
Fine-Grained Analysis of Optimization and Generalization for

Overparameterized Two-Layer Neural Networks

Sanjeev Arora * 1 2 Simon S. Du * 3 Wei Hu * 1 Zhiyuan Li * 1 Ruosong Wang * 3

Abstract

Recent works have cast some light on the mys-

tery of why deep nets fit any data and generalize

despite being very overparametrized. This paper

analyzes training and generalization for a simple

2-layer ReLU net with random initialization, and

provides the following improvements over recent

works:

(i) Using a tighter characterization of training

speed than recent papers, an explanation for

why training a neural net with random la-

bels leads to slower training, as originally

observed in [Zhang et al. ICLR’17].

(ii) Generalization bound independent of net-

work size, using a data-dependent complex-

ity measure. Our measure distinguishes

clearly between random labels and true la-

bels on MNIST and CIFAR, as shown by

experiments. Moreover, recent papers re-

quire sample complexity to increase (slowly)

with the size, while our sample complexity is

completely independent of the network size.

(iii) Learnability of a broad class of smooth func-

tions by 2-layer ReLU nets trained via gradi-

ent descent.

The key idea is to track dynamics of training and

generalization via properties of a related kernel.

1. Introduction

The well-known work of Zhang et al. (2017) highlighted

intriguing experimental phenomena about deep net train-

ing – specifically, optimization and generalization – and

asked whether theory could explain them. They showed

*Alphabetical order 1Princeton University, Princeton, NJ, USA
2Institute for Advanced Study, Princeton, NJ, USA 3Carnegie
Mellon University, Pittsburgh, PA, USA. Correspondence to: Wei
Hu <huwei@cs.princeton.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

that sufficiently powerful nets (with vastly more parameters

than number of training samples) can attain zero training

error, regardless of whether the data is properly labeled or

randomly labeled. Obviously, training with randomly la-

beled data cannot generalize, whereas training with properly

labeled data generalizes. See Figure 2 replicating some of

these results.

Recent papers have begun to provide explanations, showing

that gradient descent can allow an overparametrized multi-

layer net to attain arbitrarily low training error on fairly

generic datasets (Du et al., 2018a;c; Li & Liang, 2018; Allen-

Zhu et al., 2018b; Zou et al., 2018), provided the amount

of overparametrization is a high polynomial of the relevant

parameters (i.e. vastly more than the overparametrization in

(Zhang et al., 2017)). Under further assumptions it can also

be shown that the trained net generalizes (Allen-Zhu et al.,

2018a). But some issues were not addressed in these papers,

and the goal of the current paper is to address them.

First, the experiments in (Zhang et al., 2017) show that

though the nets attain zero training error on even random

data, the convergence rate is much slower. See Figure 1.

Question 1. Why do true labels give faster convergence

rate than random labels for gradient descent?

The above papers do not answer this question, since their

proof of convergence does not distinguish between good

and random labels.

The next issue is about generalization: clearly, some prop-

erty of properly labeled data controls generalization, but

what? Classical measures used in generalization theory

such as VC-dimension and Rademacher complexity are

much too pessimistic. A line of research proposed norm-

based (e.g. (Bartlett et al., 2017a)) and compression-based

bounds (Arora et al., 2018). But the sample complexity

upper bounds obtained are still far too weak. Furthermore

they rely on some property of the trained net that is re-

vealed/computed at the end of training. There is no property

of data alone that determine upfront whether the trained net

will generalize. A recent paper (Allen-Zhu et al., 2018a)

assumed that there exists an underlying (unknown) neural

network that achieves low error on the data distribution, and

the amount of data available is quite a bit more than the min-

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

imum number of samples needed to learn this underlying

neural net. Under this condition, the overparametrized net

(which has way more parameters) can learn in a way that

generalizes. However, it is hard to verify from data whether

this assumption is satisfied, even after the larger net has

finished training.1 Thus the assumption is in some sense

unverifiable.

Question 2. Is there an easily verifiable complexity measure

that can differentiate true labels and random labels?

Without explicit regularization, to attack this problem, one

must resort to algorithm-dependent generalization analysis.

One such line of work established that first-order methods

can automatically find minimum-norm/maximum-margin

solutions that fit the data in the settings of logistic regres-

sion, deep linear networks, and symmetric matrix factor-

ization (Soudry et al., 2018; Gunasekar et al., 2018a;b;

Ji & Telgarsky, 2018; Li et al., 2018b). However, how

to extend these results to non-linear neural networks re-

mains unclear (Wei et al., 2018). Another line of algorithm-

dependent analysis of generalization (Hardt et al., 2015;

Mou et al., 2017; Chen et al., 2018) used stability of specific

optimization algorithms that satisfy certain generic proper-

ties like convexity, smoothness, etc. However, as the number

of epochs becomes large, these generalization bounds are

vacuous.

Our results. We give a new analysis that provides answers

to Questions 1 and 2 for overparameterized two-layer neural

networks with ReLU activation trained by gradient descent

(GD), when the number of neurons in the hidden layer is

sufficiently large. In this setting, Du et al. (2018c) have

proved that GD with random initialization can achieve zero

training error for any non-degenerate data. We give a more

refined analysis of the trajectory of GD which enables us to

provide answers to Questions 1 and 2. In particular:

• In Section 4, using the trajectory of the network pre-

dictions on the training data during optimization, we

accurately estimate the magnitude of training loss in

each iteration. Our key finding is that the number of

iterations needed to achieve a target accuracy depends

on the projections of data labels on the eigenvectors

of a certain Gram matrix to be defined in Equation (3).

On MNIST and CIFAR datasets, we find that such pro-

jections are significantly different for true labels and

random labels, and as a result we are able to answer

Question 1.

• In Section 5, we give a generalization bound for the

solution found by GD, based on accurate estimates of

how much the network parameters can move during

optimization (in suitable norms). Our generalization

1In Section 2, we discuss the related works in more details.

bound depends on a data-dependent complexity mea-

sure (c.f. Equation (10)), and notably, is completely in-

dependent of the number of hidden units in the network.

