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Fine-grained Attributed Graph Clustering

Zhao Kang1,2 Zhanyu Liu1 Shirui Pan3 Ling Tian1,2,*

Abstract
Graph clustering is a prevalent issue associated with social
networks, data mining, and machine learning; its objective
is to detect communities or groups in networks. Inspired
by the recent success of deep learning (DL), new DL-based
graph clustering methods have achieved promising results.
However, a deep neural network involves a large number of
training parameters. Moreover, existing methods typically
select the similarity metric by an ad hoc approach, which
considerably affects the resulting output. In this study, we
propose a principled graph learning perspective, fine-grained
attributed graph clustering. Based on a shallow approach,
the proposed method sufficiently exploits both node features
and structure information by benefiting from graph convo-
lution. Consequently, a fine-grained graph encoded higher-
order relations is automatically learned. Comprehensive ex-
periments on benchmark datasets demonstrate the superior-
ity of the proposed method over state-of-the-art algorithms,
including several DL methods.

1 Introduction
Attributed graphs, which comprise a set of nodes associated
with individual feature attributes and edges characterizing
pairwise relationships, are natural and efficient representa-
tions for non-Euclidean data [22]. They are widely used in
daily lives and academic studies, such as citation, social, and
brain neural networks. Clustering techniques are commonly
used to discover communities or groups in graphs. Never-
theless, some classical clustering methods, such as k-means,
may be ineffective because they only handle the data fea-
tures. Moreover, some graph-based clustering methods have
been proposed to leverage structural information [29, 35].
Typically, they first learn a compact graph embedding, then
implement classic clustering methods upon it. However, they
frequently result in suboptimal performance because they ig-
nore informative node features.

To acquire the best of both worlds, some recent at-
tributed graph clustering methods focus on simultaneously
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capturing the structural relationship and exploiting the node
content information. Refer to [6] for a complete review of
various techniques, including nonnegative matrix factoriza-
tion (NMF) [38], random walks [41], and k-medoids [1].
Among them, deep learning (DL)-based methods, such as
graph autoencoder (GAE), variational GAE (VGAE) [15],
marginalized GAE (MGAE) [34], graph convolutional net-
work (GCN) [14], adversarially regularized graph autoen-
coder (ARGA) and variational graph autoencoder (ARVGA)
[28], produce state-of-the-art results. DL models have a large
number of training parameters and are expensive to train.
Recently, Zhang et al. [44] propose adaptive graph con-
volution (AGC), a graph convolution approach that exploits
global cluster structure, performing impressively.

Various graph clustering methods generally build the
graph for spectral clustering according to hand-crafted rules
or some formula, such as the cosine function, inner product,
and Euclidean distance [36]. However, analytically describ-
ing a similarity measure is challenging [24]. Heuristic graphs
might fail to completely reflect the underlying relations and
result in suboptimal solutions in spectral clustering [19, 30].
Learning the graph from data is a principle way.

This study aims to automate the construction of the sim-
ilarity graph matrix. Unlike other applications, we explore
both node feature and structural information for attributed
graph clustering. Therefore, we learn the similarity graph
based on convolution features. Furthermore, this graph is
required to best approximate the initial high-order relation-
ships. To differentiate from other graphs, we refer to the sim-
ilarity graph as fine-grained graph. Consequently, the fine-
grained graph produces high-quality clustering.

The main contributions of this study are as follows:

• Unlike existing graph clustering approaches, a fine-
grained graph is automatically learned from the data in
our proposed model, which results in better clustering
performance.

• Both feature and structural information are explicitly
explored in the proposed model; their combination
is beneficial because they complement each other in
generating excellent clustering results.

• Experiments on the de facto benchmark datasets
demonstrate that the proposed method’s performances
are superior to those of the existing methods, includ-
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ing the recent DL-based approaches. In particular, our
method also achieves promising performance on over-
lapping communities detection task.

