to be embedded

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 9 of 20

Fig. 2 Embedding watermark’s bits by replacing confusable symbols. Only the symbols with a related duplicate in Tables 1 and 2 are used to embed
the watermark bits: one bit can be embedded on latin letters, and three bits can be embedded on space characters

Algorithm 1WATERMARK EMBEDDING

1: /* Text string of n Unicode characters c */

2: T = {c1, ..., cn}

3: /* List of confusable original symbols */

4: Originals = {U+002c,U+002d,U+002e,...}

5: /* List of confusable duplicate symbols */

6: Duplicates = {U+a4f9,U+2010,U+a4f8,...}

7: /* List of confusable white spaces */

8: Spaces = {U+0020,U+2002,U+2005,...}

9: /* List of all confusables*/

10: Confusables = Originals ∪ Spaces

11: W =[b1, ..., b64] /* Watermark bit array */

12: GetDuplicate : Originals → Duplicates

13: GetSpace : {000, ..., 111} → Spaces

14: WT =[] /* Watermarked text */

15: for all c ∈ T do

16: if c ∈ Confusables ∧ |W | �= 0 then

17: if c ∈ Spaces then

18: bits = Pop(W , 3)

19: lshift(bits, 3 − len(bits))

20: c = GetSpace(bits)

21: else

22: bit = Pop(W , 1)

23: if bit=1 then

24: c = GetDuplicate(c)

25: end if

26: end if

27: end if

28: Append(WT , c)

29: end for

30: returnWT

embed the bit 1 is completely arbitrary and for the sake of

simplicity. It is possible to make the opposite association

or to choose a more elaborate scheme, for example, one in

which the bit 1 is represented with the duplicate code for

some symbols and with original code for others.

Similarly, when a whitespace is found, this is replaced

with one of the 7 whitespaces in Table 2 or kept depend-

ing on the next 3 bits of the watermark. Specifically, it is

kept when the bits are 000 while it is replaced with another

whitespace for any other 3 bits combination. As for the

symbols, the whitespace association table can be rewrit-

ten arbitrarily making a custom, less predictable scheme

of embedding.

4.4 Unicode watermark extraction

The embedded watermark is invisible to the reader of the

watermarked text, however can be detected in a techni-

cal analysis of the symbol encoding, noticing that unusual

symbols have been used. Knowing the embedding algo-

rithm and the mapping between confusable and bits, it

is possible to also extract the watermark. The extraction

algorithm (Algorithm 2) is in fact the opposite process of

the embedding. As in the embedding process, it scans the

watermarked text for confusable symbols.When a confus-

able symbol or whitespace is found, the association table

(Table 1 or Table 2) is used to find the corresponding bit

(or bits in the case of whitespaces). For every confusable

symbol, the algorithm output in sequence the bits of the

watermark, from the leftmost (most significant bit) to the

rightmost (least significant bit).

4.5 Authorship verification

Suppose that an unattributed copy of a text, carrying a

watermark, is shared by an attacker. The original author’s

will is to claim his/her IP rights on the watermarked text,

but the attacker too may try to claim the authorship.

The goal of the verification mechanism is to ensure that

only the original author, who generated and embedded

the watermark in the first place, will be able to prove the

authorship.

In our approach, this goal is achieved through the regen-

eration of the same SipHash MAC. It is based on the

assumption that, with limited computational resources,

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 10 of 20

the attacker will not be able to generate the same MAC

without having the password used in the generation phase.

The verification process consists of the following 3 steps,

also illustrated in Fig. 3:

Algorithm 2WATERMARK EXTRACTION

1: /* Text string of n Unicode characters c */

2: T = {c1, ..., cn}

3: /* List of confusable original symbols */

4: Originals = {U+002c,U+002d,U+002e,...}

5: /* List of confusable duplicate symbols */

6: Duplicates = {U+a4f9,U+2010,U+a4f8,...}

7: /* List of confusable white spaces */

8: Spaces = {U+0020,U+2002,U+2005,...}

9: W =[] /* Watermark bit array */

10: SpaceMap : Spaces → {000, ..., 111} /* Reverse map-

ping function*/

11: for all c in T do

12: if c ∈ Spaces then

13: Append(W , SpaceMap(c))

14: else if c ∈ Originals then

15: Append(W , 0)

16: else if c ∈ Duplicates then

17: Append(W , 1)

18: end if

19: if |W | ≥ 64 then

20: break

21: end if

22: end for

23: returnW [: 64]

1 Knowing the associations tables, the author can

extract the watermark w and the original text t from
the watermarked text. The watermark is a MAC

obtained from the original text and password using

the keyed hash function. This step can be performed

by an attacker with knowledge of the embedding

algorithm and association tables.

2 The author applies the keyed hash function to the

original text t using the same password k used in the

watermark generation. The function produces the

watermark w′. The attacker, as well, applies the same

keyed hash function to the original text t using a
different password k′, thus obtaining a different

watermark w′′. Assuming that the author password k
is different from the attacker password k′, then the

generated watermarks w′ and w′′, with a very high

probability, are two distinct binary strings because of

the collision-free property of hash functions.

3 The extracted watermark w is now compared with w′

and w′′. Because w and w′ have been generated using

the same text and password, they are equal, while w′′

is different. The comparison proves the authorship of

the watermarked text.

Despite the SipHash is considered as a secure keyed

hash function, given its short MAC length, it may become

less secure when more computational power becomes

available to attackers. The proposed approach however

does not rely on a specific keyed hash function, allow-

ing any other hash function with stronger security to be

applied instead. With this in mind, in Section 5, we pro-

vide evaluation of text length requirements using the hash

functions MD5, SHA-1, and SHA-2.

It must be noted that, as for any other content-

preserving method (i.e., all the image-based and struc-

tural methods), the attacker may still re-type the text and

embed his own watermark. In this case, assuming that a

digital sharing method has been used, it is usually pos-

sible to track the earliest version of the text and use this

earliest version to track the original author, because it

will carry the watermark firstly embedded by the author.

