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ABSTRACT

The management and querying of workflow provenance data
underpins a collection of activities, including the analysis of
workflow results, and the debugging of workflows or services.
Such activities require efficient evaluation of lineage queries
over potentially complex and voluminous provenance logs.
Näive implementations of lineage queries navigate prove-
nance logs by joining tables that represent the flow of data
between connected processors invoked from workflows. In
this paper we provide an approach to provenance query-
ing that: (i) avoids joins over provenance logs by using in-
formation about the workflow definition to inform the con-
struction of queries that directly target relevant lineage re-
sults; (ii) provides fine grained provenance querying, even
for workflows that create and consume collections; and (iii)
scales effectively to address complex workflows, workflows
with large intermediate data sets, and queries over multiple
workflows.

1. INTRODUCTION
In many areas of science, the use of partially or fully au-

tomated workflows has been shown to accellerate scientific
investigation, often leading to interesting new results that
are only possible thanks to large-scale, automated data re-
trieval and analysis [4, 15]. However, the very ability of
these workflows to automatically process large volumes of
scientific data, combined with the complexity of the work-
flow structure, makes it increasingly difficult for scientists to
fully understand the results of workflow executions. This,
in turn, limits the usefulness of the process itself, as only
experimental results that can be shown to be correct can be
used to support scientific claims.

The provenance of a workflow [30] is a trace of all the
data transformations that occur during one or more of its
executions, or runs, and can be used to conduct post mortem
analysis of the workflow results. Provenance traces can be
used to answer queries on the lineage of a data product,
that is, the input data and the sequences of transformations
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that led to that product during a run. Such queries are a
stepping stone towards helping users understand and jus-
tify complex workflow results. Typical questions that users
would like to pose to provenance traces include those pro-
posed for the first three provenance challenges1. For exam-
ple: a workflow loads data from files into a database, and
then performs some processing on the data. It turns out
that the database contains unexpected values. Provenance
questions include, among others, whether the appropriate
checks were performed by the workflow, what results they
produced, and which input files were used for the loading.
Traces have also been shown to be useful for other types
of analysis, for example to determine whether parts of a
workflow can be reused [29], to debug errors in the results,
and to compare the effect of different versions of the same
workflow [12].

Efficiently storing provenance graphs and answering lin-
eage queries can be challenging, however. As workflows
are specified using graphs, provenance traces are themselves
naturally modelled as graphs, in which nodes represent in-
stances of a processor invocation, and arcs represent data
dependencies between processor invocations. Queries on
the traces therefore naturally involve recursive traversals of
the graph. Furthermore, since a single provenance trace
keeps track of all intermediate data products of a work-
flow run, and traces accumulate over many runs, provenance
databases can be large [13]. The problem of automatically
capturing provenance traces, and efficiently storing them,
has been addressed in recent research [14, 26, 11]. In partic-
ular, Heines and Alonso [17] propose an encoding of prove-
nance graphs that is both space- and query-efficient, at the
cost of an initial, offline graph transformation.

The work presented in this paper stems from two obser-
vations. Firstly, in many practical cases, users are only in-
terested in selected elements out of the entire available lin-
eage data, which is often noisy because it captures the many
format and other trivial transformations undertaken by the
workflow. Indeed, recent research [6] in this area investi-
gated ways to support abstractions and modularisation of
complex workflows, in order to hide some of the uninterest-
ing details of complex workflows from the users.

Secondly, the use of collections of values, for example tree-
structured documents or lists, is increasingly widely used
to structure complex relationships among related pieces of
information that are processed together by the workflow.
Indeed, the use of collections as a first-class data type in sci-

1The provenance challenge wiki is at http://twiki.ipaw.
info/bin/view/Challenge/ (last accessed June 17, 2009).
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entific workflows has been advocated as a way to better meet
the needs of non-expert users to model e-science data [25].
Several scientific workflow systems, notably Kepler [22, 24]
and Taverna [27, 31, 18], incorporate primitives for the ma-
nipulation of collections.

The following, real-life example illustrates both these
points. Consider the Taverna workflow in Fig. 12. This
bioinformatics workflow takes one or more user-supplied col-
lections of gene IDs, and uses as input the KEGG database3

to retrieve the list of all metabolic pathways in which all of
the genes in each of the lists are involved. It also produces
a list of pathways in which all the genes in the input are
involved. In this use case, provenance can be used to an-
swer the natural question, “why is this particular pathway
in the output?”. In other words: “which of the input lists of
genes is involved in this pathway”? In this case, thanks to
the disciplined use of collections, the lineage query returns
a fine-grained answer, namely “the pathways in sub-list i

in paths_per_gene depend only on the genes in the corre-
sponding sub-list i in list_of_geneIDList, while all path-
ways in commonPathways depend on all input genes”. This
information is particularly useful to users of the workflow
other than the original designers, as it provides them with
insight into the processing logic, that would otherwise be
difficult to obtain. It also enables different views over the
results to be constructed: the workflow output can be com-
plemented by a query over the provenance log.

To answer this type of questions, the provenance man-
agement system must be able to keep track of data de-
pendencies at the finest level available. Although desir-
able, however, fine-grained data dependencies are not al-
ways available (quite simply, processors that transform lists
into new lists destroy the granularity of provenance), unless
we assume that processors expose some of their internal be-
haviour. While others have studied the consequences of this
assumption [1], in our work we assume we have no knowl-
edge regarding the semantics of the data transformations
performed by specific processors, which we treat equally as
black boxes [8].

1.1 Scope and contributions
In the previous example, we have assumed that the user

is only interested in selecting the inputs that are relevant
for one specific output, rather than in looking at all the in-
termediate results computed by the workflow. We refer to
these lineage queries as focused. In this paper we address
the problem of answering focused and fine-grained lineage
queries on large traces efficiently and in a scalable way. The
specific contributions of this paper are: (i) a data model for
fine-grained provenance that takes into account collection-
based workflow data processing; (ii) a functional formula-
tion of data-driven, collection-oriented workflow computa-
tion, which reflects the semantics of the Taverna workflow
model; (iii) an efficient and scalable algorithm for answer-
ing focused lineage queries, which exploits the semantics of
the computational model (previous point) to replace the re-
peated and costly traversals of the provenance trace with a
less expensive traversal of the workflow specification graph.
The algorithm also exploits the fine granularity of the prove-
nance trace, when available as in the example above, to pro-

2The workflow is available from the myExperiment website,
please see http://www.myexperiment.org/workflows/778.
3KEGG is available at http://www.genome.jp/kegg/.