Again, we test this complexity measure on MNIST and

CIFAR, and find that the complexity measures for true

and random labels are significantly different, which

thus answers Question 2.

Notice that because zero training error is achieved by

the solution found by GD, a generalization bound is an

upper bound on the error on the data distribution (test

error). We also remark that our generalization bound is

valid for any data labels – it does not require the exis-

tence of a small ground-truth network as in (Allen-Zhu

et al., 2018a). Moreover, our bound can be efficiently

computed for any data labels.

• In Section 6, we further study what kind of functions

can be provably learned by two-layer ReLU networks

trained by GD. Combining the optimization and gener-

alization results, we uncover a broad class of learnable

functions, including linear functions, two-layer neural

networks with polynomial activation �(z) = z2l or co-

sine activation, etc. Our requirement on the smoothness

of learnable functions is weaker than that in (Allen-Zhu

et al., 2018a).

Finally, we note that the intriguing generalization phenom-

ena in deep learning were observed in kernel methods as

well (Belkin et al., 2018). The analysis in the current pa-

per is also related to a kernel from the ReLU activation

(c.f. Equation (3)).

2. Related Work

In this section we survey previous works on optimization

and generalization aspects of neural networks.

Optimization. Many papers tried to characterize geomet-

ric landscapes of objective functions (Safran & Shamir,

2017; Zhou & Liang, 2017; Freeman & Bruna, 2016; Hardt

& Ma, 2016; Nguyen & Hein, 2017; Kawaguchi, 2016;

Venturi et al., 2018; Soudry & Carmon, 2016; Du & Lee,

2018; Soltanolkotabi et al., 2018; Haeffele & Vidal, 2015).

The hope is to leverage recent advance in first-order algo-

rithms (Ge et al., 2015; Lee et al., 2016; Jin et al., 2017)

which showed that if the landscape satisfies (1) all local

minima are global and (2) all saddle points are strict (i.e.,

there exists a negative curvature), then first-order methods

can escape all saddle points and find a global minimum.

Unfortunately, these desired properties do not hold even for

simple non-linear shallow neural networks (Yun et al., 2018)

or 3-layer linear neural networks (Kawaguchi, 2016).

Another approach is to directly analyze trajectory of the op-

timization method and to show convergence to global mini-

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

mum. A series of papers made strong assumptions on input

distribution as well as realizability of labels, and showed

global convergence of (stochastic) gradient descent for some

shallow neural networks (Tian, 2017; Soltanolkotabi, 2017;

Brutzkus & Globerson, 2017; Du et al., 2017a;b; Li &

Yuan, 2017). Some local convergence results have also been

proved (Zhong et al., 2017; Zhang et al., 2018). However,

these assumptions are not satisfied in practice.

For two-layer neural networks, a line of papers used mean

field analysis to establish that for infinitely wide neural

networks, the empirical distribution of the neural network

parameters can be described as a Wasserstein gradient

flow (Mei et al., 2018; Chizat & Bach, 2018a; Sirignano &

Spiliopoulos, 2018; Rotskoff & Vanden-Eijnden, 2018; Wei

et al., 2018). However, it is unclear whether this framework

can explain the behavior of first-order methods on finite-size

neural networks.

Recent breakthroughs were made in understanding opti-

mization of overparameterized neural networks through

the trajectory-based approach. They proved global poly-

nomial time convergence of (stochastic) gradient descent on

non-linear neural networks for minimizing empirical risk.

Their proof techniques can be roughly classified into two

categories. Li & Liang (2018); Allen-Zhu et al. (2018b);

Zou et al. (2018) analyzed the trajectory of parameters and

showed that on the trajectory, the objective function satisfies

certain gradient dominance property. On the other hand,

(Du et al., 2018a;c) analyzed the trajectory of network pre-

dictions on training samples and showed that it enjoys a

strongly-convex-like property.

Generalization. It is well known that the VC-dimension

of neural networks is at least linear in the number of pa-

rameters (Bartlett et al., 2017b), and therefore classical VC

theory cannot explain the generalization ability of mod-

ern neural networks with more parameters than training

samples. Researchers have proposed norm-based general-

ization bounds (Bartlett & Mendelson, 2002; Bartlett et al.,

2017a; Neyshabur et al., 2015; 2017; 2019; Konstantinos

et al., 2017; Golowich et al., 2017; Li et al., 2018a) and

compression-based bounds (Arora et al., 2018). Dziugaite

& Roy (2017); Zhou et al. (2019) used the PAC-Bayes ap-

proach to compute non-vacuous generalization bounds for

MNIST and ImageNet, respectively. All these bounds are

posterior in nature – they depend on certain properties of

the trained neural networks. Therefore, one has to finish

training a neural network to know whether it can general-

ize. Comparing with these results, our generalization bound

only depends on training data and can be calculated without

actually training the neural network.

Another line of work assumed the existence of a true model,

and showed that the (regularized) empirical risk minimizer

has good generalization with sample complexity that de-

pends on the true model (Du et al., 2018b; Ma et al., 2018;

Imaizumi & Fukumizu, 2018). These papers ignored the

difficulty of optimization, while we are able to prove gener-

alization of the solution found by gradient descent. Further-

more, our generic generalization bound does not assume the

existence of any true model.

Our paper is closely related to (Allen-Zhu et al., 2018a)

which showed that two-layer overparametrized neural net-

works trained by randomly initialized stochastic gradient

descent can learn a class of infinite-order smooth functions.

In contrast, our generalization bound depends on a data-

dependent complexity measure that can be computed for

any dataset, without assuming any ground-truth model. Fur-

thermore, as a consequence of our generic bound, we also

show that two-layer neural networks can learn a class of

infinite-order smooth functions, with a less strict require-

ment for smoothness. Allen-Zhu et al. (2018a) also studied

the generalization performance of three-layer neural nets.

Lastly, our work is related to kernel methods, especially

recent discoveries of the connection between deep learn-

ing and kernels (Jacot et al., 2018; Chizat & Bach, 2018b;

Daniely et al., 2016; Daniely, 2017). Our analysis utilized

several properties of a related kernel from the ReLU activa-

tion (c.f. Equation (3)).

