Fine-Grained Capabilities for Flooding DDoS Defense
Using Client Reputations

Maitreya Natu
University of Delaware
103 Smith Hall
Newark, DE 19716, USA
natu@cis.udel.edu

ABSTRACT

Recently proposed capability mechanisms offer one part of
the answer to the DDoS problem. They empower the victim
to control the traffic it receives by selectively granting access
to well-behaved clients via short-lived tickets. One major
question still remains unanswered: how can victims distin-
guish between well-behaved and ill-behaved clients during
the ticket-granting process. This paper offers one possible
answer to this question, while also refining the basic capa-
bility mechanism.

We propose the following novel features: (1) Reputation-
based ticket-granting — long-term behavior of a client in-
fluences whether future tickets will be granted, (2) Fine-
grained capabilities, which authorize access to the victim at
a specified priority level based on a client’s prior behavior,
(3) Destination-based capabilities, granted by the defense lo-
cated at the victim; this reduces operational cost, and breaks
dependence of tickets on routes.

Categories and Subject Descriptors: K.6.5 Manage-
ment of Computing and Information Systems: Security and
Protection

General Terms: Management, Measurement, Security.
Keywords: Distributed denial of service defense, Packet
capabilities, Dynamic packet stamping, Traffic policing.

1. INTRODUCTION

With the increase in the network usage for business, leisure

and time-critical activities, distributed denial-of-service (DDoS)

attacks have become an increasing threat. Numerous re-
search and commercial endeavors to design effective DDoS
defenses have lead to the following insights: (1) A defense
needs to be deployed at or near the victim, where the eco-
nomic incentive lies. Further, a victim is in the best position
to determine if a client’s traffic is malicious or benign, and
thus has the most accurate information about what to fil-
ter. (2) A victim-end defense must be lightweight to support
fast packet processing during an attack; otherwise it may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

LSAD’07, August 27, 2007, Kyoto, Japan.

Copyright 2007 ACM 978-1-59593-785-8/07/0008 ...$5.00.

Jelena Mirkovic
University of Delaware
103 Smith Hall
Newark, DE 19716, USA
sunshine@cis.udel.edu

become a target of the attack itself. (3) Because a victim
may be overwhelmed by a large-scale attack, mechanisms
are needed to facilitate attack traffic filtering by upstream
routers. This means that a victim must somehow commu-
nicate to the routers information needed to discriminate be-
tween benign and malicious traffic. The discrimination pro-
cess must also be lightweight, minimizing router CPU and
memory cost.

Recently proposed capability mechanisms, such as SIFF
[8] and TVA [9] embody these desirable DDoS defense prop-
erties in the following manner. Routers on the path to the
victim build tickets (capabilities) cooperatively by append-
ing a hash of the source and destination address, and a router
secret, to each packet that does not already carry a ticket.
A destination decides to grant the access to a client based
on some private policy, and returns tickets to chosen clients.
Tickets are granted for a limited period of time (time-based)
[8] or for a limited amount of traffic (traffic-based) [9] and
carry expiration information. An accepted client appends
the ticket to future packets, and routers verify tickets and
provide high-priority handling to ticketed traffic. Ticket ver-
ification is lightweight since a router only needs to recalcu-
late the hash and verify that it is equal to the router’s por-
tion of the ticket contained in the packet. Thus routers pay
moderate CPU cost. Memory cost is only paid in case of
traffic-based tickets to keep statistics of ticket usage. Time-
based tickets incur no memory cost.

While current capability mechanisms show great promise
with regard to defense effectiveness and a reasonable oper-
ational cost, they suffer from the following deficiencies that
we address in this paper:

1. Lack of mechanisms for automated ticket grant-
ing: Neither SIFF [8] nor TVA [9] address the question
of mechanisms for distinguishing between legitimate
and malicious clients. This is a challenging task in
case of public servers, where all clients are equal and
no prior trust exists between a given client and the
server. The only possible approach in this case is to
grant short-term access to each new client and evalu-
ate its behavior during this time. Well-behaved clients
earn right to future tickets, while ill-behaved clients
are shunned. We propose one possible approach to
record a long-term client’s behavior and incorporate
this knowledge into the ticket-granting process. We
associate degrees of trust with the clients by assign-
ing a credit and a penalty to each client based on its
long-term behavior. Credit is used to identify aggres-
sive attackers; during congestion, the credit of an ac-

1. Send ticket request

R1

— 1
,-—f-—’;/

Hs 1)
w-___3. Attach tickets to data traffic
_/ ___ : !

