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ABSTRACT Fine-grained image classification aims at recognizing different subordinates in one basic-level

category, for example, distinguishing species of birds. Compared with basic-level classification, it has both

low inter-class and high intra-class variances. Therefore, utilization of discriminative parts is crucial for

fine-grained classification. In this paper, we propose a Gaussian mixture model, which fuses part features by

Gaussian mixture layer. More specifically, it first generates a set of part proposals by selective search. Then,

we extract image feature maps from mid-layers of convolutional neural networks. Feature maps and part

proposals are used for calculating part features via spatial pyramid pooling. Next, Gaussian mixture layer

treats part features as data points and uses several Gaussian components to model their distribution. It finds

clusters for input and generates output features based on combination of cluster center. Finally, the output

feature can represent the whole image and is used for classification. Training process of the model consists

of two loops. The outer loop is the optimization of the whole network, and the inner loop is about the

EM algorithm used in Gaussian mixture layer. Experiments demonstrate higher or similar performance on

four fine-grained data sets compared with the state-of-the-arts. More discussions on Gaussian mixture layer

are also provided.

INDEX TERMS Fine-grained image categorization, Gaussian mixture model, convolutional neural network.

I. INTRODUCTION

Fine-grained image classification focuses on recognizing

similar subordinates in the same basic-level category. It has

promising applications in species identification, vehicle mon-

itoring and online shopping. People can easily cope with

traditional image classification, such as classifying dogs, cats

and bicycles in the ImageNet challenge dataset [1]. However,

in fine-grained tasks like bird species classification, different

subcategories have almost the same global appearances, and

their differences mainly exist in local and subtle areas. Such

low inter-class variances make it difficult to distinguish hun-

dreds of subordinates even for human beings. At the same

time, intra-class variances are large and diversified. Different

poses, views and illumination conditions in one class make

the task further challenging.

Many fine-grained datasets, such as CUB-200-2011 [2],

Stanford Cars [3], FGVC-Aircraft [4] and Stanford Dogs [5]

(shown in Figure 1), have been collected for research. With

the rapid development of deep learning [6], fine-grained clas-

sification have made great progress [7]–[11] in recent years.

As other computer vision problems, they achieve significant

performance boosts compared with hand-crafted features.

Convolutional neural networks [12] can mine inherent pat-

terns of data and learn more effective deep convolutional

features for fine-grained classification. Though CNN is pow-

erful in feature representation, it usually lacks modelling of

semantic object parts in mid-layers [13]. Therefore, many

models add effective modifications on convolutional net-

works, including localization modules and feature encoding

methods.

With local and subtle variances, different subcategories are

often distinguished by parts, such as color of eyes, texture

of feathers and shape of beaks for birds. As a result, using

these discriminative parts, instead of similar parts, is crucial

for fine-grained classification. The localization of discrimina-

tive parts becomes a core problem. Some methods [14]–[16]

directly use pre-annotated part locations, which achieves

mentionable performance. However, it is hard to collect part

annotations for every dataset, and human-defined locations

are not necessarily suitable for computers.
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FIGURE 1. Illustration of four fine-grained image datasets, including
CUB-200-2011 [2], Stanford Cars [3], FGVC-Aircraft [4] and Stanford
Dogs [5]. (a) CUB-200-2011 (bird species. (b) Stanford Cars (car models).
(c) FGVC-Aircraft (aircraft variants). (d) Stanford Dogs (dog breeds).

Therefore, we introduce an unsupervised mechanism for

discriminative part discovery in fine-grained image classi-

fication. Using image-level labels only, we design a Gaus-

sian mixture network (GMNet) equipped with a proposed

Gaussian mixture layer. In GMNet, image parts are selected

iteratively in the Gaussian mixture layer. Then, they are

projected back to convolutional feature maps and jointly

optimized with other model parameters. In detail, we first

generate part proposals for input images. These proposals

might contain discriminative and non-discriminative parts as

well. To compare part features and select informative ones,

fixed-length features are extracted for image parts. We use

convolutional neural networks (e.g. VGG16, VGG19 [17])

as feature extractors, and operate on their high layers

(e.g. layer relu5 3 of VGG16). It is because high-level

features are thought to be more representative and class-

specific [18]. Then, part features are viewed as a set of data

points and feed into the Gaussian mixture layer.

Gaussian mixture layer is inspired by the widely used

Gaussianmixturemodel [19], [20], which can fit theoretically

any distribution using a number of Gaussian distributions.

Different Gaussian components learn different views of the

input data. The mean value of a Gaussian component is

regarded as a clustering center. Therefore, we use mean val-

ues of Gaussian components as representatives of part fea-

tures, and these representatives can be weighted and summed

to be one feature. In training, the clustering finding problem

can be solved by Expectation Maximization algorithm [21].

