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Lung cancer ranks among the most common types of cancer. Noninvasive computer-aided diagnosis can enable large-scale rapid
screening of potential patients with lung cancer. Deep learning methods have already been applied for the automatic diagnosis of
lung cancer in the past. Due to restrictions caused by single modality images of dataset as well as the lack of approaches that allow
for a reliable extraction of fine-grained features from different imaging modalities, research regarding the automated diagnosis of
lung cancer based on noninvasive clinical images requires further study. In this paper, we present a deep learning architecture that
combines the fine-grained feature from PET and CT images that allow for the noninvasive diagnosis of lung cancer.  e
multidimensional (regarding the channel as well as spatial dimensions) attention mechanism is used to effectively reduce feature
noise when extracting fine-grained features from each imaging modality. We conduct a comparative analysis of the two aspects of
feature fusion and attention mechanism through quantitative evaluation metrics and the visualization of deep learning process. In
our experiments, we obtained an area under the ROC curve of 0.92 (balanced accuracy� 0.72) and a more focused network
attention which shows the effective extraction of the fine-grained feature from each imaging modality.

1. Introduction

In the 21st century, cancer is still considered a serious disease
as the mortality rates are high. Among all cancer types, lung
cancer ranks first regarding morbidity and mortality [1, 2].
 ere are two main categories of lung cancer: non-small-cell
lung cancer (NSCLC) and small cell lung cancer (SCLC). For
non-small-cell lung cancer, a subcategorization into lung
squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) is further used.  ese types of cancers account for
approximately 85% of lung cancer cases [3]. Compared with
the diagnosis of benign and malignant, further fine-grained
classification of lung cancers such as LUSC, LUAD, and
SCLC is of great significance for the prognosis of lung
cancer. Accurately determining the category of lung cancer
in the early diagnosis directly influences the effect of the
treatment and thus the patients’ survival rate [1, 4]. Positron
emission tomography (PET) and computed tomography

(CT) are both widely used noninvasive diagnostic imaging
techniques for clinical diagnosis in general and for the di-
agnosis of lung cancer in particular [4]. Immunohisto-
chemical evaluation is considered the gold standard for lung
cancer classification. However, this procedure requires a
tissue biopsy, an invasive procedure with the inherent risk of
a delayed diagnosis and thus exacerbation of the patient’s
pain.

Advances in artificial intelligence research enabled
numerous studies on the automatic diagnosis of lung
cancer.  e use of data in lung cancer-type classification is
roughly divided into three categories: CT and PET image
data as well as pathological images [5].  e well-known
data science community Kaggle provides high-quality CT
images for participants with the task to distinguish ma-
lignant or benign nodules from pulmonary nodules. Kaggle
competitions repeatedly produce excellent deep learning
approaches for these tasks [6, 7]. With the progresses in the
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research of automatic lung cancer diagnosis, studies are no
longer limited to the classification of benign and malignant
nodules and data sets are no longer limited to CT images
[8–12]. Wu et al. [9] use quantitative imaging character-
istics such as statistical, histogram-related, morphological,
and textural features from PET images to predict the
distance metastasis of NSCLC, which shows that quanti-
tative features based on PET images can effectively char-
acterize intratumor heterogeneity and complexity. Two
recent publications propose the application of deep
learning to pathological images to classify NSCLC and
SCLC [10] and to classify transcriptome subtypes of LUAD
[11]. -e complexity of the clinical diagnosis of lung cancer
is also characterized by the wide range of imaging modality,
which is employed in the diagnosis [13, 14]. Previous re-
search already proved that deep learning approaches can
not only use the feature distribution patterns from different
pulmonary imaging modalities but even merging different
features to achieve the computer-aided diagnosis. Liang
et al. [15] employ multichannel techniques to predict the
IDH genotype from PET/CT data using a convolutional
neural network (CNN), while other approaches use a
parallel CNN architecture to extract several features of
different imaging modalities [16, 17].