Figure 1: Example Taverna workflow for bioinfor-
matics

vide precise answers without sacrificing query performance.
Finally, (iv) we offer an experimental evaluation of the ap-
proach, by comparing it with a baseline graph traversal al-
gorithm, and we assess its benefits in a variety of practical
settings. The main consequence of our approach is that our
query response times scale with the size of the workflow spec-
ification graph, rather than with the size of the provenance
traces. Furthermore, this result extends to queries that span
multiple workflow runs, i.e., multiple traces.

Note that we are making two claims here, the first of fine
granularity of provenance information, and the second of ef-
ficiency. As we show later in the paper, they are tightly con-
nected, as the latter depends on the semantics of the work-
flow model that gives us the former. We note explicitly, how-
ever, that in this paper we are not concerned with the opti-
mization of the space required to store a query trace. Also,
we are going to focus on the common case of structural lin-
eage queries, i.e., queries that predicate on attributes found
in the workflow graph. This means that a query that ex-
plicitly predicates on the presence of a specific value on the
trace, for example, can still be answered using a standard
graph traversal technique, but would not benefit from our
approach.

The algorithm presented in this paper is fully implemented
and is soon to be released as part of the provenance man-
agement component of the Taverna workflow system4. The
idea of using the workflow specification as an index into the
provenance trace, however, can be generalized to all those
systems, for example the Kepler system mentioned earlier,
for which intensional rules that describe inverse transfor-
mations through a processor, i.e., from the outputs to the
corresponding inputs, can be formulated.

1.2 Related work
The problem of tracing fine-grained data lineage has been

studied in the past. Woodruff and Stonebraker [33] noted
that, for many scientific applications, the space cost of stor-

4Taverna is freely available at http://www.taverna.org.
uk/.
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ing the metadata required to trace lineage at a fine grain,
for example in imaging applications, is often prohibitive in
practice. As a remedy, they propose a general model for
the intensional, but approximate inversion of the processing
steps, where a weakly invertible function f has an associated
weak inverse f−w which maps the output of f to the input
of f , but is not always accurate. They apply the model to
the problem of tracing granular lineage of images processed
by workflows. Albeit applied to generic collections values,
our algorithm is based on a similar fundamental intuition,
i.e., of inverting processor transformations using intensional
rules. However, in our case the inverse is accurate.

The importance of tracking lineage over collection val-
ues has been pointed out in the context of phylogenetics,
prompting an extension to the Kepler workflow system,
called pPOD [10]. The extension makes use of the COMAD
model described by Bowers et al. [9] which, among other fea-
tures, supports nested data collections. Although the data
model for collection-oriented provenance is similar to the one
we present in this paper, provenance queries are computed
by recursion directly on the model (they are implemented
in Prolog), in a way similar to what we call here the näıve
approach, and they are aimed more at demonstrating the
feasibility of the approach than its scalability to very large
traces. Similar query models based on recursive queries on
the lineage graph are used in Trio [5] and GridDB [21].

Anand et al. [1] have recently proposed an efficient storage
model for dependencies that include nested data collections.
The main connection with our work is the reliance of the
model on some form of intensional knowledge to achieve ef-
ficiency, in their case on explicit declarations of element-level
dependencies between input and output collections. This is
where the similarity ends, however. Indeed, the paper in-
vestigates the effect of removing the black box assumption,
which we retain, regarding the fine-grained transformations
performed by workflow processors.

Our notion of focused lineage queries is related to, but
takes a more simplified approach than, the Zoom model
proposed by Biton et al. [6, 7]. The Zoom*UserView sys-
tem allows the specification of additional levels of abstrac-
tion over raw provenance, known as User views, in order
to reduce the complexity of provenance information. These
are user-selected aggregations of adjacent processors in the
graph, which form a new virtual workflow. In contrast, in
our model we rely on the workflow nesting model offered na-
tively by Taverna, and to this we add the option for users to
focus their queries by selecting a subset of relevant proces-
sors. We regard all of [1], [6], and [7] as complementary to
our work, in the sense that our approach can be combined
with additional, explicit annotations and further abstraction
models to deliver precise and selective lineage data to users.

The distinction between multiple layers, of views, over
a workflow definition has been proposed in other contexts,
namely by Scheidegger et al. [28] in the context of the Vis-
Trail workflow manager, where a distinction is made between
the execution, specification, and evolution of a workflow def-
inition, as well as by Barga et al. [3]. In this paper we make
use of a similar distinction to define specific conditions that
the workflow model must meet in order to exploit the speci-
fication layer for answering provenance queries. In addition,
we show how these conditions are met by the Taverna model,
and show experimental evidence of the corresponding sav-
ings in query execution times.

The scheme for encoding provenance graphs, proposed by
Heinis et al. [17] and already mentioned, is interesting in
that it avoids recursive queries over the dependency graph,
at the cost of an initial graph transformation process. While
the encoding scheme is indeed applicable to our dependency
graphs, i.e., as a way of compressing the traces, we observe
that in our approach recursive queries are only applied to
the static workflow graph, which is much smaller than any
realistic dependency graph.

Finally, two recently proposed, more general types of
query languages are relevant in our context. Firstly, the
GraphQL [16] language uses graph patterns as their way of
expressing general graph queries. Although pattern match-
ing over graphs reduces to graph isomorphism, a known NP-
complete problem, [16] show promising performance results
for an optimized implementation of graph pattern matching.
We plan to test GraphQL to our lineage query problem in the
future. Secondly, [23] shows good query processing times for
QLP, a query language for provenance graphs that includes
transitive closure operators. The language implementation,
however, is specific to the provenance architecture described
in [1] and thus not readily applicable to our data model.

1.3 Paper organisation
We begin in Section 2 by introducing the definition of

our reference Taverna workflow model, the notation for fine-
grained provenance traces, illustrated with the help of the
example of Fig. 1, and our definition of lineage queries in this
setting. In Section 3 we present our original formulation of
the Taverna list processing model, and use it to describe our
main result on efficient lineage query processing. Our exper-
imental evaluation is in Section 4, followed by conclusions
(Sec. 5).

2. DATAFLOW AND LINEAGE MODELS
In this section we introduce the models that underpin

our approach: the Taverna dataflow computation model, a
model for provenance traces, and a lineage query model. In
particular, provenance traces can be described in terms of a
provenance graph, along the lines of previous work [5, 17],
which we extend to capture transformations that involve in-
dividual elements within nested data collections. Lineage
queries are defined in terms of traversals of the provenance
graph.

2.1 Dataflow model
An informal description of the computational model for

Taverna dataflows is sufficient for the purposes of this paper.
A complete and formal description of the Taverna semantics
can be found in [31] and in [18].