With Gaussian mixture layer, part features are fused, in

a discriminative way, to form a final feature, which can

represent the whole image. As for following classification,

we further add a softmax layer to give prediction for different

subordinates.

It is interesting to compare our GMNet with other dis-

criminative part finding methods. The two-level attention

model [22] uses spectral clustering to find groups in mid-

level CNN filters according to their interested parts. In stead

of using filters as part detectors, our model directly cluster

part features, which can be incorporated into the forward-

backward training process and fit data-dependent distribu-

tions accordingly. Another model [23] also selects useful

parts by clustering, and part proposals assigned to important

clusters are chosen. However, it is based on raw images, and

thus susceptible to illumination, view and distortion. In com-

parison, GMNet employs high-level convolutional features of

parts, which keeps essential characteristics and remits effects

of other factors.

The contributions of this paper include: 1) we design a

straightforward and effective framework named Gaussian

mixture network. It extracts part features and fuses them for

fine-grained image classification. The model does not need

bounding box or part annotation, and it can be trained in

a jointly optimized way. 2) we propose a Gaussian mix-

ture layer, which aggregates key information from a set

of part features. It can be inserted as a module of feature

fusion, bringing a data-driven method compared with com-

monly used concatenation and summation. 3) we conduct

numerous experiments on fine-grained datasets, including

CUB-200-2011, Stanford Cars, FGVC-Aircraft and Stanford

Dogs. The performance is improved by a significant margin

compared with the state-of-the-art. We also give compre-

hensive analyses of the proposed GMNet and the Gaussian

mixture layer.

The rest of the paper is organized as follows: Section II

gives brief reviews of fine-grained image classification and

Gaussian mixture model. The main model is presented in

Section III in detail. Section IV presents related experi-

ments and gives analyses. At last, we conclude the paper

in Section V.

II. RELATED WORK

Our work is mainly related to two lines of research:

fine-grained image classification and clustering methods.

We review recent works in the literature in this section.

A. FINE-GRAINED IMAGE CLASSIFICATION

Fine-grained image classification is closely related to generic

image classification. Traditionally, image classification is

dominated by delicate hand-crafted features [24]–[28], e.g.,

SIFT, LBP and HOG. Early works [29]–[32] in fine-grained

classification also use these traditional feature descriptors.

However, design of descriptors are time-consuming and

performance of them are unsatisfactory. In recent years,

convolutional neural networks (CNN) [12], [17], [33] have

revolutionized the field of computer vision. It performs
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remarkably good in classification and is supposed to be able

to extract much more powerful representations than tradi-

tional features. Most recent works are based on CNN. There-

fore, fine-grained image classification also moves to the era

of deep learning.

Reference [15] is one of the early works based on deep

learning. It follows the routine of R-CNN [34] to gen-

erate semantic part prediction with geometric constraints

and classify images using pose-normalized representation.

It shows that better localization of parts does lead to further

improvement of classification. Reference [14] trains different

networks for different kinds of parts, for example, heads

and bodies of birds. Features of them are concatenated to

form one long feature, followed by a classifier. Besides,

the location information comes from official annotation

of CUB-200-2011, so it is not applicable for other datasets

without part annotation. Reference [16] also concatenates

the image feature and its part features, but it presents an

extra localization network for generation of object parts.

Reference [13] treats fine-grained classification as object

detection. It detects semantic object parts and combines them

for recognition. Nevertheless, it is also dependent on extra

annotation.

The intuition of [22] is to find foreground object and parts

for discriminative feature extraction. It integrates bottom-

up attention and object-level attention and part-level atten-

tion at the same time. Object-level FilterNet is used to

filter out background patches, while part-level DomainNet

is employed as semantic part selector. Spectral clustering is

used to find specific detectors from filters. Reference [23]

also chooses a weakly-supervised way. It generates multi-

scale part proposals at first. Then, clustering algorithm is used

to find important clusters and select important parts. Final

image representation is computed via Fisher Vector [35].

There are also many other models based on attention

mechanism or higher order representation in fine-grained

classification. Reference [36] progressively learns coarse to

fine region attention by its attention proposal sub-network.

It trains a feature learning network for each scale, and features

generated by different scales of images are concatenated for

final prediction. Reference [37] generates multiple part atten-

tions from feature channels. Different part features are also

concatenated into a fully-connected fusion layer. LSTM [38]

can also used to optimize positions of discriminative candi-

date parts in [10] and [39]. Besides attention models, higher

order representation learning is also explored. Reference [40]

produces second-order bilinear features through pairwise

feature interactions and pooling. Reference [41] general-

izes average pooling and bilinear pooling to the α-pooling,

which allows for modification of pooling strategy.

Reference [7] and [42] further expand second-order pooling

to higher-order pooling by kernel fusion.

