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Abstract— Current evaluation datasets for face detection,
which is of great value in real-world applications, are still
somewhat out-of-date. We propose a new face detection dataset
MALF (short for Multi-Attribute Labelled Faces), which con-
tains 5,250 images collected from the Internet and ∼12,000 la-
belled faces. The MALF dataset highlights in two main features:
1) It is the largest dataset for evaluation of face detection in the
wild, and the annotation of multiple facial attributes makes it
possible for fine-grained performance analysis. 2) To reveal the
‘true’ performances of algorithms in practice, MALF adopts
an evaluation metric that puts stress on the recall rate at a
relatively low false alarm rate. Besides providing a large dataset
for face detection evaluation, this paper also collects more
than 20 state-of-the-art algorithms, both from academia and
industry, and conducts a fine-grained comparative evaluation
of these algorithms, which can be considered as a summary
of past advances made in face detection. The dataset and
up-to-date results of the evaluation can be found at http:
//www.cbsr.ia.ac.cn/faceevaluation/.

I. INTRODUCTION

Face detection plays an important role in face based image

analysis and is one of the fundamental problems in computer

vision. The performances of various face based applications,

from traditional face identification and verification to modern

face clustering, tagging and retrieval, rely on accurate and

efficient face detection. Popular detectors, such as Viola-

Jones detector [25] and its subsequences (e.g., vector boost-

ing [11]) have achieved satisfactory performance on early

datasets, such as CMU-MIT. However, as argued in modern

works [12], [29], the Viola-Jones based methods are still far

from prefect. Many new detection-related methods have been

proposed recently, such as DPM [6], CNN [8] and multiple

channel features [1], which have been proven or suggested

to be able to improve performance of face detection, such

as [27], [26], [20], [28]. Besides these academic researches,

face detection is also put great efforts to by commercial com-

panies, such as Google, Facebook and Face++. Among all

the above approaches, however, we do not know which one

is the best and how to improve them for real world scenarios.

Therefore, a well-designed benchmark is in urgent demand to

clear up the confusion and push forward the progress of face

detection. Unfortunately, we still lack an unbiased real world

face detection benchmark for the following three reasons.

The first is that current face detection benchmarks do

not support the fine-grained analysis of detection results,

which makes the quantitative exploration of causes and

the correlation between different types of errors difficult.

* indicates co-first authorship.

Current face detection benchmarks only have the rough

bounding box (or estimated fitting ellipse like FDDB [12])

annotations, and can only report an overall face detection

result on the whole test set. As we know, the poses, glasses,

expressions can influence the detection result considerably,

but the current face detection benchmarks cannot tell us

how much these influences are and which one is the more

important factor than another. Commonly, one algorithm may

have its advantage on some conditions and disadvantage on

others, thus roughly reporting an overall performance would

take the risk of ignoring the strong point of the algorithm.

The second is that current face detection benchmarks do

not reflect the ‘true’ real world. The most widely used face

detection benchmark in early years is the MIT+CMU test set.

The testing images are all of gray scale and collected in ten

years ago, and there exists a large domain gap with current

web images due to the technical progress in digital cameras.

Another widely used face detection benchmark is the FDDB

[12], which is collected from news photographs. However,

these faces tend to be salient in the image, and the pose tends

to be frontal. For more widely used consumer images, such as

the images from Flickr, Facebook and Google+, the faces can

be more diverse. Recently, a large scale face database named

AFLW [14] is released with detailed landmark annotations.

However, some of the faces in the database are not annotated,

making it less suitable to serve as a face detection benchmark

than as a training set.

The third is that current face detection benchmarks do

not report the ‘true’ state-of-the-art results. Current face

detection works often only compare the performance with

academic algorithms on MIT+CMU and FDDB. However,

as pointed in [31], there is a large gap between currently

available academic solutions and commercial systems (e.g.

Google Picasa) and online commercial API (e.g. Face++).

Comparisons with pure academic methods cannot guarantee

high quality in real world applications.

This paper addresses the above-mentioned problems by

making the following contributions:

1) We collect a large face dataset for face detection

evaluation. The database scale is currently the largest among

face detection test sets. We also annotate multiple attributes

along with bounding box of faces in the dataset. As far as

we know, it is the first time that such a large face dataset is

thoroughly labelled (Table I).