——

— T

4. Calculate credit and penalty
Hd for each client
5. Police traffic according to credits

*2‘ Grant ticket if and penalties

Qast behavior was
e -

Figure 1: Components of the proposed defense

tive client is decreased proportionally to the amount of
traffic it contributes to the congestion. However, credit
assignment alone cannot deal with distributed attacks
where each malicious client sends traffic at a very low
rate. To handle such attacks, we assume that a legit-
imate client’s response to packet drops will be more
prominent than the malicious client’s, and we assign
penalties to clients that do not respond appropriately
to packet drops. Jointly, the client’s credit and the
penalty are used for its traffic policing and to decide
whether future tickets should be granted.

2. Binary capabilities: Possession of a ticket grants full
access to the victim while the ticket is valid, thus all
admitted clients have equal priority. This enables so-
phisticated attacks where malicious clients first obtain
tickets and then launch attacks. If attackers send traf-
fic at a low rate, they may even be granted future tick-
ets, perpetuating the attack. We propose fine-grained
capabilities that carry a priority label, dependent on
a client’s long-term behavior. This enables us to pe-
nalize clients for any suspicious behavior, and provide
guaranteed high-quality service to consistently well-
behaved clients in case of sophisticated attacks.

3. Route-dependent capabilities: Because routers on
the path participate in ticket generation, tickets are
route-dependent and will lead to legitimate traffic drops
in case of a route change or multipath routing, both
of which are frequent in today’s Internet. Our ticket-
generation mechanism involves only the traffic desti-
nation, making tickets route-independent. Upstream
routers remain inactive unless explicitly authorized by
the attack victim to aid in traffic filtering. This further
reduces defense operational cost compared to [8, 9].

2. RELATED WORK

IP Easy-pass [6] attaches a source identifier to each packet
and uses it to reliably identify clients. Some existing re-
source reservation protocol (e.g., RSVP) is assumed for ac-
cess control. In the past, work has been done on identifying
flows by assigning a unique handle [2], and on reliably and
accurately identifying the traffic source [5]. In this paper,
we address the issue of distinguishing a well-behaved client
from an ill-behaved client during the ticket granting process,
thus our work is orthogonal to work on client identification.

Anderson et. al. [1] propose capabilities (tickets) attached
to each client packet, that guarantee privileged access to a
resource. They assume a separate overlay for transmitting
ticket requests, which incurs high setup cost. SIFF [8] re-
fines the capability approach by eliminating the need for a

separate overlay channel. Instead, routers build capabilities
collaboratively using a secret key to hash some packet fields
and placing the output in ticket request packets. Destination
grants access to clients based on some internal policy and
returns the capability from request packets to these clients
that attach it as a ticket to future packets. The tickets are
time-based. TVA [9] improves the design from SIFF [8] by
using traffic-based tickets and by rate limiting and priori-
tizing ticket-request traffic. As discussed in Section 1, SIFF
and TVA have certain limitations that we aim to improve.

3. CAPABILITY MECHANISM

Figure 1 illustrates steps in a source’s access to a desti-
nation. Communication between a source and a destination
is preceded with a ticket request. If the source communi-
cated with the destination in recent past, the ticket request
will carry the context of the old communication including
the old credit and penalty values. The client’s credit and
penalty serve as inputs to the ticket-granting process, and
tickets are returned to accepted clients. Unlike the past
work on capabilities [1, 8, 9], a possession of a ticket does
not translate into an absolute privilege to access the destina-
tion. Instead we associate a degree of trust with each client,
expressed via its credit and penalty values and attached to
its current ticket. We use this trust information to prioritize
access to a critical resource (Section 3.3), thus favoring well-
behaved clients over unknown clients, and favoring unknown
over known-malicious clients.

3.1 Ticket Structure

A destination generates a client-ticket for each client to
whom it wishes to grant access, and the client uses this infor-
mation to generate a packet-ticket attached to each future
packet sent to this destination. Our generation of client-
tickets and packet-tickets has the following properties:

e Client-tickets are bound to the client: To prevent ticket
falsification and stealing, the destination generates the
client-ticket by hashing the client’s credit, penalty and
IP address with the destination’s secret. Client-ticket
structure is shown in Figure 2. Including the client’s
IP in the hash binds the ticket to the specific client,
thus ensuring that attackers cannot use stolen tickets
to buy a passage for their traffic. A similar mechanism
exists in TVA [9]. However, the attacker could use a
stolen ticket to generate spoofed traffic with client’s
IP address as an alleged source. To prevent this we
must prevent ticket stealing from a destination’s reply
to the ticket request, and later from packets with valid
tickets.

