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BAS C. VAN FRAASSEN 

FINE-GRAINED OPINION, PROBABILITY, 

AND THE LOGIC OF FULL BELIEF 

Personal or subjective probability entered epistemology as a cure for 

certain perceived inadequacies in the traditional notion of belief. But 

there are severe strains in the relationship between probability and be- 

lief. They seem too intimately related to exist as separate but equal; 

yet if either is taken as the more basic, the other may suffer. 

After explaining the difficulties in some detail I will propose a sin- 

gle unified account which takes conditional personal probability as 

basic. Full belief is therefore a defined, derivative notion. Yet it is 

easiest to explain the resulting picture of opinion as follows: my sub- 

jective probability is only a grading of the possibilities left open by 

my beliefs. My conditional probabilities generally derive from the 

strongest belief I can maintain when admitting the relevant condition 

Appendices will survey the literature. 

1. FULL BELIEF AND PERSONAL PROBABILITY 

The most forceful answer I can give if asked for my opinion, is to 

say what I fully believe. The point of having beliefs is to construct 

a single (though in general incomplete) picture of what things are like. 

One obvious model of this part of my opinion is a set of propositions.1 
Their intersection is the proposition which captures exactly that single 

picture of the world which has my full assent. Clearly a person's full 

beliefs leave open many alternatives. Alternatives left open by belief 

are then also represented by (sets of) propositions, namely ones that 

imply my beliefs. But these alternatives do not all have the same sta- 

tus for me, though they are all "possible for all I [know or] believe." 
Some seem more or less likely than others: enter personal (subjective) 

probability, as a grading of the possibilities left open by one's beliefs. 

I will take for granted that the probability of a proposition is a real 

number in the interval [0, 1], with the empty proposition A (self-contra- 
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350 BAS C. VAN FRAASSEN 

diction) receiving 0 and the universal proposition U (tautology) receiv- 

ing 1. The assignment is a measure, that is, it is additive and contin- 

uous (equivalently, countably additive). It follows from this that the 

assignment of probabilities respects the ordering by logical implica- 
tion: 

If A c_ B then P(A) < P(B) 

though we must be careful in any extrapolation from propositions 
to sets of propositions unless they are countable. That is essentially 
because at most countably many disjoint propositions can receive fi- 

nite positive probability. (Reason: at most one can receive probability 

greater than 1/2, at most two can receive more than 1/3, ... etc. The 

question of infinitesimal positive probability will be taken up in an 

Appendix.) 
The so-called lottery paradox shows that we cannot equate belief 

with probability > p, if p < 1. For example, suppose p = 0.99 and 

a lottery which I believe to be fair has 1000 tickets, then my proba- 

bility that the kth ticket will not win the (single) prize equals 0.999. 

Hence for each k = 1,..., 1000, I would believe that the kth ticket will 

not win. My beliefs would then entail that all tickets will fail to win, 

which conflicts with my original belief that the lottery is fair. This 

argument is more important for what it presupposes than for what it 

shows. It is clearly based on the assumed role of full belief: to form a 

single, unequivocally endorsed picture of what things are like.2 

In fact, the thesis that probabilities grade exactly the alternatives 

left open by full belief guarantees that all full beliefs have maximal 

personal probability. 
So what if we simply set p = 1, that is, identify our full beliefs with 

the propositions which are maximally likely to us? The first problem 
with this is that we seem to be treating full beliefs as on a par with 

tautologies. Are there no distinctions to be drawn among the maxi- 

mally likely propositions? There is a second problem for this proposal 
as well. In science we deal with continuous quantities. Therefore, 

in general, if we let science guide our opinion, the maximally likely 

propositions will not form a single picture - they will just give us a 

family of rival maximally likely pictures. 
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FINE-GRAINED OPINION 351 

EXAMPLE 1. Consider the mass of the moon reckoned in kilograms, 
and suppose I am sure that it is a number in the interval [a, b]. If my 

probability follows Lebesgue measure then my probability is zero that 

the number equals x, for a < x < b. Hence my probability equals 
100% that the number lies in the set [a, b] - {x}, for each such num- 

ber x. Yet no real number belongs to all these sets - their intersection 

is empty. Probability measures of this sort (deriving from continuous 

probability densities) are ubiquitous in science, and informed opin- 
ion must be allowed to let itself be guided by them. We have here a 

transfinite lottery paradox, and we can't get out of it in the way that 

worked for the finite case (see Maher, 1990). 