2 Related Work
Attributed graph clustering considers both node features and
structural information [2]. Conventional NMF and spectral
clustering have been applied to both node features and graph
to achieve consistent clustering [38, 18]. Some generative
models have been used to describe their interactions [9, 3].
Popular GCN has also been used to integrate them [14].
For example, a two-layer GCN is used to perform node
embedding and an autoencoder (AE) or variational AE is
used to reconstruct the adjacency matrix in GAE and VGAE
[15]. A three-layer GCN is used to learn node representation,
and a marginalized denoising AE is used to reconstruct
the node features in MGAE [34]. ARGA and ARVGA
[28] apply GAE and VGAE, respectively, to learn node
representations and then use generative adversarial networks
to match the node representations to a prior distribution.
These methods can only capture the neighbors of each node
two or three hops away and may fail to capture the global
cluster structure of large graphs.

Recently, an attention network is introduced to char-
acterize the importance of neighbors to a node, and an
inner product decoder reconstructs the graph structure in
deep attentional embedding graph clustering (DAEGC) [33].
GMM-VGAE [10] combines variational graph auto-encoder
with Gaussian mixture models to effectively discover the in-
herent complex data distributions. AGC [44] captures the
global cluster structure by exploiting high-order graph con-
volution. In particular, instead of stacking several layers
in GCN, AGC first uses a k-order graph convolution that
acts as a low-pass graph filter on node features to achieve
smooth embeddings and then implements spectral clustering
on graph built by the inner product of the learned features.
DAEGC and AGC use the common approach of constructing
the similarity graph, which might be inadequate for reflect-
ing the underlying “true” relations among nodes. As demon-
strated in spectral clustering, an adequate similarity graph
can significantly enhance the clustering performance. To ad-
dress the above issue, automatically learning similarity from
data is the essential approach.

For clustering, a more challenging situation is that there
are overlappings between clusters, which means that some
nodes belong to several categories [40]. For instance, a par-
ticular user could connect to her family and her coworkers in
a social network. In the literature, the organization of nodes
in different groups is often considered by community detec-
tion methods. To solve this problem, some attempts have
been made, e.g., BigCLAM [42], CESNA [43], Circles [25],
SVI [8], vGraph and its variant vGraph+ [31]. In particular,
vGraph learns the cluster membership and node representa-

tion collaboratively based on an effective variational infer-
ence algorithm. It achieves the state-of-the-art performance
on both community detection and node representation learn-
ing tasks. Nevertheless, the reported accuracy still has much
room for improvement. Thus, characterizing communities
with overlapping nodes is still an open challenge [7].

3 Proposed Method
Given a nondirected graph G = (V, E,X), where
V = {v1, v2, · · · , vn} represents n nodes, X =
{x1, · · · , xn}> ∈ Rn×d is the corresponding feature matrix
of the nodes, and E is a set of edges denoted by an adja-
cency matrix Ã = {ãij} ∈ Rn×n. ãij = 1 if (vi, vj) ∈ E
and ãij = 0 otherwise. A = D−

1
2 (Ã + I)D−

1
2 is a sym-

metrically normalized adjacency matrix, and D is the degree
matrix, in which a renormalization technique is applied by
adding a self-loop to each node [34]. I represents the iden-
tity matrix with a proper size. From another perspective, A
denotes the transition probability matrix of a single-step ran-
dom walk. The objective of graph clustering is to divide the
n nodes of a graph G into m disjoint groups.