3. Preliminaries and Overview of Results

Notation. We use bold-faced letters for vectors and matri-

ces. For a matrix A, let Aij be its (i, j)-th entry. We use

k·k2 to denote the Euclidean norm of a vector or the spectral

norm of a matrix, and use k·kF to denote the Frobenius norm

of a matrix. Denote by �min(A) the minimum eigenvalue of

a symmetric matrix A. Let vec (A) be the vectorization of a

matrix A in column-first order. Let I be the identity matrix

and [n] = {1, 2, . . . , n}. Denote by N (µ,Σ) the Gaussian

distribution with mean µ and covariance Σ. Denote by � (·)
the ReLU function � (z) = max{z, 0}. Denote by I{E}
the indicator function for an event E.

3.1. Setting: Two-Layer Neural Network Trained by

Randomly Initialized Gradient Descent

We consider a two-layer ReLU activated neural network

with m neurons in the hidden layer:

fW,a(x) =
1p
m

mX

r=1

ar�
�
w>

r x
�
,

where x 2 R
d is the input, w1, . . . ,wm 2 R

d are weight

vectors in the first layer, a1, . . . , am 2 R are weights

in the second layer. For convenience we denote W =
(w1, . . . ,wm) 2 R

d⇥m and a = (a1, . . . , am)> 2 R
m.

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

We are given n input-label samples S = {(xi, yi)}
n
i=1

drawn i.i.d. from an underlying data distribution D over

R
d ⇥ R. We denote X = (x1, . . . ,xn) 2 R

d⇥n and

y = (y1, . . . , yn)
> 2 R

n. For simplicity, we assume that

for (x, y) sampled from D, we have kxk2 = 1 and |y|  1.

We train the neural network by randomly initialized gradient

descent (GD) on the quadratic loss over data S. In particular,

we first initialize the parameters randomly:

wr(0) ⇠ N (0,2I), ar ⇠ unif ({�1, 1}) , 8r 2 [m],
(1)

where 0 <   1 controls the magnitude of initialization,

and all randomnesses are independent. We then fix the

second layer a and optimize the first layer W through GD

on the following objective function:

Φ(W) =
1

2

nX

i=1

(yi � fW,a(xi))
2
. (2)

The GD update rule can be written as:2

wr(k + 1)�wr(k) = �⌘
@Φ(W(k))

@wr

= � ⌘
arp
m

nX

i=1

(fW(k),a(xi)� yi)I
�
wr(k)

>xi � 0

xi,

where ⌘ > 0 is the learning rate.

3.2. The Gram Matrix from ReLU Kernel

Given {xi}
n
i=1, we define the following Gram matrix H1 2

R
n⇥n as follows:

H1
ij = Ew⇠N (0,I)

⇥
x>
i xjI

�
w>xi � 0,w>xj � 0

 ⇤

=
x>
i xj

�
⇡ � arccos(x>

i xj)
�

2⇡
, 8i, j 2 [n].

(3)

This matrix can be viewed as a Gram matrix from a kernel

associated with the ReLU function, and has been studied

in (Xie et al., 2017; Tsuchida et al., 2017; Du et al., 2018c).

In our setting of training a two-layer ReLU network, Du

et al. (2018c) showed that if H1 is positive definite, GD

converges to 0 training loss if m is sufficiently large:

Theorem 3.1 ((Du et al., 2018c)3). Assume �0 =

�min(H
1) > 0. For � 2 (0, 1), if m = Ω

⇣
n6

�4
0

2�3

⌘
and

⌘ = O
�
�0

n2

�
, then with probability at least 1 � � over the

random initialization (1), we have:

• Φ(W(0)) = O(n/�);

2Since ReLU is not differentiable at 0, we just define “gradient”
using this formula, and this is indeed what is used in practice.

3Du et al. (2018c) only considered the case κ = 1, but it is
straightforward to generalize their result to general κ at the price
of an extra 1/κ2 factor in m.

• Φ(W(k + 1)) 
⇣
1� ⌘�0

2

⌘
Φ(W(k)), 8k � 0.

Our results on optimization and generalization also crucially

depend on this matrix H1.

3.3. Overview of Our Results

Now we give an informal description of our main results.

It assumes that the initialization magnitude  is sufficiently

small and the network width m is sufficiently large (to be

quantified later).

The following theorem gives a precise characterization of

how the objective decreases to 0. It says that this process

is essentially determined by a power method for matrix

I� ⌘H1 applied on the label vector y.

Theorem 3.2 (Informal version of Theorem 4.1). With high

probability we have:

Φ(W(k)) ⇡ 1

2

��(I� ⌘H1)ky
��2
2
, 8k � 0.

As a consequence, we are able to distinguish the conver-

gence rates for different labels y, which can be determined

by the projections of y on the eigenvectors of H1. This

allows us to obtain an answer to Question 1. See Section 4

for details.

Our main result for generalization is the following:

Theorem 3.3 (Informal version of Theorem 5.1). For any

1-Lipschitz loss function, the generalization error of the

two-layer ReLU network found by GD is at most

r
2y>(H1)�1y

n
. (4)

Notice that our generalization bound (4) can be computed

from data {(xi, yi)}
n
i=1, and is completely independent of

the network width m. We observe that this bound can clearly

distinguish true labels and random labels, thus providing an

answer to Question 2. See Section 5 for details.

Finally, using Theorem 3.3, we prove that we can use our

two-layer ReLU network trained by GD to learn a broad

class of functions, including linear functions, two-layer neu-

ral networks with polynomial activation �(z) = z2l or co-

sine activation, etc. See Section 6 for details.

3.4. Additional Notation

We introduce some additional notation that will be used.

Define ui = fW,a(xi), i.e., the network’s prediction on the

i-th input. We also use u = (u1, . . . , un)
> 2 R

n to denote

all n predictions. Then we have Φ(W) = 1
2 ky � uk22 and

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

the gradient of Φ can be written as:

@Φ(W)

@wr
=

1p
m
ar

nX

i=1

(ui � yi)Ir,ixi, 8r 2 [m], (5)

where Ir,i = I
�
w>

r xi � 0

.