B. CLUSTERING METHODS

Clustering is a kind of unsupervised learning method, which

groups a set of data points to ensure that data points in

one cluster are more similar than those in other clusters.

K-means [43] is an iterative clustering algorithm that tends

to find local maxima in each iteration. It is often used

in the computer vision literature, such as image classifica-

tion [44], object detection [45] and image segmentation [46].

In fine-grained classification, [47] proposes a hierarchical

part matching model and uses K-means to training the code-

book. Reference [48] employs K-means to cluster simi-

lar classes and learns different networks for each subsets.

Reference [49] uses K-means to cluster local descriptors and

generate visual dictionary. Encoded feature vectors are clas-

sified by a SVM. Though K-means is very fast and effective,

it suffers from naive use of mean value for the cluster center.

For example, it cannot handle the situationwheremean values

of clusters are close to each other.

Gaussian mixture model [19] assumes that data points are

Gaussian distributed, which is more flexible than K-means’

assumption of being circular. Besides, it makes soft assign-

ments instead of hard clustering that assigns each data point

to a cluster center. It is also widely used for clustering in

computer vision. Reference [50] uses a Gaussian mixture

model to model distribution of features, while [11] uses

it for Fisher Vectors. Based on Gaussian mixture model,

[51] and [52] design a foreground color model for

co-segmentation, which follows a graph-cut approach.

III. METHODOLOGY

In this section, we first introduce the pipeline of the whole

model named GMNet. Then, we focus on the proposed Gaus-

sian mixture layer. The details of model training are clarified

in the end.

A. THE PIPELINE

In fine-grained image classification, parts that are benefi-

cial for classification exist in local and subtle areas. Small

visual differences are easily overwhelmed by other factors

like poses, views and illumination. Therefore, to fully utilize

discriminative object parts for recognition, we propose the

Gaussian mixture model (GMNet). At the beginning, we gen-

erate possible discriminative regions by selective search [53]

to alleviate the negative impacts of backgrounds of images.

After that, we treat a convolutional neural network as a feature

extractor to extract deep features. For the benefit of efficiency,

we extract image feature for a whole image, and then use

spatial pyramid pooling [54], [55] to calculate features of

parts. In the end, part features of the same image are input into

the Gaussian mixture layer, which models the distribution of

features and generates a representative feature of them. The

architecture of the model is shown in Figure 2, and the details

are as follows.

For the generation of possible discriminative regions, some

methods [14]–[16] directly use provided part annotations.

However, we tend to use image labels only. Selective search

is an unsupervised and bottom-up candidate part generation

algorithm. It groups pixels by segmentation and generates

regions that might contain objects. Let X denote a input
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FIGURE 2. The architecture of Gaussian mixture network (GMNet). It aims to make better use of discriminative parts for fine-grained image classification.
First, a backbone convolutional neural network, including several convolution, Relu and pooling layers, is used to extract image features. Then,
we generate part proposals by Selective Window, and use SPP layer to extract part features from the image feature. At last, the Gaussian
mixture layer fuses part features to form a representative final feature for classification.

image, SSW outputs a set of part proposals P = {Pi}
N
i=1,

where N is the number of image parts. In another view, it is

also a kind of data augmentation, which provides multiple

scales and views of the original image. Expansion of training

data is beneficial for the optimization of convolutional neural

networks.

Convolution neural network (CNN) is employed to extract

deep features from images. It often consists of multiple

stacked layers, for example, convolution layers, Relu lay-

ers and pooling layers. Commonly used networks include

AlexNet [12], VGG [17] and ResNet [56]. Generally, fine-

grained datasets often have several hundred subordinates, but

each subordinate only has dozens of training images. Due

to the large parameters of CNN, direct training might lead

to over-fitting. As a result, we use networks that are pre-

trained on the ImageNet challenge dataset. Based on trained

parameters, we go on fine-tuning networks to adapt to the

special fields of fine-grained data. To gain features with nec-

essary spatial information, we remove rear fully-connected

layer and extract features from mid-level layers, e.g., relu5 3

of VGG16. Let f denote the process of feature extraction,

we can use f (X ) to represent the image feature of X .

Given part proposals and the original image feature, we can

directly obtain part feature by spatial pyramid pooling (SPP).

SPP divides a part’s corresponding area on image feature map

into several spatial bins and pools them to form a fixed-length

representation of the part. It saves numerous repeated calcu-

lation compared with feeding image parts to CNN separately,

because many parts are overlapped. The part features f (X;P)

is represented as follows:

f (X;P) = SPP(f (X ),P) (1)

where f (X ) is the original image feature, and P is the part

proposals. Part features are feed into the Gaussian mixture

layer, which is detailed in the next subsection.

