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Abstract

Indoor positioning has become an emerging research area because of

huge commercial demands for location-based services in indoor environ-

ments. Channel State Information (CSI) as a fine-grained physical layer

information has been recently proposed to achieve high positioning accu-

racy by using range-based methods, e.g., trilateration. In this work, we

propose to fuse the CSI-based ranges and velocity estimated from inertial

sensors by an enhanced particle filter to achieve highly accurate tracking.

The algorithm relies on some enhanced ranging methods and further miti-

gates the remaining ranging errors by a weighting technique. Additionally,

we provide an efficient method to estimate the velocity based on inertial

sensors. The algorithms are designed in a network-based system, which

uses rather cheap commercial devices as anchor nodes. We evaluate our

system in a complex environment along three different moving paths. Our

proposed tracking method can achieve 1.3m for mean accuracy and 2.2m
for 90% accuracy, which is more accurate and stable than pedestrian dead

reckoning and range-based positioning.
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Introduction 1

1 Introduction

In recent years, location based services have provided new commercial

opportunities based on the locations of users. For example, shop owners

can analyze the customers’ buying behaviours based on their locations.

To obtain these location information, GPS (Global Positioning System) is

often used in outdoor environments. However, GPS signals are typically

too weak to penetrate walls and hence indoor positioning techniques have

attracted increasing research interests. Based on the observation param-

eters, previous indoor positioning research can be divided into two cate-

gories, 1) Pedestrian Dead Reckoning (PDR) based on Inertial Measure-

ment Units (IMUs) and 2) radio-based positioning.

With the development of smart phones, PDR systems can leverage iner-

tial sensors, e.g., accelerometer, magnetometer, and gyroscope, to esti-

mate the relative movement of the target by detecting steps, estimating

stride length and heading orientation. By integrating the estimated relative

movement at sequential time intervals, PDR systems can track the target.

Because of integration, small positioning errors resulting from the noise in

low cost IMUs can be magnified [1].

In contrast to PDR, radio-based positioning relies on the measured radio

parameters, e.g., power and time, to estimate the absolute positions of tar-

gets in a coordinate system instead of integrating the relative movement.

Radio-based positioning can be classified as range-free and range-based

methods. Range is defined as the propagation distance between the tar-

get and an Anchor Node (AN). Fingerprinting as one of the commonly used

range-free method can provide satisfying accuracy but is very labour inten-

sive to build up a radio map [2]. Range-based methods need to convert the

measured radio parameters to range values, which is named as ranging.

They are normally error prone to multipath propagation, especially with

Received Signal Strength Indicator (RSSI), which is a coarse MAC layer

information. Channel State Information (CSI) can be considered as a fine-

grained power, which can distinguish the power from different propagation

paths. It has been recently proposed to achieve highly accurate ranging,

because of its ability to mitigate multipath propagation [3, 4]. After rang-

ing, trilateration algorithms are adopted to calculate the absolute location

of the target in the local coordinate system. However, trilateration algo-

rithms normally neglect the relative movement between sequential times

for a mobile target.

These two positioning methods (PDR and range-based methods) are com-

plementary because PDR can provide information about the relative move-
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ment between sequential times, i.e., velocity, which is missing in range-

based methods. Additionally, the absolute location information provided

by range-based methods can also be used to mitigate the accumulative

errors in PDR.

In this work, we investigate how to accurately track a WiFi target using an

enhanced particle filter to fuse the velocity information estimated by inertial

sensors and highly accurate range information by some enhanced ranging

methods. Our main scientific contributions are summarized as follows.

• We propose an enhanced particle filter to fuse the CSI-based

ranging and velocity information. The two observation parameters,

i.e., ranges and velocity, are fused in the observation likelihood

function defined in Section 3. To achieve high ranging accuracy,

some enhanced CSI-based ranging methods, which were proposed

in our previous work [4], are adopted in our proposed particle filter.

Additionally, we adopt the spatial diversity between different anten-

nas to mitigate the multipath effect in the ranging step in this work.

To mitigate the influence of the ranging errors, a weighting technique

is introduced in the observation likelihood function. Furthermore, we

propose an efficient method to estimate the velocity of the mobile

target using the timestamped values from the accelerometer and

compass sensors in a smart phone.