A dataflow specification is a directed graph D = (N, E)
where a node 〈P, IP , OP 〉 ∈ N represents a processor P ,
i.e., a software component, for instance a service, with a set
of ordered input ports IP and output ports OP . To avoid
ambiguities, we will denote the ports X ∈ IP ∪OP as P : X.
Note that a processor can also be a dataflow itself, i.e., the
model accounts for a hierarchy of nested dataflows.

Every port X has a declared type, denoted type(X),
which is either one of a set S of basic types, or a list
list(τ) where τ ∈ S or τ = list(τ ′) for some type τ ′.
Thus, a value can be an arbitrarily nested list, for example
type([[“foo”,“bar”], [“red”,“fox”]]) = list(list(string)). To re-
fer to an element within a nested list v, we adopt the stan-
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dard element accessor notation for k-dimensional arrays,
v[p1 . . . pk]. A binding 〈P : X[p1 . . . pk], v〉 denotes element
v[p1 . . . pk] of a value v that is bound to port P : X, for
instance 〈P : X[1, 2], [[“foo”,“bar”], [“red”,“fox”]]〉 = “bar”.
We will denote [p1, . . . , pk] by p for conciseness, for example
p = [1, 2] in the example above.

An arc (P : Y → P ′ : X) ∈ E specifies a data dependency
from P : Y to P ′ : X. Note that not all of the inputs IP of P

need to be the destination of an arc – indeed it is common for
processors to have optional inputs. Ports with no incoming
arcs are bound to default values that are specified during
workflow design5.

Workflow execution follows a pure dataflow model [19]:
a processor P can execute (is fireable) as soon as all of its
input ports that are destinations of an arc are bound to val-
ues. When it executes, a processor consumes its inputs and
computes new bindings for the output ports. When some
of the inputs are lists, in some cases its elements are con-
sumed by different instances of the same processor. This
behaviour is described informally in the following example,
and formalized in Section 3. We assume that a data depen-
dency (P : Y → P ′ : X) ∈ E specifies that P ′ : X is bound
to value v as soon as the binding 〈P : Y, v〉 is established.
This makes for a data-driven computational model, whereby
data is transferred along the arcs as soon as it is produced
by the originating processor, and fireable processors execute
as soon as possible6.

2.2 Example
We use a simple but concrete example to illustrate the

use of lists in the workflow model. Consider again the
Taverna bioinformatics workflow of Fig. 1. More specifi-
cally, the workflow maps a nested input list of the form
v = [[20816, 26416], [328788]], containing gene IDs, into
corresponding lists of metabolic pathways, retrieved from
the KEGG database. Specifically, consider an input value
v as above, bound to input port list_of_geneIDList.
On output port commonPathways, the workflow produces a
list of pathways, for instance [path:04010 MAPK signaling,
path:04370 VEGF signaling], such that each of the input
genes is known to participate in each of those pathways.
Additionally, the workflow takes each input sub-list sepa-
rately, and retrieves the set of pathways that involve genes
in that list, independently from the others. Thus, out-
put port paths_per_gene consists of two sub-lists, of the
form [[path:04210 Apoptosis, path:04010 MAPK signal-

ing,. . . ], [path:04010 MAPK signaling, path:04620 Toll-

like receptor,. . . ]], where the first sub-list corresponds to
the set of genes in the first input sub-list, and the second to
the genes in the second input sub-list.

The workflow illustrates a simple case of collection-
handling capabilities in Taverna. Indeed, sup-
pose that, in the left branch of the workflow,
type(get_pathways_by_genes : genes_id_list) =
list(string), while the input provided by the user is

5If no defaults are specified, the services that represent the
processors may produce unpredictable results if they rely on
the values of those ports.
6In particular, the computation is triggered by binding input
ports defined on the top-most workflow, which act as roots
of the workflow graph, to user-supplied values. The compu-
tation terminates when the values reach the sink nodes in
the graph.

of type list(list(string)). Taverna handles this mismatch
between the depth of the declared port type and the type of
the input value bound to the port, by invoking a separate
instance of get_pathways_by_genes on each element of
the input list independently, namely on [ mmu:20816,
mmu:26416] and on [mmu:328788] (note that each of these
two inputs is now of the expected input type, list(string)).
Each of the two executions generates one value, a list of
pathway IDs, on output port return. The next processor,
getpathwayDescriptions, retrieves a human-readable
description of the pathway given a list of pathway IDs.
Again, two instances of the processor are executed, one for
each list value bound to input port string, and coming
from the return output port through an arc. The overall
effect is that the final output paths_per_gene consists of a
list of lists, as shown in Fig. 1.

At the same time, the right branch of the workflow in-
cludes an initial step where the two input lists are flattened
into one, by removing the nesting. The resulting list is then
used as input to the same sequence of services as in the left
branch. The result is a single output flat list, on port com-

monPathways, containing the pathways that involve all the
genes in each of the initial input lists.

2.3 Provenance trace
We describe the provenance trace associated with an ex-

ecution using two types of relations. The first accounts for
the data transformations computed by processors, and is of
the form:

〈P : X1[p1], v1〉 . . . 〈P : Xn[pn], vn〉 →

〈P : Y1[q1], w1〉 . . . 〈P : Ym[qm], wm〉
(1)

Following our earlier convention, we write 〈P : Xi[pj], v〉 to
denote that v is the value at position pj within the collection
bound to port Xi or P . The empty index [] denotes the
entire port Xi. An example of partial and fine-grained trace
with data transformation is shown in Fig. 2.

〈get_pathways_by_genes : genes_id_list[1], v1〉

→ 〈get_pathways_by_genes : return[1], v′

1〉

〈get_pathways_by_genes : genes_id_list[2], v2〉

→ 〈get_pathways_by_genes : return[2], v′

2〉

〈getPathwayDescriptions : string[1], v′

1〉

→ 〈getPathwayDescriptions : return[1], w1〉

〈getPathwayDescriptions : string[2], v′

2〉

→ 〈getPathwayDescriptions : return[2], w2〉

. . .

〈getPathwayDescriptions : return[1], w1〉

→ 〈workflow : paths_per_gene[1], z1〉

〈getPathwayDescriptions : return[2], w2〉

→ 〈workflow : paths_per_gene[2], z2〉

Figure 2: Partial provenance trace for the workflow
of Fig. 1

As a shorthand for (1) we may write InBP → OutBP .
where InBP and OutBP denote the sets of input and output
bindings, respectively.