Compared with the classification of the benign and
malignant, the classification of the three types of lung
cancer from medical images are more suitable to constitute
a fine-grained image recognition problem as diverse dis-
tributions of features and potential pathological features
need to be considered. Because the fine-grained features
which need to extract in images, and meanwhile the lesion
region is a small part of the whole image, the deep learning
framework is susceptible to feature noise. At present, most
methods based on various deep learning frameworks have
proved to have certain bottleneck in fine-grained problems.
In order to solve this problem, the previous research mainly
implements the attention mechanism from the two di-
mensions (channel and spatial) of the feature representa-
tion. -e channel attention mechanism models the
relationship between feature channels [18], while the
spatial attention mechanism ensures that noise is sup-
pressed by weighting feature representation spatially
[19–21]. So far, spatial attention mechanism has been used
in medical image processing to enhance extracted features
[20, 21]. -e channel attention mechanism has been used in
the detection and classification of pulmonary disease
[22, 23]. -e presentation of these attention mechanisms
illustrates the source of characteristic noise from different
perspectives.-ere are few related studies on how to use the
attention mechanism more effectively on images with
different imaging modalities, so the deep learning model
based on the multimodality dataset still has problems in
fine-grained problems.

In this paper, we use noninvasive clinical images to
achieve the computer-aided diagnosis of fine-grained lung
cancer on the basis of deep learning. Our network archi-
tecture consists of two parallel three-dimensional Dense-
Net, and each DenseNet corresponds to one input imaging

modality. To more effectively extract the fine-grained
features in different modalities, we combine the 3D
DenseNet with a multidimensional (channel and spatial)
attention mechanisms to further enhance the extraction of
fine-grained features. -is network architecture is used to
extract features from different imaging modalities in
parallel. -rough the fusion of features, the fine-grained
feature representation of different modalities is used to
achieve the final classification.We evaluate our method and
prove the effectiveness of our fine-grained lung cancer
classification approach. Furthermore, the visualization
experiment of deep learning network reveals the benefits of
different attention mechanisms for different imaging
modalities, demonstrating the effectiveness of multidi-
mensional attention.

2. Methods

-e network construction is mainly divided into the fol-
lowing two parts: (1) -e multidimensional attention
mechanism proposed in the single-path network architec-
ture is the method of fine-grained feature extraction for each
modality. (2) On the basis of the single-path network ar-
chitecture, a parallel network architecture is established to
achieve parallel extraction and fusion of multimodality
features.

2.1. Fine-Grained Feature Extraction Network Based on
Multidimensional Attention Mechanism. 3D CNNs [24]
were used for early cancer detection to preserve the
spatial relationship between neighboring CT slices
[25, 26]. DenseNet [27] has been applied to numerous
problems within the medical field [28, 29] because of its
connectivity pattern and the small number of parameters
needed. For these reasons, we use 3D DenseNet as our
baseline model in the approach presented in this paper.
To address the problem of noise in the extraction of fine-
grained features, we proposed a multidimensional at-
tention mechanism embedded in a single-path network.
Our network structure consists of three main compo-
nents: a 3D DenseNet block, SE block, and a spatial at-
tention-gated module. Figure 1 shows the structure of our
single-path model.

-e main part of our network is composed by a 3D
DenseNet [27]. Each of the dense block consists of a
specific number of three-dimensional convolutional
layers. -e parameter quantity of DenseNet is determined
by the feature channel (growth rate k) output by each
convolutional layer. To ensure feature depth, the number
of convolutional layers is set to 4 in different dense blocks.
-e k is set to 16, making the parameter in the network a
small number to mitigate overfitting. -e feature map after
each dense-block contains all features of the previous
convolutional layer. -e SE block [18] is used after each
dense block to employ channel attention. -e SE block in
the 3D model is calculated according to equation (1) as
follows:
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Gap refers to the 3D global average pooling operation
and σ refers to the sigmoid function. W0 ∈ RC/r×C and
W1 ∈ RC×C/r compose a multilayer perceptron (MLP) with
one hidden layer and r as the reduction ratio. -e spatial
attention-gated module [20] uses high-level semantic fea-
tures and the feature after each SE block to generate the
corresponding spatial mapping. Moreover, it weights all
feature channels spatially to suppress noise originating from
a nonlesion area.-e spatial attention mechanism computes
as defined in equation (2). -e flow chart of the attention-
gated module is shown in Figure 2:

σ Mc δ Ml Fl(  + U Mg Fg     ⊙Fl, (2)

where δ denotes the ReLU activation function, ⊙ denotes the
element-wise multiplication, and U denotes the upsam-
pling operation. Fl refers to a feature map from different
SE blocks. Ml(Fl) ∈ RH1×W1×Z1×G, Mg(F) ∈ RH2×W2×Z2×G,
andMc ∈ RH1×W1×Z1×G describe the convolution operation
with the specific channel output. As shown in Figure 2, the
spatial attention mechanism generates the attention
mapping through the element-wise add operation fol-
lowing the sigmoid activation function. Subsequently
multiplied by Fl, the spatial weighted feature

representation is generated. As Fl holds the feature map
after SE block, we obtain the feature map weighted among
the feature channel and spatial through this operation. -e
global average pooling operation used after each attention-
gated module is to achieve the feature dimension
reduction.