Each column of X can be treated as a graph signal.
A graph signal is smooth if nearby nodes have similar
feature representations. A smooth graph signal contains
more low-frequency basis signals than high-frequency ones
[26]; therefore, a low-pass filter can be applied to achieve a
smooth graph signal, which is called graph convolution. A
filtered graph signal will facilitate the downstream clustering
task because nearby nodes are more likely to lie in the same
group. Specifically, the smoothed signals X̄ can be achieved
by solving the following optimization problem [26]:

(3.1) min
X̄
‖X̄ −X‖2F +

1

2
Tr
(
X̄>LX̄

)
,

where L = I −A is the normalized graph Laplacian. X̄ can
be obtained by taking the derivative of Eq. (1) w.r.t. X̄ and
setting it to zero, which yields

(3.2) X̄ = (I +
1

2
L)−1X.

To get rid of matrix inversion, we approximate X̄ by its
first-order Taylor series expansion, i.e., X̄ = (I − L/2)X .
Generally, k-th order graph filtering can be written as

(3.3) X̄ = (I − 1

2
L)kX,

where k is a positive integer. Graph filtering can filter
out undesirable high-frequency noise while preserving the
graph geometric features. Afterwards, we can input the
inner product of X̄ to the spectral clustering algorithm for
obtaining the final partitions.

However, this simple approach might underuse the rich
structural information because it only uses the fixed raw
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graph A, which may not reflect the “true” graph topology,
and A might be sparse and noisy owing to the inevitable
measurement error. In addition, AGC only learns a feature
representation, based on which the simple inner product
graph can lead to overcomplicated (with large number of
edges) or misleading graphs [23, 13] and may be unable to
truthfully reveal the global structure of a given data.

To address these issues, we propose learning a fine-
grained graph from data. Recently, the self-expressiveness
property of data has shown great success in similarity learn-
ing [27]. Mathematically, it can be formulated as follows:

(3.4) min
S
‖X> −X>S‖2F + αΘ(S),

where α > 0 is a trade-off parameter and > represents the
transpose operator. The first term is the self-reconstruction
error, and the coefficient matrix S ∈ Rn×n measures
similarities between samples. Θ is a regularization function,
which includes the well-known nuclear norm, L1 norm
[12], and Frobenius norm [21]. Instead of using raw node
features, we use the filtered X̄ to benefit from the smoothed
representation.

Even by using Eq. (3.4) to obtain graph S, the raw affin-
ity matrix A is only implicitly used when computing X̄ . It
is desired to exploit this structural information explicitly. In
addition, in various real applications, data can display struc-
tures beyond simply being low-rank or sparse. Considering
these, we ensure that our learned S considers the original re-
lationships and propose a fine-grained attributed graph clus-
tering (FGC) model as follows:

(3.5) min
S
‖X̄> − X̄>S‖2F + α‖S − f(A)‖2F ,

where f(A) is a function of A, which characterizes complex
structure relationships. The second term measures the de-
viation of learned graph S from the original structure. By
penalizing the second term, we ensure that S retains some
topology information in the original graph. Therefore, the
derived graph S could reconstruct the k-order graph convo-
lution X̄ and approximate high-order proximity f(A).

In practice, networks are always sparse, i.e., O(E) =
O(V). Therefore, the original A, which represents the first-
order proximity, is usually very sparse and insufficient to
completely model the pairwise relations between nodes. In
this study, we explore high-order neighbors in a network,
which is important in practice [32, 20]. For example,
the second-order proximity between node vi and vj can
be characterized by the probability that a two-step random
walk from node vi to vj . Intuitively, the probability will
be significant if node vi and vj share several common
neighbors. From this perspective, p-order proximity is the
probability that a random walk starts from vi and reaches vj

with p steps [5]. It can be computed as follows:

(3.6) Ap = A ·A · · ·A︸ ︷︷ ︸
p

.

To incorporate high-order proximity in f(A), we define
it as follows:

(3.7) f(A) = A+A2 + · · ·+AP .

Therefore, f(A) encodes the information regarding p-order
proximity, where p = 1, 2, · · · , P . Consequently, the
fine-grained graph, S, will benefit from the complementary
information provided by different orders of A.