The second type of record accounts for the transfer of
elements of a value v along an arc with source P1 : Y and
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sink P2 : X:

〈P : X[p], v〉 → 〈P ′ : Y [p′], v〉 (2)

We refer to (1) as the xform relations, and to (2) as the xfer
relations. These relations describe the observable events that
occur during the workflow execution, namely the computa-
tion of each instance of each processor (as we have seen in
the previous example, multiple instances can be activated
on elements of an input collection), and the propagation of
values along the arcs. We assume, realistically, that proces-
sors are black boxes and thus that their internal behaviour
cannot be observed. The trace TED

of one execution E (a
“run”) of dataflow D, is the collection of all observable xform
and xfer events during the execution. Note that the obser-
vation of provenance events does not require any knowledge
of the specific computational model that generates the data
transformations, and in particular of the rules that govern
multiple processor invocations when lists are present on the
input ports. Consider, for example, processor P in Fig. 3.
The computational model specifies that multiple instances
of P be executed, each on a set of input bindings of the
form 〈P : X1[p1], a〉, 〈P : X2[p2], c〉, 〈P : X3[p3], b〉 for some
p1,p2, p3, each resulting in a binding for Y: 〈P : Y[q], y〉
for some q. This is due to the depth mismatches that
occur on the input ports, namely type(Q:X) = string,
but type(v) = list(string), type(P:X1) = string while
type(a) = list(string), and type(P:X3) = string, but
type(b) = list(string).

The provenance trace, however, can be collected without
any knowledge of the model that defines the relationship
amongst the pi and the q. Indeed, such a relationship is
not always trivial; as an example, here is a trace that can
be generated from this workflow, using the Taverna model
for implicit iterations over lists:

(1) 〈Q : X[1], v〉 → 〈Q : Y[1], a〉

. . .

〈Q : X[n], v〉 → 〈Q : Y[n], a〉

(2) 〈R : X[], w〉 → 〈R : Y[], b〉

〈P : X1[1], a〉, 〈P : X2[], c〉, 〈R : X3[1], b〉 → 〈R : Y[1, 1], y〉

. . .

〈P : X1[1], a〉, 〈P : X2[], c〉, 〈R : X3[m], b〉 → 〈R : Y[1, m], y〉

. . .

〈P : X1[n], a〉, 〈P : X2[], c〉, 〈R : X3[m], b〉 → 〈R : Y[n, m], y〉

The trace events for Q in the figure show that each element
of output list Q:Y is obtained by one instance of Q on an
input element (with the same index). The events for R in-
dicate that b is computed using the entire input value w in
R, i.e., R takes a simple value and produces a list. Finally,
the trace for P includes |a| · |b| = n ·m events, one for each
instance of P. Each such instance consumes one element of a,
one element of b, and the entire list c. The iteration model
of Taverna that is responsible for this choice of indices is
explained in the next section. We refer to events like (1)
above as fine-grained, as we can use them to trace the lin-
eage of individual elements wihtin lists. This is a desirable
property of traces. For example, in our earlier workflow of
Fig. 1, lin(〈workflow : paths_per_gene[1], v〉) = [26416],
i.e., a fine-grained trace can be used to map one of the out-
put sets of pathways back to precisely the list of genes that is
involved in that set of pathways, allowing the user to recon-

Figure 3: Abstract workflow, to illustrate traces
with multiple processor instances

struct a data relationship that is not explicitly maintained
by the workflow.

Such a fine level of granularity is not always available,
however. Processor R in the execution sketched in Fig. 3,
maps w to list c. Even if w were a list, event (2) in the
trace above indicates that each element of b depends on the
entire w, rather than on any of its elements. This situation is
typical of “many-to-many” processors that map entire lists
to new lists, or of “many-to-one” processors that compute
aggregate values from lists, and is an intrinsic limitation on
the granularity of the provenance mode, reflecting the fact
that the processes called from the workflow may act on or
read complete collections.

2.4 Lineage Queries
It is convenient to view a trace TED

as a directed acyclic
graph, denoted the provenance graph of TED

, in which the
nodes are all the bindings bi that appear in the trace, and
there is an arc from bi to bj if and only if (i) TED

contains
an xform event InBP → OutBP such that bi ∈ InBP and
bj ∈ OutBP , or (ii) TED

contains an xfer event bi → bj .
In this section we define the lineage of a data binding 〈P :

Y [p], v〉 that appears in a trace, as a function that returns
the set of bindings found by traversing the provenance graph,
upwards from the node that represents the binding.

Taking these considerations into account, we define a
lineage query by mutual induction on the base cases of
xformand xfer , as follows:

Definition 1. (Lineage query)

1. xform case.
Let InBP → OutBP be an xform event, and let 〈P :
Y [p], v〉 ∈ OutBP for some index p within value v

(recall that p = [] if v is atomic).

lin(〈P : Y [p], v〉,P) =

(

InP

S

b∈InBP
lin(b) if P ∈ P

S

b∈InBP
lin(b) otherwise

2. xfer case.
Let 〈P : Y [p], v〉 → 〈P ′ : X[p′], v〉 be a xfer event for
some indeces . Then p and p′.

lin(〈P ′ : X[p′], v〉) = lin(〈P : Y [p], v〉)
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Each of the two cases accounts for one step of a recur-
sive traversal of the provenance graph, starting from value
v. Case (1) accounts for the traversal of one processor, from
its output ports to its input ports. The lineage of an output
value v at position p of port Y of P is computed recursively
as the lineage of the values on P ’s input ports, and it only
includes the values InP if P ∈ P, the set of “interesting”pro-
cessors. Case (2) accounts for the traversal of an arc in the
provenance graph. Thus, definition (1) reads as a straight-
forward algorithm for computing the lineage of a binding
b = 〈P : Y [p], v〉, by traversing the provenance graph start-
ing at node b and collecting the bindings that involve any
P ∈ P along each of the paths upwards from b. The answer
to the query is potentially fine-grained, because the input
binding includes a specific index p, but only to the extent
that all the arcs in a path are derived from fine-grained trace
events.

For example, with reference to the trace shown earlier,
the computation unfolds into an alternation of xfer and
xform steps, as follows:

lin(〈P : Y[h, l], y〉, {Q, R}) =

lin(〈P : X1[h], a〉) ∪ lin(〈P : X2[], c〉) ∪ lin(〈P : X3[l], b〉) =

lin(〈Q : Y[h], a〉) ∪ lin(〈R : Y[l], b〉) =

{〈Q : X[h], v〉, 〈R : X[], w〉}

It may be argued that, in some cases, fine-grained prove-
nance is not always desirable, for example when the prod-
ucts of a nested workflow is rather viewed as a black box
than in full detail. We can easily achieve this by asking a
query that is focused only on the nested workflow’s inputs,
and should coarse granularity be desired, one can specify an
empty index into the port value for the query input, as this
will compute the lineage of the entire value, regardless of its
internal list structure. For example:

lin(〈P : Y[], y〉, {Q, R}) =

lin(〈P : X1[], a〉) ∪ lin(〈P : X2[], c〉) ∪ lin(〈P : X3[], b〉) =

lin(〈Q : Y[], a〉) ∪ lin(〈R : Y[], b〉) =

{〈Q : X[], v〉, 〈R : X[], w〉}

3. EFFICIENT FOCUSED QUERIES
It is easy to see that the algorithm just described performs

a traversal of the provenance graph, which involves all nodes
in each of the paths from a given node to the source nodes
of the graph. Each step of such traversal involves retrieving
one event from the provenance trace. This simple approach
is potentially wasteful, however, because a full traversal is re-
quired even when the query is focused, that is, all the nodes
along a path must be visited, although some of them contain
information of no interest to the user. In the algorithm de-
scribed in this section, we avoid visiting trace events that are
not part of P, and replace the traversal of the provenance
graph with the traversal of the much smaller workflow spec-
ification graph. Indeed, note that in our simple algorithm
we have effectively used the xform events to invert the data
transformations computed by each P : given a tuple of out-
puts of P , the algorithm retrieves the corresponding inputs
by finding a matching xform event in the provenance trace.
In particular, when an implicit iteration over the input lists
of P takes place, this matching cuts through all the avail-
able xform events for the transformation computed by P ,
thus retaining the fine grain of provenance.

Our observation is that we can save on the number of
xform events to be visited, by replacing this extensional
matching with an intensional rule that describes all possible
inverse transformations in terms of the iteration semantics,
and independently of the values bound to the ports. Then,
we repeatedly apply the rule in combination with a traversal
of the workflow specification graph, and only lookup the ac-
tual xform events when we need to retrieve the values, i.e.,
when we visit a processor P ∈ P. More specifically, the rule
maps each index q, pointing to a value that appears in one
output binding for P , to a set of indices p1 . . .pl, one for
each of the l input ports of P .

Elaborating on this approach requires (i) a formal descrip-
tion of the rules that define the semantics of iterations over
collections, and (ii) using such rules to define the inverse
transformation. In this section we show how the Taverna
computational model satisfies both requirements, and as a
consequence, the workflow specification graph can indeed
be used as an index into the provenance graph, to answer
lineage queries of the form given in Def.1. We present the
necessary details on the iteration model in Sections 3.1 and
3.2, followed by our inversion rule in Sec. 3.3.

It should be clear that this intensional approach is most
beneficial when applied to focused queries, for several rea-
sons. Firstly, for a focused query lin(〈P : Y [p], v〉,P), not
all paths in the graph connect the binding 〈P : Y [p], v〉 to
processors in P. Therefore, some of the accesses to the ex-
plicit trace, required by the simple algorithm in Section 2,
would be wasted, as they explore regions of the graph where
no interesting processors are eventually found. Secondly,
since the workflow graph is generally much smaller than any
provenance graph, it is feasible to cache the nodes visited
in one query to speed up their access in subsequent queries,
as all queries on a provenance trace share the same work-
flow structure. And finally, since the same workflow graph
specification is also shared by all the traces that represent
different runs of that workflow, one single traversal is suf-
ficient to answer lineage queries that involve multiple runs.
Such queries are common for a batch of runs that “sweep”
the value range of one or more input parameters, a standard
technique in scientific applications. In this case, a query such
as “report the lineage of binding b at processor P , across a
set of executions” only requires one traversal of the work-
flow specification graph, followed by one access to the trace
of each run, for each interesting processor. The results pre-
sented in the experimental section support these intuitions.

3.1 Computing actual port list depths
As mentioned in Section 2, each input or output port X

has a type type(X). Since the model assumes that all ele-
ments in a list value are at the same depth, we can addi-
tionally associate a declared depth dd(X) to X, regardless
of its value. The values bound to X, however, need not be
lists of depth exactly equal to dd(X). Indeed, in several of
our examples so far we have observed a depth mismatch, for
instance in Fig. 1, port string of getPathwayDescriptions
expects a string value but instead receives a list of strings. In
Taverna, the difference δ(X, v) = depth(v)−dd(X) between
the declared depth of X and the actual depth depth(v) of a
value v bound to X, determines how input lists are iterated
upon, by assigning its elements to one instance of P at a
time.

While δ(X, v) appears to depend on the value v, in reality
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it can be computed statically on the workflow graph speci-
fication, providing that the following assumptions hold:

1. Each processor assigns values of the declared type to
its output variables. Thus, dd(P : Y ) = 1 implies that
Y is bound to a list of depth 1, each time P is invoked.
The iteration structure wraps these partial results by
building additional nesting levels, as described in the
next subsection;

2. Top-level dataflow input variables are always assigned
values of the declared type.

With these quite natural assumptions we conclude that, for
any 〈P, IP , OP 〉 in the workflow, δ(X, v) is independent of v

for all X ∈ IP ∪OP , so we simply denote the mismatch with
δs(X) (where the ’s’ is for “static”). This is an important
property, that we can use to pre-compute all mismatches
on the workflow graph, by propagating the declared depths
and the depth mismatches along each node of the graph,
starting from the initial inputs, and regardless of the actual
values that are bound at runtime. At each node, two rules
are applied:

1. For each input variable P : X ∈ IP , depth(P : X) is
set to dd(P : X) if P is a root processor in the graph,
and is set to depth(P ′ : Y ) when there is an arc from
P ′ : Y to P : X:

depth(P : X) =

(

dd(P : X) if pred(P ) = ∅,

depth(P ′ : Y ) if (P ′ : Y → P : X) ∈ E

for all X ∈ IP , where pred(P ), the predecessors of P ,
is the set of processors with outgoing links into some
of P ’s input variables.

2. For each output variable P : Y ∈ OP :

depth(P : Y ) = dd(Y ) +
X

Xi∈IP

δs(Xi)

Note that rule (2) requires the depths for all input ports of
P to have been computed, prior to computing the depths of
P ’s output ports. A simple way to ensure that this condi-
tion holds is to sort the processors according to their data
dependencies. To achieve this, we perform a topological sort
of the graph prior to propagating the depths. Having the
nodes sorted also ensures the correct propagation order in
the case, which may occur in practice, where some of the in-
put variables are not connected through links from upstream
processors (and thus they will not be bound to any values at
all). The pseudo-code for this algorithm is shown in Alg. 1.
The algorithm is executed only once for every new workflow
definition graph for which a trace is generated.

3.2 List iteration model
We now use the depth mismatches just described, to for-

malize the iteration behaviour of Taverna. Iterations over
collections have been used in the past, for instance as part
of a general model of process networks that operate on
streams [20], and they can be given a clear semantics by
using higher-order functions (i.e., map). Our definition of
iteration semantics, presented in Sec. 3.3 uses a similar no-
tation but is original; the formulation given here differs from
earlier proposals (e.g. [31, 18]), which we found to be less
amenable for describing the approach presented in this pa-
per.