The earliest watermarked text in fact can be verified only

by the original author following the above verification

process.

Fig. 3 Proof of authorship on watermarked text. The password k is a proof of authorship. Once the watermark is extracted, only the author with the
original password k is able to reproduce it

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 11 of 20

4.6 Fine-grain watermarking

The presented watermark embedding method allows to

watermark a text by embedding at the beginning of the

text a unique information derived from the text itself

together with a secret password. Considering that the

underlying approach makes the method suitable for very

short text, we extend the method to watermark longer text

but in a fine-grained fashion. The ultimate goal is to keep

authorship protection at paragraph or even lower levels,

so that the text document can be protected from the copy

of even a single sentence.

As before, the watermark is first computed uniquely

from the content of the whole text document and the

secret password, by means of a secure hash function. This

guarantees that it is not computationally possible to gen-

erate the same hash using a (i) different key, (ii) a different

document, or (iii) both, because any of the previous would

imply finding collisions by purpose [58].

In the embedding, Algorithm 1 presented for the simple

case the embedding process would stop once that all the

bits in the watermark have been embedded one time in

the original text. In the fine-grain watermarking, instead,

we keep embedding repeatedly the document watermark

until no document characters remain. The process of

fine-grain watermarking is shown in Algorithm 3. Start-

ing from the first character of the text, Algorithm 3 first

checks if the current character can be replaced (that is, if

it has a corresponding homoglyph). If this is the case, the

current bit of the watermark (or 3 bits for whitespaces)

is taken as a replacing condition. As in the original algo-

rithm, it iterates over the text replaceable characters and

the watermark bits in parallel. However, instead of con-

suming the bits of the watermark, which is usually way

shorter than the text, watermark’s bits are taken in circle,

in a string rotation setting. This is accomplished by sim-

ply applying the modulus of the index by the watermark

length.

The complexity of the proposed algorithm is O(n), lin-

ear in the number of characters of the original text. In the

external loop of Algorithm 3, we scan the original text for

each of the n characters, while the internal loop (in row

20 of Algorithm 3) has constant complexity, appending

the 3 bits for whitespace replacement. The append opera-

tion for a single character, theGetSpace function to get the

Unicode value from the 3 bits fromTable 2 and theGetDu-

plicate function to get the homoglyph given the original

letter from Table 1, can all be executed in constant time.

In Fig. 4, we illustrate the watermarking process through

a simplified example. Our document doc is a New York

Times article that we want to fine-grain watermark. We

use a toy 12-bit hash function, applying it to the con-

catenation of document and secret password. In Fig. 4,

for easier readability, the 12-bit watermark is represented

in hexadecimal notation by 3 digits, namely 0xABC. The

Algorithm 3 FINE-GRAIN WATERMARK EMBEDDING

1: /* Text string of n Unicode characters c */

2: T = {c1, ..., cn}

3: /* List of confusable original symbols */

4: Originals = {U+002c,U+002d,U+002e,...}

5: /* List of confusable duplicate symbols */

6: Duplicates = {U+a4f9,U+2010,U+a4f8,...}

7: /* List of confusable white spaces */

8: Spaces = {U+0020,U+2002,U+2005,...}

9: /* List of all confusables*/

10: Confusables = Originals ∪ Spaces

11: W =[b1, ..., b64] /* Watermark bit array */

12: GetDuplicate : Originals → Duplicates

13: GetSpace : {000, ..., 111} → Spaces

14: WT =[] /* Watermarked text */

15: i = 0 /* Watermark index pointer */

16: for all c ∈ T do

17: if c ∈ Confusables then

18: if c ∈ Spaces then

19: bits =[]

20: for ii = 0..2 do

21: append(bits,W [(i + ii)%64])

22: end for

23: c = GetSpace(bits)

24: i+ = 3

25: else

26: bit = W [i%64]

27: if bit=1 then

28: c = GetDuplicate(c)

29: end if

30: i+ = 1

31: end if

32: end if

33: Append(WT , c)

34: end for

35: returnWT

resulting 12-bit watermark is embedded repeatedly in the

text, following the replaceable characters.

The watermarked excerpts of a text, alternately high-

lighted, have different lengths depending on the number

and the type of replaceable characters found (e.g., spaces

alone allow an embedding of 3 bits each). In fact, in order

for a text excerpt to maintain the watermark, a variable

length is required depending on the replaceable symbols

in it: in the example of Fig. 4 with a 12-bit watermark, the

portion “ow republicans -” is watermarked having only 17

characters, spaces included, while the portion “was brew-

ing as lawmakers” is watermarked having 25 characters,

spaces included. We will see in the evaluation section that

the average symbols needed to embed a secure watermark

of 64 bits is 101 characters.

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 12 of 20

Fig. 4 Fine-grain watermarking. The watermark, computed as the hash of the document and the secret key, is repeatedly embedded in smaller
portions of text. For simplicity, a 12-bit watermark is shown, corresponding to the hexadecimal value 0xABC. Watermarked portions are alternately
highlighted

The sequential embedding of a watermark computed

over the whole document in small excerpts of text con-

fers two unique properties to excerpt watermarking: the

watermarking is continuous, spanning across sub-portions

of a text, and it is part-of-whole, because it binds each

excerpt to the source document.