2) We propose a fine-grained evaluation methodology

based on multi-attribute annotations, by defining test-set-

of-interest with attribute labels. We give a straightforward
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example in the evaluation part of this paper by defining ‘easy’

sub-set, ‘moderate’ sub-set and ‘hard’ sub-set. The flexible

evaluation methodology is able to reflect the advantages

and disadvantages of the evaluated algorithms with regard

to diverse facial attributes, like pose, gender, resolution,

wearing glasses and so on.

3) We evaluate 21 state-of-the-art face detection algorithm-

s both from industry and academia. Some of them are submit-

ted by authors upon our request, some are implemented using

open source codes, and some results of commercial systems

are counted by person. We conduct fine-grained evaluation

on all these algorithms and provide analysis on the results.

Our thorough evaluation and analysis could give insights into

where we should focus our efforts for further improvements.

The remaining of this paper is organized as follows:

the next sub-section briefly introduces the related work in

evaluation dataset and methodologies. Section 2 describes

our dataset, including the data collection and annotation

guidelines as well as statistical properties. Section 3 explains

the fine-grained evaluation methodology. Evaluation and

performance analysis of the state-of-the-arts are shown in

Section 4. In the last section we conclude the paper.

A. Related Work

In this part we review some related and remarkable eval-

uation datasets, covering tasks of both object detection and

face detection.

The most influential challenge in this decade may be

the Pascal VOC Challenge [5]. The challenge consists of

classification, detection and segmentation. In detection task,

the dataset contains annotations of objects in 20 differ-

ent classes, while each annotation includes not only the

bounding box coordinates, but also the following attributes:

‘orientation’, ‘occluded’, ‘truncated’ and ‘difficult’. These

attributes are specified for selective training and ‘ignore’

flag during evaluation. In the competition, the challenge

organizers introduce a number of novel evaluation methods,

like Boostrapping AP and rank, and normalized precision for

cross-class comparison [4]. Recently, the ImageNet challenge

[22] largely extends Pascal VOC by incluing more categories

and more images. The Caltech Pedestrian Dataset [2] is

widely used for pedestrian detection. Considering the special

case of pedestrian detection in the vehicle view, Piotr care-

fully designs the guidelines in data collection and annotation

strategy. For example, he adopts per-image evaluation rather

than per-window evaluation, and labels both the visible and

whole extent of the person while the whole extent is used

for evaluation.

As for the face detection, the most frequently used eval-

uation datasets are AFW [31] and FDDB [12]. The AFW

dataset contains 205 images collected from Flickr with 468

labelled faces. Annotations include a rectangular bounding

box, 6 landmarks and the pose angles. The FDDB dataset

contains 2845 images with 5171 faces, while each face is

annotated with a pre-defined ellipse instead of bounding

box. Both the images database and annotations of these

two datasets are released and researchers can conduct the

TABLE I

COMPARISON OF TEST SETS FOR FACE DETECTION IN THE WILD

Dataset #Img #Face Property Annotation

CMU/MIT
testset[24], [21]

125 483
gray-scale

frontal
6 landmarks

CMU
profile [23]

208 441
gray-scale

frontal&profile
6/9 landmarks

AFW [31] 205 468
color

in the wild

rect. box
6 landmarks
view angle

FDDB [12] 2,846 5,171
gray&color
in the wild

bounding
ellipse

MALF 5,250 11,931
color

in the wild
square box
5 attributes

evaluation themselves. Performance are ranked according to

the plotted curves (Precision-Recall curve in AFW and ROC

curve in FDDB) on the whole test set.

[4] states that in the current multi-category object detection

evaluation setting, the diversity of state-of-the-art algorithms

is limited because a novel method may not beat a quite

mature conventional method in evaluation performance. This

problem also exists in face detection evaluation. Howev-

er, we argue that by adopting the fine-grained evaluation,

which could evaluate the attribute-specific performances of

algorithms, novel method may stand out in one or two

sub-set evaluations, which therefore testifies its novelty in

some certain aspects. [10] identifies different types of errors

occurred in object detection, which gives useful advice on

how to improve the performance. R. Benenson [20] points

out that specifically in face detection domain, the evaluation

is usually unfair due to different bounding box policies used

by different datasets and scale difference between dataset

annotation and detector output.

II. DATASET

MALF dataset contains in total 5,250 high-resolution

images from the Internet. The images are collected in the

following two steps: 1) About 2,000 images are manually

collected from Flickr, and around 30,000 images are col-

lected using the similar image search service provided by

Baidu Inc. to guarantee that most of them contain people.