• We implement a network-based positioning system, which runs

our proposed tracking algorithms in a central server. Compared

to terminal-based positioning system, a network-based positioning

system is able to run algorithms with high complexity and analyze

multiple users’ movement paths. In our system, all ANs are imple-

mented on cheap commercial devices and are able to collect inertial

sensor and CSI information from the received WiFi packets.

• We evaluate our system in a complex environment along three differ-

ent moving paths. Our proposed tracking method can achieve 1.3m
for mean accuracy and 2.2m for 90% accuracy, which is more accu-

rate and stable than PDR and range-based positioning methods.

In the remainder of the paper, related works are reviewed in Section 2.

Some preliminaries for particle filters are introduced in Section 3. Our

main contributions are introduced in Section 4, in which the proposed en-

hanced particle filter is described. The ranging and velocity estimation
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mechanisms are presented in Section 5. Section 6 presents the imple-

mentation of the proposed algorithms in a network-based indoor tracking

system. Section 7 presents the evaluation results in a complex indoor en-

vironment. Finally, Section 8 concludes the paper.
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2 Related Work

Inertial sensors have been intensively investigated for indoor tracking due

to fast development of smart phones. Positioning with a smart phone can

leverage the inertial sensors to estimate the target’s moving state and lo-

cate the user. The authors of [5] investigated the mechanisms for PDR-

based tracking including step detection, stride length estimation, and di-

rection estimation. The stride length estimation method in [5] forms the

basis of moving speed estimation in our work. The authors of [6] provided

a system called Zee, which adopts inertial sensors and crowdsouring to

achieve a calibration free WiFi-based positioning system. The authors of

[1] proposed a Wap system, in which particle filter is used to fuse inertial

sensor information and RSSI of WiFi signals for tracking. Different from

our work, they only use the relative changes of RSSI instead of ranges

based on CSI to discover the direction changes and improve room distin-

guishing algorithms because the measured RSSI is a coarse and unstable

parameter.

Channel state information can be considered as a fine-grained power

information and has been firstly proposed by the authors of [7] in a pro-

totype called FILA, in which channel state information is investigated to

estimate the range information and a simple trilateration algorithm with

Linear Least Square (LLS) is further adopted to locate the target. FILA

has demonstrated that channel state information can mitigate multipath

propagation and impressively improve the localization accuracy compared

to RSSI. In FILA, the target laptop is equipped with an off-the-shelf WiFi

network card (IWL5300) to extract CSI based on an improved firmware

[8]. In our previous work [4], we proposed a passive indoor positioning

system, which can extract channel state information from the overheard

packets based on software defined radio techniques. In that work, we

proposed an enhanced trilateration algorithm, which combines Weighted

Centroid and Constrained Weighted Least Square (WC-CWLS). The al-

gorithm outperforms LLS for static targets. Although both works [7, 4]

evaluated the proposed trilateration algorithms for mobile targets, they did

not consider Bayesian estimation methods, i.e., Kalman filter and particle

filter, which are more accurate to track mobile targets. Additionally, CSI

has been investigated for fingerprinting methods and velocity estimation.

In [9], the authors provided a network-based indoor tracking system, which

estimates the velocity of a mobile target from CSI and locates the target

by fingerprinting based on CSI.
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3 Particle Filters

We consider the problem of tracking the location of a mobile target over

time given a stream of noisy observations, e.g, ranges and velocity. Thus,

at time k, we have an unknown system state vector xk including the target’s

location (or some other parameters related to the target’s moving state,

e.g., velocity) and a discrete sequence of noisy measurement vectors z1:k,

taken at times 1, . . . , k.

The target moves according to a non-linear function:

xk = fk(xk−1,vk), (system model)
and the measurement system observes the target according to another

non-linear function:

zk = hk(xk,uk), (observation model)
where vk and uk are the system and measurement noise.

From a Bayesian perspective, the goal is to calculate the “degree of belief”

p(xk|z1:k) in the current state of the system xk, based on the available

measurements z1:k and an initial Probability Distribution Function (PDF)

p(x0) [10]. This degree of belief is the posterior PDF over the state space

of our system.