4.6.1 Continuous watermarking

Because the watermark is repeated sequentially across

the document, it is possible to extract it from any suf-

ficiently long excerpt of text, even if this is broken

between two contiguous watermarks. For instance, in

Fig. 4, the watermark 0xABC is repeated in the order

A,B,C,A,B,C, etc. Extracting the watermark 0xABC

from the first complete portion “A blacklash against”

is straightforward using the presented Algorithm 2 for

watermark extraction. However, this is also possible if

the copied text portion is between two complete water-

marks, as long as it has at least 12 bits of embedded

watermarks: the watermark can be obtained by using

a 12-bit window of embedded watermark and shifting

the extracted binary string. In Fig. 5, a similar scenario

is shown, in which a text “against President Trump -’)

between two complete watermarked portions has been

copied. Applying the extraction Algorithm 2, the shifted

watermark 0xCAB is obtained, which is then rotated until

verification is reached or, after 11 rotation, verification

is refused. Because any rotation of the original water-

mark is successfully verified, this verification process is

shallower than the non-continuous version. Verifying as

positive, any rotation of the hash reduces the search

space for a verifying key; however, this is negligible for

standard-sized hash.

Figure 6 shows a real example using a 64 bits water-

mark, one that can be obtained with SipHash, on the first

paragraph of a New York Times article. Continuous lines

define complete applications of a 64-bit watermark; how-

ever, any contiguous sequence with at least 64 bits is also

watermarked, even if it overlaps two different complete

watermarks. In the figure, the example excerpt “Australia

is late to the space party. The leader of its new space agency,

Megan Clark, said” is watermarked and can be verified

even if it spans across two watermarks, because it has at

least 64 bits embedded in it.

4.6.2 Part-of-whole watermarking

Each text portion is considered as a part of the source doc-

ument. The unique hidden information is derived from

the source document and the secret password, and it is the

same for all the portions. For the purpose of authorship

verification, the source document is also needed along

with the secret password, but it will prove that the por-

tion is coming from that particular document. The feature

is illustrated in Figs. 4 and 5, and it is the direct con-

sequence of the fact that, while the hash is computed

over the whole document, the short-length requirement in

fine-grain watermarking embed this information in each

small text portion.

Fig. 5 Continuous part-of-whole watermarking. Any sufficiently long excerpt of text will keep the watermark when copied, independently from its
position in the document. Because its watermark is derived from the whole origin document, any watermarked excerpt of sufficient length is bind
to its source

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 13 of 20

Fig. 6 Excerpt example from NYT article. The continuous lines limit complete 64 bits watermarks. Underlined with a dashed line is an example of
verifiable excerpt spanning across two complete watermarks

The described part-of-whole watermarking schema

increase the security of the verification, as the original

complete source is needed to verify the watermarked

portion, resulting in a non-blind watermark.

5 Results and discussion

We conduct several experiments to assess the crucial

properties of the proposed approach: the number of sym-

bols required to embed a full watermark, the imper-

ceptibility of changes in the watermarked text with

respect to the original text, and the robustness of the

watermark.

5.1 Embedding capacity

Because we can only embed watermark bits when a con-

fusable symbol is found, the numbers of symbols needed

depends on the number of confusables in the text. For

this reason, this must be evaluated empirically on several

texts. This symbol length requirement will directly affect

the effectiveness of the fine-grain watermarking, because

the shortest the length, the finest will be the watermarked

portions of text.

In order to carry a realistic length requirement esti-

mation, we take into consideration the articles from the

New York Times Corpus [14], a collection of 1.8 mil-

lion articles spanning from 1987 to 2007, appeared in the

New York Times newspaper. News article are an exam-

ple of authored text commonly subject to unattributed

copies in blogs and social media. Moreover, because we

want to show the fine-grain method capability at the

paragraph level, we extract from each article only the lead

paragraph3.

In Table 3, we show the minimum and average obtained

in the experiments results together with some ideal min-

imum boundaries: the most extreme case in which our

original text has consequent whitespaces, allowing to

embed 3 bits in each of them and resulting in 22 sym-

bols needed on SipHash, and the less extreme but still

uncommon scenario of one-character words separated by

a whitespace, resulting in 33 symbols needed on SipHash.

The average length obtain on NYT Corpus using the

SipHash function is 101 characters, spaces included, while

the minimum is 46 characters.

The embedding capacity is computed as the average

ratio between the number of embedded bits and the

number of characters in each document. Considering the

average number of characters needed to embed a full

Table 3 Text length required to embed a watermark

SipHash
(64 bits)

MD5
(128 bits)

SHA-1
(160 bits)

SHA-2
(224 bits)

Spaces 22 43 54 75

1-char words 33 65 81 113

NYT MIN 46 93 116 163

NYT AVG 101.3 197.7 246.5 344

Minimum text length for length-preserving watermarking on SipHash and other
well-known cryptographic hash functions

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 14 of 20

watermark of 64 bits, the expected embedding capacity is
64
101 = 0.632 bits/character.

We also show ideal and real values for other hash func-

tions, for which the length requirement grow linearly to

the length of the producedMAC: usingMD5, with aMAC

of 128 bits, the average on NYT Corpus is 198 characters.

The maximum length requirement is not shown because

the maximum length is bound by the length of each para-

graph. More meaningfully instead, we show how many

times the paragraph was too short and lacking of con-

fusable symbols for the embedding to be successful at

paragraph-level.

In Fig. 7, we show what is the percentage of articles for

which the watermarked excerpt is smaller than its lead

paragraphs. Using a watermark of with a length of 64 bits,

such as SipHash, the percentage stops at 94.51%, because

in the remaining 5.49%, we are not able to successfully

embed a watermark of 64 bits at paragraph-level; thus,

the watermarked excerpt are bigger than a paragraph. The

percentage of completely watermarked lead paragraphs

decrease to 91.83% when we use a 128-bit watermark,

74.38% with a 160-bit hash and 63.97% using a 224-bit

hash.

Figure 7 provides also a statistical estimation of the

probability of watermarking at an excerpt of n characters.

For example, it shows that an excerpt of 100 characters

have a 50% probability of being successfully watermarked

with SipHash that increases to 80% if the excerpt is 108

characters length.