Compared with existing works in the literature, FGC
has several distinct properties. First, a novel regularizer,
i.e., the second term in Eq.(3.5) is designed to flexiblely ex-
plore the different orders of topology information in the orig-
inal graph. Second, a graph learning strategy is introduced
to tackle the graph clustering problem because the original
graph could be noisy or incomplete and is not directly ap-
plicable. Third, the proposed objective function (3.5) simul-
taneously exploits node features and graph structure infor-
mation, enhancing the performance. Fourth, the proposed
model can be easily extended to solve subspace learning, vi-
sual analysis [17] tasks, etc. In addition, we want highlight
that the adopted graph filtering is basically a simplified ver-
sion of GCN [39]. Compared to GCN-based approaches, the
proposed method is simple and naturally interpretable. In
particular, we demonstrate a strategy for traditional shallow
models to benefit from deep representation learning.

3.1 Optimization Eq. (3.5) can be easily solved by setting
its first-order derivative w.r.t. S to zero, which yields

(3.8) S = (X̄X̄> + αI)−1(αf(A) + X̄X̄>).

When the number of nodes is very large, the calculation
of the inverse of the entire large matrix (X̄X̄> + αI) ∈
Rn×n has prohibitively high computational complexity with
O(n3), making it infeasible for large-scale data. This prob-
lem can be alleviated using the Woodbury matrix identity:

(A+UBV >)−1 = A−1−A−1U(B−1+V >A−1U)−1V >A−1.

Then, Eq. (3.8) can be reformulated as follows:

S =
[ 1

α
I − 1

α2
X̄(I +

1

α
X̄>X̄)−1X̄>

]
(αf(A) + X̄X̄>).

= f(A)+
X̄X̄>

α
−
X̄(I+ 1

αX̄
>X̄)−1X̄>(αf(A)+X̄X̄>)

α2
.

(3.9)

The complexity is reduced from O(n3) to O(dn2) when
n > d. Moreover, the cost for calculating X̄ is O(n3).
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Algorithm 1 FGC
Require: Node set V , adjacency matrix A, feature matrix X , order of filter k, trade-

off parameter α, polynomial order of proximity matrix P , cluster numberm.
Ensure: m clusters.
1: L = I − A
2: X̄ = (I − 1

2L)kX

3: f(A) =
∑P

i=1 A
i

4: Compute S using (3.8) or (3.9)
5: C = 1

2 (|S|+ |S>|)
6: Do spectral clustering to C

In fact, the graph is often sparse (assuming N denotes the
number of nonzero entries in graph Laplacian), we can left
multiply X by (I − L

2 ) k times, resulting in O(Ndk).
Further, the complexity of Eq. (3.5) can be reduced to O(n)
time using the idea of the anchor point [11]. Thus, in future,
the proposed method can be easily modified to operate with
large-scale data.

In Eq. (3.9), the first term is f(A) and the other
two terms are functions of f(A) and X̄X̄>. Therefore,
the last two terms perform a correction to the high-order
proximity information f(A). The fine-grained graph S
basically modifies the original high-order proximity matrix
to achieve a better one, which will be responsible for the
excellent performance of the proposed algorithm.

Then, we perform classical spectral clustering to divide
nodes into m clusters. In particular, C = 1

2 (|S| + |S>|)
is first calculated to make the similarity matrix symmetric
and nonnegative. Then, spectral embeddings are obtained by
computing the eigenvectors corresponding to the m largest
eigenvalues of C. Finally, the k-means method is applied
to the eigenvectors to achieve cluster assignments. The
complete procedures for the proposed model are presented
in Algorithm 1. Notably, FGC is an iteration-free method,
which is desired in practice 1.

4 Experiments
4.1 Datasets We conduct experiments on several bench-
mark datasets commonly used for assessing of attributed
graph analysis. Cora, Citeseer, and Pubmed [15] are cita-
tion networks; the nodes in these networks represent publi-
cations and are connected if one cites the other. Wiki [41] is
a webpage network; the nodes in this network represent web
pages and are connected if one links the other. The features
in Cora and Citeseer are binary word vectors, whereas tf-idf
weighted word vectors in Pubmed and Wiki. Compared to
other recent attributed graph clustering work, we addition-
ally employ Large Cora [16] dataset, having the most edges.
For these datasets, clusters represent a collection of publica-
tions or web pages. The details of these attributed networks
are summarized in Table 1.