In contrast to Kalman filters, which assume a Gaussian posterior PDF,

particle filters can deal with a non-Gaussian posterior PDF via Monte Carlo

simulations, which represent the required posterior PDF by a set of random

samples with associated weights. Based on Monte Carlo methods, the

posterior PDF p(xk|z1:k) can be estimated by the following delta function:

p(xk|z1:k) ≈
Ns
∑

i=1

wi
kδ(xk − xi

k), (1)

where xi
k is the ith particle and wi

k is the associated weight. Ns is the

total number of particles. For Bootstrap Particle Filter (BPF) [11], which is

commonly used and efficiently implementable, the associated weights can

be calculated as:

wi
k ∝ wi

k−1 · p(zk|xi
k), (2)

in which the associated weights are only determined by the likelihood func-

tion of p(zk|xi
k).
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4 An Enhanced Particle Filter with
Data Fusion and Weighted Likeli-
hood

As introduced in Section 1, tracking methods by using power-based rang-

ing and PDR are complementary. Hence, we propose an enhanced parti-

cle filter to fuse these velocity and range information to provide a tracking

method with high accuracy and stability in this section.

In this work, a Constant Velocity (CV) model is used. The state vector is

defined as,

x = [x, y, vx, vy]
T , (3)

where (x, y) are the Cartesian coordinates of the target and (vx, vy) is a

two-dimensional moving speed vector. Under the CV model, the prediction

function can be written as,

xk = F · xk−1 + ηw, (4)

where

η =









∆T 2/2 0
0 ∆T 2/2

∆T 0
0 ∆T









,F =









1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1









.

∆T is the time interval between two subsequent estimations of the target

location and w is a 2 × 1 independent and identically distributed (i.i.d.)

process noise vector. In particle filters, each particle xi
k is updated based

on Equation (4) from the particles at the previous moment xi
k−1.

Velocity

Estimation

Ranging

Particle Filter

Inertial 
Sensors

CSI

Velocity

Ranges

Location

θ

Figure 1: Data Fusion via a Particle Filter
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4.1 Observation Model for Data Fusion

After updating particles based on Equation (4), the associated weight wi
k

should be updated from the weight at the previous moment wi
k−1 based

on the likelihood of the observations conditioned on each particle p(zk|xi
k)

(Equation (2)). In this work, the observation vector obtained at each time

interval contains an estimation of ranges to different ANs and velocity of

the mobile target. Subsequently, the measurement vector is given as zk =
[dk,vk], where dk includes ranges to N different ANs and vk is the velocity

information from the inertial sensors.

To fuse the range information dk and velocity information vk, we can

reasonably assume that the velocity information vk is independent from

ranges because the range information depends on the location of target

but velocity does not. Hence, the likelihood p(zk|xi
k) can be written as

p(zk|xi
k) = p(dk|xi

k) · p(vk|xi
k). (5)

In order to distinguish different likelihoods, we refer to p(zk|xi
k) as the over-

all likelihood, p(dk|xi
k) as the ranging likelihood, and p(vk|xi

k) as the veloc-

ity likelihood.

With this method, the associated weight wi
k can be updated by consider-

ing both range and velocity observations. On one hand, the particles at

the absolute positions (xi, yi), which have low probabilities to observe the

measured ranges dk, will be assigned small associated weights to sup-

press their contributions to the state estimation. On the other hand, the

particles with velocities (vix, v
i
y), which have low probabilities to observe

the measured velocity vk, will be also assigned small associated weights,

especially for some particles with unusual large moving speeds in indoor

environments. This will allow smoothing the estimated moving paths.

4.1.1 Velocity Likelihood

As we work on a two-dimensional tracking system, the measured velocity

information vk is a vector with two components v̂x and v̂y, which can be

measured from inertial sensors. Assuming that these two components are

independent from each other, the velocity likelihood p(vk|xi
k) can be written

as

p(vk|xi
k) = p(v̂x,k|xi

k) · p(v̂y,k|xi
k). (6)

Additionally, these two velocity components are independent from the co-

ordinate components (x, y) in each particle. Hence we can obtain that

p(v̂x,k|xi
k) = p(v̂x,k|vix,k) and p(v̂y,k|yi

k) = p(v̂y,k|viy,k). The estimation of each
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velocity component is assumed to follow a Gaussian distribution. Equation

(6) can be written as

p(vk|xi
k) = p(v̂x,k|vix,k) · p(v̂y,k|viy,k)

=
1

σv

√
2π

exp[−
(v̂x,k − vix,k)

2 + (v̂y,k − viy,k)
2

2σ2
v

],
(7)

where σv is the variance of velocity estimation.