We compare the embedding capacity of the proposed

method with other recent steganography and text water-

marking structural methods. In Table 4, the embed-

ding capacity values for each of the considered methods

are provided. Together with the capacity, we show also

Fig. 7 Length requirements to successfully embed the watermark.
Percentage of leading paragraphs in NYT Corpus that can be
watermarked using only the first n characters. Results are shown for
different hash lengths

Table 4 Embedding capacity and overhead comparison

Method Embedding capacity Overhead

Por et al. [45] 0.321 1.0

Taleby A. et al. [49] 0.063 1.0

Rizzo et al. [51] 0.632 0

Taleby A. et al. [59] Unlimited 0.5

Khosravi et al. [47] 0.03 0.12

Fine-grain TW (proposed) 0.632 0

Embedding capacity in bits per character (the higher the better) for the proposed
method and related structural methods for embedding data in text and overhead
data introduced in additional characters per embedded bit (the lower the better)

the overhead introduced by the embedding in terms of

additional characters.

Our method exhibits higher capacity with respect to all

the other methods except for [59], where the capacity is

only limited by the maximum length of the text and by

the cover message, since an arbitrary number of invisible

characters are inserted in the beginning of the text. How-

ever, our method is the only one that does not introduce

any overhead of characters in the embedding, since each

character is replaced with another character.

5.2 Indistinguishability of watermarked text

Our watermark embedding process works by replac-

ing common symbols of latin alphabets, punctuations,

and whitespaces with similar Unicode symbols. Because

whitespaces have slightly different width and confusable

symbols are not always identical to common ones in all

Unicode-supporting fonts, it is crucial to assess in practice

how much these differences are noticeable.

In Fig. 8, we show an example of a paragraph in its orig-

inal and watermarked version. The watermarked version

had several of the original symbols replaced by confusable

symbols. Overall, the example does not show any notice-

able differences to the human eye: main difference regards

the horizontal spacing, because the width of the confus-

able whitespaces affect the words’ position and ultimately

the width of each line. Considering also that in a com-

mon scenario, the attacker does not have both original and

watermarked version for comparison, we argue that the

differences in paragraph level are not perceivable.

Besides paragraph-level differences, we compare each

symbol with its related duplicate in well-known fonts. In

Fig. 9, all the symbols are rendered in three sans-serif

fonts used in the most known web platforms, including

Facebook, Twitter, and Google. All the symbols show no

noticeable differences in rendering when their duplicate

is used instead of their common version. The reader can

refer to Fig. 11 in the Appendix for a more extensive

results on ten fonts.

It must be noted that changing the font of the water-

marked text cannot affect its content (i.e., the Unicode

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 15 of 20

Fig. 8 Graphic rendering of original and watermarked. A lead paragraph from a New York Time article before watermarking (a) and after
watermarking (b)

symbols) but only its appearance; thus, the watermark

is retained with any change of font. In fact, the water-

marked text—being a string of Unicode symbols—is not

bound to a particular font and has no font embedded

in it. If a malicious user copies the watermarked text in

a word editor and changes the font to any other font,

the watermark is still retained. On the other hand, if a

Fig. 9 Confusable symbols rendering in web fonts. Original (Or.) and
duplicate (Du.) symbols rendering for the threemost knownweb fonts

font with a smaller or no support of the Unicode set

is used, this is still rendered but the indistinguishability

of the non-supported symbols is not guaranteed. This is

because all modern software applications, including word

processors and web browsers, automatically render the

unsupported symbol using a similar font that supports it,

in a cascading mechanism [60].

We evaluate the visual indistinguishability of the

proposed method in comparison with two structural

steganography techniques, Whitesteg [55] and Unispach

[45]. Contrary to the proposed method, these two meth-

ods work by inserting additional invisible characters, so

that while the readable content is preserved, they add a

data overhead, resulting also in horizontal shifting due to

whitespaces added between the words.

Figure 10 shows the overlapping between original text

(in red) and watermarked text (in black) for a sample text.

It is easily noticeable how the use of double spaces in

Whitesteg and Unispach completely shift the alignment.

Conversely, the proposed method does not use multiple,

consequent whitespaces or append whitespaces at the end

or beginning of the text.

We do not evaluate structural methods that are com-

pletely invisible [49, 59], as there is no visual change after

the watermark is embedded. On the other hand, by adding

new invisible symbols to the text instead of replacing the

symbols, the invisible methods still introduce an overhead

that increases the overall text size, a change that can be

detected using any text editor or file manager.

5.3 Robustness

We evaluate the robustness of our approach together with

a set of recent structural watermarking techniques for

comparison. No exact means are available to measure the

general robustness of text watermarks [54]; however, it

is possible to measure the robustness against different

attacks. The following attacks are commonly considered

in assessing the robustness of text watermarking methods.

1 Copy and paste. A very common scenario where the

content of a text file is copied and pasted into an

attacker’s file.

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 16 of 20

Fig. 10 Indistinguishability test. Overlapping original and watermarked text for content-preserving methods shows less noticeable changes with
proposed method

2 Reformatting. Reformatting attacks including the

change of formatting features of the text such as fonts

or color. Copy and paste, retyping, and OCR have

been also considered subtypes of formatting attacks

[54]. Our method is robust against any change of font

type, size, or color, because any formatting process

leaves the Unicode content unaltered.

3 Insertion. Insertion attacks randomly new words in

the watermarked text [61], with the goal of altering

the watermark. We randomly insert the 10% of

additional words, following a common attack size

considered high [62].

4 Deletion. In this attack, some parts of the text are

removed [54]. If the deleted portion is part of the

watermark, the watermark may be destroyed or

completely removed [61]. As for the insertion attack,

we randomly remove the 10% of the words.

5 Replacement. In a replacement attack, a set of words

in the watermarked text are replaced with other

words [54, 61]. It can be considered as a deletion

attack followed by an insertion attack in the same

location. We test the robustness against a

replacement attack [62], where 10% of the words in

the watermarked text are replaced with other words.

The word inserted as replacement is randomly

chosen from a word list of 10,000 words.