2.2. Parallel CNN Architecture Based on Multimodality
Feature Fusion. In this section, we employ a parallel net-
work architecture to extract and fuse features from multi-
modality data. -e overall network structure and the flow
chart of GMU are shown in Figure 3.

As illustrated in Figure 3, each single-path network
equals the single-path network described before. We employ
the gated multimodal unit (GMU) fusion strategy [30] for
the fusion of different modality features. In contrast to the
widely used connection operation, GMU allows to use
hidden structures and gate controls to learn the intermediate
representation of the multimodality features, thus enabling
the prediction layer to assign weights to features that have
intrinsic associations better.-e calculation process of GMU
is shown in the following equations:
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Figure 1: -e structure of our single-path feature extraction network.
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H1 � δ W2 xc( ( ,
H2 � δ W3 xp  ,
Z � σ W4 xc, xp   ,
H � Z⊙H1 +(1 − Z)⊙H2.

(3)

where xc refers to the feature extracted from the CT image,
while xp refers to the feature extracted from the PET image;
H1 and H2 are the hidden states that are reached after the
fully connected layer with ReLU activation function δ. Let
the W2,W3 ∈ RC′×Cint and W4 ∈ RC′×2Cint . [·, ·] refers to the
connection operation and Z refers to the nonlinear weight
learned from the combined features, which reveal the in-
trinsic relationship between the two modalities. -e fused
feature H is finally constructed by a linear weight between
H1 and H2.

Inspired by the deep-supervision [31] method, the loss
from each single-path network is, respectively, calculated
and finally integrated with the loss from the feature fusion
representation to obtain the joint optimization. Under the
premise of a final classification, this training method forces
the network to extract better high-level features from each
modality for the generation of spatial attention to avoid

trapping in a local minimum because of the use of feature
from each level.

3. Experiments and Results

Our experiments mainly demonstrate the methods pre-
sented in this paper considering three aspects: (1) the validity
of multimodality data. (2) -e validity of multidimensional
attention mechanism on each modality. (3) -e validity of
the feature fusion strategy. We evaluate the results under
certain evaluation criteria to reflect the effectiveness of these
methods. Regarding experimental details, batch normali-
zation is employed prior to the Leaky-ReLU activation
function [32]. -e stochastic gradient descent (SGD) with a
momentum of 0.9 is the optimizer. In the final fully con-
nected layer of DenseNet, L1-regularization and dropout
strategies are used to prevent overfitting. -is framework is
executed using Keras under a TITAN V 12GB GPU.

To demonstrate the generalization power of our pro-
posed network, we statistically analyzed the performance of
the model in tenfold cross-validations. -e area under the
ROC curve (AUC), a metric that is widely used in medical
image classification, objectively reflects the ability to classify
positive and negative samples correctly. In addition,
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Figure 2: -e flow chart of the attention-gated module.
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accuracy is also used as a criterion of the model. -e final
performance of the model is given by the average value of ten
cross-validations.

3.1. Data Preprocessing. -e PET and CT data used in our
experiments are provided by the Department of Radiology of
the Henan Provincial People’s Hospital, a governmental and
public medical institution in China. In case patients ex-
plicitly requested that their data may not be shared for
research purposes, the respective data samples were ex-
cluded when creating the dataset. For all data samples, the
corresponding patient has a confirmed diagnosis. For the
patients in our dataset, both CT and PET examinations are
implemented in the same stage to ensure that the lesion’s
tissue morphology and metabolic levels are consistent. -e
datasets consist of data samples of 397 patients in total, 91
patients with SCLC, 103 patients with LUSC, and 203 pa-
tients with LUAD. Example lesion slices for three different
types of lung cancer from CT and PET examinations are
shown in Figure 4.