B. GAUSSIAN MIXTURE LAYER

We propose a Gaussian mixture layer for feature fusion.

In this layer, the input is the part features while the output is

the fused feature. The kernel of the layer is to train a Gaussian

FIGURE 3. The illustration of the proposed Gaussian mixture layer. The
input is a set of part features extracted from one image, and the output is
the final feature for the whole image. The Gaussian mixture model is
used to model part features’ distribution and fuse them as well.

mixture model for input data points. It can fit the distribution

of input and extract key information. The process is illustrated

in Figure 3.

Gaussian mixture model is a probability-based clustering

method, which uses linear combination of multiple Gaus-

sian distribution functions to fit multimodal distributions.

Given multi-dimensional random variable x, Gaussian mix-

ture model is as follows:

p(x) =

K
∑

i=1

φiN (x | µi, 6i) (2)

K
∑

i=1

φi = 1 (3)

where K is the number of components and φi is the mixture

component weight for the i-th component. There is a con-

straint that
∑K

i=1 φi = 1, so that the total probability distri-

bution is normalized. The multivariate Gaussian distribution

N (x | µi, 6i) is the model’s i-th component, which is defined

as follows:

N (x | µi, 6i) =
exp

(

−
(x−µi)

T6i
−1(x−µi)

2

)

√

(2π )K |6i|
(4)

where µi and 6i are the mean vector and covariance matrix

respectively. Treating generated part features as a set of
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Algorithm 1 The Training of the Gaussian Mixture Network

Using Back Propagation

Require: Training image: X ; part proposals: P = {Pi}
N
i=1;

image label: y

Ensure: Network parameters:W ; final image feature: z

1: InitializeW with ImageNet pre-trained parameters

2: repeat

3: procedure Forward

4: Calculate image feature f (X )

5: ⊲ f denotes the process of feature extraction

6: Calculate part feature f (X;P)← SPP(f (X ),P)

7: ⊲ SPP denotes spatial pyramid pooling

8: Generate final feature z← GML(f (X;P))

9: ⊲ GML denotes Gaussian mixture layer

10: Compute loss L ← CE(softmax(z), y)

11: ⊲ CE denotes the cross-entropy loss

12: end procedure

13: procedure Backward

14: Update W ← W − η ∂L
∂W

15: ⊲ η is the learning rate

16: end procedure

17: until Learning converges

data points, we use the Gaussian mixture model to model

their distribution. With the training of convolutional neural

network, part features are supposed to reflect substantive

characteristics of their original image parts. Though different

parts come from different local regions, parts from neigh-

bouring regions exhibit semantic relevance and tend to be

more similar. Therefore, we cluster similar part features and

use Gaussian mixture model to find different clusters’ center,

which can represent the surrounding features.

Further, to fuse different clusters, we can refer to the mix-

ture component weight φi, which reflects the importance of

the corresponding Gaussian distribution in the whole model.

The final feature is defined as the linear combination of the

mean vector of each cluster center. Let z denote the final

output feature, it is calculated as follows:

z =

K
∑

i=1

φiµi (5)

z is an overall representation of the image. Therefore,

we add a softmax layer and a cross-entropy loss after the

Gaussian mixture layer. The image labels are used to train

the whole model.

C. MODEL TRAINING

For the GMNet equipped with Gaussian mixture layer,

the training process includes two loops. The outer loop is the

forward-backward propagation of the GMNet, and the inner

loop is inside the Gaussian mixture layer. The optimization

of the Gaussian mixture layer is conducted in every forward

step of the whole network’s training. For a set of part features

Algorithm 2 Training of the Gaussian Mixture Layer. x =

{xi}
N
i=1 (for Clarity, We Use x to Represent Part Features

f (X;P)) Is a Set of Input Data Points, and z Is the Generated

Final Image Feature. N Is the Number of Part Proposals,

While K Is the Number of Gaussian Components. φk , µk and

6k Are the k-th Mixture Component’s Weight, Mean Vector

and Covariance Matrix Respectively

1: procedure EM algorithm(x)

2: Initialize γi,k ←
1
K

3: for T iterations do

4: φk , µk , 6k ← M − STEP(γi,k , x)

5: γi,k ← E − STEP(φ, µ, 6, x)

6: end for

7: z =
∑K

i=1 φiµi

8: return z;

9: end procedure

1: procedureM − STEP(γi,k , x)

2: ∀k : φk ←
1
N

∑N
i=1 γi,k

3: ∀k : µk ←

∑N
i=1 γikxi

∑N
i=1 γik

4: ∀k : 6k ←

∑N
i=1 γik (xi−µk )

2

∑N
i=1 γik

5: return φk , µk , 6k

6: end procedure

1: procedure E − STEP(φ, µ, 6, x)

2: ∀i, k : γi,k ←
φkN (xi | µk ,6k )

∑K
j=1 φjN (xi | µj,6j)

3: return γi,k
4: end procedure

from one image, we train the Gaussian mixture layer to fuse

them and output a representative feature for the image.