To prevent ticket stealing from a destination’s reply we

ticket | g

old client-ticket |old timestamp

request [~ mod n old credit | old penalty
tioket | £ it Ity, client-ticket = h(clientIP, credit It 1)| 0
reply 05"D mod n {Credit, penalty, client-ticket = h(clientlP, credit, penalty, secret)| g~ mod n
packet-ticket . IR TR
P ID field credit| penalty] pass = h(client-ticket, hipacket)

Figure 2: Structure of the ticket-request, ticket-reply, client-ticket and packet-ticket

deploy the Diffie-Hellman key exchange [3] to generate
a session secret between the source and the destina-
tion, and use this secret to encrypt ticket information
in the reply. We assume a general knowledge of num-
bers g and n. In its ticket requests, the source includes
¢° mod n , where S is a random number selected by
the source. In the ticket reply, the destination returns
r = Ex(ticket)|g” mod n , where Ex denotes en-
cryption with key K, using some lightweight symmet-
ric encryption protocol, D is a random number selected
by the destination, K = ¢°"® mod n is the shared se-
cret and | denotes concatenation. The shared secret
can be calculated by the source and the destination
only, because they possess one part of this secret (the
random number S or D). Both parties store the secret
and use it for future ticket exchanges. Old secrets can
be removed after a period of inactivity. The structure
of the ticket reply is also shown in Figure 2. TVA [9]
does not encrypt ticket information in replies and is
thus sensitive to ticket stealing.

Our current design uses IP address of a host as an
identifier, which does not address the presence of NAT's
in the network, or the dynamic addressing. We plan
to investigate these issues in our future work.

Packet-tickets are bound to packets: To prevent ticket
stealing from packets, a client generates packet-tickets
by binding the client-ticket to each packet. This is
done by first calculating the hash of the packet’s con-
tents and immutable header fields, and then hash-
ing this result with the client-ticket to produce a per-
packet pass. This pass, along with the client’s credit
and penalty values represents the packet-ticket and is
inserted into the IP identification field, as shown in
Figure 2. SIFF [8] and TVA [9] do not bind tickets
to packets, enabling misuse of stolen tickets to spoof
legitimate client’s traffic.

Client-tickets are short-lived: If tickets were valid for a
long time, a mutable attacker that behaves well to ob-
tain a ticket, and then turns hostile could inflict much
harm. Short ticket life limits the damage from a muta-
ble attack, and is also employed in SIFF [8], while TVA
[9] employs costly accounting to limit the amount of
traffic sent using a single ticket, i.e. it uses traffic-based
capabilities. We opted for time-based vs. traffic-based
capabilities, to reduce the operational cost. Tickets
expire periodically when the destination changes the
secret used for ticket generation. We call this interval
the ticket-validity interval. Delayed packets are han-
dled by accepting the packets with tickets valid during
one previous interval.

o Ticket verification is lightweight: All the information
needed to verify validity of a ticket (packet or client)
is encoded in the ticket, thus no memory is needed
to store client information at the destination. The
destination does pay a small memory cost to record
the blacklist of worst offenders, and to keep behavior
statistics for currently active clients (Section 3.2).

3.2 Calculating Credits and Penalties

Credits and penalties are used to reflect a client’s behav-
ior by describing the aggressiveness of its sending pattern.
Credit and penalty calculations are performed at the end of
each ticket-validity interval.

3.2.1 Credit Calculation

A client’s credit reflects its contribution to congestion dur-
ing a flooding attack — the higher credit represents the lower
contribution, i.e. well-behaved clients will have high credits.
The credit is a number ranging from LOW to HIGH. A new
client is assigned a credit value of MID, which lies in the
middle of [LOW, HIGH] range. If no resource overload is
observed during an interval, then an active client ¢ in that
interval is rewarded by an additive increase in its credit:

credit}®” = min(credit? + o, HIGH) (1)

where « is the credit increase factor. During resource over-
load periods, if a client is identified as non-aggressive, its
credit is also calculated using the Eq. 1. The credit of an
aggressive client ¢ is decreased multiplicatively and propor-
tionally to its contribution to resource demand:
E.

Ei T;
where T; is total traffic sent by the client ¢ in units that rep-
resent a critical resource (e.g., bytes for bandwidth, service
requests for server-specific resource, packets for CPU), and
E. is the excess traffic the client ¢ sent above its fair share,
which we call a quota, and denote with Q.. The sum of T;
is calculated over all active clients. Multiplicative decrease
ensures prompt action to the observed aggressiveness.