For three types of lung cancer, not only the lesion and its
surrounding areas have important discriminative informa-
tion but also some global information (such as location
information), which is also helpful for classification in
clinical diagnosis. So we use the whole image as input of
CNN to preserve useful information and extract fine-grained
features. For each patient’s lesion, a varying number of slices
(between 39 slices at maximum and 3 slices at minimum)
were available in the direction of the vertical axis, which
poses a variable input scale. We defined a fixed slice amount
(P) for network input and provided the corresponding
number of slices through sampling along the direction of the
vertical axis in the 3D lesion area. PETand CTdevices obtain
images of different resolution: for CT images, the resolution
of each slice in the direction of the vertical axis of the 3D
image is 512× 512 pixels; for PET images, this resolution is
256× 256 pixels. We resize each slice to 112×112 pixels and
normalize the range of pixel values to [0, 255]. -rough this
preprocessing, data samples of each modality are converted
to a 3D image of size 112×112×P. As a small data set, we
used data augmentation during the network training.
-rough the random combination of flipping up or flipping
right, it is equivalent to expanding the data set by 4 times.

3.2. Analysis of Multimodality Data Validity. In the first
experiment conducted, we use a single-modality model, a 3D
DenseNet, on either a PET or a CT dataset. For the pre-
liminary evaluation regarding the effectiveness of multi-
modality (both CT and PET) approach, we use the
multimodality feature network named MF-DenseNet. Each
parallel network of MF-DenseNet is equal to the 3D Den-
seNet with four dense blocks and uses the GMU as the
feature fusion.-e results are shown in Table 1.-e variance
term in the table reflects the variance of the AUC values
between each round of cross-validation, and the average
score term reflects the mean value of the AUC between each
round of cross-validation. -e balanced accuracy evaluates
the balanced performance.

-e experimental results show that the extraction and
fusion of features from different modalities improve the
performance considerably. -e best average AUC score for
single-modality model was reported as 0.678, which is
achieved by the PET dataset. Comparing the performances
achieved for CTand PETdata shows that features from PET
images even more facilitate for the classification. -e
combination of multimodal features has achieved the best
performance under both AUC and accuracy verification
metrics. -e average AUC score of our MF-DenseNet is
0.810, and the accuracy is 0.68. Smaller variances between
each round of cross-validation also show the effectiveness of
multimodality data. -ey further demonstrate that different
modalities show different feature distribution patterns,
which need to be extracted. From the perspective of balanced
accuracy indicators, our model also has a relatively balanced
performance.

3.3. Analysis of Multidimensional Attention Mechanism
Validity. To extract fine-grained features and further im-
prove the network performance, we propose a multidi-
mensional attention mechanism for MF-DenseNet. MFSE-
DenseNet (r) consists of the MF-DenseNet with the SE-
block, for which the parameter r indicates the reduction ratio
of the SE-block. -e MFSA-DenseNet on the other hand
consists of MF-DenseNet with a spatial attention mecha-
nism. -e MFSCA-DenseNet employs both a spatial at-
tention mechanism and a channel attention mechanism.-e
results are listed in Table 2, and the ROC curve of the
different attention mechanisms is shown in Figure 5.

Comparing the MFSE-DenseNet (r� 4) and the MFSE-
DenseNet (r� 16) with the MF-DenseNet shows that the
channel attention mechanism has the ability to improve
the overall performance. Although the AUC values of the
model are similar between different reduction rates, it can
be seen from the variance that the model has a more stable
generalization performance when r � 4. -e performance
of the MFSA-DenseNet can be improved by the spatial
attention, but the AUC value between classes remains
unbalanced. Under these conditions, the best AUC score of
0.920 (accuracy � 0.82) was achieved using the MFSCA-
DenseNet (r � 4). Although variance of 10-fold cross-
validation is not the smallest (variance � 0.05), it is also
close to variance of MFSA-DenseNet (variance � 0.04). In
addition to the highest average AUC and accuracy score,
this model also provides a more generalized performance
through the smaller variance value of cross-validation. By
analyzing the ROC curve, when the false-positive rate is
reduced, that is, the misdiagnosis rate reduces, the SE
module is less sensitive to LUAD than the other two types.
When the reduction rate increases, the sensitivity of the
model to SCLC increases simultaneously, but the sensi-
tivity of the model to LUAD and LUSC decreases. On the
contrary, the spatial attention module has a high sensi-
tivity to LUAD when the misdiagnosis rate decreases. -is
also reflects the advantages of the two attention mecha-
nisms in feature extraction for different categories.
-rough the combination of the two-dimensional
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(a)

(b)

(c)

Figure 4: Corresponding PETand CTslices from different types of lung cancer. (a) Squamous cell carcinoma; (b) adenocarcinoma; (c) small
cell lung cancer.