2. SUPPOSITION AND TWO-PLACE PROBABILITY 

There is a third aspect of opinion, besides belief and subjective grad- 

ing, namely supposition. Much of our opinion can be elicited only by 

asking us to suppose something, which we may or may not believe. 

The respondent imaginatively puts himself in the position of someone 

for whom the supposition has some privileged epistemic status. But if 

his answer is to express his present opinion - which is surely what is 

requested - then this "momentary" shift in status must be guided by 
what his present opinion is. How does this guidance work? 

One suggestion is that the respondent moves to a state of opinion 
derived from his own in two steps: (1) discarding beliefs so that the 

supposition receives more than minimal likelihood; (2) then (without 
further change in beliefs) regrading the alternatives left open so as to 

give the supposition maximal likelihood. This makes sense only if 

both steps are unambiguous. We can imagine a simple case. Suppose 
Peter has as "primary" beliefs A and B, and believes exactly what 

they jointly entail; he is asked to entertain the supposition C - A. In 

response he imaginatively moves into the epistemic position in which 

(1) B is the only primary belief, and (2) he assigns 0 to all alterna- 

tives left open by B which conflict with (C - A) and then regrades 
the others in the same proportions as they had but with the maximum 

assigned to (B n C - A). 
This simple case already hinges on a certain hierarchical structure in 

Peter's opinion. Moreover it presupposes that those alternatives which 
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352 BAS C. VAN FRAASSEN 

were left open by B, but which conflict with his initial equally pri- 
mary belief that A, had been graded proportionately as well. Even 
more structure must be present to guide the two steps in less simple 
cases. What if the beliefs had been, say, A, B, and D, and their joint 
consequences, and the supposition was compatible with each but not 
with the conjunction of any two? The discarding process can then be 

guided only if some hierarchy among the beliefs determines the selec- 
tion. 

Let us consider conditional personal probability as a possible means 
for describing structure of this sort. The intuitive Example 1 above 
about the mass of the moon is the sort often given to argue for the ir- 

reducibility of conditional probability. I could continue the example 
with: the mass of the moon seems to me to equally likely to be x as 

(x + b)/2, on the supposition that it is one of those two numbers. The 
two possibilities at issue here are represented by the degenerate inter- 
vals [x], [(x + b)/2], so both they and the supposition that one or other 
is the case (represented by set {x, (x + b)/2 their union) receive proba- 
bility 0. The usual calculation of conditional probability, which would 
set P(B I A) equal to P(B nC I A) divided by P(C I An C), can there- 

fore not be carried out. The suggestion that conditional probability is 
irreducible means that two-place probability P( I) - probability of one 

thing given (on supposition of) another - is autonomous and cannot be 

defined in terms of the usual one-place ("absolute") probability. Rather 
the reverse: we should define P() = P( I U), probability conditional 

on the tautology. 
There is a good deal of literature on two-place ("irreducible condi- 

tional") probability (see Appendix). Despite many individual differ- 

ences, general agreement concerning two-place probability extends to: 

I. If P is a 2-place probability function then P(- I A) is "normal- 

ly" a (1-place) probability function with P(A I A) = 1. 

II. These derivative 1-place probability functions [described in I.] 
are related at least by the Multiplication Axiom: 

P(B n C I A) = P(B I A)P(C I An C) 

where A, B, C,... are assumed to be in the domain and co-domain of 
the function. The "normally" restriction (eliminating at least A = A) is 
to be discussed below. 

This content downloaded from 128.112.66.66 on Sat, 22 Feb 2014 10:48:36 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


FINE-GRAINED OPINION 353 

New non-trivial relationships between propositions are now defin- 

able. De Finetti suggested relations of local comparison of the follow- 

ing type: 

A is superior to B iff P(A I A + B) = 1 

where '+' marks exclusive disjunction: A + B = (A - B) U (B - A).3 

EXAMPLE 2. Given any probability measure P it is easy to produce 
a 2-place function that has that character: 

define P(A I B) = P(A n B)/P(B) if P(B) > 0 

= 1 if P(B)= 0 

That is a trivial 2-place function since it is definable from a 1-place 
function. 

EXAMPLE 3. Let U be the set of natural number {0, 1,2,...}. For 

index n = 0, 1,2,... let pn be the probability measure defined on all 

subsets of U by the condition that it assigns 0.1 to {x} if x is in the 

set {I10n,..., 10n + 9}, and 0 otherwise. Define: 

P(A I B) = pn(A n B)/p,(B) for the first index n 

such that 

Pn(B) > 0, if there is any such index; = 1 otherwise. 