1The source code is available at https://github.com/sckangz/FGC

Table 1: Dataset statistics.

Dataset Nodes Edges Features Clusters

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3
Wiki 2405 17981 4973 17
Large Cora 11881 64898 3780 10

4.2 Baselines and Evaluation Metrics We compare FGC
with three types of clustering methods. The major difference
among these methods is the data information that they adopt
for clustering.

• Clustering methods that use only graph structures, in-
cluding Spectral-g (spectral clustering that only uses the
graph structure information), NMF-based community-
preserved embedding (M-NMF) [37], deep neural net-
works for graph representations (DNGR) [4], and Deep-
Walk [29].

• Clustering methods that use only the node features, in-
cluding k-means and Spectral-f (spectral clustering that
uses only the information of node features to construct
a graph matrix via linear kernel).

• Attributed graph clustering methods that use both node
features and graph structure information, including
ARGA and ARVGA [28], and GAE and VGAE [15],
MGAE [34], AGC [44], DAEGC [33], semantic com-
munity identification in large attribute networks (SCI)
[38], VGAE with Gaussian mixture models (GMM-
VGAE) [10].

Three commonly used performance metrics, clustering ac-
curacy (Acc), normalized mutual information (NMI) and
macro F1-score (F1), are used to assess the performance
of different models; a higher value indicates better perfor-
mance. For an unbiased comparison, we follow the settings
in AGC and directly copy part of the results from AGC and
DAEGC. These methods are carefully tuned on each dataset
to achieve the best performance. For the newly added Large
Cora, we only compared with several representative meth-
ods whose code is available. We run each method 10 times
on each dataset and report the average results. For FGC, we
consider 2-order neighbors by setting f(A) = A + A2 and
search for the best parameters, α, and the order of the filter,
k.

4.3 Result Analysis The experiment results are summa-
rized in Table 2, wherein the best results are highlighted in
bold. The proposed method clearly outperforms other state-
of-the-art methods in most of the evaluation measures. In
particular,
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Table 2: Clustering performance of various methods on various datasets.

Methods Input Cora Citeseer Pubmed Wiki Large Cora

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97 23.58 19.28 17.21 39.84 8.24 10.70
DNGR Graph 49.24 37.29 37.29 32.59 18.02 44.19 45.35 15.38 17.90 37.58 35.85 25.38 - - -
DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06 38.46 32.38 25.74 - - -
M-NMF Graph 42.30 25.60 32.00 33.60 9.90 25.50 47.00 8.40 44.30 - - - - - -

k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35 33.37 30.20 24.51 33.09 9.36 11.31
Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61 41.28 43.99 25.20 29.71 11.65 17.76

ARGA Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27 - - -
ARVGE Both 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80 - - -
GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35 - - -
VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49 - - -
MGAE Both 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98 50.14 47.97 39.20 38.04 32.43 29.02
AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36 40.54 32.46 31.84
DAEGC Both 70.40 52.80 68.20 67.20 39.70 63.60 67.10 26.60 65.90 38.25 37.63 23.64 39.87 32.81 19.05
SCI Both 41.21 21.57 11.82 33.45 9.77 18.01 44.89 5.99 35.73 32.72 26.38 19.03 26.78 11.31 7.68
GMM-VGAE Both 71.50 54.43 67.76 67.44 42.30 63.22 71.03 30.28 69.74 - - - - - -

FGC Both 72.90 56.12 63.27 69.01 44.02 64.43 70.01 31.56 69.10 51.10 44.12 34.79 48.25 35.24 35.52

• FGC evidently outperforms the clustering methods that
exploit only the proximity or feature matrix informa-
tion, a straightforward consequence because FGC com-
pletely utilizes the available data by exploiting both
proximity matrix and node features, which complement
each other and consequently enhance the clustering al-
gorithm. Although DeepWalk and DNGR apply deep
AE for representation learning, their results are unre-
markable because they neglect the feature information.