2) All images are then manually examined by two persons

to pick out images that are included in the dataset. The

selection procedure follows the principle to guarantee large

diversity in face appearances. There are eventually 5,250

images included in the MALF dataset, containing in total

11,931 labelled faces in the wild. The dataset size is the

largest among currently available face detection evaluation

datasets. Among all 5,250 images, we randomly take out

250 images as example images. Algorithm designers can use

the annotations of example images to do transfer learning or

adjust the output bounding box style of their algorithm. The

rest 5,000 images are purely test images. Like AFW and

FDDB datasets, we don’t provide an individual training set,

as some algorithms require large amount of data, and some

even require landmark annotations.



Fig. 1. Example images and annotations in the dataset.

A. Multi-attribute Annotation

For all 5,250 images in the MALF dataset, the bounding

box of all recognizable faces as well as a boolean ‘ignore’

flag are first labelled. The bounding box is an axis-aligned

square in similar style to that in AFLW dataset. Specifically,

the bounding box tries to contain the eyebrow, the chin and

the cheek, while keeping the nose located approximately

at the box center (see Fig. 1 for an example). ‘Ignore’

flag is set to true if the face is very difficult to recognize

due to very large occlusion, blurring and other extreme

deformations, or the size of bounding box is below 20

(totally 838 faces, account for round 7%). In order to keep

annotations consistent, the bounding box is annotated by

two persons and examined by one, and the ‘ignore’ flag is

annotated by one person.

After the initial annotation step, for each face with false

‘ignore’ flag, we further annotate the following attributes:

gender (male, female, unknown), pose deformation level

of yaw, pitch and roll (small, medium, large), occluded

(true/false), wearingGlasses (true/false), exaggeratedExpres-

sion (true/flase). We don’t label specific pose angles due

to the large workload in landmark annotation and pose

estimation. Instead, we define three levels of pose defor-

mation and convert the pose annotation into a classification

problem. Each attribute is annotated by one of the two

persons and then examined by the other in order to keep

attribute definition consistent in the dataset.

B. Dataset Statistics

In this part we present the statistical properties of MALF

dataset and its annotations. See Fig. 1 for an example. In

terms of the image data, all collected images are RGB images

and in JPEG format. The average image size is 573 pixels

high and 638 pixels wide. Each image contains 2.27 faces in

average, with 46.97% of images contain one face, 43.41%

contain 2∼4 faces, 8.30% contain 5∼9 faces, and 1.31%

images contain more than 10 faces.

In terms of face annotations, distribution of each attribute

of face is shown in Fig. 2. As for the face scale, the mean

size of all faces is 83×83, and the median face size is 64×64

large. We choose the size of 60 and 90 to divide the scale

range into small, medium and large intervals. Note than faces

Fig. 2. Statistics of multiple attributes in the dataset.

smaller than 20×20 are always labelled as ‘ignore’ (account

for 5.88% of all faces).

III. EVALUATION METHODOLOGY

Our evaluation differs from other face detection eval-

uations in two main points. The first is the fine-grained

evaluation protocol, which is feasible thanks to the multi-

attribute annotations. The second is a stress on performance

at low false alarm rate by plotting curves in the log space of

FPPI (False Positive Per Image) rate.

We first describe our detection evaluation rules for clarifi-

cation (Algorithm 1). Similar to PASCAL VOC Challenge,

we first rank all detection results in descending order ac-

cording to their corresponding confidence scores. For each

detection, we find the ground-truth which shares the largest

IoU (Intersection over Union) ratio with the detection itself.

If it is found, and the IoU ratio is larger than a threshold

(which is 0.5 is our case), then we decide whether it is a true

positive or a false positive according to whether the found

ground-truth has been detected before. Note that ‘ignore’

face is an exception. Miss/correct/multiple detection of it

won’t be counted. This Image-based evaluation requires a

post processing of detection results in an image to remove

multiple detections of the same face. As we can see from

the algorithm, multiple detection of one face will increase the

FPPI but won’t change the True Positive Rate. We leave it to

the algorithm designers themselves and do not modify their

algorithms’ outputs. Performance is represented via ROC

curve by varying the confident score threshold from high

to low, with TPR (True Positive Rate) being the y axis and

FPPI (False Positive Per Image) in log scale being the x axis.