To verify the Multiplication Axiom note for instance that if A n C is 

not empty, and P(A I C) > 0 then the first index n for which pn(A n 

C) > 0 is the same as the first index m such that Pm(C) > 0. The 

"otherwise" clause will apply here only if B = A. 

These examples are instances of the "lexicographic" probability 
models which I will discuss at some length below. We make the ideas 

of one- and two-place probability precise as follows. 

A space is a couple S = (U, F) with U a non-empty set (the 

worlds) and F (the family of propositions) a sigma-field on U, 
that is: 

(a) U E F 

(b) if A,B E F then A - B E F 
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354 BAS C. VAN FRAASSEN 

(c) if {Ai: i = 1,2,...} C F then U{Ai} E F 

A (1-place) probability measure P on space S = (U, F) is a func- 

tion mapping F into the real numbers, subject to 

1. 0 = P(A) < P(A) < P(U)= 1 

2. P(A u B) + P(A n B) = P(A) + P(B) (finite additivity) 
3. If E1 C E2 C ... C E C ... has union E, then P(E) = 

sup{P(En): n = 1,2,...} (continuity) 

Property 3 is in this context equivalent to countable additivity: 

4. If {En: n = 1, 2,...} are disjoint, with union E, then P(E) = 

Y{P(En): n= 1,2,...} 

and also to the dual continuity condition for countable intersection. 

The general class of two-place probability measures to be defined now 

will below be seen to contain a rich variety of non-trivial examples. 

A 2-place probability measure P(- I -) on space S = (U, F) is 

a map of F x F into real numbers such that 

I. (Reduction Axiom) The function P(- I A) is either a 

probability measure on S or else has constant value = 1. 

II. (Multiplication Axiom) 

P(B n C I A) = P(B I A)P(C I B n A) 

for all A, B, C, in F. 

If P(I A) is a (1-place) probability measure, I shall call A normal 

(for P), and otherwise abnormal. ("Absurd" might have been a better 

name; it is clearly a notion allied to self-contradiction.) The definition 

of 2-place probability allows for the totally abnormal state of opinion 

(P(A I B) = 1 for all A and B). It should not be excluded formally, 
but I shall tacitly exclude it during informal discussion. Here are some 

initial consequences of the definition. The variables range of course 

over propositions (members of family F in space S = (U, F)). 

[T2.11] P(X I A) = P(X n A A) 
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[T2.2] 

[T2.3] 

[T2.4] 

If A is normal, so are its supersets 

If A is abnormal, so are its subsets 

B is abnormal iff P(-B I B) = 1; iff P(B I A) = 0 

for all normal A. 

Let us call the case in which only A is abnormal the "Very Fine" case; 
that there are Very Fine 2-place probability measures on infinite fields 
will follow from results below. 

We add one consequence which is related to De Finetti's notion of 

conglomerability: 

[T2.5] Condition Continuity: If {En} is a countable increas- 

ing chain - i.e. En part of E,,1 - with union E, and 

P(E, I E) > 0 for all n, then P(X I E) is the limit of 

the numbers {P(X I E,)}. 

To prove this: P(X I En) = P(X n En I E)/P(E, n E), so since E is 

normal, this follows from the principle of condition continuity which 
can be demonstrated for (one-place) probability measures.4 

3. THE IDEA OF THE A PRIORI 

In any conception of our epistemic state there will be propositions 
which are not epistemically distinguishable from the tautology U - 
let us say these are a priori for the person. This notion is the opposite 
of the idea of abnormality: 

A is a priori for P iff P(A I X) = 1 for all X, 

iff U - A is abnormal for P. 

What is a priori for a person is therefore exactly what is certain for 
him or her on any supposition whatsoever. This notion generalizes 
unconditional certainty, i.e. P(A) = 1. The strongest unconditional 

probability equivalence relation between A and B is that their sym- 
metric difference (A + B) has measure zero. We can generalize this 

similarly. As our strictest epistemic equivalence relation between two 

propositions we have a priori equivalence (their symmetric difference 
has probability 0 on all normal suppositions): 

A(P)B iff A + B is abnormal.5 
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356 BAS C. VAN FRAASSEN 

The abnormal propositions are the ones a priori equivalent to the empty 
set (the self-contradiction) and the a prioris are the ones a priori equiv- 
alent to the tautology. (Of course these are subjective notions: we are 

speaking of what is a priori for the person with this state of opinion.) 
Note now that A(P)B iff P(A I A + B) = 1 and P(B I A + B) = 1, 

since additivity would not allow that if A + B were normal. We can 

divide this equivalence relation into its two conjuncts: 

DEFINITION. A P > B iff P(A I A + B) = 1. 