• FGC consistently outperforms the GCN-based clus-
tering methods: GAE, VGAE, MGAE, ARGA, and
ARVGA. Although the GCN-based clustering meth-
ods exploit both the proximity and feature matrix in-
formation, they are targeted at better representations,
and the downstream graph construction step might have
resulted in information loss. By contrast, FGC bet-
ter utilizes the available information, which automat-
ically outputs a fine-grained graph. MGAE perofrms
good on Wiki, probably because Wiki is more densely
connected than other datasets, and exploring 3-hop
neighbors might be sufficient for feature smoothing.
GAE, VGAE, ARGA, and ARVGA exploit only 2-hop
neighbors of each node. However, it is inadequate
for larger and sparser networks, such as Citeseer and
Pubmed, wherein the performance gaps between FGC
and MGAE are wide. Although FGC only uses second-
order information in the experiment, its performance is
promising, which can be attributed to its graph learning
approach.

• FGC consistently outperforms the closely related
method AGC by a considerable margin on Cora, Cite-
seer, Wiki, and Large Cora and is comparable on
Pubmed. Although AGC aggregates information within
k-hop neighbors, it only produces better feature repre-

Table 3: Computation time of several representative methods
(Seconds).

Method Cora Citeseer Pubmed Wiki Large Cora

AGC 3.42 40.36 20.77 8.21 29.18

DAEGC 561.69 946.89 50854.15 562.85 9339.67

FGC 4.60 9.49 268.44 8.11 58.76

sentations for clustering. Unlike AGC, FGC directly
outputs a fine-grained graph, which is subsequently
used for spectral clustering. In addition, AGC adopts an
automatic approach to find a suitable k, which may lead
to a local solution. For fairness of comparison, we also
tune k in AGC to report its best performance. In terms
of ACC, NMI, F1, the results are 68.90, 53.65, 65.60;
68.39, 42.50, 63.76; 69.87, 31.60, 68.79 on Cora, Cite-
seer, Pubmed, respectively. We can see that our method
can still outperform AGC.

• FGC clearly outperforms DAEGC and is comparable
with GMM-VGAE method performing graph embed-
ding and clustering in a unified framework. In addi-
tion, soft labels are used from the clustering to supervise
graph embedding. Therefore, they are very complex,
and the network might be difficult to train, whereas
FGC is simple yet competitive.

Furthermore, we report the computation time of several
representative methods given in Table 3. All methods are
implemented on Python with an Intel Core i5-8400 CPU and
16GB memory. In particular, we retain the original setting
(Tensorlow CPU) for DAEGC. As expected, AGC and FGC
are efficient, with several orders of magnitude faster than
DAEGC.
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Table 4: Result of ablation study.

Method Cora Citeseer Pubmed Wiki Large Cora

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

Baseline 67.61 53.12 56.53 67.02 41.57 62.61 69.90 32.51 68.99 53.89 51.27 46.06 48.30 26.23 13.96

f(A) = 0 69.46 56.10 63.25 66.93 41.73 61.09 64.45 24.63 64.40 56.30 52.44 44.85 43.46 27.48 31.73
f(A) = A 68.57 53.94 59.83 67.72 41.06 59.11 70.14 32.47 69.29 51.60 47.19 43.55 49.26 30.15 17.81
f(A) = A+A2 72.90 56.12 63.27 69.01 44.02 64.43 70.01 31.56 69.10 51.10 44.12 34.79 48.25 35.24 35.52
f(A) = A+A2 +A3 71.57 56.10 59.83 67.15 40.29 58.10 70.32 30.34 69.49 47.53 39.68 34.37 48.31 30.51 24.01
f(A) = A+A2 +A3 +A4 71.49 52.55 63.96 67.33 40.03 58.23 68.49 27.32 68.21 43.49 35.83 27.17 46.87 26.26 30.91

4.4 Ablation Study To verify the effectiveness of two
main components (convolution and high-order proximity) in
FGC, we conduct ablation experiments on the five datasets.
The ablation study results are summarized in Table 4.