Values of T;, F; and @); are calculated for a window of
several intervals to avoid overreaction to variations in client
traffic. The quota of a client c¢ is calculated as:

credity, "’

= max(credit?® - (1

),LOW) (2)

max(credit. — penaltyc, LOW)

Qe = >, max(credit; — penalty;, LOW)

where R is the amount of the critical resource (e.g., band-
width, number of packets or service requests that can be
processed per second, etc.), the maximum is calculated over
the window for a given client, and the sum is calculated
over all active clients. A client ¢ is considered aggressive if

it exceeds its quota in an interval, and its credit is decreased
using the Eq. 2, where E. = T. — Q..

The defense proactively renews tickets of all active clients
at the end of each ticket-validity interval. A client that has
been inactive during an interval must issue a new ticket re-
quest. To enable well-behaved clients to benefit from their
past good reputation, a new ticket request carries the last re-
ceived credit and penalty values, along with the client-ticket
and the timestamp of the last activity. Using the timestamp,
the server locates the secret, which was valid at the given
time, and uses it to verify the client-ticket and thus the au-
thenticity of the declared credit and penalty values. Upon
success, it uses the past credit value to calculate starting
credit for the client ¢ as:

credit?®” = max(credit?’® — - N, MID), (4)

where (3 is the credit decrease factor, and N is the number
of intervals since the client’s last communication. We deploy
credit aging to discount stale information because a longer
inactivity period increases the possibility of a client’s com-
promise. The lowest credit assigned to an old client is MID,
ensuring that a very old client is treated the same as a pre-
viously unknown client. The penalty value of an old client
is conservatively set to the past penalty value, declared in
its ticket request. A previously unknown client receives the
lowest penalty value.

3.2.2 Penalty Calculation

Consider a scenario when many attackers flood a network,
but each attacker sends traffic at a low rate. In such scenario,
a legitimate client’s contribution to congestion is larger than
that of an attacker, so credit calculation alone cannot help
us precisely identify malicious clients.

To rectify this situation, we use an observation that a le-
gitimate client will reduce its sending rate upon a traffic
loss, while an automated attacker will not. One source of
rate reduction is the TCP’s congestion control mechanism
that responds to traffic loss by an exponential decrease in
the sending rate. If a malicious client uses modified version
of the TCP protocol to send aggressively, its response to con-
gestion will be milder than that of legitimate clients. Even
if a malicious client uses unmodified TCP, it will open mul-
tiple connections to the destination to send sufficient traffic
for service denial making it more aggressive than an average
legitimate client.

We postulate that another source of rate reduction could
be human response to low service quality — a person that
does not receive a response to their service request is un-
likely to maintain or increase the rate of request generation.
Further study with human subjects is needed to verify this
hypothesis and is part of our future work.

We assign penalties to clients that experience persistent
packet drops in the following manner. Let D. be the sum of
dropped bytes from client ¢ during the window. If D, > §-T¢,
the client is considered malicious and its penalty is increased
as:

penalty?®” = min(penalty?® + ~, HIGH), (5)

where ¢ is the estimate of the legitimate client’s aggressive-
ness in face of persistent drops, and + is the penalty increase
factor. If the client is not identified as malicious its penalty
is decreased as:

penalty™®” = max(penalty?'® — ~, LOW). (6)

3.2.3 Aggressive Client Blacklisting

To reduce the memory cost of the defense, client credits
and penalties are carried in tickets. This opens a poten-
tial vulnerability since a client with a low credit (or a high
penalty) would benefit from posing as a new client, i.e. it
would omit the credit and penalty information from its ticket
requests. Legitimate clients would then have to contend for
bandwidth with attackers, just as is the case in SIFF [8] and
TVA [9]. To amend this situation the defense should keep
a blacklist of worst offenders. Clients with lowest credits
or highest penalties would be stored in this list, with their
credit and penalty information, and each new ticket request
would be checked against this list.

3.3 Traffic Policing

Previous work on capabilities [1, 8, 9] allowed absolute
access to the destination to all ticket-carrying traffic. As
discussed in Section 1, this approach can inflict large harm to
legitimate clients in case of mutable attackers. To minimize
this harm, we use client credits and penalties to prioritize
access to the critical resource. Each client c is assigned to
the client class identified as:

clientClass. = max(credit. — penalty., LOW), (7)

and each class is assigned a certain share of the resource.
A client can access the resource share assigned to its class
and that assigned to lower classes. If all such resources are
depleted, the client’s request is dropped. This facilitates
good service to well-behaved clients during an attack that
deploys many previously unknown attackers. These attack-
ers fall into the same credit class as previously unknown
legitimate clients, and compete with them for the resource,
but cannot deplete resources assigned to the higher-credit
classes that contain known, well-behaved clients.