6 Retyping. In a retyping attack, a malicious user retype

the text in a different file or platform. Structural

methods are all fragile to retyping by definition. In

fact, because the structural methods embed the

watermark by altering the layout such as formatting

features, spaces, Unicode, and ASCII encodings

without altering the content, retyping the content

will always destroys a watermark.

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 17 of 20

5.3.1 Robustness to partial copy and paste

Selection of text is a natural—and in most software

obligatory—step involved in the copy and paste pro-

cess. In web pages, for example, users select specific

sub-portions of the page to avoid copying advertisement

images, logos, and navigation menus. More generally, it is

common to select and copy only the portions of interests

from a document. Copying a portion of a text docu-

ment can be also considered a special case of deletion

attack, in which all characters before and after the por-

tion are removed. Fore example, in the case of attackers

trying to remove the authors’ names from a text [61],

they may instead just select the text without the authors’

information.

In order to measure the robustness against the partial

copy attack, a scenario that also motivated the design of

our fine-grain algorithm, we propose an additional mea-

sure. Note that it is not possible to know a priori which

portion of a text the attacker will copy and paste nor it

is possible to know a priori if a portion of some length

will be protected: depending on the characters or spaces

in the specific portion, a complete watermark may or may

not be embedded in it. For these reasons, the only way

to measure the robustness is empirically by assessing the

robustness of each possible portion in a given text, for a

large enough number of texts.

Because a digital text is a string of symbols, a naive

way of measuring this robustness is by counting how

many substrings out of all the possible substrings are

still protected when extracted through copy and pasting.

However, current laws do not allow to claim the copy-

right of small groups of words, let alone symbols, as this

could set up barrier to expression [63], despite there are

some cases wheremicroworks of 16 words, or quotes from

larger works (e.g., movie scripts) have been copyrighted

[12] given their strong originality. Our metric therefore

considers subsequences of words instead of substrings of

characters and is parameterized on a number of words z.

Here, we use the indicator function I{·} that returns 0 or

1 if the condition is false or true, respectively. Given that T

is the whole text as a sequence of words, S ⊆ T is a portion

of T, and the number of protected portions of z words is:

Tprotected(z) =
∑

S⊆T ,|S|=z

I{ET ,k(S) = ET ,k(T)} (1)

Then, the number of all possible subsequences with z

words in a text of |T | words is:

Tall(z) = |T | − z + 1 (2)

Therefore, the robustness to partial copy and paste RPCP

is:

RPCP(T , z) =
Tprotected

Tall
(3)

Less formally, the above definition of RPCP measures the

fraction of possible small words sequences with z words

that are protected when isolated from their original con-

tent T. This definition also estimates the probability of

having any subsequence S protected against partial copy.

In fact, let a malicious user selects S among any of the

sequences of the watermarked text T, where S is unknown

to the author, and assuming that the selection happens

with uniform probability, then RPCP is also the probability

of S to retain the watermark, that is, P(ET ,k(S) = ET ,k(T)).

In the evaluation, we use z = 32, as 32 words is con-

sidered a minimal group of words that can be copyrighted

given enough originality [63].

Some of the evaluation tests are computationally inten-

sive, such as counting word frequencies for the geometric

advanced replacement or extracting all possible substring;

therefore, we draw a random sample of 1000 articles from

the NYT Corpus [14]. In the sample, the minimum char-

acter length in an article is 197, maximum is 57,136 and

the average is 4213. We extracted words from the arti-

cle using the regular expression ([\w][\w]*’?\w?), to

also capture words with genitive such as Tom’s as a single

word, resulting in an average of 676 words per document,

with a minimum of 31 and a maximum of 9375 words.

We implemented embedding and extraction for the

methods under comparison following the original pub-

lished descriptions. An exception regards the implemen-

tation of the algorithm in [49], where we repeatedly embed

the watermark after each dot (.) only when this is followed

by a new line; otherwise, the invisible control charac-

ters used have the effect of reversing the following string.

For the steganography techniques considered, the results

are computed by embedding a 64-bit message. For each

method, the payload is embedded in the document using

the implemented embedding method.

In the RPCP evaluation, each possible portion of 32

words starting from the first in the article is copied. Then,

the extraction method is ran on the portion: if the original

payload is extracted, then I{ET ,k(S) = ET ,k(T)} = 1, i.e.,

the portion will increase the number of Tprotected in Eq. 3;

otherwise I{ET ,k(S) = ET ,k(T)} = 0. This assessment is

done for each portion until the end of the article. The RPCP

is computed for each article in the sample, and the average

overall articles is shown in Table 5 together with the other

measures.

In Table 5, we show the results of the evaluation. Over-

all, our method shows robustness results higher or sim-

ilar to other methods for all the attacks. Methods which

embed the watermark in non-word locations, such as

whitespaces [45], after the dot (.) or in the end of the text

[49, 59] show high or total robustness when words are

attacked through insertion, deletion, and replacement. On

the other hand, because the watermark is embedded in

isolated locations outside the text, they are more easy to

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 18 of 20

Table 5 Robustness evaluation and comparison

Method Copy and paste Reformatting Insertion (%) Deletion (%) Replace (%) Retyping (%) RPCP(%)

Por et al. [45] � � 48.3 53.7 55.7 × 0.01

Taleby Ahvanooey et al. [49] � � 100 99.7 99.6 × 1.9

Rizzo et al. [51] � � 0 0 1.2 × 0

Taleby Ahvanooey et al. [59] � � 100 100 100 × 0

Khosravi et al. [47] × × 0 1.7 2.6 × 0

Fine-grain TW (proposed) � � 96.4 98.2 98.3 × 99.92

Robustness evaluation on 1000 news articles of recent, latin-based structural text watermarking and steganography methods. The results of the attacks involving insertion,
deletion, and replacement of words are shown for 10% attack size, while 32 words are considered for partial copy RPCP

lose when partial text is selected, thus performing poorly

with respect to the proposed fine-grain method. The

combination of a high embedding capacity, the repeated

embedding, and the verification method through binary

string shifting confers a very high copy and paste robust-

ness to our method, which provides an almost total pro-

tection for groups of 32 words.