To examine the effect of convolution, we use the follow-
ing model as a baseline:

(4.10) min
S
‖X> −X>S‖2F + α‖S − f(A)‖2F ,

where f(A) = A+A2. In other words, the baseline results in
Table 4 are obtained on the basis of raw features. Compared
with Table 2, following are the observations:

• The baseline results are satisfactory and outperform
other methods, except the most recent AGC and
DAEGC, which verifies the advantage of the proposed
graph learning approach.

• Compared with AGC, the baseline produces compara-
ble results on Cora, Citeseer, and Pubmed, and performs
much better on Wiki and Large Cora. Instead of using a
convolution graph such as AGC, the baseline explicitly
uses the second-order proximity.

• Compared with DAEGC, the baseline performs better
on Pubmed and is comparable on Citeseer. Notably,
both DAEGC and baseline exploit features and second-
order neighbor information, but DAEGC adopts an
inner product decoder to model the similarity graph.
The simplicity and intelligible properties of FGC make
it appealing for real-world applications.

In summary, the performance of the baseline demonstrates
the effectiveness of automatic graph learning from data. In
addition, the performance of FGC is generally better than
the baseline, proving the effectiveness of convolution and
making the graph signal smooth. However, the baseline
outperforms FGC on Wiki, because the affinity matrix A is
very dense and convolution makes the features oversmooth,
i.e., the features of nodes in different clusters are mixed and
become indistinguishable.

To investigate the impact of high-order topological
structure, we assess the performance of FGC with different

orders of f(A) (Table 4). In particular, we also set f(A) = 0
to assess the benefit of having the node-node proximity pre-
serving term in Eq. (3.5). We draw the following conclu-
sions:

• FGC with original A outperforms the baseline, demon-
strating the advantage of smooth features because of the
adoption of graph convolution.

• In general, up to second-order proximity generates the
best performance. Without exploring the original prox-
imity, we could not achieve a good performance in most
cases. The second-order method outperforms the first-
order method, which clearly verifies the importance of
incorporating high-order information. However, the
third and fourth-order methods might deteriorate the
performance, probably because of the approach using
which we compute high-order information. Computing
it directly using adjacency matrices could alter the re-
lationship between nodes. Moreover, the proposed ap-
proach also introduces redundant information [45].

4.5 Parameter Analysis There is a trade-off parameter α
in model (3.5), which controls the amount of proximity in-
formation to be preserved. In addition, there is an implicit
parameter k, i.e., the order of the filter, which controls the
smoothness of representation. When k increases, nearby
node features become similar. However, a very large k will
result in oversmoothing, i.e., the features of nodes in differ-
ent clusters will be mixed and become indistinguishable. To
visualize this effect, we apply t-SNE to the raw and filtered
node features of Cora (Figure 1). Nearby nodes have simi-
lar feature representations as k increases. The data exhibits
clear cluster structures at k = 15. Nevertheless, the cluster
structures disappear when the features are oversmoothed at
k = 60.

Considering Cora and Large Cora as examples, Figure 2
shows the effects of α and k on clustering performance. A
rational result could be achieved with a small range of k and
a large range of α. Thus, we can fix k and search for α in
practice.
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(a) Raw features (b) k = 15 (c) k = 60

Figure 1: t-SNE demonstration of the raw and filtered node features of Cora dataset.
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Figure 2: The influence of parameters k and α on results of Cora (1st row) and Large Cora (2nd row) datasets.

4.6 Overlapping Community Detection We examine the
performance of the proposed method in a more challenging
task: overlapping community detection. Therefore, we
replace the k-means step with fuzzy c-means in the proposed
method such that each node could be assigned to more than
one group. Facebook is chosen as a benchmark dataset,
comprising 10 different ego-networks with identified circles.
Social circles formed by friends are assumed to be ground-
truth communities. Five representative baselines are chosen:
BigCLAM [42], CESNA [43], Circles [25], SVI [8], vGraph
and its variant vGraph+ [31]. Following vGraph, we use
F1 and Jaccard similarity to evaluate the performance of
overlapping community detection.