We define two matrices Z and H which will play a key role

in our analysis of the GD trajectory:

Z =
1p
m

0
B@

I1,1a1x1 · · · I1,na1xn

...
. . .

...

Im,1amx1 · · · Im,namxn

1
CA 2 R

md⇥n,

and H = Z>Z. Note that

Hij =
x>
i xj

m

mX

r=1

Ir,iIr,j , 8i, j 2 [n].

With this notation we have a more compact form of the

gradient (5):

vec (rΦ(W)) = Z(u� y).

Then the GD update rule is:

vec (W(k + 1)) = vec (W(k))� ⌘Z(k)(u(k)� y), (6)

for k = 0, 1, Throughout the paper, we use k as the itera-

tion number, and also use k to index all variables that depend

on W(k). For example, we have ui(k) = fW(k),a(xi),

Ir,i(k) = I
�
wr(k)

>xi � 0

, etc.

4. Analysis of Convergence Rate

Although Theorem 3.1 already predicts linear convergence

of GD to 0 loss, it only provides an upper bound on the

loss and does not distinguish different types of labels. In

particular, it cannot answer Question 1. In this section we

give a fine-grained analysis of the convergence rate.

Recall the loss function Φ(W) = 1
2 ky � uk22. Thus, it

is equivalent to study how fast the sequence {u(k)}1k=0

converges to y. Key to our analysis is the observation that

when the size of initialization  is small and the network

width m is large, the sequence {u(k)}1k=0 stays close to

another sequence {ũ(k)}1k=0 which has a linear update

rule:

ũ(0) = 0,

ũ(k + 1) = ũ(k)� ⌘H1 (ũ(k)� y) ,
(7)

where H1 is the Gram matrix defined in (3).

Write the eigen-decomposition H1 =
Pn

i=1 �iviv
>
i ,

where v1, . . . ,vn 2 R
n are orthonormal eigenvectors of

H1 and �1, . . . ,�n are corresponding eigenvalues. Our

main theorem in this section is the following:

Theorem 4.1. Suppose �0 = �min(H
1) > 0,  =

O
⇣

✏�p
n

⌘
, m = Ω

⇣
n7

�4
0

2�4✏2

⌘
and ⌘ = O

�
�0

n2

�
. Then with

probability at least 1� � over the random initialization, for

all k = 0, 1, 2, . . . we have:

ky � u(k)k2 =

vuut
nX

i=1

(1� ⌘�i)2k
�
v>
i y
�2

± ✏. (8)

The proof of Theorem 4.1 is given in Appendix C.

In fact, the dominating term

qPn
i=1(1� ⌘�i)2k

�
v>
i y
�2

is exactly equal to ky � ũ(k)k2, which we prove in Sec-

tion 4.1.

In light of (8), it suffices to understand how fast
Pn

i=1(1�
⌘�i)

2k
�
v>
i y
�2

converges to 0 as k grows. Define

⇠i(k) = (1 � ⌘�i)
2k(v>

i y)
2, and notice that each se-

quence {⇠i(k)}
1
k=0 is a geometric sequence which starts

at ⇠i(0) = (v>
i y)

2 and decreases at ratio (1 � ⌘�i)
2. In

other words, we can think of decomposing the label vec-

tor y into its projections onto all eigenvectors vi of H1:

kyk22 =
Pn

i=1(v
>
i y)

2 =
Pn

i=1 ⇠i(0), and the i-th portion

shrinks exponentially at ratio (1� ⌘�i)
2. The larger �i is,

the faster {⇠i(k)}
1
k=0 decreases to 0, so in order to have

faster convergence we would like the projections of y onto

top eigenvectors to be larger. Therefore we obtain the fol-

lowing intuitive rule to compare the convergence rates on

two sets of labels in a qualitative manner (for fixed kyk2):

• For a set of labels y, if they align with the top eigen-

vectors, i.e., (v>
i y)

2 is large for large �i, then gradient

descent converges quickly.

• For a set of labels y, if the projections on eigenvectors

{
�
v>
i y
�2
}ni=1 are uniform, or labels align with eigen-

vectors with respect to small eigenvalues, then gradient

descent converges with a slow rate.

Answer to Question 1. We now use this reasoning to

answer Question 1. In Figure 1(b), we compute the eigen-

values of H1 (blue curve) for the MNIST dataset. The plot

shows the eigenvalues of H1 admit a fast decay. We further

compute the projections {
��v>

i y
��}ni=1 of true labels (red) and

random labels (cyan). We observe that there is a significant

difference between the projections of true labels and random

labels: true labels align well with top eigenvectors whereas

projections of random labels are close to being uniform.

Furthermore, according to our theory, if a set of labels align

with the eigenvector associated with the least eigenvalue,

the convergence rate of gradient descent will be extremely

slow. We construct such labels and in Figure 1(a) we indeed

observe slow convergence. We repeat the same experiments

on CIFAR and have similar observations (Figures 1(c) and

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

(a) Convergence Rate, MNIST. (b) Eigenval & Projections, MNIST. (c) Convergence Rate, CIFAR. (d) Eigenval & Projections, CIFAR.

Figure 1: In Figures 1(a) and 1(c), we compare convergence rates of gradient descent between using true labels, random

labels and the worst case labels (normalized eigenvector of H1 corresponding to �min(H
1). In Figures 1(b) and 1(d), we

plot the eigenvalues of H1 as well as projections of true, random, and worst case labels on different eigenvectors of H1.

The experiments use gradient descent on data from two classes of MNIST or CIFAR. The plots clearly demonstrate that true

labels have much better alignment with top eigenvectors, thus enjoying faster convergence.

1(d)). These empirical findings support our theory on the

convergence rate of gradient descent. See Appendix A for

implementation details.

4.1. Proof Sketch of Theorem 4.1

Now we prove ky � ũ(k)k22 =
Pn

i=1(1� ⌘�i)
2k
�
v>
i y
�2

.