This is the relationship of "superiority" mentioned above. 

[T3.1] If A logically implies B then B P > A. 

It follows from the definition that A P > A. In a later section I 

shall also show that P > is transitive. Clearly if A + B is normal, then 

A P > B means that A is comparatively superior to B, in the sense 

that A is certainly true and B certainly false, on the supposition that 

one but not both are the case. But if A + B is abnormal then the rela- 

tionship A P > B amounts to A(P)B. The right reading for "P >" is 

therefore "is superior to or a priori equivalent to". To be brief, how- 

ever, I'll just say "A is superior to B" for "A P > B", and ask you to 

keep the qualifications in mind. 

4. FULL BELIEF REVISITED 

The beliefs I hold so strongly that they are a priori for me are those 

whose contraries are all abnormal. There is a weaker condition a propo- 
sition K can satisfy: namely that any normal proposition which im- 

plies K is superior to any that are contrary to K. Consider the follow- 

ing conditions and definitions: 

(Al) 

(A2) 

(A3) 

Normality: 

Superiority: 

Contingency: 

K is normal 

If A is a non-empty subset of K 

while B and K are disjoint, then 

AP>B 

The complement U - K of K is 

normal. 
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We can restate the "Superiority" condition informally as follows: 

Superiority: the alternatives K leaves open are all supe- 
rior to any alternative that K excludes. 

We can deduce from these conditions something reminiscent of Car- 

nap's "regularity" (or Shimony's "strict coherence"): 

(A4) Finesse: all non-empty subsets of K are normal. 

DEFINITION. K is a belief core (for P) iff K satisfies (Al)-(A3). 

Note that the a priori propositions satisfy (Al) and (A2), though 

definitely not (A3), but rather its opposite. However, the following el- 

ementary results show that all the a prioris are among the propositions 

implied by belief cores. 

[T4.1] 

[T4.2] 

[T4.3] 

If K is a belief core then P(K I U) = 1. 

If K is a belief core then A P > K iff K implies A. 

If K is a belief core and A is a priori then K 

is a subset of A. 

To characterize the full beliefs we need take into account the extreme 

possibility of there being no belief cores; in that case we still want the 

a prioris to be full beliefs of course. (This corresponds to what I have 

elsewhere called "Zen minds": states of opinion in which nothing is 

fully believed if it is subjectively possible to withhold belief.) In view 

of the above we have several equivalent candidates for this characteri- 

zation, of which we can choose one as definition: 

DEFINITION. A is a full belief (for P) iff (i) there is a belief core, 

and A P > K for some belief core K; or (ii) there is no belief core, 

and A is a priori. 

[T4.4] The following conditions are equivalent: 

(a) A is a full belief (for P). 
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358 BAS C. VAN FRAASSEN 

(b) Some proposition J which is either a priori or a full 

belief core is such that A P > J. 

(c) A is implied either by an a priori or by a belief core 

(for P). 

Very little in this discussion of full belief hinges on the peculiarities 
of probability. Indeed, (conditional) probability enters here only to 

give us intelligible, non-trivial resources for defining the notions of 

subjective superiority and a-prioricity (equivalently, [ab]normality). If 

those notions could be acceptably primitive, the account of full belief 

here would just take the following form: 

A belief core is a proposition K such that: 

(a) K and its complement are both normal; (b) K does 

not leave open any abnormal alternatives; (c) any alter- 

natives left open by K are superior to any alternatives K 

excludes. 

A belief is any proposition implied by a belief core (or a pri- 

ori). 

As before, a proposition is here called an alternative left open by K 

exactly if it is non-empty and implies K. 

5. IDENTIFICATION OF FULL BELIEFS 

By the definition I gave of full belief, beliefs are clustered: each be- 

longs to a family {A: A P > K} for some belief core K (if there are 

any at all), which by [T4.2] sums up that cluster exactly: 

K is the intersection of {A: A P > K} 

{A: A P > K} = {A: K implies A}. 

We can now prove that these clusters form a chain, linearly ordered by 
set inclusion (implication). 

[T5.1] If K, K' are belief cores, then either K 

is a subset of K' or K' is a subset of K. 

For the proof let A = K - K' and B = K' - K. Each is normal if 
a 

non-empty, by (A4). If B is not empty then, since A is disjoint from 

K', it follows by (A2) that B P > A. By parity of reasoning, if A is 
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not empty, then A P > B. But we cannot have both unless A + B is 

abnormal, and hence empty by [T2.2] and (A4). So we conclude that 

either A or B or both are empty; hence at least one of K and K' is a 

subset of the other. 