In the forward propagation of GMNet, we follow the

pipeline described in subsection III-A. The network maps

the input (training image X and part proposals P) into a

final image feature z through layer-by-layer propagation.

We use the cross-entropy loss function to decide the optimiza-

tion direction. In backward propagation, network parameters,

including all weights and biases in the backbone network, are

optimized using stochastic gradient descent with momentum.

The whole procedure is described in Algorithm 1.

As for Gaussian mixture layer, it is usually analytically

impossible to find maximum likelihood solution through dif-

ferentiating the log likelihood. so we choose the expectation-

maximization algorithm (EM algorithm) to estimate the

parameters of the Gaussian mixture model. It enables that

the maximum likelihood strictly increases during iterations.

Therefore, the algorithm can approach a saddle point or a

local minimum during optimization. The EM algorithm con-

sists of two repeatedly iterative steps: E-step and M-step.

Given the parameters mixture component weight φk , mean

vector µk and covariance matrix σk , the E-step calculates the

expectation of component assignments γi,k of data points x.

The M-step updates the parameters φk , µk and σk by max-

imizing the expectations given γi,k . We run EM algorithm
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for several iterations until parameters have been finalized

in Gaussian mixture layer. The detailed algorithm is shown

in Algorithm 2.

Particularly, the Gaussian mixture layer’s optimization is

independent on the whole model’s, but it still can propagate

gradient from its next layer to its previous layer. The whole

network is trained in a jointly optimized way. When training

is done, we compute the final values of φk , µk , σk and γi,k .

In the forward propagation of the Gaussian mixture layer,

we have:

z =

K
∑

k=1

φkµk

=

K
∑

k=1

(
φk

∑N
i=1 γik

N
∑

i=1

γikxi) (6)

In the back propagation of the layer, the gradient is calcu-

lated as follows:

∂L

∂xi
=

∂L

∂z

∂z

∂xi

=
∂L

∂z

K
∑

k=1

(
φk

∑N
i=1 γik

γik ) (7)

IV. EXPERIMENT

To prove the effectiveness of our GMNet, as well as gain

more insights from the model, we conduct comprehensive

experiments in this section. The results and analyses are given

as follows.

A. DATA PREPARATION AND EXPERIMENTAL SETTING

We adopt four widely-used fine-grained image dataset

for experiments, including CUB-200-2011 [2], Stanford

Cars [3], FGVC-Aircraft [4] and Stanford Dogs [5].

• CUB-200-2011 It is one of the most popular dataset for

fine-grained image classification. It has 11,788 images

from 200 bird subordinates. 5,994 images are selected

for training, while the rest 5,794 images for testing.

Approximately, 30 images are used in training for each

subordinate, and 11∼30 for testing. In addition, it pro-

vides the most detailed annotations among datasets,

including a subordinate label, a bounding box, 15 part

locations and 312 binary attributes for each image.

• Stanford Cars It is a collection of car models, which

contains 16,185 images of 196 subordinates. 8,144 and

8,041 images are selected as training set and testing

set respectively. Each subordinates has 24∼68 training

images and 24∼68 testing images. Labels at the level of

Make, Model and Year, along with a bounding box, are

provided.

• FGVC-Aircraft It contains 6,667 images for training

and 3,333 images for testing. In total 100 aircraft model

variants are collected, and each variant has 100 images

(about 67 images for training and 33 for testing). Images

are annotatedwithModel, Variant, Family andManufac-

turer. A tight bounding box is also provided.

• Stanford Dogs It has 20,580 images of 120 dog breeds.

It is divided as follows: 12,000 images for training and

8,580 images for testing. Each breed has 100 training

images and 48∼152 testing images. Class labels and

bounding boxes are annotated.

In the experiments, to avoid over-fitting, we adopt two data

augmentation techniques for training set: five-scale image

resizing (resize the short sides of images to be 250, 350,

450, 550 and 650 randomly while keeping aspect ratios) and

horizontal image flip. We use default parameters in selective

search method for part proposal generation, and 500 parts

are collected. For fair comparison, we choose VGG16 and

VGG19 as GMNet’s backbone networks, whose parameters

have been pre-trained on the ImageNet challenge dataset.

Image features are extracted from relu5 3 (or relu5 4 for

VGG19), and layers after that are removed. Next, a 7×7 max

pooling SPP layer is added. It extracts 7×7×512 features for

each parts. Two fully-connected layers (4096 channels and

200 channels respectively) are used to reduce part features’

dimensions. After that, we input these features into the Gaus-

sian mixture layer, which performs well with 10 Gaussian

components across different datasets. Last, a fully-connected

layer and a softmax layer are attached for training and

prediction.