The entire proof of Theorem 4.1 is given in Appendix C,

which relies on the fact that the dynamics of {u(k)}1k=0 is

essentially a perturbed version of (7).

From (7) we have ũ(k+ 1)� y = (I� ⌘H1) (ũ(k)� y),
which implies ũ(k) � y = (I � ⌘H1)k (ũ(0)� y) =
�(I � ⌘H1)ky. Note that (I � ⌘H1)k has eigen-

decomposition (I� ⌘H1)k =
Pn

i=1(1� ⌘�i)
kviv

>
i and

that y can be decomposed as y =
Pn

i=1(v
>
i y)vi. Then

we have ũ(k) � y = �
Pn

i=1(1 � ⌘�i)
k(v>

i y)vi, which

implies kũ(k)� yk22 =
Pn

i=1(1� ⌘�i)
2k(v>

i y)
2.

5. Analysis of Generalization

In this section, we study the generalization ability of the

two-layer neural network fW(k),a trained by GD.

First, in order for optimization to succeed, i.e., zero training

loss is achieved, we need a non-degeneracy assumption on

the data distribution, defined below:

Definition 5.1. A distribution D over Rd ⇥ R is (�0, �, n)-
non-degenerate, if for n i.i.d. samples {(xi, yi)}

n
i=1 from D,

with probability at least 1� � we have �min(H
1) � �0 >

0.

Remark 5.1. Note that as long as no two xi and xj are

parallel to each other, we have �min(H
1) > 0. (See (Du

et al., 2018c)). For most real-world distributions, any two

training inputs are not parallel.

Our main theorem is the following:

Theorem 5.1. Fix a failure probability � 2 (0, 1). Sup-

pose our data S = {(xi, yi)}
n
i=1 are i.i.d. samples from

a (�0, �/3, n)-non-degenerate distribution D, and  =
O
�
�0�
n

�
,m � �2poly

�
n,��1

0 , ��1
�
. Consider any loss

function ` : R ⇥ R ! [0, 1] that is 1-Lipschitz in the first

argument such that `(y, y) = 0. Then with probability at

least 1� � over the random initialization and the training

samples, the two-layer neural network fW(k),a trained by

GD for k � Ω

⇣
1

⌘�0
log n

�

⌘
iterations has population loss

LD(fW(k),a) = E(x,y)⇠D

⇥
`(fW(k),a(x), y)

⇤
bounded as:

LD(fW(k),a) 

s
2y> (H1)

�1
y

n
+O

0
@
s

log n
�0�

n

1
A .

(9)

The proof of Theorem 5.1 is given in Appendix D and we

sketch the proof in Section 5.1.

Note that in Theorem 5.1 there are three sources of possi-

ble failures: (i) failure of satisfying �min(H
1) � �0, (ii)

failure of random initialization, and (iii) failure in the data

sampling procedure (c.f. Theorem B.1). We ensure that all

these failure probabilities are at most �/3 so that the final

failure probability is at most �.

As a corollary of Theorem 5.1, for binary classification

problems (i.e., labels are ±1), we can show that (9) also

bounds the population classification error of the learned

classifier. See Appendix D for the proof.

Corollary 5.2. Under the same assumptions as in The-

orem 5.1 and additionally assuming that y 2 {±1}
for (x, y) ⇠ D, with probability at least 1 � �,

the population classification error L01
D (fW(k),a) =

Pr(x,y)⇠D

⇥
sign

�
fW(k),a(x)

�
6= y
⇤

is bounded as:

L01
D (fW(k),a) 

s
2y> (H1)

�1
y

n
+O

0
@
s

log n
�0�

n

1
A .

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

(a) MNIST Data. (b) CIFAR Data.

Figure 2: Generalization error (`1 loss and classification

error) v.s. our complexity measure when different portions

of random labels are used. We apply GD on data from two

classes of MNIST or CIFAR until convergence. Our com-

plexity measure almost matches the trend of generalization

error as the portion of random labels increases. Note that `1
loss is always an upper bound on the classification error.

Now we discuss our generalization bound. The dominating

term in (9) is: s
2y> (H1)

�1
y

n
. (10)

This can be viewed as a complexity measure of data that

one can use to predict the test accuracy of the learned neural

network. Our result has the following advantages: (i) our

complexity measure (10) can be directly computed given

data {(xi, yi)}
n
i=1, without the need of training a neural

network or assuming a ground-truth model; (ii) our bound

is completely independent of the network width m.

Evaluating our completixy measure (10). To illustrate

that the complexity measure in (10) effectively determines

test error, in Figure 2 we compare this complexity measure

versus the test error with true labels and random labels (and

mixture of true and random labels). Random and true labels

have significantly different complexity measures, and as the

portion of random labels increases, our complexity measure

also increases. See Appendix A for implementation details.

5.1. Proof Sketch of Theorem 5.1

The main ingredients in the proof of Theorem 5.1 are Lem-

mas 5.3 and 5.4. We defer the proofs of these lemmas as

well as the full proof of Theorem 5.1 to Appendix D.

Our proof is based on a careful characterization of the tra-

jectory of {W(k)}1k=0 during GD. In particular, we bound

its distance to initialization as follows:

Lemma 5.3. Suppose m � �2poly
�
n,��1

0 , ��1
�

and

⌘ = O
�
�0

n2

�
. Then with probability at least 1� � over the

random initialization, we have for all k � 0:

• kwr(k)�wr(0)k2 = O
⇣

np
m�0

p
�

⌘
(8r 2 [m]), and

• kW(k)�W(0)kF 
q

y> (H1)
�1

y+O
⇣

n
�0�

⌘
+

poly(n,��1
0 ,��1)

m1/41/2 .

The bound on the movement of each wr was proved in

(Du et al., 2018c). Our main contribution is the bound on

kW(k)�W(0)kF which corresponds to the total move-

ment of all neurons. The main idea is to couple the

trajectory of {W(k)}1k=0 with another simpler trajectoryn
fW(k)

o1

k=0
defined as:

fW(0) =0,

vec
⇣
fW(k + 1)

⌘
= vec

⇣
fW(k)

⌘
(11)

� ⌘Z(0)
⇣
Z(0)>vec

⇣
fW(k)

⌘
� y

⌘
.