6 Conclusions

The protection of intellectual property of digital contents

from plagiarism and unauthorized copy has become a

challenging research problem, worsened by the ease of

selecting, copying, and sharing other people’s content.

While text watermarking methods aimed at the protec-

tion of entire documents, the fine-grain protection of

creative work from partial copy is a difficult and common

phenomenon faced in copyright law.

In this paper, we have presented a fine-grain text water-

marking method able to embed a password-based water-

mark in latin-based alphabet texts at paragraph level. By

not relying on isolated text locations and having a discrete

embedding capacity, the watermark is embedded repeat-

edly and thoroughly in a fine-grain fashion, so that it can

be extracted even when only a small portion is copied.

The core of the method is the watermark embedding

through confusable symbol replacement: Unicode sym-

bols very similar or identical to common symbols are

replaced following the content of the watermark. The

watermark is generated using a keyed hash function, bind-

ing the watermark to the author’s secret key and the

original text. The method does not modify the readable

content of the text, producing a watermarked text that

is visually indistinguishable from the original text. More-

over, it is the first method able to embed data without

introducing overhead.

From an extensive experiment on 1.8 million docu-

ments, the resulted average embedding capacity of the

embedding method is 0.632 bits/character, while the fine-

grain algorithm is able to protect text at paragraph level

for the 94.5% of the times. This features allows the first

fine-grain protection of text through continuous, part-of-

whole watermarking. For any sufficiently long portion of a

text, the proposed method allows authorship verification

and source traceability, binding all the portions to its orig-

inal source document, and protection against partial copy

and paste.

Along with well-known attacks on words, we tested

the algorithm for partial copy and paste, for which we

proposed a novel measure of robustness. The algorithm

has shown the highest robustness against partial copy

and paste, protecting 99.92% of 32 words sequences, and

high robustness to other attacks. Despite partial copy and

paste is a natural activity, we have found that structural

techniques are more fragile to it than to intentionally

malicious attacks such as random insertion, deletion, and

replacement of words. This is because, by keeping only a

sequence of words, several locations commonly used for

embedding are left out, such as whitespaces and hidden

control sequences before and after punctuations. On the

other hand, because our method embed the watermark

in a fine-grained way thorough all the words, it is slightly

less robust to word insertion, deletion, and replacement

than other methods [49, 59]. In this context, we also noted

how all structural watermarkingmethods are fragile to the

simple retyping attack, allowing an attacker to remove the

watermark with ease and without any knowledge of the

underlying embedding algorithm or watermark embed-

ding locations. This should be taken into account when

assessing the robustness against more complex malicious

attacks.

Endnotes
1Aprototype that implements ourmethod can be tested

here: http://smartdata.cs.unibo.it/finegrain-watermark
2http://www.unicode.org/Public/security/8.0.0/

confusables.txt
3The lead paragraph field of the article as defined by

New York Times.

Appendix A

In Figure 11, for each of the 16 Unicode confusable sym-

bols, we show both original and duplicate versions for ten

font families.

http://smartdata.cs.unibo.it/finegrain-watermark
http://www.unicode.org/Public/security/8.0.0/confusables.txt
http://www.unicode.org/Public/security/8.0.0/confusables.txt

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 19 of 20

Fig. 11 Confusable symbols rendering. Original (Or.) and duplicate (Du.) symbols rendering for ten font families with Unicode support. The
duplicate is indistinguishable for both serif and sans-serif fonts

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No. 776848.

Authors’ contributions

SGR is the corresponding author of the paper and is responsible for all aspects
of the paper. FB did the part of the experiment. All authors wrote, read, and
approved the final manuscript.

Funding

Not applicable.

Availability of data andmaterials

The dataset supporting the conclusions of this article is available in the
SmartData repository, http://smartdata.cs.unibo.it/datasets.

Competing interests

The authors declare that they have no competing interests and that there is
no conflict of interest regarding the publication of this paper.

Author details
1Qatar Computing Research Institute (QCRI) HBKU, Doha, Qatar. 2Department
of Computer Science and Engineering, University of Bologna, Mura Anteo
Zamboni, 7, 40126 Bologna, Italy.

Received: 19 December 2018 Accepted: 23 June 2019

References

1. A. Kapczynski, The access to knowledge mobilization and the new politics
of intellectual property. Yale LJ. 117, 804 (2007)

2. Y. Kauffman, M. F. Young, Digital plagiarism: an experimental study of the
effect of instructional goals and copy-and-paste affordance. Comput.
Educ. 83, 44–56 (2015)

3. J. Grimmelmann, Regulation by software. Yale LJ. 114, 1719 (2004)
4. S. K. Katyal, Filtering, piracy surveillance and disobedience. Colum. JL Arts.

32, 401 (2008)
5. J. C. Lai, C. B. Graber, Is digital text-watermarking the long-desired user

friendly digital rights management? copyright and fundamental values from

a comparative perspective. European Intellectual Property Review. (Sweet &
Maxwell, London, 2016)

6. A. M. Eskicioglu, E. J. Delp, An overview of multimedia content protection
in consumer electronics devices. Signal Proc. Image Commun. 16(7),
681–699 (2001)

7. S. Katzenbeisser, F. Petitcolas, Information hiding techniques for

steganography and digital watermarking. (Artech house, Norwood, 2000)
8. X. Zhou, W. Zhao, Z. Wang, L. Pan, in E-Business and Information System

Security, 2009. EBISS’09. International Conference On. Security theory and
attack analysis for text watermarking (IEEE, New York, 2009), pp. 1–6

9. M. Durvey, D. Satyarthi, A review paper on digital watermarking. Int. J.
Emerg. Trends Technol. Comput. Sci. 3(4), 99–105 (2014)