Table 1: Evaluation of different modality datasets.

Network architecture Data

AUC

Balanced accuracyScore of each
category

Average score Variance

3D DenseNet CT
LUSC 0.667

0.621 0.08 0.52LUAD 0.711
SCLC 0.485

3D DenseNet PET
LUSC 0.722

0.678 0.12 0.53LUAD 0.768
SCLC 0.544

MF-DenseNet CT+PET
LUSC 0.863

0.810 0.05 0.57LUAD 0.877
SCLC 0.690

Table 2: Evaluation of different attention mechanisms.

Network architecture Data
AUC

Balanced accuracyScore of each
category

Average score Variance

MFSE-DenseNet (r� 4) CT+PET
LUSC 0.867

0.860 0.03 0.62LUAD 0.876
SCLC 0.837

MFSE-DenseNet (r� 16) CT+PET
LUSC 0.809

0.851 0.09 0.63LUAD 0.774
SCLC 0.969

MFSA-DenseNet CT+PET
LUSC 0.860

0.890 0.04 0.67LUAD 0.961
SCLC 0.850

MFSCA-DenseNet (r� 4) CT+PET
LUSC 0.938

0.920 0.05 0.72LUAD 0.910
SCLC 0.913
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attention mechanisms, our model relieves the sensitivity
difference between categories, which also balances the
constraints of the fine-grained feature extraction between
categories. We will conduct a more detailed discussion and
analysis in the Discussion section.

3.4. Evaluating Different Feature Fusion and Loss Supervision
Strategies. We compare the following feature fusion strat-
egies: (1) optimization strategy and (2) fusion strategies.
Deep-supervision strategy [31] has been introduced as an
effective method for fine-grained feature extraction from a

Receiver operating characteristic example
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LUAD AUC = 0.876
SCLC AUC = 0.837
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Receiver operating characteristic example
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(d)

Figure 5: -e ROC curve obtained with different attention mechanisms. (a) MFSE (r� 4); (b) MFSE (r� 16); (c) MFSA; (d) MFSCA (r� 4).
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single modality.-e idea is to implement loss supervision on
different feature outputs to achieve deeper optimization of
the network. Inspired by this idea, we apply separate loss
supervision on the output of each modality and integrate
with the loss of final fusion feature to achieve joint opti-
mization. -e loss supervision strategy employed after the
high-level semantic features of each modality enhances the
effectiveness of the spatial attention mechanism. For the
multimodality feature fusion, we employ GMU as the fusion
strategy.-e quantitative results of this experiment are listed
in Table 3. In this table, joint optimization refers to the loss
supervision that includes each single-path network inte-
grated with the loss of final fusion feature to obtain the joint
optimization. -e connection refers to the connection op-
eration of features to achieve the feature fusion, while the
GMU models the relevant features of the two modalities. As
can be seen from the results in the table, the performance
obtained by GMU (variance� 0.05) has smaller fluctuations
in the model prediction than the feature fusion mode of the
connection operation (variance� 0.12). -e result shows
that both GMU and joint optimization provide the best end-
to-end prediction for multimodality data.

4. Visualization Experiment and Discussion

In order to verify the role our attention mechanism plays for
each modality, we use Grad-CAM [33] to generate class
activation mapping (CAM) of the network. More concen-
trated and precise CAM responses mean a higher reduction
of noise in the feature extraction. Figures 6 and 7 show the
CAM on each 2D slice.

We visualize the CAM in different modalities and
conclude that the multidimensional attention forces the
network to focus on the lesion area and to reduce feature
noise in this way. -us, the multidimensional attention
mechanism accurately extracts features from the lesion area
while excluding interference of the feature with the sur-
rounding tissue. -is is important especially when the entire
image instead of a segmented image is used in the automatic
diagnosis. To optimally use these intensively distributed
features for the classification, it is necessary to ensure an

accurate extraction of these characteristics from the lesion
area. It can be seen from the results that our proposed at-
tention mechanism can better concentrate the features
extracted by the network in some areas.