We prove

���fW(1)� fW(0)
���
F

=
p

y>H(0)�1y in Sec-

tion 5.2.4 The actually proof of Lemma 5.3 is essentially a

perturbed version of this.

Lemma 5.3 implies that the learned function fW(k),a from

GD is in a restricted class of neural nets whose weights are

close to initialization W(0). The following lemma bounds

the Rademacher complexity of this function class:

Lemma 5.4. Given R > 0, with probability at least 1� �

over the random initialization (W(0),a), simultaneously

for every B > 0, the following function class

F
W(0),a
R,B = {fW,a : kwr �wr(0)k2  R (8r 2 [m]),

kW �W(0)kF  B}

has empirical Rademacher complexity bounded as:

RS

⇣
F

W(0),a
R,B

⌘
=

1

n
Eε2{±1}n

2
4 sup
f2F

W(0),a
R,B

nX

i=1

"if(xi)

3
5

 Bp
2n

1 +

✓
2 log 2

�

m

◆1/4
!

+
2R2

p
m


+R

r
2 log

2

�
.

Finally, combining Lemmas 5.3 and 5.4, we are able to

conclude that the neural network found by GD belongs

to a function class with Rademacher complexity at mostp
y>(H1)�1y/(2n) (plus negligible errors). This gives

us the generalization bound in Theorem 5.1 using the theory

of Rademacher complexity (Appendix B).

5.2. Analysis of the Auxiliary Sequence
n
fW(k)

o1

k=0

Now we give a proof of

���fW(1)� fW(0)
���
F

=
p
y>H(0)�1y as an illustration for the proof of Lemma 5.3.

4Note that we have H(0) ⇡ H
∞ from standard concentration.

See Lemma C.3.

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

Define v(k) = Z(0)>vec
⇣
fW(k)

⌘
2 R

n. Then from (11)

we have v(0) = 0 and v(k+1) = v(k)�⌘H(0)(v(k)�y),
yielding v(k) � y = �(I � ⌘H(0))ky. Plugging this

back to (11) we get vec
⇣
fW(k + 1)

⌘
� vec

⇣
fW(k)

⌘
=

⌘Z(0)(I�⌘H(0))ky. Then taking a sum over k = 0, 1, . . .
we have

vec
⇣
fW(1)

⌘
� vec

⇣
fW(0)

⌘
=

1X

k=0

⌘Z(0)(I� ⌘H(0))ky

= Z(0)H(0)�1y.

The desired result thus follows:���fW(1)� fW(0)
���
2

F
= y>H(0)�1Z(0)>Z(0)H(0)�1y

= y>H(0)�1y.

6. Provable Learning using Two-Layer ReLU

Neural Networks

Theorem 5.1 determines that

q
2y>(H1)�1y

n controls the

generalization error. In this section, we study what functions

can be provably learned in this setting. We assume the data

satisfy yi = g(xi) for some underlying function g : Rd !
R. A simple observation is that if we can prove

y>(H1)�1y  Mg

for some quantity Mg that is independent of the number

of samples n, then Theorem 5.1 implies we can provably

learn the function g on the underlying data distribution using

O
⇣

Mg+log(1/�)
✏2

⌘
samples. The following theorem shows

that this is indeed the case for a broad class of functions.

Theorem 6.1. Suppose we have

yi = g(xi) = ↵
�
β>xi

�p
, 8i 2 [n],

where p = 1 or p = 2l (l 2 N+), β 2 R
d and ↵ 2 R. Then

we have q
y>(H1)�1y  3p |↵| · kβkp2 .

The proof of Theorem 6.1 is given in Appendix E.

Notice that for two label vectors y(1) and y(2), we have

q
(y(1) + y(2))>(H1)�1

�
y(1) + y(2)

�


q

(y(1))>(H1)�1y(1) +
q

(y(2))>(H1)�1y(2).

This implies that the sum of learnable functions is also

learnable. Therefore, the following is a direct corollary of

Theorem 6.1:

Corollary 6.2. Suppose we have

yi = g(xi) =
X

j

↵j

�
β>
j xi

�pj
, 8i 2 [n], (12)

where for each j, pj 2 {1, 2, 4, 6, 8, . . .}, βj 2 R
d and

↵j 2 R. Then we have

q
y>(H1)�1y  3

X

j

pj |↵j | · kβjkpj

2 . (13)

Corollary 6.2 shows that overparameterized two-layer ReLU

network can learn any function of the form (12) for which

(13) is bounded. One can view (12) as two-layer neural

networks with polynomial activation �(z) = zp, where

{βj} are weights in the first layer and {↵j} are the second

layer. Below we give some specific examples.

Example 6.1 (Linear functions). For g(x) = β>x, we

have Mg = O(kβk22).
Example 6.2 (Quadratic functions). For g(x) = x>Ax

where A 2 R
d⇥d is symmetric, we can write down the eigen-

decomposition A =
Pd

j=1 ↵jβjβ
>
j . Then we have g(x) =

Pd
j=1 ↵j(β

>
j x)

2, so Mg = O
⇣Pd

i=1 |↵j |
⌘
= O(kAk⇤).5

This is also the class of two-layer neural networks with

quadratic activation.

Example 6.3 (Cosine activation). Suppose g(x) =
cos(β>x) � 1 for some β 2 R

d. Using Taylor series

we know g(x) =
P1

j=1
(�1)j(β>x)2j

(2j)! . Thus we have

Mg = O
⇣P1

j=1
j

(2j)! kβk
2j
2

⌘
= O (kβk2 · sinh(kβk2)).

Finally, we note that our “smoothness” requirement (13) is

weaker than that in (Allen-Zhu et al., 2018a), as illustrated

in the following example.