10. D. Gross-Amblard, in Proceedings of the Twenty-second ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
Query-preserving watermarking of relational databases and xml
documents (ACM, New York, 2003), pp. 191–201

11. P. Verma, R. A. Shaikh, K. Deshmukh, A novel approach to angle based
invisible text watermarking with ebcdic coding. Int. J. Comput. Appl.
61(20) (2013)

12. J. Hughes, Size matters (or should) in copyright law. Fordham L. Rev. 74,
575 (2005)

13. M. Davis, M. Suignard, Unicode security mechanisms. Unicode technical
standard #39, Unicode. http://www.unicode.org/reports/tr39/. Accessed
02 Sept 2019

14. E. Sandhaus, The new york times annotated corpus. Linguistic Data
Consortium Phila. 6(12), 26752 (2008)

15. M. Kaur, K. Mahajan, An existential review on text watermarking
techniques. Int. J. Comput. Appl. 120(18) (2015)

16. R. Patel, P. Bhatt, A review paper on digital watermarking and its
techniques. Int. J. Comput. Appl. 110(1), 10–13 (2015)

17. Z. Jalil, A. M. Mirza, in Information andMultimedia Technology, 2009.

ICIMT’09. International Conference On. A review of digital watermarking
techniques for text documents (IEEE, New York, 2009), pp. 230–234

18. M. Taleby Ahvanooey, Q. Li, J. Hou, A. Rajput, C. Yini, Modern text hiding,
text steganalysis, and applications: a comparative analysis. Entropy. 2019,
350–381 (2019). https://doi.org/10.3390/e21040355

19. Y. Zhou, W. Jin, inMultimedia Technology (ICMT), 2011 International

Conference On. A novel image zero-watermarking scheme based on
DWT-SVD (IEEE, New York, 2011), pp. 2873–2876

http://smartdata.cs.unibo.it/datasets
http://www.unicode.org/reports/tr39/
https://doi.org/10.3390/e21040355

Rizzo et al. EURASIP Journal on Information Security (2019) 2019:10 Page 20 of 20

20. M. Sabir, A. M. Mirza, Z. Jalil, Content based zero-watermarking algorithm
for authentication of text documents. Int. J. Comput. Sci. Inf. Secur. 7(2),
212–217 (2010)

21. Z. Jalil, H. Aziz, S. B. Shahid, M. Arif, A. M. Mirza, in Educational and

Information Technology (ICEIT), 2010 International Conference On, vol. 2. A
zero text watermarking algorithm based on non-vowel ASCII characters
(IEEE, New York, 2010), pp. 2–503

22. K. Jaseena, A. John, An invisible zero watermarking algorithm using
combined image and text for protecting text documents. Int. J. Comput.
Sci. Eng. 3(6), 2265–2272 (2011)

23. S. Kaur, G. Babbar, A zero-watermarking algorithm on multiple
occurrences of letters for text tampering detection. Int. J. Comput. Sci.
Eng. 5(5), 294 (2013)

24. R.-z. Liu, T.-n. Tan, SVD based digital watermarking method. Acta Electron.
Sin. 29(2), 168–171 (2001)

25. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image
Process. 13(4), 600–612 (2004)

26. D. Bär, T. Zesch, I. Gurevych, in Proceedings of COLING 2012. Text reuse
detection using a composition of text similarity measures (The COLING
2012 Organizing Committee, Mumbai, 2012), pp. 167–184

27. J. Brassil, S. Low, N. Maxemchuk, L. O’Gorman, in INFOCOM’94. Networking

for Global Communications., 13th Proceedings IEEE. Electronic marking and
identification techniques to discourage document copying (IEEE, New
York, 1994), pp. 1278–1287

28. S. H. Low, N. F. Maxemchuk, J. Brassil, L. O’Gorman, in INFOCOM’95.

Fourteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Bringing Information to People. Proceedings. IEEE,

vol. 2. Document marking and identification using both line and word
shifting (IEEE, New York, 1995), pp. 853–860

29. A. K. Bhattacharjya, H. Ancin, in Image Processing, 1999. ICIP 99. Proceedings.

1999 International Conference On, vol. 2. Data embedding in text for a
copier system (IEEE, New York, 1999), pp. 245–249

30. Y.-W. Kim, I.-S. Oh, Watermarking text document images using edge
direction histograms. Pattern Recogn. Lett. 25(11), 1243–1251 (2004)

31. J. T. Brassil, S. Low, N. F. Maxemchuk, L. O. Gorman, Electronic marking and
identification techniques to discourage document copying. Sel. Areas
Commun. IEEE J. 13(8), 1495–1504 (1995)

32. S. H. Low, N. F. Maxemchuk, A. M. Lapone, Document identification for
copyright protection using centroid detection. Commun. IEEE Trans.
46(3), 372–383 (1998)

33. D. Huang, H. Yan, Interword distance changes represented by sine waves
for watermarking text images. Circ. Syst. Video Technol. IEEE Trans. 11(12),
1237–1245 (2001)

34. Y.-W. Kim, K.-A. Moon, I.-S. Oh, in Proceedings of the Seventh International

Conference on Document Analysis and Recognition. A text watermarking
algorithm based on word classification and inter-word space statistics
(IEEE, New York, 2003), pp. 775–779

35. T. Amano, D. Misaki, in Proceedings of the Fifth International Conference on

Document Analysis and Recognition. A feature calibration method for
watermarking of document images (IEEE, New York, 1999), pp. 91–94

36. X. Wang, in Information Science and Technology (ICIST), 2013 International

Conference On. Digital watermarking research based on text (IEEE, New
York, 2013), pp. 433–436

37. M. J. Atallah, V. Raskin, M. Crogan, C. Hempelmann, F. Kerschbaum, D.
Mohamed, S. Naik, in Information Hiding. Natural language watermarking:
design, analysis, and a proof-of-concept implementation (Springer, New
York, 2001), pp. 185–200