A. Fine-grained Evaluation

The additional annotation of facial attributes makes the

fine-grained evaluation of face detection possible. Theoret-

ically, we can report specific performance with regard to

gender, pose, resolution (size of faces), glasses, occlusion

and expression respectively. However, in practice, as some



Algorithm 1 Evaluation Rules

1: Rank Scores, Detections in score-descending order.

2: Set the ignore flag of gt in GTs whose attribute labels

don’t fit the sub-set definition as true.

3: for i = 1:length(Scores) do

4: Dets = Detections[1:i];

5: tp = 0; fp = 0;

6: Set detected flag in whole GTs as false;

7: for each BB det ∈ Dets do

8: [BB gt,IoU ]=findMaxOverlapGt(BB det,GTs);

9: if IoU > threshold then

10: if BB gt.ignore == false then

11: if BB gt.detected == true then

12: fp++;

13: else

14: tp++;

15: BB gt.detected = true;

16: end if

17: end if

18: else

19: fp++;

20: end if

21: end for

22: tpr[i] = tp / #(GTs with false ignore flag);

23: fppi[i] = fp / #Images;

24: end for

attribute labels are quite sparse and some are highly corre-

lated with one another (e.g. faces wearing sun glasses are

occluded), evaluations on attribute-specific sub-set may be

biased. Following the principles in another object detection

dataset, KITTI [7] benchmark, which defines three levels of

difficulty, we define ‘easy’ and ‘hard’ sub-sets with different

combinations of attribute labels. Concretely, ‘easy’ sub-set

contains faces larger than 60×60, without any large pose,

occluded or exaggerated expression; ‘hard’ sub-set contains

faces larger than 60×60, with one of the extreme conditions

(large pose, occluded or with exaggerated expression). Be-

sides these two pre-defined sub-sets, algorithm designers can

also conduct attribute-specific evaluations to further analyze

the performance using the multiple attribute annotations.

In evaluation of each sub-set, ground truths which don’t

belong to this sub-set are marked as ‘ignore’ temporarily,

therefore the evaluation can reflect the performance with

regard to only the considered attribute. Note that the fine-

grained evaluation is not constrained to one attribute only,

but also supports any combination of labelled attributes. This

means that, the fine-grained evaluation is highly customized

and could provide more thorough performance analysis than

before.

B. Evaluation Metric

In face detection evaluation, two curves are frequently

used, i.e., Precision-Recall curve and ROC curve, and two

numeric metrics are also widely employed, which are Av-

erage Precision value and Area Under Curve value. As a

rare-case problem, in real-world applications, what we care

about is how the algorithm performs (the recall rate) at a high

precision level (low false alarm). However, current face de-

tection evaluation curves and metrics lose the most valuable

information very much. Most of these metrics highlight high

recall rate with less attention to the precision. Following the

method used in [2], we plot the True Positive Rate - False

Positive Per Image curve in the log space of FPPI. FPPI is

an appropriate measurement of precision in per-image object

detection and the log scale stresses the performances at low

FPPI rates. For example, in video surveillance applications

where number of targets is large in each image, TPR at

10
0 FPPI may be suitable for algorithm evaluation; while in

handful device based applications, TPR at 10−2 FPPI would

be more appropriate. For performance comparison between

different algorithms, we also define a numeric metric like the

mean-miss rate defined in [2], which we call it mean-recall

rate. The mean-recall rate is calculated as the average true

positive rate at 9 evenly sampled points between 10
−2 FPPI

and 10
−1 FPPI in log space1. The higher this value is, the

better the performance is.

IV. EVALUATION OF THE STATE-OF-THE-ART

To make MALF a meaningful benchmark, we collect 21

face detection algorithms from academia and industry to be

evaluated. The specific methods we collect and comparative

performance results of them are presented in this section.

Analysis on the evaluation results are discussed as well.

A. Methods

21 face detectors, including 5 commercial systems, are

evaluated on the MALF dataset. As for commercial softwares

(Google Picasa, Apple iPhoto and Windows Photo Gallery),

we don’t have their specific bounding box results. Instead,

we manually count the true positives and false positives on

the whole test set. Therefore they only support evaluation

on whole test set, while don’t support the proposed fine-

grained evaluation2. As for Face++, we refer to its online

free API as v1, and refer to the Face++ internal version’s

results submitted by its authors as v2. As for the rest 16

academic algorithms, they are either submitted by their

authors, or implemented using open source codes and/or

models provided by the original authors. We also collect

training data information and implementation parameters for

an all-round description. All these detailed information of

the 21 algorithms, including authors, institution, codename

for the entry, are listed in Table II. For all evaluated algo-

rithms, there are several main approaches deserving notice.