Example 6.4 (A not-so-smooth function). Suppose g(x) =
�(β>x), where �(z) = z · arctan(z2) and kβk2 
1. We have g(x) =

P1
j=1

(�1)j�121�2j

2j�1

�
β>x

�2j
since

��β>x
��  1. Thus Mg = O

⇣P1
j=1

j·21�2j

2j�1 kβk2j2
⌘



O
⇣P1

j=1 2
1�2j kβk2j

⌘
= O

⇣
kβk22

⌘
, so our result im-

plies that this function is learnable by 2-layer ReLU nets.

However, Allen-Zhu et al. (2018a)’s generalization theorem

would require
P1

j=1

⇣

C
p

log(1/✏)
⌘2j

21�2j

2j�1 to be bounded,

where C is a large constant and ✏ is the target generalization

error. This is clearly not satisfied.

7. Conclusion

This paper shows how to give a fine-grained analysis of

the optimization trajectory and the generalization ability

of overparameterized two-layer neural networks trained by

gradient descent. We believe that our approach can also be

useful in analyzing overparameterized deep neural networks

and other machine learning models.

5kAk
∗

is the trace-norm of A.

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

Acknowledgments

SA, WH and ZL acknowledge support from NSF, ONR,

Simons Foundation, Schmidt Foundation, Mozilla Research,

Amazon Research, DARPA and SRC. SSD acknowledges

support from AFRL grant FA8750-17-2-0212 and DARPA

D17AP00001. RW acknowledges support from ONR grant

N00014-18-1-2562. Part of the work was done while SSD

and RW were visiting the Simons Institute.

References

Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generaliza-

tion in overparameterized neural networks, going beyond

two layers. arXiv preprint arXiv:1811.04918, 2018a.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for

deep learning via over-parameterization. arXiv preprint

arXiv:1811.03962, 2018b.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger

generalization bounds for deep nets via a compression

approach. arXiv preprint arXiv:1802.05296, 2018.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian

complexities: Risk bounds and structural results. Journal

of Machine Learning Research, 3(Nov):463–482, 2002.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-

normalized margin bounds for neural networks. In Ad-

vances in Neural Information Processing Systems, pp.

6241–6250, 2017a.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.

Nearly-tight VC-dimension and pseudodimension bounds

for piecewise linear neural networks. arXiv preprint

arXiv:1703.02930, 2017b.

Belkin, M., Ma, S., and Mandal, S. To understand deep

learning we need to understand kernel learning. arXiv

preprint arXiv:1802.01396, 2018.

Brutzkus, A. and Globerson, A. Globally optimal gradi-

ent descent for a ConvNet with gaussian inputs. arXiv

preprint arXiv:1702.07966, 2017.

Chen, Y., Jin, C., and Yu, B. Stability and convergence trade-

off of iterative optimization algorithms. arXiv preprint

arXiv:1804.01619, 2018.

Chizat, L. and Bach, F. On the global convergence of gradi-

ent descent for over-parameterized models using optimal

transport. arXiv preprint arXiv:1805.09545, 2018a.

Chizat, L. and Bach, F. A note on lazy training in su-

pervised differentiable programming. arXiv preprint

arXiv:1812.07956, 2018b.

Daniely, A. SGD learns the conjugate kernel class of the

network. arXiv preprint arXiv:1702.08503, 2017.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-

standing of neural networks: The power of initialization

and a dual view on expressivity. In Advances In Neural

Information Processing Systems, pp. 2253–2261, 2016.

Du, S. S. and Lee, J. D. On the power of over-

parametrization in neural networks with quadratic ac-

tivation. arXiv preprint arXiv:1803.01206, 2018.

Du, S. S., Lee, J. D., and Tian, Y. When is a convolutional

filter easy to learn? arXiv preprint arXiv:1709.06129,

2017a.

Du, S. S., Lee, J. D., Tian, Y., Poczos, B., and Singh, A.

Gradient descent learns one-hidden-layer CNN: Don’t

be afraid of spurious local minima. arXiv preprint

arXiv:1712.00779, 2017b.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. Gradient

descent finds global minima of deep neural networks.

arXiv preprint arXiv:1811.03804, 2018a.

Du, S. S., Wang, Y., Zhai, X., Balakrishnan, S., Salakhutdi-

nov, R. R., and Singh, A. How many samples are needed

to estimate a convolutional neural network? In Advances

in Neural Information Processing Systems, pp. 371–381,

2018b.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient

descent provably optimizes over-parameterized neural

networks. arXiv preprint arXiv:1810.02054, 2018c.

Dziugaite, G. K. and Roy, D. M. Computing nonvacuous

generalization bounds for deep (stochastic) neural net-

works with many more parameters than training data.

arXiv preprint arXiv:1703.11008, 2017.

Freeman, C. D. and Bruna, J. Topology and geometry

of half-rectified network optimization. arXiv preprint

arXiv:1611.01540, 2016.

Ge, R., Huang, F., Jin, C., and Yuan, Y. Escaping from

saddle points � online stochastic gradient for tensor de-

composition. In Proceedings of The 28th Conference on

Learning Theory, pp. 797–842, 2015.

Golowich, N., Rakhlin, A., and Shamir, O. Size-independent

sample complexity of neural networks. arXiv preprint

arXiv:1712.06541, 2017.

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Charac-

terizing implicit bias in terms of optimization geometry.

arXiv preprint arXiv:1802.08246, 2018a.

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. Implicit

bias of gradient descent on linear convolutional networks.

arXiv preprint arXiv:1806.00468, 2018b.

Haeffele, B. D. and Vidal, R. Global optimality in tensor

factorization, deep learning, and beyond. arXiv preprint

arXiv:1506.07540, 2015.

Hardt, M. and Ma, T. Identity matters in deep learning.

arXiv preprint arXiv:1611.04231, 2016.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize

better: Stability of stochastic gradient descent. arXiv

preprint arXiv:1509.01240, 2015.

Imaizumi, M. and Fukumizu, K. Deep neural networks

learn non-smooth functions effectively. arXiv preprint

arXiv:1802.04474, 2018.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:

Convergence and generalization in neural networks. arXiv

preprint arXiv:1806.07572, 2018.