38. K. Lambrecht, A framework for the analysis of cleft constructions.
Linguistics. 39(3; ISSU 373), 463–516 (2001)

39. H. M. Meral, B. Sankur, A. S. Özsoy, T. Güngör, E. Sevinç, Natural language
watermarking via morphosyntactic alterations. Comput. Speech Lang.
23(1), 107–125 (2009)

40. R. Huddleston, Introduction to the Grammar of English. (Cambridge
University Press, Cambridge, 1984)

41. U. Topkara, M. Topkara, M. J. Atallah, in Proceedings of the 8thWorkshop on

Multimedia and Security. The hiding virtues of ambiguity: quantifiably
resilient watermarking of natural language text through synonym
substitutions (ACM, New York, 2006), pp. 164–174

42. M. Topkara, C. M. Taskiran, E. J. Delp III, in Electronic Imaging 2005. Natural
language watermarking (International Society for Optics and Photonics,
Bellingham, 2005), pp. 441–452

43. O. Vybornova, B. Macq, in Security, Steganography, andWatermarking of

Multimedia Contents IX, vol. 6505. A method of text watermarking using
presuppositions (International Society for Optics and Photonics,
Bellingham, 2007), p. 65051

44. O. Vybornova, B. Macq, in Information Reuse and Integration, 2007. IRI 2007.

IEEE International Conference On. Natural language watermarking and
robust hashing based on presuppositional analysis (IEEE, New York, 2007),
pp. 177–182

45. L. Y. Por, K. Wong, K. O. Chee, Unispach: A text-based data hiding method
using Unicode space characters. J. Syst. Softw. 85(5), 1075–1082 (2012)

46. R. A. Alotaibi, L. A. Elrefaei, Improved capacity arabic text watermarking
methods based on open word space. J. King Saud University-Computer
Inf. Sci. 30(2), 236–248 (2018)

47. B. Khosravi, B. Khosravi, B. Khosravi, K. Nazarkardeh, A new method for pdf
steganography in justified texts. J. Inf. Secur. Appl. 45, 61–70 (2019)

48. N. Mir, Copyright for web content using invisible text watermarking.
Comput. Hum. Behav. 30, 648–653 (2014)

49. M. Taleby Ahvanooey, H. Dana Mazraeh, S. H. Tabasi, An innovative
technique for web text watermarking (AITW). Inf. Secur. J. Glob. Perspect.
25(4-6), 191–196 (2016)

50. S. S. Baawi, M. R. Mokhtar, R. Sulaiman, in International Conference of

Reliable Information and Communication Technology. Enhancement of text
steganography technique using Lempel-Ziv-Welch algorithm and
two-letter word technique (Springer, New York, 2018), pp. 525–537

51. S. G. Rizzo, F. Bertini, D. Montesi, C. Stomeo, in Proceedings of the 2017

IEEE/ACM International Conference on Advances in Social Networks Analysis

andMining 2017. Text watermarking in social media (ACM, New York,
2017), pp. 208–211

52. J. T. Brassil, S. Low, N. F. Maxemchuk, Copyright protection for the
electronic distribution of text documents. Proc. IEEE. 87(7), 1181–1196
(1999)

53. J. Brassil, S. Low, N. Maxemchuk, L. O’Gorman, in Proc. Conf. Information

Sciences and Systems (CISS-95). Hiding information in document images
(Johns Hopkins University Press, Baltimore, 1995), pp. 482–489

54. N. S. Kamaruddin, A. Kamsin, L. Y. Por, H. Rahman, A review of text
watermarking: theory, methods, and applications. IEEE Access. 6,
8011–8028 (2018)

55. L. Y. Por, T. Ang, B. Delina, Whitesteg: a new scheme in information hiding
using text steganography. WSEAS Trans. Comput. 7(6), 735–745 (2008)

56. J.-P. Aumasson, D. J. Bernstein, in Progress in Cryptology - INDOCRYPT 2012.
Siphash: a fast short-input PRF (Springer, New York, pp. 489–508

57. H. Krawczyk, M. Bellare, R. Canetti, Hmac: Keyed-hashing for message
authentication. Technical report (1997)

58. I. B. Damgård, A Design Principle for Hash Functions. (G. Brassard, ed.)
Springer, New York, 1990), pp. 416–427

59. M. Taleby Ahvanooey, Q. Li, J. Hou, H. D. Mazraeh, J. Zhang, AITSteg: an
innovative text steganography technique for hidden transmission of text
message via social media. IEEE Access. 6, 65981–65995 (2018)

60. M. J. Dürst, M.-A. Parent, Font selection and font composition for Unicode

(Unicode Consortium, Mountain View
61. M. Taleby Ahvanooey, Q. Li, H. J. Shim, Y. Huang, A comparative analysis of

information hiding techniques for copyright protection of text
documents. Secur. Commun. Networks. 2018, 5325040:1-5325040:22
(2018)

62. M. Bashardoost, M. S. M. Rahim, T. Saba, A. Rehman, Replacement attack: a
new zero text watermarking attack. 3D Res. 8(1), 8 (2017)

63. B. Kaplan, An unhurried view of copyright 45-46 (1967) and Robert
Denicola, copyright in collections of facts: a theory for the protection of
nonfiction literary works. Colum. L. Rev. 81, 516–521 (1981)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Problem statement
	Contribution

	Background in watermarking
	Related works
	Zero-watermarking
	Image-based methods
	Syntactic methods
	Semantic methods
	Structural methods

	Our approach
	Unicode confusables
	Watermark generation with password
	Unicode watermark embedding
	Unicode watermark extraction
	Authorship verification
	Fine-grain watermarking
	Continuous watermarking
	Part-of-whole watermarking

	Results and discussion
	Embedding capacity
	Indistinguishability of watermarked text
	Robustness
	Robustness to partial copy and paste

	Conclusions
	Appendix
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