Specifically, deformable part model is quite popular in object

detection, while ID 7 and 12 belong to this category. Viola-

Jones framework is a classic method and ID 9, 13, 14,

16, 17, 19 and 21 belong to this type. Channel features

1Note that if the algorithm outputs only bounding box results without
scores, the performance curve becomes a single point in the figure and the
mean-recall rate cannot be calculated.

2Google Picasa is an exception as we manually count its performance on
each fine-grained evaluation conducted in this paper for the sake of a strong
baseline in each evaluation.



ID CodeName Author(s) Institution(s) Training Data Source Parameters

1 iPhoto − Apple − iPhoto Version 9.6

2 FacePP v1 − Megvii − Online Free API
Request date:

2014.10.08

3 FacePP v2 − Megvii − Submission −

4 Picasa − Google − Google Picasa Version 3.7

5 Gallery − Microsoft − Windows Photo Gallery
Version

16.4.3528.331

6 ACF
B. Yang, J. Yan,

Z. Lei, S.Z. Li [28]
CBSR & NLPR,

Chinese Academy of Sciences
AFLW database Submission

multi scale feature,
6 views, imresize 3x

7 DPM

M. Mathias, R. Benenson
M. Pedersoli,

L. Van Gool [20]
iMinds & MPI Informatics AFLW, Pascal Face dataset Open source model

threshold = −0.5
imresize 2x

8 Exemplar
H. Li, Z. Lin, J. Brandt,

X. Shen, G. Hua [16]
Stevens Institute of Tech. &

Adobe Research
15, 832 face images

12, 732 non-face images
Submission −

9 VJ-hyb Y. Gavini VIT University − Submission
Viola-Jones based

hybrid detector

10 Headhunter

M. Mathias, R. Benenson
M. Pedersoli,

L. Van Gool [20]
iMinds & MPI Informatics AFLW, Pascal Face dataset

Open source software
Doppia

Headhunter model

11 ICF

M. Mathias, R. Benenson
M. Pedersoli,

L. Van Gool [20]
iMinds & MPI Informatics AFLW, Pascal Face dataset

Open source software
Doppia

Headhunter baseline
model

12 B·DAT

J. Deng, J. Yang,
D. Wang, S. Yan,

G. Liu, Q. Liu
NUIST

AFLW, additional data set
∼1 million faces

Submission

Improved DPM,
context, alignment,

imresize 2x

13 Pico

N. Markus, M. Frljak,
I. S. Pandzic, J. Ahlberg,

R. Forchheimer [19]
University of Zagreb ∼20k frontal face images

Submission
Codes available on GitHub

scale factor: 1.075,
stride factor: 0.05

14 NPD
S. Liao, A.K. Jain,

S.Z. Li [18]
CBSR & NLPR,

Chinese Academy of Sciences
FDDB Submission −

15 SPM

Ahmed EL-Barkouky,
Ahmed Shalaby, Ali Mahmoud,

Aly Farag [3]

CVIP Lab,
University of Louisville

Helen [15] & FDDB Submission −

16 SurfCas J. Li, T. Wang, Y. Zhang [17] Intel Labs China − Open source codes
model type = 1,

minsz = 8

17 SZU S. Yu Shenzhen University − Submission −

18 TSM X. Zhu, D. Ramanan [31]
University of California,

Irvine
Multi-PIE [9] Open source codes

face p146 small,
threshold = −2

19 VJ P. Viola, M.J. Jones [25]

Microsoft Research, Redmond
Mitsubishi Electric Research

Laboratory
−

Open source software
OpenCV

haarCascade models:
frontalface default &

profileface

20 W.S.Boost
Z. Kalal, J. Matasm,
K. Mikolajczyk [13]

University of Surrey
Czech Technical University

− Open source codes
models: frontal &

profile

21 MBLBP
L. Zhang, R. Chu,

S. Xiang, S.Z. Li [30]
CBSR & NLPR,

Chinese Academy of Sciences
− Submission −

TABLE II

DETAILED INFORMATION OF EVALUATED FACE DETECTION ALGORITHMS

is a new feature representation used to improve the Viola-

Jones framework, while ID 6, 10 and 11 use this approach.