Algorithm 1 compute PropagateDepths(D), i.e., set
depth(P : X) for all variables

D′ = (N ′, E′) = toposort(D)
for all 〈P, IP , OP 〉 ∈ N ′ do

tot d = 0
for all X ∈ IP do

if P ′ : Y → P : X ∈ E then

depth(X) = depth(Y )
else

nlX = dd(X)
end if

tot d = tot d + depth(X)
end for

for all Y ∈ OP do

depth(Y ) = dd(Y ) + tot d

end for

end for

return D′

Using a functional notation, given a tuple 〈a1 . . . an〉 of
input values, each bound to a corresponding input port of
P , we write (eval P 〈a1 . . . an〉) to denote the evaluation of
P on the input tuple. Let us first consider the simple case of
a single input port X bound to value v, and let l = δs(X) be
the statically determined level mismatch on the port. The
evaluation of P on v is defined recursively, using l as an
additional index, as follows:

(evall P v) =

(

(P v) if l = 0

(map (evall−1 P ) v) if l > 0
(3)

For example, let v = [[a, b]], and δs(X) = 2, i.e., dd(X) = 0,
and let (P x) = “x isNice′′. We have

(eval2 P [[a, b]]) = (map (eval1 P ) [[a, b]]) =

[(eval1 P [a, b])] = (map (eval0 P ) [a, b]) =

[[(eval0 P a), (eval0 P b)]] = [[(P a), (P b)]] =

[[“a isNice
′′
, “b isNice

′′]]

When P has multiple inputs, different depths mismatches
may occur on the different ports. For the sake of illustration,
consider the simplest and most common case of iteration
over multiple inputs. Let processor P have input ports X1,
X2 bound to lists a and b, respectively. When δs(X1) =
δs(X2) = 1, Taverna first computes the cross product a ×
b = [[〈ai, bj〉]|bj ← b]|ai ← a], and then applies P to each
element of a× b:

y = (eval2 P 〈a, b〉) = (map (eval1 P ) a× b) (4)

Note that, unlike the ordinary cartesian product, the cross
product of two lists is a nested list of depth 2, the value used
in the initial application of eval. The result y is itself a list
of depth 2, where y[i, j] = (P 〈ai, bj〉).

We generalize the binary cross product operator to ac-
count for varying levels of mismatches on the different ports,
as follows:

Definition 2. Generalized cross-product

(v, d1)⊗(w, d2) =

8

>

>

<

>

>

:

[[(vi, wj)|wj ← w]|vi ← v] if d1 > 0, d2 > 0

[(vi, w)|vi ← v] if d1 > 0, d2 = 0

[(v, wj)|wj ← w] if d1 = 0, d2 > 0

(v, w) if d1 = 0, d2 = 0
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where we have used a standard list comprehension syntax
to denote iterators over lists. The two parameters d1 and
d2, associated to each of the inputs, determine whether the
corresponding values v and w should be iterated upon. Their
values reflect port depth mismatches, i.e., although both
v and w can be lists, iterators are only applied if either
d1 > 0 or d2 > 0. Note also that each of the vi and wj

can potentially be an entire sub-list, rather than an atomic
value. Thus, the top case in the definition corresponds to
the binary cross product, in which iteration is applied to
both operands, while the next three are used when only
one, or none, of the iterators apply. The parameters will be
instantiated to reflect the depth mismatch that arises when
the operands v and w are bound to ports X1 and X2. ⊗
is naturally extended to n operands, written ⊗i:1...n(vi, di)
(the binary ⊗ is left associative). Note also that we have
assumed di ≥ 0. When di < 0, no iteration occurs at all.
Instead, the mismatch is dealt with by nesting a value v

within di new lists, creating a di-deep singleton.
Using ⊗, we can now define evall in the general case of

for n inputs:

Definition 3. evall

(evall P 〈(v1, d1), . . . , (vn, dn)〉)

=

(

(P 〈v1, . . . , vn〉) if l = 0

(map (evall−1 P )⊗i:1...n 〈vi, di〉) if l > 0

where initially l =
P

i:1...n
δs(Xi), the sum of the statically

determined mismatches, and di = δ(Xi).
As an example, consider processor P in Fig. 3, where

δs(X1) = 1, δs(X2) = 0, and δs(X3) = 1. Note that c is
not involved in the iteration. Our definition takes account
of this, as follows:

(eval2 P 〈a, c, b〉) = (map (eval1 P) 〈a, 1〉 ⊗ 〈c, 0〉 ⊗ 〈b, 1〉)

where:

〈a, 1〉 ⊗ 〈c, 0〉 ⊗ 〈b, 1〉) = 〈[(a1, c) . . . (an, c)], 1〉 ⊗ 〈b, 1〉 =

[[(a1, c, b1) . . . (a1, c, bm)], . . . , [(an, c, b1) . . . (an, c, bm)]]

Therefore,

(eval2 P 〈a, c, b〉) = [(eval1 P [(a1, c, b1) . . . (a1, c, bm)]), . . . ,

(eval1 P [(an, c, b1) . . . (an, c, bm)]]

and for each of the sub-lists:

(eval1 P [(a1, c, b1), . . . , (a1, c, bm)]) =

[(eval0 P (a1, c, b1)), . . . , (eval0 P (a1, c, bm))] =

[y11, . . . , y1m]

In summary:

(evall P 〈a, c, b〉) = [[y11 . . . y1m] . . . [yn1 . . . ynm]]

as expected7.

7Taverna also offers one additional list combinator operator,
namely a “zip” or dot product between lists of equal length,
as well as constructors that allow these operators to be com-
bined into complex expressions. The general formulation of
the model, however, is beyond the scope of the paper, and
would not add to the exposition of our results.

3.3 The index projection rule
Let 〈P : X1[p1], v1〉 . . . 〈P : Xn[pn], vn〉 → 〈P : Y [q], w〉

be an xform event in the provenance trace, resulting from
one elementary execution of P , as part of a computation
defined in Def. 3. Using the semantics of the eval func-
tion, the following proposition states that the relationship
between the output index q and the input indices p1 . . .pn is
independent of the values v1 . . . vn, w, and furthermore, that
the pi can be computed from q using the statically computed
mismatches δs(Xi).

Proposition 1. (Index projection)
Let

〈P : X1[p1], v1〉 . . . 〈P : Xn[pn], vn〉 → 〈P : Y [q], w〉

be an xform event in the provenance trace. The following
hold:

1. For each input index pi: |pi| = δs(Xi), and

2. q = p1 � · · ·�pn, i.e., q is the concatenation of all indices
pi, each of length equal to the depth mismatch on the
corresponding input port.