In training, learning rate is initialized to be 1e-4 and

divided by 10 every 10 epochs. Weight decay and momen-

tum are 5e-4 and 0.9 respectively. For the convenience of

implementation, batch size is set to 1. The stochastic gradient

descent with momentum is used to optimize the loss function.

20 epochs are enough for a good convergence. As for the

Gaussianmixture layer, it reaches a stable state in abut 10 iter-

ations. All the experiments are implemented by Pytorch [57]

and tested on a computer with Intel i7-3930KCPU, 64Gmain

memory, and a Nvidia Titan X GPU. In testing, the short

sides of images are scaled to be 650. The accuracy (the ratio

between the number of correctly classified images and the

number of testing images) is used to evaluate the classifica-

tion performance.

B. COMPARISONS WITH STATE-OF-THE-ART METHODS

This subsection demonstrates the classification results on

four fine-grained datasets. Overall, GMNet achieves bet-

ter or comparable results across these datasets. Table 1 shows

the comparison between our GMNet and previous methods

on CUB-200-2011 [2]. The performance of different methods

are mainly evaluate by the accuracy, and the dependences

on bounding box or part annotation are also given in the

table. Pose-normalized CNN [14] designs pose normalization

schemes for deep convolutional features, which outperforms

traditional features by a large margin. Part R-CNN [15]

and Part-alignment CNN [51] are based on image parts.

They generates pose-normalized representations by geomet-

ric constraints or co-segmentation. Part-stacked CNN [16]

stacks image features and part features for classification,

while Multi-granularity CNN [58] stacks image features

from multi-granularity descriptors. Our GMNet is also based
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TABLE 1. Comparison of results on CUB-200-2011 [2].

on image parts, but we find patterns from part features

instead of concatenating them by rote. SPDA-CNN [13] and

Mask-CNN [59] focus on semantic object parts like head and

tail of birds. They resort to extra annotations like bounding

box and part annotation in the training process. In contrast,

GMNet only need subordinate labels and performs even

better than those requiring extra information. As baselines,

we fine-tuning VGG16 and VGG19 [17] on this dataset, with

the last fully-connected layer modified only. GMNet sur-

passes these two baselines by large margins (12.4% and 8.5%

respectively), which prove the effectiveness of our frame-

work. Two-level Attention CNN [22] fuses object-level and

part-level attention for classification. It also has an unsuper-

vised module named part detector, which uses spectral clus-

tering to find groups in parts. Compared with the multi-stage

training process of the Two-level Attention CNN, we benefit

from the end-to-end framework of GMNet, which can be

optimized in a jointly way. Also, GMNet performs much

better (more than 16%) than the network. PDFS [11] gen-

erates candidate patches like GMNet, but it uses patches to

train deep filters. In comparison, GMNet directly uses these

patches for feature extraction and fusion, which demonstrates

better accuracies than PDFS. The Saliency-guidedmodel [60]

adds a saliency extraction network on the basis of

faster R-CNN, it achieves 85.1% with the testing speed

of 10.1 frames per second. With similar speed, GMNet

outperforms the Saliency-guided model by a margin of 1.2%.

TABLE 2. Comparison of results on Stanford Cars [3].

Similar to the Two-level Attention CNN [22], OPAM [61]

also combines two level attentions. Spatial constraints,

saliency extraction and part alignment are designed to achieve

better results. Two recent models are RACNN [36] and

MACNN [37]. Both of them are attention models, which take

advantage of feature map for discriminative part localization.

Though they achieve comparable results with GMNet, they

suffer from complex training strategies and combination of

multiple models.

As illustrated in Table 2, GMNet achieves great results on

Stanford Cars [3]. FCAN [62] designs attention networks for

part attention, which finds important regions and crops them

for later classification. The mechanism is a kind of ’hard’ dis-

criminative feature selection, which discards the rest regions.

In contrast, generated parts in GMNet nearly cover all regions

of images, and the Gaussian mixture layer can fuse different

part features in a ’soft’ way. MDTP [65] chooses triplet min-

ing to train mid-level representations, while Part-alignment

CNN [51] generate parts with co-segmentation and align-

ment. Nevertheless, they are all inferior to GMNet in classi-

fication performance. Compared with baselines VGG16 and

VGG19 [17], GMNet still boosts the accuracies by 7.9% and

8.6%, achieving 91.7% and 93.5% respectively. The GMNet

surpasses OPAM [61] with a gain of 1.3%, and it also per-

forms better than both RACNN [36] and MACNN [37].

The results on FGVC-Aircraft [4] are shown in Table 3.