Ji, Z. and Telgarsky, M. Gradient descent aligns the layers of

deep linear networks. arXiv preprint arXiv:1810.02032,

2018.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,

M. I. How to escape saddle points efficiently. In Proceed-

ings of the 34th International Conference on Machine

Learning, pp. 1724–1732, 2017.

Kawaguchi, K. Deep learning without poor local minima.

In Advances In Neural Information Processing Systems,

pp. 586–594, 2016.

Konstantinos, P., Davies, M., and Vandergheynst,

P. PAC-Bayesian margin bounds for convolutional

neural networks-technical report. arXiv preprint

arXiv:1801.00171, 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers

of features from tiny images. Technical report, Citeseer,

2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.

Gradient descent only converges to minimizers. In Con-

ference on Learning Theory, pp. 1246–1257, 2016.

Li, X., Lu, J., Wang, Z., Haupt, J., and Zhao, T. On tighter

generalization bound for deep neural networks: CNNs,

ResNets, and beyond. arXiv preprint arXiv:1806.05159,

2018a.

Li, Y. and Liang, Y. Learning overparameterized neural

networks via stochastic gradient descent on structured

data. arXiv preprint arXiv:1808.01204, 2018.

Li, Y. and Yuan, Y. Convergence analysis of two-layer

neural networks with ReLU activation. arXiv preprint

arXiv:1705.09886, 2017.

Li, Y., Ma, T., and Zhang, H. Algorithmic regularization in

over-parameterized matrix sensing and neural networks

with quadratic activations. In Conference On Learning

Theory, pp. 2–47, 2018b.

Ma, C., Wu, L., et al. A priori estimates of the generaliza-

tion error for two-layer neural networks. arXiv preprint

arXiv:1810.06397, 2018.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field

view of the landscape of two-layers neural networks.

arXiv preprint arXiv:1804.06561, 2018.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-

tions of machine learning. MIT Press, 2012.

Mou, W., Wang, L., Zhai, X., and Zheng, K. Generalization

bounds of SGLD for non-convex learning: Two theoreti-

cal viewpoints. arXiv preprint arXiv:1707.05947, 2017.

Neyshabur, B., Tomioka, R., and Srebro, N. Norm-based

capacity control in neural networks. In Conference on

Learning Theory, pp. 1376–1401, 2015.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro,

N. A PAC-Bayesian approach to spectrally-normalized

margin bounds for neural networks. arXiv preprint

arXiv:1707.09564, 2017.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and

Srebro, N. The role of over-parametrization in gener-

alization of neural networks. In International Confer-

ence on Learning Representations, 2019. URL https:

//openreview.net/forum?id=BygfghAcYX.

Nguyen, Q. and Hein, M. The loss surface of deep and wide

neural networks. arXiv preprint arXiv:1704.08045, 2017.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,

DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,

A. Automatic differentiation in pytorch. 2017.

Rotskoff, G. M. and Vanden-Eijnden, E. Neural networks as

interacting particle systems: Asymptotic convexity of the

loss landscape and universal scaling of the approximation

error. arXiv preprint arXiv:1805.00915, 2018.

Safran, I. and Shamir, O. Spurious local minima are com-

mon in two-layer relu neural networks. arXiv preprint

arXiv:1712.08968, 2017.

https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX

Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks

Sirignano, J. and Spiliopoulos, K. Mean field analysis of

neural networks. arXiv preprint arXiv:1805.01053, 2018.

Soltanolkotabi, M. Learning ReLUs via gradient descent.

arXiv preprint arXiv:1705.04591, 2017.

Soltanolkotabi, M., Javanmard, A., and Lee, J. D. Theo-

retical insights into the optimization landscape of over-

parameterized shallow neural networks. IEEE Transac-

tions on Information Theory, 2018.

Soudry, D. and Carmon, Y. No bad local minima: Data in-

dependent training error guarantees for multilayer neural

networks. arXiv preprint arXiv:1605.08361, 2016.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and

Srebro, N. The implicit bias of gradient descent on sep-

arable data. Journal of Machine Learning Research, 19

(70), 2018.

Tian, Y. An analytical formula of population gradient

for two-layered ReLU network and its applications in

convergence and critical point analysis. arXiv preprint

arXiv:1703.00560, 2017.

Tsuchida, R., Roosta-Khorasani, F., and Gallagher, M. In-

variance of weight distributions in rectified mlps. arXiv

preprint arXiv:1711.09090, 2017.

Venturi, L., Bandeira, A., and Bruna, J. Neural networks

with finite intrinsic dimension have no spurious valleys.

arXiv preprint arXiv:1802.06384, 2018.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. On the margin

theory of feedforward neural networks. arXiv preprint

arXiv:1810.05369, 2018.

Xie, B., Liang, Y., and Song, L. Diverse neural network

learns true target functions. In Artificial Intelligence and

Statistics, pp. 1216–1224, 2017.

Yun, C., Sra, S., and Jadbabaie, A. A critical view

of global optimality in deep learning. arXiv preprint

arXiv:1802.03487, 2018.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.

Understanding deep learning requires rethinking general-

ization. In Proceedings of the International Conference

on Learning Representations (ICLR), 2017, 2017.

Zhang, X., Yu, Y., Wang, L., and Gu, Q. Learning one-

hidden-layer relu networks via gradient descent. arXiv

preprint arXiv:1806.07808, 2018.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,

I. S. Recovery guarantees for one-hidden-layer neural

networks. arXiv preprint arXiv:1706.03175, 2017.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Or-

banz, P. Non-vacuous generalization bounds at the ima-

genet scale: a PAC-bayesian compression approach. In

International Conference on Learning Representations,

2019. URL https://openreview.net/forum?

id=BJgqqsAct7.

Zhou, Y. and Liang, Y. Critical points of neural networks:

Analytical forms and landscape properties. arXiv preprint

arXiv:1710.11205, 2017.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gra-

dient descent optimizes over-parameterized deep ReLU

networks. arXiv preprint arXiv:1811.08888, 2018.

https://openreview.net/forum?id=BJgqqsAct7
https://openreview.net/forum?id=BJgqqsAct7