The proof, omitted for brevity, is by induction on the total
level of mismatches

P

i:1...n
δs(Xi) (this is also the length of

q). Intuitively, the argument exploits the recursive definition
of evall, by showing that, when the two properties above
hold for the case evalk−1, then they also hold for evalk.

As a simple example of application, the proposition guar-
antees that [i, j] = [i] � [] � [j] in the previous example, for
each valid index [i, j] of the output y — regardless of the
values a, c, b, and y. Thus, Prop. 1 confirms the intuition
that an xform relation can be inverted simply by apportion-
ing fragments of the output index to each input port, in
order, according to the depth mismatch found on that port.
More precisely, let 〈P : Y [p], v〉 be an output binding, and
let Xi ∈ IP be an input port at position i within IP . Note
that Prop. 1 implies that we can ignore v while computing
lin(〈P : Y [p], v〉,P). Let us define the projection ΠXi

(p) of
p onto Xi to be the fragment p(i : i + δs(Xi)− 1) of p that
begins at position i and ends at position i + δs(Xi) − 1, if
δs(Xi) > 0, and the empty index otherwise:

Definition 4. Index projection

ΠXi
(p) =

(

p(i : i + δs(Xi)− 1) if δs(Xi) > 0

[] otherwise
(5)

Using Def. (4), lin(〈P : Y [q], v〉,P) is computed by
traversing the workflow graph, as follows. Suppose Y ∈ OP .
The index projection rule is applied to q to compute a vector
of indices (p1, . . .pn), one for each Xi ∈ IP . Each of the pi

is then propagated along all the arcs that have Xi as their
sink node, reaching a new processor node where the rule
is applied again, until the entire graph has been traversed.
The pseudo-code for this algorithm is shown as Alg. 2. In
the code, Q(P, Xi,pi) denotes the query on the provenance
trace, needed to retrieve the value associated to a binding
when P ∈ P.

3.4 Computing lineage across runs
So far we have only considered lineage queries within the

scope of one single trace, i.e., for a single workflow run. We
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Algorithm 2 compute IndexProj(P, Y,p,P). Returns a
set of variable bindings.

result = ∅
if Y ∈ OP then

for all Xi ∈ IP do

pi = ΠXi
(p)

if P ∈ P then

result = {Q(P, Xi,pi)}
end if

result = result ∪ IndexProj(P, Xi,pi,P)
end for

else

for all arc P ′ : Y ′ → P : Y ∈ E do

result = result ∪ IndexProj(P ′, Y ′,p,P)
end for

end if

return result

conclude the section with a note on lineage queries that in-
volve more than one trace, a common requirement in prove-
nance analysis. This generalised form of quey is useful for
comparing data products across multiple runs of the same
workflow, as well as across runs of different versions of a
workflow. An analysis of provenance based on differenc-
ing data dependency graphs is beyond the scope of this pa-
per, and research in this area has only recently been under-
taken [2]. Queries across multiple runs of the same workflow,
however, can be easily described as part of our framework,
by extending the trace query Q(P, Xi,pi) in Alg. 2 to in-
clude a set T of traces which define the scope of the query:
Q(P, Xi,pi, T ). In terms of practical implications, broaden-
ing the scope of the query to multiple runs does not signifi-
cantly increase its complexity, as trace IDs are key attributes
in our relational implementation of the traces database.

4. EXPERIMENTAL EVALUATION
We begin our evaluation by presenting an assessment of

the expected response times for typical lineage queries, per-
formed on two real-life Taverna scientific dataflows. The
selected workflows are meant to cover both ends of the spec-
trum of sizes for the workflow collection found in the myEx-
periment repository8. Specifically, we have used the work-
flow of Fig. 1, denoted genes2Kegg (GK) in the following,
as an example of a typical short-paths design, and a longer
workflow, denoted protein discovery (PD) that looks for
protein terms in a set of article abstracts from PubMed9.
For each of the two workflows, we have measured the query
response time for both a fully focused and fully unfocused
query, and for queries that range over a set of runs of each
of the two workflows. The resulting chart, shown in Fig. 4
introduces and justifies the design of our synthetic exper-
imental testbed, presented in the next section. The total
query response time can be broken down into two compo-
nents: (s1) traverse the workflow graph in order to compute
the indexes for the input ports of each P ′ ∈ P, generating
|P| queries in time t1, and (s2) execute each of the queries
in time t2. As the chart shows, in the case of a one-run
query, for GK and PD the totals t1 + t2 are small and quite
close to one another, as both workflows are quite small. As
we expand the query to range over multiple runs, however,

8http://www.myexperiment.org/.
9The BIoAid Protein Discovery workflow is available at
http://www.myexperiment.org/workflows/74.
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Figure 4: Query response time for fo-
cused/unfocused queries ranging over multiple
runs

the IndexProj algorithm shares the initial traversal step
(s1) amongst all the runs, and thus (s1) only needs to be
performed once, while (s2) is performed once for each run
(simply using the trace ID as a parameter). Thus, the times
for the unfocused query only increase proportionally to t2.
As t2 is typically around 6ms for our implementation, for
both focused-PD and for GK, these scale well over multiple
runs, while unfocused-PD takes 10 times longer to execute
(s2), making multi-run queries proportionally slower.

In the rest of this section we compare the response times
of the IndexProj algorithm with that of the baseline al-
gorithm described informally in Section 2.4, denoted here
NI (for näıve implementation). NI computes lin(〈P :
X[p], v〉,P) using an extensional representation of the prove-
nance graph, implemented on a relational DBMS. Our com-
parison is based upon the observation that, as NI involves
a full traversal of the provenance graph, it is equivalent
to executing (s1) followed by (s2) for the fully unfocused
case. This confirms the intuition that IndexProj never does
worse than NI, and it only approaches NI on fully unfocused
queries. It should also be clear that on multi-run queries NI,
which does not rely upon the workflow graph specification,
requires one full traversal of the provenance graph for each
run, making its total response time proportional to t1 + t2,
rather than to t2 only.

The lineage query architecture described in this paper
is fully implemented, in Java, as a plugin component of
the Taverna 2 dataflow engine. Taverna 2, an open source
project released under the LPGL license, is designed to run
on desktop environments, such as users’ laptops, with mini-
mal third part software requirements and a small footprint.
The configuration used in our experiments reflects this spirit:
we have used a laptop installation (Intel CPU, 4GB RAM,
MacOS 10.5), and a local mySQL 5.1 database.

4.1 Synthetic experimental testbed
The experiment described above helped us characterise

the set of parameters that affect query performance, namely:

1. Total number of nodes in the graph. The over-
all graph size only affects the performance of the path
generation step, denoted (s1) above. As we noted ear-
lier, this step is common to all approaches, and can
therefore be factored out in the comparison. Never-
theless, for completeness in Sec. 4.2 we report on t1
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times for various graph sizes.