The GMNet (VGG19) outperforms those methods with

bounding box, including Multi-granularity CNN [58] and

MDTP [65], by at least 2.1%. Bilinear CNN [40] is one

of the pioneering works in higher order representation.

It achieves 84.1% on this dataset. Compared with baselines

VGG16 and VGG19 [17], GMNet improves the performance

to 88.1% and 90.5% respectively. Besides, RACNN [36] and

MACNN [37] report 88.2% and 89.9% as their best results,

which are slightly lower than ours.

Table 4 demonstrates the classification results on Stan-

ford Dogs [5]. AlignmentModel [66] is one of the early
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TABLE 3. Comparison of results on FGVC-Aircraft [4].

TABLE 4. Comparison of results on Stanford Dogs [5].

works in this field. It extracts traditional features for

different parts of image and introduces both supervised

and unsupervised alignments to the object. It only gets

a 50.1% accuracy on this dataset, which demonstrates that

the feature extraction process is crucial for fine-grained clas-

sification. NAC [64] designs an unsupervised part model dis-

coverymethod by finding constellations of neural activations.

By selecting a few parts for classification, it obtains 68.6%

accuracy. DVAN [39] uses attentional LSTM to predict atten-

tion regions from feature maps, improving accuracy from

the baseline 76.7% to 81.5%. On this dataset, GMNet also

outperforms all the methods, reaching 88.1% accuracy.

GMNet is also competitive in the aspect of speed and

memory usage. For training speed, it runs at about 5.3 images

per second on with a Nvidia Titan X GPU. Generally,

the training time of different datasets range from 8 hours to

17 hours. In testing, it achieves 10.0 frames per second, which

is much faster than RACNN and MACNN (1 and 5.2 frames

per second respectively). For memory usage, we take input

images with random scaling. Therefore, GPU usage fluctu-

ates between 4.2 GB and 11.8 GB, which is acceptable for

most GPU devices.

C. THE EFFECT OF SUPER-PARAMETERS AND DATA

AUGMENTATION

In the proposed GMNet, there are some parameters need to

be chosen ahead of time. To measure the impacts of these

super-parameters on performance, we conduct various exper-

iments on different datasets using VGG19 as the backbone.

In the investigation of one super-parameter, other settings are

kept the same in experiments.

In part generation, we use selective search algorithm

to generate abundant parts with high object confidence.

As the authors recommend, most settings are set to default.

In GMNet, we take part features as input, and the num-

ber of part proposals is exactly the number of input data

points for the Gaussian mixture layer. Figure 4 (a) shows

the effect of the number of part proposals N . When N is

small, part proposals do not contain enough information.

Therefore, the performance is not satisfactory. When N rises

from 100 to 400, the accuracy increases as well. For large

N (N > 400), the increase of N does not lead to further

performance. It is because enough parts have nearly covered

all discriminative regions, and more parts will not bring more

useful information. WhenN continues to rise, there is a slight

drop because there are many data points for the Gaussian

mixture layer to model. Besides, more part proposals lead

to more computation time and memory usage. We choose

N = 500 for all datasets.

In the Gaussian mixture layer, we use combination of

several Gaussian components to model the distribution of

part features. As a kind of clustering method, we have to

determine the number of cluster center, that is, the number

of components K . Theoretically, too few components cannot

describe the distribution, which is hard for the model to

converge to a good state. However, increasing K will always

reduce the error of clustering. Too many components cannot

grasp the main characteristics of the distribution and give

a good compression of the input. As can be seen from the

Figure 4 (b), when K < 9, the accuracies keep rising with

the increase of K . When K > 12, increase of K instead

makes the accuracies drop. K between 9 and 12 performs

best across different datasets, so K is set to be 10 in rest

experiments.

The training of the Gaussian mixture layer is a relatively

independent inner loop. The EM algorithm consists of two

repeatedly iterative processes: E-step and M-step. Generally,

after initialization, we set a fixed number of iterations T

in training. Figure 4 (c) indicates the impact of number of

iterations T on final results. Clearly, when T is smaller than 9,

the accuracies keep rising, which corresponds to the conver-

gence of the model. When T is larger than 9, the accuracies

remain stable basically. It demonstrates that the algorithm has

reached a good convergence. As a result, we set T = 10 for

other experiments.
Data augmentation is widely used in the deep learning

literature. We randomly rescale and flip input images in the

training process. It provides multi-scale and multi-view train-

ing images for the network, which can relieve the problem

of overfitting and make the model more robust. Table 5

shows the results on different datasets with or without data

augmentation. The use of data augmentation can boost the

accuracies by at least 0.8%. Also, such data augmentation
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FIGURE 4. Effects of different super-parameters in GMNet. (a) shows the effect of number of part proposals N on accuracy, (b) demonstrates the
impact of the number of Gaussian components K , and (c) presents the effect of number of iterations T on performance.