4.1.2 Ranging Likelihood

Besides velocity information, range information is another observation in-

put. Assuming that ranges to different ANs are independent from each

other, the ranging likelihood can be written as

p(dk|xi
k) = ΠN

j=1p(d̂j,k|xi
k), (8)

where d̂j,k is the estimated range to the ith AN at the kth moment. In the

remainder of the paper, we refer to p(d̂j,k|xi
k) as individual likelihood.

Because the range information exclusively depends on the location of the

target, the observation function for range can be defined as:

d̂j =
√

(x− xj)2 + (y − yj)2 + uj, (9)

where (xj, yj) are the coordinates of the jth AN and uj is a Gaussian noise

with a variance of σj. Each individual likelihood can be written as

p(d̂j,k|xi
k) =

1

σj

√
2π

e
−

[d̂j,k−

√
(xi−xj)

2+(yi−yj)
2]2

2σ2
j . (10)

4.2 Weighted Likelihood for Ranging Informa-

tion

Range estimation d̂j,k is often shifted from the ground truth range dj,k. Cor-

respondingly the individual likelihoods p(d̂j,k|xi
k) from different ANs are of-

ten biased from the real individual likelihoods p(dj,k|xi
k). The ranges esti-

mated by different ANs normally face different ranging errors, especially in

a complex indoor environment with mixed Line Of Sight (LOS) and Non-

LOS (NLOS) conditions. Equation (8) treats all the individual likelihoods
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from different ANs equally. This oversimplification introduces large estima-

tion errors, because in the inaccurate individual likelihoods p(d̂j,k|xi
k) from

certain ANs with large ranging errors will significantly affect the accuracy

of the ranging likelihood estimation p(dk|xi
k).

To mitigate the influence of the large ranging errors on the estimation of

the ranging likelihood p(dk|xi
k), we propose to adopt a weighting technique

on the ranging likelihood p(dk|xi
k) estimation by suppressing the emphasis

on the individual likelihoods p(d̂j,k|xi
k) with larger ranging errors and mag-

nifying the contributions of the individual likelihoods with smaller ranging

errors. To achieve this, we provide a weighted-likelihood BPF with expo-

nential weights on each individual likelihood from different ANs as

p(dk|xi
k) = ΠN

j=1p(d̂j|xi
k)

mj

, (11)

where mj is the exponential weight for the individual likelihood of the jth
AN. To reduce the contribution of the individual likelihoods with large rang-

ing errors, a direct way is to set weights mj to indicate the error of each

range. However, we can not measure the real ranging errors in practice,

because it requires the ground truth location of the target.

Therefore, we need to find a suboptimal solution to set a proper value for

each exponential weight. In general, range errors increase with the esti-

mated range values. Therefore, instead of relying on the ranging errors,

we can use the estimated ranging outputs to infer their corresponding er-

rors and set the exponential weights to be inversely proportional to the

estimated range outputs as

mj =
1/dj

∑N
n=1 1/dn

, (12)

which are normalized by
∑N

j=1 mj = 1. With this weighting technique,

we expect to mitigate the influence of ranging errors, especially for NLOS

propagation, whose ranging errors are normally larger than for LOS con-

ditions. In the remainder of this paper, we refer to the Particle Filter with

data Fusion and Weighted likelihood as FW-PF.
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Figure 2: Range Estimation using CSI

5 Range and Velocity Estimations

This section introduces how to estimate the two observation parameters

(ranges and velocity) in our proposed particle filter.

5.1 Range Estimation using CSI

More accurate estimation of ranges is a prerequisite to improve the radio-

based tracking accuracy. To achieve high ranging accuracy, we adopt the

same method as our previous work [4], which uses channel state informa-

tion to extract the Power from the Direct Path (PDP). Figure 2 shows the

procedure of this ranging method, which comprises three steps. First, CSI

in frequency domain is converted to CIR (Channel Impulse Response) in

time domain by Inverse Fast Fourier Transform (IFFT). Second, PDP is ob-

tained by extracting the strongest power in CIR. Finally, a NLR (Non-Linear

Regression) model is adopted to calculate the range information from PDP.