2. Length l of the path involved in the query. This
determines the number of queries in NI. Query times
for IndexProj, however, are constant in the length of
the path.

3. Number d of elements in the input lists. involved
in the computation: large lists result in large traces,
even for small graphs.

Using a Taverna workflow generator, we have designed
an experimental testbed that allows us to explore this pa-
rameter space better than a more extensive collection of
real workflows would have allowed. The synthetic dataflows
share the common structure shown in Fig. 5, consisting of
(i) the top processor ListGen, which generates a 1-deep list
of d elements; (ii) two linear chains of processors, each of
length l; and (iii) a final processor 2TO1FINAL where the
lists resulting from the linear chains are joined using a bi-
nary cross product. Fig. 5 shows a simple generated dataflow
with l = 2. The choice of this family of workflows is moti-
vated by the observation that the main factor that affects
query response time is the length of the path to be tra-
versed. While the ”breadth” of a workflow does indeed af-
fect the graph search phase of query processing, it does so
equally for all approaches, and so we simply “factor it out”
of our experiment space. Also, as we are not interested in
workflow execution times, the family of workflows that we
can experiment with by varying l and d is sufficient to de-
scribe common configurations that can be encountered in
practice (including the total number of nodes in the graph,
which affects t1), at the same time providing a systematic
approach to lineage query analysis. While this workflow pat-
tern can be extended to multiple input processors and thus
n-ary products, this family is adequate for our objective to
simulate the propagation of lists through long paths, and
the proliferation of nodes in lists through a product (at the
end of the workflow).

Parameter l is set at dataflow generation time, while d is
controlled by input port ListSize. In all of these dataflows,
copies of the initial list simply propagates through each of
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the linear chains, until the final cross product is performed,
causing lineage events to be generated along the way and
the xform and xfer tables to be populated. As all processors
are one-to-one, lineage precision is maintained throughout,
making it possible to test fine-grained lineage queries of the
form lin(〈2TO1_FINAL : Y [p], v〉, {LISTGEN_1}) while at the
same time requiring a full traversal of each of the paths.

We have used the generator to explore a region of test pa-
rameters defined by 10 ≤ l ≤ 150, 10 ≤ d ≤ 75, which covers
most real-life dataflow configurations that we have encoun-
tered in practice, e.g. in the myExperiment repository cited
earlier.

4.2 Experimental results
The first set of results concern queries on single runs and

on the synthetic workflows. Although the query scope is
a single run, we have first determined whether the num-
ber of runs stored in the database, i.e., the sheer size
of the database, affected query performance. Predictably,
database size is not a dominant factor on single-run queries:
since all of the queries on the traces involve the use of in-
dexes, with none requiring full table scans, we did not expect
this to be a dominant factor in practice. This is confirmed
experimentally: as shown in the chart of Fig. 6 for the partic-
ular configuration l = 75, d = 50, the response times show a
modest 20% increase, compared to a 10-fold increase in the
number or records (from about 15,000 to 150,000) in the
data dependency relations, obtained by accumulating traces
for 10 dataflow runs. The results for other configurations,
not shown for simplicity, are similar10.

Having established the limited impact of the number of
runs, we have chosen to compare the two algorithms by using
a trace DB that only contains data for a single run. Table 1
reports the DB sizes in terms of number of records in the
trace table, for our entire configuration space. The table can
be used as a guideline for actual database sizes that reflect
real operational settings where traces for any number of runs
are stored.

We can further reduce the experimental space by assessing
the impact of the list sizes on lineage query response times,
i.e., by varying d for various configuration of l. Once again
the results, plotted in Fig. 7, show a modest increase in
response times for each choice of d and for each of the three

10All results, here and in the following, refer to the best re-
sponse times over a sequence of five identical queries for all
strategies, i.e., assuming the best case of a warm cache for
all runs.
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l

d 10 28 50 75 100 150

10 626 1346 2226 3226 4226 6226
25 2306 4106 6306 8806 11306 16306
50 7106 11000 15106 20106 25106 35106
75 14406 15479 26406 33906 41406 49561

Table 1: Number of trace database records for one
run and one test dataflow
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Figure 7: Lineage query response times for NI for
varying input list size

values of l shown. This is due primarily to the increased
size of the indexes (we use the standard indexing facilities
offered by mySQL), and agree with the intuition that only
d affects the size of the trace, but not the complexity of the
query, as in the previous experiment.

Finally, we report our results for times t1 and t2 within
our configuration space, for focused lineage queries of the
form lin(〈2TO1_FINAL : Y [p], v〉, {LISTGEN_1}) for some spe-
cific path p. The results for t1 are shown in Fig. 8, where
we have extended our configuration space to l = 200 for
completeness. For dataflow graph with up to 100 nodes,
pre-processing times are below 1 sec.
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Figure 8: Pre-processing times vs. l

Regarding t2, Fig. 9 shows the lineage query response
times for our three strategies, for two extreme configura-
tions with d = 10 and d = 150, respectively. As anticipated,
the results look very similar, as we have established that
response time is largely unaffected by d. As expected, Ind-

exProj is constantly low, as t2 reduces to one simple query
on the trace when the queries are focused.

As discussed earlier, the performance of IndexProj for
unfocused queries approaches that of NI. The plot in Fig. 10
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Figure 9: Lineage query response time across strate-
gies as a function of l, for d = 10 and d = 150

shows the IndexProj response times for a target set of pro-
cessors P that contains up to nearly 50% of the total.
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Figure 10: Lineage query response for IndexProj on
partially unfocused queries

5. CONCLUSIONS
We have presented a lineage model for the Taverna

collection-oriented workflow system, and an efficient algo-
rithm for computing fine-grained and focused lineage queries
over large provenance traces. The algorithm exploits the im-
plicit iteration semantics of dataflow processors when it is
available, and otherwise provides coarse-grained query an-
swers. The efficiency is achieved by operating mostly on the
structure of the dataflow graph, as opposed to the data de-
pendency graph as is the case in most other approaches, by
replacing the explicit traversal of the latter with the eval-
uation of intensional rules on the former. This results in
manageable pre-processing times and a lineage query time
that is essentially constant in the length of the provenance
path, as well as in the size of the collections. As a result,
the approach scales well on both those dimensions. The
algorithm is well-suited to be combined with complemen-
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tary approaches, such as the Zoom system for user-defined
abstraction views on the workflow [6], and the explicit pro-
cessor annotation model proposed in [1].

We have provided an implementation based on a standard
RDBMS, with no need for auxiliary data structures, and
have presented performance results over a large dataflow
configuration space. The implementation is part of the
provenance management component of the Taverna work-
flow system.
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