One approach to resource assignment would be to uni-
formly distribute the critical resource among all credit classes.
However, this design could lead to under-utilization, in cases
when most users lie in low or middle credit ranges. We pro-
pose a more sophisticated scheme that estimates future re-
source requirements of a client class cc based on the weighted
average of its past demand as follows:

REEY = (1 —) - R% 4+ X - demand, (8)

where R%? was the estimate at the end of the previous in-
terval, demand is the total resource usage of this client class
in the current interval and A is the weight assigned to new
observations.

Traffic policing is performed by the defense located at or
near the victim. If the defense is overwhelmed, which is
likely during high-rate attacks, it can request help from up-
stream routers for packet filtering. The help request contains
at the minimum the previous and the current destination
secret, to enable the router to validate ticket information.
Future secrets could also be included in the help request,
or they could be communicated periodically through future
help requests. It would further be helpful to include the
blacklist of recent offenders in the help request, to enable
the router to filter new ticket requests from known-malicious
clients.

Help requests must be authenticated to prevent denial
of service through fake help requests that contain invalid
secrets and are sent by a third party. Authentication as-
sumes an existence of a trust relationship between the de-

fense and an upstream router. Since distributed trust is
difficult to enforce unless there is an existing business rela-
tionship, we envision that help requests would only be prop-
agated one hop upstream, to routers of the victim’s ISP. This
is a common business practice today, but requests are de-
livered through human channels, which impose large delays,
and they contain imprecise filtering information obtained
from intrusion detection systems. The proposed capability
mechanism would automate this process and improve filter-
ing accuracy and the response time.

Parameter Value
Ticket-validity interval 3 s
Window size 4 intervals
« 1
B 0.3
y 0.4
o 1
HIGH — LOW 20

Table 1: Parameter values

3.4 Parameter Settings

We use several parameters to guide the defense opera-
tion, whose values are shown in Table 1. We now briefly
discuss tradeoffs in setting their values. In real deployment
optimal parameter values will greatly depend on legitimate
traffic dynamics in a given network, and should be deter-
mined through traffic analysis, training and tuning over sev-
eral days or weeks.

e Credit range [LOW, HIGH]: A larger range provides
a finer granularity for client differentiation and thus
better defense, but will cause additional computational
and memory cost during traffic policing.

e Credit and penalty change factors («, 7): Large values
of @ and v make credits and penalties very sensitive to
traffic variations, which can lead to penalizing normal
variations in legitimate traffic. Too small values on the
other hand, prolong response time of the defense.

e Estimate of legitimate client’s aggressiveness (6): A
large value of § will increase penalty only for large
drop rates, allowing moderately aggressive attackers
to evade the defense. A small § value penalizes small,
normal traffic variations of legitimate clients.

e Score aging factor (3): A small value of 3 preserves
history of past good behavior for a long time, while a
large value rapidly discounts recent good behavior.

4. COST

We now summarize the cost of the proposed defense. While
issuing and updating tickets, the defense performs Diffie-
Hellman key exchange once for every new or recently inactive
client, followed by ticket encryption once each ticket-validity
interval. While Diffie-Hellman key exchange is costly, it is
only performed for clients that have not been active recently.
The cost of the exchange can thus be controlled by increas-
ing the memory for storage of shared secrets. Symmetric
encryption and decryption are moderately costly, but the
frequency of these operations is low — once each several sec-
onds. An attacker could attempt to exhaust the defense’s

resources by sending a lot of new ticket requests and we
discuss this case in the Section 5.

Tickets are kept small and ticket validation is not costly.
A sender attaches the packet-ticket to each packet and the
defense verifies it. Both require two hash operations per
packet and can be done at high speed, as shown in [9]. Note
that there should be a significant reduction in deployment
cost between our defense and SIFF [8] or TVA [9] because
our defense is located at the destination only and the help of
upstream routers can be invoked on need basis, while SIFF
and TVA require constant support from upstream routers.

Tickets carry the client information needed for ticket val-
idation and traffic policing, requiring no additional storage
at the defense. Defense incurs a storage cost for storing
traffic statistics and the quota of each active client during
an interval, for computing credits and penalties. In case of
a large number of clients, it is sufficient to store statistics
only of aggressive senders that dominate the values in score
and penalty computation. Statistics are also stored for each
client class, thus the size of the [LOW, HIGH] range de-
termines the cost of this storage. The defense also incurs
a small memory cost for a blacklist of worst offenders. It
may pay off to propagate this list to some upstream routers
that are close to destination, when their help is requested,
in which case the upstream routers will incur the memory
cost to store this information. The typical size of botnets
today is at most 100,000 hosts [4], making the memory cost
for storing a blacklist 3.2 MB.