Please find details about this ranging method in our previous work [4].

Additionally, most recent WiFi standards (IEEE 802.11n/ac standards)

support MIMO (Multiple Input and Multiple Output), which introduces spa-

tial diversity. Multiple antennas separated by certain distances normally

face different multipath effects. Therefore, we can exploit multiple anten-

nas to smooth and mitigate the multipath effects. In our work, we estimate

the range information based on the procedures in Figure 2 on each an-

tenna and then calculate the average range from all the antennas in one

AN as the input range information to the particle filter.

5.2 Velocity Estimation using Inertial Sensors

Velocity is another observation input in our proposed particle filter. In our

work, the velocity of the mobile target is estimated by analyzing the times-

tamped values of inertial measurement units in a smart phone. To estimate

the two-dimensional velocity, which is a vector value with two components
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âv,max
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on x and y axes in a Cartesian coordinate system, the heading orienta-

tion θ and speed |v|, which is the absolute value of velocity, are estimated

based on compass and accelerometer respectively.

5.2.1 Speed Estimation

As shown in Figure 3, first, the raw values from the accelerometer are

smoothed through a low pass filter using Equation (13) to mitigate the

influence of noise and dynamic pushes.

âv,i = (1− β)av,i + β(âv,i−1), (13)

where av,i is the raw vertical acceleration and β is a constant value ranging

from 0 to 1 (0.9 in our work).

Second, during walking, every step generates one peak and dip in the

measured vertical acceleration âv,i as shown in Figure 4. Therefore, we

can detect the dips and peaks from âv,i as steps.

Third, Equation (14) is used to estimate stride length [5].

l = K(âv,max − âv,min)
1/4, (14)

where l is stride length, âv,max and âv,min are the peak and dip values of âv
on each stride respectively, and K is a coefficient calibrated for individuals.

Fourth, because all the accelerometer values are timestamped in the

smart phone, we can calculate the time interval for each stride ∆T and

the speed can be calculated as

|v| = l

∆T
. (15)

5.2.2 Orientation Estimation

To estimate the heading orientation, we adopt the compass [12] in smart

phones, which derives its data from the accelerometer and magnetometer.

The compass reports a value called azimuth α, which is the clockwise

angle from the north. After obtaining α, we need to calibrate α to our local

coordinate system as

θ = (90◦ − α) + ϕ, (16)

where (90◦ − α) is to rotate the azimuth α to the counter-clockwise angle

from the east and ϕ is the counter-clockwise angle from +x in the local

coordinate system to the east.
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5.2.3 Velocity Estimation

After estimating the speed and heading orientation of the mobile target,

we can get the velocity as

v = [|v|cos(θ), |v|sin(θ)], (17)

where |v|cos(θ) and |v|sin(θ) are the x and y components of moving ve-

locity respectively.
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6 Implementation of WiFi Tracking Al-
gorithms in A Network-based Sys-
tem

We have implemented a network-based indoor tracking system, in which

our proposed tracking algorithms are running in a central server. Figure

5(a) presents the overview of this system, which comprises three main

components: target, ANs, and server. Figure 5(b) shows the implementa-

tion details of each component. The main idea behind this system is that

by integrating the inertial sensor information (IMUs in Figure 5(b)) in the

payload of WiFi packets broadcast from the target, the server can read

these IMU information from the received packets, extract the CSI informa-

tion from commercial WiFi cards (Intel WiFi Wireless (IWL) 5300) in ANs,

and finally track the target with these two pieces of information.

6.1 Mobile Target

The mobile target needs to 1) inject the timestamped IMU information from

the smart phone into the payload of the WiFi packets and 2) broadcast

these packets using monitoring mode with an 802.11n High Throughput

(HT) rate, which is required by IWL5300 at the receivers (ANs) to extract

the CSI information [8].