The results are summarized in Table 5. The proposed
method outperforms all baseline methods in 7 out of 10
datasets with both metrics because it is capable of leveraging
both feature and structure information, which verifies its
superiority in overlapping case.

5 Conclusion
In this study, we investigate the attributed graph clustering
from a principled graph learning perspective. The main idea
is to automatically learn a high-quality graph based on self-
expression in a smooth representation. Then, the learned
graph is required to preserve some high-order proximity to
some extent. Although the proposed method is simple to
understand and implement, it yields promising results com-
pared with several state-of-the-art deep learning methods on
benchmark datasets. Furthermore, it achieves impressive
performance on a more challenging task: overlapping com-
munity detection. Therefore, our method is a promising clus-
tering technique in real applications.
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Table 5: Evaluation on overlapping communities. ‘-’ means the task is not completed in 24 hours.

F1 Jaccard
Dataset BigCLAM CESNA Circles SVI vGraph vGraph+ FGC BigCLAM CESNA Circles SVI vGraph vGraph+ FGC

facebook0 0.2948 0.2806 0.2860 0.2810 0.2440 0.2606 0.3231 0.1846 0.1725 0.1862 0.1760 0.1458 0.1594 0.2119
facebook107 0.3928 0.3733 0.2467 0.2689 0.2817 0.3178 0.2928 0.2752 0.2695 0.1547 0.1719 0.1827 0.2170 0.1850
facebook1684 0.5041 0.5121 0.2894 0.3591 0.4232 0.4379 0.5159 0.3801 0.3871 0.1871 0.2467 0.2917 0.3272 0.4025
facebook1912 0.3493 0.3474 0.2617 0.2804 0.2579 0.3750 0.4436 0.2412 0.2394 0.1672 0.2010 0.1855 0.2796 0.3507
facebook3437 0.1986 0.2009 0.1009 0.1544 0.2087 0.2267 0.1725 0.1148 0.1165 0.0545 0.0902 0.1201 0.1328 0.0979
facebook348 0.4964 0.5375 0.5175 0.4607 0.5539 0.5314 0.6260 0.3586 0.4001 0.3927 0.3360 0.4099 0.4050 0.5194
facebook3980 0.3274 0.3574 0.3203 - 0.4450 0.4150 0.5302 0.2426 0.2645 0.2097 - 0.3376 0.2933 0.4299
facebook414 0.5886 0.6007 0.4843 0.3893 0.6471 0.6693 0.5422 0.4713 0.4732 0.3418 0.2931 0.5184 0.5587 0.4081
facebook686 0.3825 0.3900 0.5036 0.4639 0.4775 0.5379 0.5903 0.2504 0.2534 0.3615 0.3394 0.3272 0.3856 0.4499
facebook698 0.5423 0.5865 0.3515 0.4031 0.5396 0.5950 0.6000 0.4192 0.4588 0.2255 0.3002 0.4356 0.4771 0.4970
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“Bayesian robust attributed graph clustering: Joint
learning of partial anomalies and group structure”. In:
Thirty-Second AAAI Conference on Artificial Intelli-
gence. 2018.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Deep
neural networks for learning graph representations”.
In: Thirtieth AAAI Conference on Artificial Intelli-
gence. 2016.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Grarep:
Learning graph representations with global structural
information”. In: Proceedings of the 24th ACM inter-
national on conference on information and knowledge
management. ACM. 2015, pp. 891–900.

[6] Petr Chunaev. “Community detection in node-
attributed social networks: a survey”. In: Computer
Science Review 37 (2020), p. 100286.

[7] Vinıcius da Fonseca Vieira, Carolina Ribeiro Xavier,
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