5. SECURITY

We now briefly discuss the security of the proposed de-
fense. As our experiments illustrate in the next section, the
defense can successfully identify large and persistent senders,
but its performance degrades in case of pulsing attacks. If an
attacker used a large number of zombies in smaller groups,
such that a single group acts maliciously at a given time
and is then replaced by a fresh group, the attack could con-
tinuously deny service. All DDoS defenses to date that use
a client’s identity for traffic prioritization will be ineffective
against such attack.

Another possible attack would engage zombies that do re-
spond to congestion, thus avoiding high penalty values. We
believe that in this case human behavior (rate of request gen-
eration) would differ from the behavior of zombies causing
legitimate client’s traffic to decrease below malicious client’s
traffic. We plan to study this in our future work.

Tickets cannot be falsified because secret hash facilitates
integrity checks. Our defense is resistant to sniffing due to
deployment of cryptographic techniques to protect tickets.
It is also resistant to IP spoofing because it encrypts client-
tickets and binds packet-ticket values to the packets.

Cryptographic operations make defense vulnerable to flood
of bogus ticket requests, that initiate costly Diffie-Hellman
key exchange. One way to address this problem is to limit
the resources spent for ticket-granting. This ensures that
well-behaved and active clients will receive good service,
since their secret information is cached. New legitimate
clients will have to contend for the access to ticket-granting
mechanism along with attackers.

6. EVALUATION

We implemented the proposed capability mechanism in a

Linux software router as a loadable kernel module. Our tests
consist of live-traffic experiments in the Emulab testbed [7].
We used the topology shown in Figure 3. Victim node V is
connected to the rest of the topology via a bottleneck link of
100 Kbps, which represents our critical resource. All other
links in the topology have 100 Mbps bandwidth. There are
two legitimate clients L1 and L2 and seven attackers A1-AT.

Legitimate traffic is generated by invoking a character gen-
erator program at the client nodes, and tunneling its output
to the victim node via SSH. The character generator emu-
lates Telnet traffic — it generates one message per second,
whose length is randomly chosen in a predetermined range.
A message can be split into several packets. We call the av-
erage rate of the character generator the legitimate client’s
nominal rate. Depending on the TCP’s congestion control
mechanism, legitimate client’s traffic will flow into the net-
work at, above or below the nominal rate. As explained in
Section 5, to use a real TCP traffic for attack, the attackers
would need a large number of zombies due to the congestion
responsive nature of TCP. Hence, attack traffic is generated
using raw sockets to send TCP packets at a specified rate.
The attack rate may vary in some test scenarios in an at-
tempt to trick the defense.

We do not show a simple scenario where the attack traffic
does not carry a ticket — all such traffic will be correctly
dropped since only ticket-carrying traffic is allowed to reach
the victim. We also omit a scenario where a mutable at-
tacker acquires a ticket and then increases its sending rate
to a large value. Such attacker will be quickly identified
as aggressive and its credit is decreased, providing effective
defense. We focus instead on sophisticated attacks involv-
ing mutable attackers that send at a relatively low rate to
maintain impression of a good behavior and ensure receipt
of future tickets.

Figure 3: Network topology used for evaluation

6.1 Balanced Attack

To blend in with legitimate clients, each attacker first ac-
quires the highest credit by sending traffic at a low rate
(800 bps) for a long time — this behavior does not create
resource overload. Afterwards, attackers turn malicious and
send at the legitimate client’s nominal rate (24 Kbps). Fig-
ure 4 shows the credits of one legitimate client and of one
attacker; credits of other clients follow the same trend. Be-
fore the attack, credits of legitimate and attack clients are at
the HIGH value. Soon after the attack starts, an attacker’s
credit is decreased, thanks to our aggressive sender identi-
fication and the multiplicative credit decrease. The credit

of legitimate TCP client decreases briefly after the attack’s
onset, because the traffic computations are performed over
statistics collected in a sliding window. Once the TCP’s
congestion control reduces the sending rate, several inter-
vals are needed for this to sufficiently impact the average
rate value in the window. Similarly, Figure 5 shows a legit-
imate client’s and an attacker’s penalty. While a legitimate
client’s penalty remains low throughout the attack, an at-
tacker’s penalty quickly reaches the maximum value due to
the absence of congestion response in attack traffic.