Because most of the WiFi cards in smart phones (including vendors like

Apple, Samsung, Nokia, and HTC) do not support monitoring mode, a

smart phone has to transfer the timestamped IMU values to a laptop (via

USB), which then transmits the WiFi packet using its on-board IWL5300

WiFi card. In the smart phone, the sampling rate of the compass and ac-

celerometer are 100Hz. As soon as the smart phone reads a pair of values

from compass and accelerometer, it will forward these values together with

their timestamps to the laptop over a USB cable by a Java application. The

laptop will prepare the WiFi packet, whose payload includes the values of

compass and accelerometer and their timestamps, and broadcast over the

IWL5300 WiFi card using monitoring mode. The WiFi packet rate is also

100Hz.
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(Diamond Points: ANs in Scenario 1; Rectangular Points: ANs in

Scenario 2; Circle Points: Ground Truth Positions)

6.2 Anchor Nodes

Anchor nodes are distributed over the area of interest to capture the pack-

ets from the target. To reduce the cost, we adopt ASUS EeeBox PCs

(ePC) as ANs. First, we need to replace the original WiFi card in each ePC

by an IWL5300 card, which is configured in monitoring mode. Second, af-

ter receiving a WiFi packet, each ePC needs to read the timestamp and

IMU information from the payload and extract CSI information. Because

the IWL5300 card supports three antennas, we read CSI from all the three

antennas. Finally, all these information from all ANs are forwarded to the

central server over Ethernet by sockets.

6.3 Server

A desktop PC equipped with a 4-core 3.30GHz i5 CPU is used as the

server to collect the information from ANs and run offline tracking algo-

rithms to analyze the moving trace of the target based on MATLAB. For

the tracking algorithms, we first need to estimate the range and velocity

information based on the algorithms introduced in subsections 5.1 and 5.2

respectively. Since we can get CSI from three antennas in one AN, we cal-

culate the mean value of the estimated ranges from these three antennas

as the input range to the particle filter from this AN. Finally, the range and

velocity information will be fused in our proposed particle filter (FW-PF) to

track the target. Algorithm 1 indicates the procedures of FW-PF.
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Algorithm 1: FW-PF

1 Initialize filter

(I) Initial particles: xi
0 = q(x0), i = 1, . . . , Ns;

(II) Initial weights: wi
0 =

1
Ns

;

2 Update the particles: xi
k = F · xi

k−1 + ηw;

3 Calculate the exponential weights: mj =
1/dj

∑N
n=1 1/dn

;

4 Calculate the individual likelihood:

p(dj|xi
k) =

1

σj

√
2π

e
−

[dj−
√

(xi−xj)
2+(yi−yj)

2]2

2σ2
j ;

5 Calculate the velocity likelihood:

p(vk|xi
k) = p

1

σv

√
2π

exp[−
(v̂x,k − vix,k)

2 + (v̂y,k − viy,k)
2

2σ2
v

].

6 Update the unnormalized weights:

ŵi
k = p(vk|xi

k) · ΠN
j=1p(dj|xi

k)
mj ;

7 Normalize the weights: wi
k = ŵi

k/
∑Ns

n=1 ŵ
i
n;

8 Calculate Neff: Neff =
1

∑Ns
i=1(w

i
k
)2

;

9 if Neff < 0.5 ∗Ns then
10 Resample the particles based on systematic resampling method;

11 Compute the estimated state: xk =
∑Ns

i=1 w
i
kx

i
k;

12 Go back to step 2 for the next iteration.
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7 Performance Evaluation

To evaluate the tracking accuracy of our proposed system, we have con-

ducted a set of comprehensive measurements in a complex indoor envi-

ronment.

7.1 Measurement Setup

We have evaluated our system in two scenarios on the third floor of the

INF building at University of Bern. Four ANs are deployed in the first sce-

nario (green and diamond points) and five ANs in the second scenario (red

and rectangular points) as shown in Figure 6. In each scenario, the target

(laptop and smartphone) is held by a person moving along three different

paths (Figure 6) and experiments along each path are repeated five times.

The moving speed is around 0.9m/s for scenario 1 and 0.6m/s for scenario

2. Along these moving paths, the point accuracy, which is the error from

the estimated position to the ground truth position, is calculated every sec-

ond. Three algorithms are evaluated along these moving paths, i.e., PDR

(Pedestrian Dead Reckoning), R-PF (Ranging-only Particle Filter), FW-PF

(our proposed Particle Filter with data Fusion and Weighted likelihood).