TABLE 5. Performance of GMNet with or without data augmentation.

TABLE 6. Performance of different feature fusion methods.

is pretty efficient in implementation. In default, we use data

augmentation for other experiments.

D. HOW EFFECTIVE IS THE GAUSSIAN MIXTURE LAYER

To some extent, the Gaussian mixture layer is a kind of

feature fusion methods. It models the distribution of different

part features from an image and fuses them to form a final

feature for classification. To evaluate the effectiveness of the

Gaussian mixture layer, we compare it with other popular

methods, including the widely-used K-means clustering algo-

rithm, summation and concatenation. For K-means, we fol-

low the routine of Gaussian mixture layer, we conduct a inner

loop to train the algorithm. The number of the clustering

center and the number of iterations are set to be 10 and

10 respectively. After training, the cluster with most data

points is treated as the main cluster, and the center of it is

used for further classification. For summation, we directly

add all the part features and calculate their average feature.

For concatenation, we concatenate these part features and use

an extra fully-connected layer for dimension reduction.

The performance, including accuracies, training speed

and parameters, on different datasets are shown in Table 6.

It is clear that the Gaussian mixture layer performs well

among these methods across different fine-grained datasets.

K-means achieves at least 6.1% lower accuracy compared

with theGaussianmixture layer. It is becauseK-means cannot

model the distribution well. In fact, it only makes use of

a part of part features for final classification. Summation

demonstrates surprising performance in experiments. It might

due to their usage of all part features. However, concatenation

does converge well and give reasonable results, because the

added fully-connected layer contains too many parameters

and might lead to over-fitting. For training speed, Gaussian

consumes more time than K-means and summation. As for

parameters in feature fusion, Gaussian mixture model has

three kind of parameters: mixture component weight φi, mean

vector µi and covariance matrix 6i. The amount of parame-

ters is about 10 ∗ 200 ∗ 200. K-means only needs to store the

position of cluster center, so the parameter usage is 10 ∗ 200.

Summation is the operation between part features and does

not contain any parameter. On the whole, though Gaussian

mixture layer contains more parameters and consumes more

time, it achieves much better performance across datasets.

It is still acceptable and practicable.

E. VISUALIZATION

We use the Gaussian mixture model to model the distribution

of part features, under the hypothesis that a set of part features

extracted from one image has its special distribution. How-

ever, it is hard for human to understand the high-dimensional

distribution. Therefore, we turn to the t-distributed stochastic

neighbour embedding (t-SNE) [67], which is a dimension
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FIGURE 5. The t-SNE visualizations of part feature distributions. (a)(b)(c)(d) are from CUB-200-2011 [2], Stanford Cars [3], FGVC-Aircraft [4]
and Stanford Dogs [5] respectively. One part feature correspond to one data point in this two-dimensional space. The Gaussian mixture
layer takes these part features (data points) as input.

reduction technique widely used for high-dimensional data

visualization. We use trained model to extract part fea-

tures of one image from the GMNet, more specifically, just

before the Gaussian mixture layer. The 200-dimensional

part features are input into the t-SNE algorithm, and a

2-dimensional distribution map is the output. The visu-

alizations of part feature distributions from different

datasets, including CUB-200-2011 [2], Stanford Cars [3],

FGVC-Aircraft [4] and Stanford Dogs [5], are illustrated

in Figure 5. The distances in the map demonstrate the sim-

ilarity of different features. Some features are similar and

adjacent, while some features are far away from each other.

The distribution of part features accords with our hypothesis.

It is reasonable to use a clustering method (Gaussian mixture

model) to cluster data points and model the distribution.

V. CONCLUSION

In this paper, we propose a Gaussian mixture model for fine-

grained image classification. It first uses selective search

for part proposal generation. Then, image feature maps are

extracted from the backbone convolutional neural network.

Spatial pyramid pooling is used to extract part features

directly from the image feature map. Next, part features are

input into the Gaussian mixture layer. The Gaussian mixture

layer uses several Gaussian components to model the distri-

bution of part features and extract key information. It uses

EM algorithm for training and outputs a final feature for

classification. Experiments on four fine-grained classifica-

tion datasets demonstrate the effectiveness of the Gaussian

mixture model. We achieve competitive performance com-

pared with the state-of-the-arts, while enjoying acceptable

computation time and memory usage. In addition, we con-

duct experiments to investigate the effects of three super-

parameters and compare the Gaussian mixture layer with

other feature fusion methods.

The future works are of two aspects: First, we will try

to take advantage of higher order representations, such as

the bilinear feature. It will promote the description ability

of convolutional features. Second, we will attempt to avoid

generate part proposals and use regional features from the

image feature map directly. Both of them will be explored

for better classification performance.
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