Attack starts l

20
15 /_h\/

Legitimate traffic lAttack B

%
L1
8-
a T
o 20 40 Bl B0 100 120 140 163 163
tirne (g}
Altack starts Attack traffic Attack ends
20
1%
=
=
210
5 -
o T T
o 20 40 B0 B 100 120 140 163 180
time (s]

Figure 4: Credits of legitimate and attack clients

Attack stars 1 Leqitimats traffic vAttack G
20

- 15
Tg 10
B

5

A
a T
a 20 40 BO &0 10a 120 140 1B0 180
time (=}
|
Aftack starts . Attack traffic *Attack ends
20

> 15
T
o
o

5

0

a 20 40 &0 &0 100 120 140 160 180
tme (3

Figure 5: Penalties of legitimate and attack clients

Figure 6 shows the acceptance ratio — the percentage of
bytes sent by a client that successfully reach the victim.
Note that this is different than bandwidth allocation be-
tween clients. An acceptance ratio of 100% means that no
traffic from this client was dropped, either due to congestion
or by defense. The acceptance ratio gives no information
about the bandwidth division between the legitimate and
the attack traffic.

A legitimate client’s acceptance ratio is temporarily low-
ered when the attack starts, but quickly converges to 100%,
while an attacker’s acceptance ratio is reduced to around
5%. For comparison, Figure 7 shows the acceptance ratio

without the defense — all traffic drops occur due to the con-
gestion. A legitimate client’s acceptance ratio fluctuates,
and frequently reaches zero, as the legitimate traffic’s send-
ing rate fluctuates due to TCP’s congestion control. The
attacker’s acceptance ratio is around 40% because the bot-
tleneck link bandwidth is 40% of the total traffic arriving at
the link. The legitimate traffic is seriously damaged during
the attack without the defense, while it is efficiently pro-
tected when the defense is present. For space reasons we
will only show the acceptance ratio for the following tests.

Attack starts |

Legitimate traffic
]
100 |
H
£ 80 |
)
B 60|
=
g 40 |
£ 20 |
0 1
o 20 40 60 &0 100 120 140 160
Interval (3g)
Attack starts Attack traffic
100 | \
i}
£ a0
=
F 604
o
8 40
o
]
Eiv]
") T
a 20 Ll 4] &0 100 120 140 160
Interval i2s)

Figure 6: Acceptance ratio during the balanced at-
tack

Attack atarts l Legitimate traffic
100 +

& w0
]
g B0
T
8 40
w
#2004

o

a 20 40 L)) 100 120 140 150
Intarval {35}
Attack starts l Attack traffic
100 1

H
£ an
o
E a0
[=3
2 a0
E
F 20

o 1

o 20 40 1] 80 100 120 140 160
Interval (3s)

Figure 7: Acceptance ratio during the balanced at-
tack without defense

6.2 Low-rate Attack

In this test each attacker sends at 80% of the legitimate
client’s nominal rate (19.2 Kbps), thus attempting to avoid
being identified as an aggressive sender. Our results, shown
in Figure 8, demonstrate that even when a large number of
attackers send at a low individual rate to create a denial

of service, our defense identifies these attackers via their
increased penalties, since their traffic does not exhibit con-
gestion response. The acceptance ratio graph resembles the
one in the balanced attack case. After the first 20 inter-
vals, all legitimate traffic reaches the victim. An attacker’s
acceptance ratio is quickly reduced to 10%. A lower ma-
licious client rate leads to penalties that take longer time
to increase, thus the attack interferes with the legitimate
traffic longer. An even lower-rate, more distributed attack
would inflict damage to legitimate traffic for a longer period
of time, but the defense will eventually converge and protect
legitimate traffic.

Attack starts | Legitimate traffic
L

100

80
60
40

% accepted bytes

20 .

] 20 40 60 80 100 120 140 160

Interval (3s)
Attack starts l Attack traffic
100 <‘
o
&0
=
2 60
B
g ao
a
£ 20
a T T T 1
a 20 40 B0 2o 100 120 140 160
Interval {33)

Figure 8: Acceptance ratio during the low-rate at-
tack

6.3 Pulsing Attack

We next test the pulsing attack in which the attacker
periodically sends heavy traffic (legitimate client’s nominal
rate=24 Kbps), and then sends low traffic (800 bps) to build
up the trust until the next pulse. The acceptance ratio is
shown in Figure 9. While the attackers’ credits increase dur-
ing low-rate periods, the defense quickly identifies attackers
as aggressive during high-rate periods and suppresses their
traffic. For the legitimate client, the acceptance ratio drops
at the onset of high-rate periods (labeled as “High” in the
graph) but then returns to 100% where it remains for the rest
of the period, and during low-rate periods. The attacker’s
acceptance ratio is high during low-rate periods because no
overload is created. During high-rate periods the acceptance
ratio quickly drops to about 5%, which is consistent with our
results for the balanced attack.