7.2 Experiment Results

Figure 7 shows CDF (Cumulative Distribution Function) of positioning er-

rors for the three algorithms in scenario 1 (4 ANs) and scenario 2 (5 ANs).

Since the performance of PDR is not related to the number of ANs, the

CDF curve of PDR positioning errors summarizes all the experiments in

both scenarios. Table 1 summarizes the mean error, standard deviation

and 90% accuracy. Based on these results, we can find the following ob-

servations.

Table 1: Mean Errors and Standard Deviation

Tracking Methods Mean Error Standard Deviation 90% Accuracy

FW-PF (5ANs) 1.3m 0.7m 2.2m

FW-PF (4ANs) 1.6m 0.9m 2.8m

R-PF (5ANs) 1.7m 1.5m 3m

R-PF (4ANs) 1.8m 1.0m 3m

PDR 1.6m 2.5m 4m
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Positioning Error
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Figure 7: CDF of Positioning Errors

First, our proposed FW-PF can achieve higher accuracy and more stable

performance compared to PDR. It is commonly known that PDR is prone

to accumulated errors because it estimates the current location of the tar-

get by integrating the relative movement from the previous locations. Be-

cause of the accumulative errors, it is very accurate at the beginning of the

moving paths by using PDR but the positioning error will increase along

the moving paths. Therefore, for 50% accuracy, PDR can achieve around

0.5m but the accuracy severely deteriorates to around 4m considering 90%
accuracy. In our proposed FW-PF, besides the moving velocity, which can

provide the relative moving information between two sequential time inter-

vals, the range information is considered in the likelihood function, which

can provide additional information to calculate the absolute position in the

local coordinate system. By considering the range information, our pro-

posed FW-PF is more robust to accumulative errors and it achieves around

2.2m for 90% accuracy, which outperforms PDR by 45%. The mean error

is 1.3m, which is 19% better than PDR. Additionally, FW-PF is more stable

than PDR because the standard deviation of FW-PF is 0.7m, which is 72%
smaller than PDR.

Second, our proposed FW-PF outperforms R-PF for accuracy and stability.

For ranging only particle filter (R-PF), the velocity information is not con-

sidered in the likelihood function and the corresponding associated weight
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update. Therefore, some particles with unusual large moving speeds could

be assigned large values of associated weights. For our proposed FW-PF,

the estimated velocity based on inertial sensors is considered in the like-

lihood function. The particles with large shift velocity components from

the estimated velocity will be assigned small values of associated weights.

Hence, their contributions to the final estimation are suppressed. Further-

more, by considering the exponential weights on the ranges from different

ANs, the influence of ranging errors on the likelihood function is further

mitigated. Therefore, our proposed FW-PF outperforms R-PF by around

0.8m for the 90% accuracy with 5 ANs and 0.2m with 4 ANs. Furthermore,

the standard deviation of FW-PF is smaller than of R-PF in both scenarios,

which means that the performance of FW-PF is more stable and estimated

moving paths are more smooth compared to R-PF.

Finally, by increasing the number of ANs, FW-PF can integrate more range

values in the likelihood function and has larger opportunity to have line-of-

sight connection to one certain AN. Therefore, the performance of FW-

PF gets improved by increasing the number of ANs. FW-PF with 5 ANs

outperforms 4 ANs by 21% for the 90% accuracy and 19% for the mean

accuracy.
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8 Conclusions

In this work, we proposed a network-based indoor tracking system, which

fuses the range and velocity information by an enhanced particle filter. Ve-

locity information is estimated by an efficient method based on the times-

tamped values from accelerometer and compass. The range information

is estimated by some enhanced ranging method relying on physical layer

channel state information from WiFi signals. The enhanced particle filter

(FW-PF) is adopted to fuse these two types of information in the likelihood

function and is equipped with a weighting technique to mitigate the influ-

ence of ranging errors. The system is implemented by using some cheap

commercial devices for ANs, which are able to extract the inertial sensor

information and CSI information from the received WiFi packets. We eval-

uated our proposed system in a complex indoor environment. Evaluation

results indicate that our proposed FW-PF is more accurate and stable than

pedestrian dead reckoning and range-only particle filters. The mean accu-

racy achieves 1.3m and 90% accuracy is 2.2m.
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