Due to the differences in the feature distributions of
various imaging modalities, we further investigate the im-
pact that the two attention mechanisms have on the net-
work’s CAM. -e results of this comparison are shown in
Figures 8 and 9. Our observations show that the type of
attention mechanisms has a great influence on the CAM of
different modalities. For CT images, the CAM generated by a
spatial attention mechanism appears similar to the CAM of
models without attention mechanism. In contrast, the ap-
plication of the channel attention mechanism leads to a
concentrated CAM with the least amount of feature noise,
but it lacks in localization accuracy and deviates from the
true position of the lesion area. For PET images, the channel
attention mechanism cannot focus the attention map;
however, the spatial attention mechanism proved itself
useful in this regard. CT images illustrate intricate structures
which are represented by complex spatial features. While
their identification poses a challenging task, the modelling of
the feature weights on the basis of the channel dimension is
more effective. In contrast, PET images, as a binarization
image, hold less feature types that are difficult to distinguish
based on the feature channel. However, the spatial di-
mension facilitates the modelling of feature weights in PET
images. -is experiment and the different performances we
observed for PET and CT images demonstrate the com-
plementarity of two attention mechanisms.

-rough the LUAD which greatly fluctuates in sensi-
tivity, Figure 5, we try to explain the reasons why attention
mechanisms in deep learning network are effective. -e
metabolic level of the lesion area is measured in PET images
using the standardized uptake value (SUV). -is measure-
ment plays an important role in the clinical diagnosis as, in
general, LUSC and SCLC have higher SUV values than
LUAD. Because the channel attention mechanism has poor
ability to locate features in PET images, models based on this
are not sensitive to LUAD. -e spatial attention mechanism
has a better feature extraction effect on the PET image, which

Table 3: Evaluation of different fusion strategies.

Network architecture Data

AUC

Balanced accuracyScore of each
category

Average score Variance

MFSCA-DenseNet (GMU) CT+PET
LUSC 0.843

0.840 0.07 0.67LUAD 0.899
SCLC 0.868

MFSCA-DenseNet (GMU+ joint optimization) CT+PET
LUSC 0.938

0.920 0.05 0.72LUAD 0.910
SCLC 0.913

MFSCA-DenseNet (connection) CT+PET
LUSC 0.771

0.801 0.12 0.63LUAD 0.703
SCLC 0.885

MFSCA-DenseNet (connection + joint optimization) CT+PET
LUSC 0.788

0.815 0.10 0.65LUAD 0.759
SCLC 0.897
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(a)

(b)

(c)

Figure 7: Grad-CAM of PET images. (a) Four slices from the original PET image; (b) the Grad-CAM generated without attention
mechanism; (c) the Grad-CAM generated by the multidimensional attention mechanism.

(a)

(b)

(c)

Figure 6: Grad-CAM of CT images. (a) Four slices from the original CT image—the red area highlights the lesion labeled by the radiologist;
(b) the Grad-CAM generated without attention mechanism; (c) the Grad-CAM generated by the multidimensional attention mechanism.
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(a)

(b)

(c)

(d)

Figure 8: -e Grad-CAM generated by different attention mechanisms in CT images. (a) Four slices from the original CT image; (b) Grad-
CAM in MFSE; (c) Grad-CAM in MFSA; (d) Grad-CAM in MFSCA.

(a)

(b)

Figure 9: Continued.

10 Complexity



greatly improves the sensitivity of the model to LUAD.
Compared with LUAD, SCLC lesions have low density, and
there is no clear edge information in CT image. -e clinical
features of SCLC make it less sensitive on models based on
spatial attention mechanisms. Channel attention can more
effectively extract complex features on CTimages and reduce
feature noise, so it has better performance on SCLC. Dif-
ferent types of lung cancer have different characteristics on
different modality images, thus demonstrating the necessity
of multimodal image application. On the other hand, the
complexity of feature extraction from different modalities
also illustrates the necessity of multidimensional attention
mechanism for different image feature extractions.

5. Conclusions

In this paper, we propose an approach for the classification
of lung cancer using multimodality noninvasive clinical
images (CTand PET). A parallel network for automatic lung
cancer diagnosis is proposed. Furthermore, we optimize the
network regarding the extraction of fine-grained features in
both channel and spatial dimensions and utilize the GMU to
consider the intrinsic correlation between different mo-
dalities. We consider two attention mechanisms in different
modality images and visualize the results to provide a
comparison between them. In future work, we will address
the following topics to improve our approach furtherly: we
plan to expand the dataset used in the training to achieve a
clinical application level. In addition, we will collect more
segmentation labels for the data in our dataset and complete
the objective evaluation of our weakly supervised detection
approach.
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