6.4 Binary Capabilities

We motivated our design of capabilities with multiple de-
grees of trust by arguing that binary capabilities cannot pro-
tect legitimate traffic during mutable attacks. We now sup-
port this claim by repeating the balanced attack experiment
with binary capabilities. We keep our calculation of credits
and penalties the same, but the client’s fair share of the re-
source is obtained by dividing the resource equally among
all active clients, regardless of their credit or penalty. Traffic
policing component accepts all traffic with the credit greater

High High High

Legitimate traffic

100 |

&)
B0
40

“h accaptad hytes

20

0 100 200 200 400 il

Lirme ()
High High High
Attack traffic
100
% 80
E L)
§ w
2
20
b1 T
[} 100 200 300 400 a00
time (s}

Figure 9: Acceptance ratio during the pulsing attack

or equal to MID/2. Figure 10 shows the acceptance ratio
for this experiment. While the attacker’s acceptance ratio
eventually drops to zero, the legitimate client’s traffic ex-
periences significant drops and its acceptance ratio exhibits
large variations, frequently reaching 0%. Comparing the
Figures 6 and 10, the protection offered to legitimate traf-
fic by binary capabilities is much worse than the protection
offered by our proposed defense. In the absence of a so-
phisticated traffic policing, the legitimate client receives the
same bandwidth share as the attacker, causing the client’s
credit to fluctuate between high and low credit values based
on its traffic variations in response to congestion. This leads
to large variations in the legitimate client’s acceptance ratio.

|
Aftack starts i Legitimate traffic I Attack ends
100 |

£ 80|
=
g 80 |
=%
8 a0 |
o
20 |

V]

0 50 100 150
time (s)
Altack starts l Altack traffic Altack ends
X
100

i ao
=
&
E [510)
=
3 2
o
F 20

o T T T T T T T

a 20 40 B &0 100 120 140 160 180
tirme {5}

Figure 10: Acceptance ratio during the balanced at-
tack with binary capabilities

Table 2 summarizes experiment results showing the per-
centage of legitimate traffic throughput during an attack
compared to the throughput without an attack. The results

show that our defense provides excellent protection to the
legitimate traffic, whose throughput is very close to 100%.

Experiment Throughput (%)
Balanced attack w defense 98.06
Balanced attack w/o defense 2.91
Low-rate attack w defense 98.69
Pulsing attack w defense 99.98
Balanced attack w binary cap. 85.96

Table 2: Legitimate traffic throughput during attack

7. CONCLUSIONS

We proposed several improvements to the original capa-
bility design that facilitate automatic ticket-granting and
improve security and cost of the defense. Our experiments
show that the proposed defense successfully handles sophis-
ticated attacks, offering a consistent good protection to le-
gitimate traffic and quickly identifying and penalizing attack
traffic. In our future work we plan to investigate human re-
sponse to low service quality, and improve our penalty calcu-
lation with models derived from this research. We also plan
to explore a dynamic setting of parameter values based on
the perceived attack severity, and to engage in larger-scale
experimentation to validate our proposed defense. Finally,
we plan to address remaining security issues related to use
of cryptography during ticket issue.

8. REFERENCES

[1] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet Denial of Service with Capabilities. In Proc. of
HotNets-11, 2004.

[2] M. Casado, A. Akella, P. Cao, N. Provos, and
S. Shenker. Cookies Along Trust-boundaries (CAT):
Accurate and Deployable Flood Protection. In Proc. of
2nd Conference on Steps To Reducing Unwanted Traffic
on the Internet, 2006.

[3] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information
Theory, 22(6):644-654, 1976.

[4] Honeynet Project and Research Alliance. Know your
enemy: Tracking botnets.
http://www.honeynet.org/papers/bots/.

[5] D.R. Simon, S. Agarwal, and D. A. Maltz. AS-Based
Accountability as a Cost-Effective DDoS Defense. In
Winter International Symposium on Information and
Communication Technologies, 2004.

[6] H. Wang, A. Bose, M.A. El-Gendy, and K. G. Shin. IP

Easy-pass: A Light-Weight Network-Edge Resource

Access Control. IEEE/ACM Transactions on

Networking, 13(6):1247-1260, 2005.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and

A. Joglekar. An integrated experimental environment

for distributed systems and networks. In Proc. of

OSDI, pages 255270, December 2002.

[8] A. Yaar, A. Perrig, and D. X. Song. SIFF: A Stateless
Internet Flow Filter to Mitigate DDoS Flooding
Attacks. In Proc. of IEEE Symposium on Security and
Privacy, 2004.

[9] X. Yang, D. Wetherall, and T. Anderson. A
DoS-limiting network architecture. In Proc. of ACM
SIGCOMM, pages 241-252, 2005.

[7