ID 3 adopts the recently well-known Convolutional Neural

Network approach. Fig. 5 shows some detection results of

these three categories of algorithms.

B. Results and Analysis

We first show the evaluation results on the whole test set

(see Fig. 3). From the curve, we can see that among com-

mercial systems, FacePP v2 and Picasa achieve outstanding

performances with very high TPR at low FPPI. iPhoto shows

competitive results at very low FPPI (actually the number of

false positives of iPhoto is zero). FacePP v1 and Gallery get

relatively poor results. As for the academic algorithms, it is

hard to say which one performs better than another from the

curve. In terms of recall rate, the B-DAT owns a quite strong

edge over others. However, it gets poor performance at lower

FPPI. In terms of overall performance, the ACF and SZU get

top results.

The smallest face in MALF is 20×20, which is quite

challenging for many algorithms. Although many evaluated

algorithms have upscaled the test images, the scale factor still

affects the performance very much. Therefore, we conduct

a scale-related evaluations, with ‘small’ corresponds to size

smaller than 60×60 and ‘large’ corresponds to size larger

than 90×90. Seen from the curves in Fig. 3, in ‘small’ sub-

set, while performances of all algorithms drop a little, the

performance of DPM based methods (DPM and B-DAT)

degrades more compared to other approaches, like channel

features based methods. One possible explanation would be

that the feature representation used in DPM (usually HoG)

works relatively poor in low resolution scenarios, while the

channel features own the property of scale approximation

[1]. Nevertheless, in ‘large face’ subset, the situation changes

over. DPM based methods have a considerable performance

boost over channel features based methods. Considering the

difference between these two types of approaches, it could

be inferred that this time without the feature depressing

caused by low resolution, DPM which explicitly models

the structure constraints achieves a higher recall rate than

channel features based models which implicitly models the

structure information.

Here we conduct fine-grained evaluations on two defined

sub-sets, ‘easy’ and ‘hard’ (see Section III.A for definitions).



Fig. 3. Fine-grained evaluation on the whole test set, small faces sub-set and large faces sub-set.

Fig. 4. Fine-grained evaluation on ‘easy’ and ‘hard’ faces sub-sets.

Note than both sub-sets only take faces larger than 60×60

to remedy the side effects caused by small faces. From the

curves illustrated in Fig. 4, we can see that on the ‘easy’

sub-set, when the precision is low, i.e., FPPI larger than

10
−1, almost all algorithms achieve a recall rate over 80%,

some even over 95%, therefore it’s pointless in comparing

performances at a low level of precision on easy faces.

Instead, it should be more appropriate to measure the TPR

when the FPPI is smaller than 10
−2. Here ACF and SZU

perform well under such settings. When it comes to ‘hard’

sub-set, the performance diversity becomes much larger. By

observing the performances at high level of precision, for

example, when FPPI is lower than 10
−2, the best academic

algorithm achieves less than 60% TPR and it decreases

dramatically as precision level rises.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a new face detection dataset

MALF (short for Multi-Attribute Labelled Faces) with anno-

tations of multiple attributes. MALF features a fine-grained

evaluation methodology with a stress on algorithm perfor-

mance at high precision level. However, there are still some

problems in the current version of this evaluation dataset.

First is the imperfect annotations. As argued in [20], different

bounding box styles in different datasets makes it unfair to

directly matching algorithm outputs with the labelled ground-

truth, especially when the ground-truth contains background.

The attribute labels also have room for improvements as

currently most attributes are boolean. Second is the detection

evaluation criterion. The IoU overlap threshold 0.5 may be

too arbitrary and too loose for real-world applications, a

threshold of 0.7 may be more appropriate. These are the

directions in which we are moving forward.

In summary, with the fine-grained evaluation, we can

analyze the performance of the algorithm in different aspects

with regard to multiple attributes. By comparing perfor-

mances in varying precision levels, we can further observe

the advantages and disadvantages of the algorithm in various

scenarios. With these two components combined, MALF

could serve as a helpful face detection benchmark which

offers deep and all-round diagnosis and improvement advice

on evaluated algorithms.
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Fig. 5. Ground-truth (white) and detection results of ‘FacePP v2’ (red),
‘ACF’ (green) and ‘DPM’ (blue) on some test images. Faces without
bounding box of specific color are missed by the corresponding algorithm
(displayed at a score threshold of 10

−1 FPPI on the whole test set). Best
viewed in color on screen.
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