This result is crucial for the characterization of full belief. It is 

therefore worthwhile to note that the only ingredients needed for the 

proof were the features of Superiority and Finesse of belief cores, plus 
the following characteristic of the superiority relationship: if A P > B 

and B P > A then A + B is abnormal. Here is an illustrative example: 

EXAMPLE 4. For the center of mass of the remains of Noah's ark, 
Petra has subjective probability 1 for each of the following three propo- 
sitions: that it lies in the Northern Hemisphere (which part of the 

earth includes the Equator), that it lies in the Western Hemisphere, and 

thirdly that it lies North of the Equator. But only the first two of these 

propositions are among her full beliefs; the third is not. On the sup- 

position that one but only one of these beliefs is true, she gives 100% 

probability to the first proposition, that it lies in the Northern Hemi- 

sphere. 

Note that the last sentence implies that the first proposition is supe- 
rior to the second, although both are full beliefs. I will give a formal 

reconstruction of this example later on. 

Writing K* for the intersection of all the belief cores, we conclude 

that if A is a full belief, then K* implies A. But is K* itself a belief 

core? Does it have 100% probability? Is it even non-empty? This is 

the problem of transfinite consistency of full belief in our new setting. 

[T5.2] The intersection of a non-empty countable family of be- 

lief cores is a belief core. 

For proof, assume there is at least one belief core; call it K. As- 

sume also that the belief cores are countable and form a chain (the 
latter by [T5. 1]), and call the intersection K*. Countable additivity 
of the ordinary probability measure P() = P(I U) is equivalent to 

just the right continuity condition needed here: the probabilities of the 

members of a countable chain of sets converge to the probability of 

its intersection. Since in our case all those numbers equal 1, so does 
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P(K*). Therefore also K* is not empty, and thus normal because it 

is a subset of at least one belief core. Moreover, so are its non-empty 

subsets, so that they are normal too. Its complement U - K* includes 

U - K, and is therefore also normal. 

We have now seen that K* satisfies conditions (Al), (A3), and (A4), 
and need still to establish (A2). If A is a normal subset of K*, and 

hence of all belief cores, and B is disjoint of K*, we have 

P(A I A + (B - K')) = 1 for all belief cores K'. But the sets B - K' 

form an increasing chain whose union is B - K* = B. Hence also 

the sets A + (B - K') here form such a chain with union A + B. To 

conclude now that P(A I A+ B) = 1, we appeal to [T2.5], the principle 

of Condition Continuity. This ends the proof. 

The significance of this result may be challenged by noting that the 

intersection of countably many sets of measure 1 also has measure 1. 

So how have we made progress with the transfinite lottery paradox? 

In four ways. The first is that in the representation of opinion we may 

have a "small" family of belief cores even if probability is continu- 

ous and there are uncountably many propositions with probability 1. 

The second is that no matter how large a chain is, its intersection is 

one of its members if it has a first (= "smallest") element. The third 

is that the following is a condition typically met in spaces on which 

probabilities are defined even in the most scientifically sophisticated 

applications: 

(,) 
Any chain of propositions, linearly ordered by set inclu- 

sion, has a countable subchain with the same intersec- 

tion. 

[T5.3] If (*) holds and there is at least one belief core, then the 

intersection of all belief cores is also a belief core. 

This is a corollary to [T5.2]. 

Fourthly, farther below I will also describe an especially nice class 

of models of fine-grained opinion for which we can prove that the in- 

tersection of the belief cores, if any, is always also a belief core ("lexi- 

cographic probability"). There are no countability restrictions there. 
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FINE-GRAINED OPINION 361 

6. TO WHAT EXTENT DOES BELIEF GUIDE OPINION? 

It is not to be expected that every two-place probability function is 

admissible as a representation of (possible) opinion. If we want to 

use this theory in descriptive epistemology, it is necessary to look for 

kinds of probability functions that have interesting structure. There 

are models in which there are no belief cores at all. Combining our 

previous Examples 1 and 2, take Lebesgue measure m on the unit in- 

terval, and trivially extend it to a two-place function by P(A I B) = 

m(A n B)/m(B) if defined and P(A I B) = 1 if not (though A, B 

in domain of m). Then every unit set {x} is in the domain and is ab- 

normal. Therefore there is no set all of whose subsets are normal, and 

hence no belief cores. (The absence of belief cores in our present ex- 

ample derives from its triviality, and not from the continuity.) Obvi- 

ously then, if this represents someone's opinion, his opinions are not 

guided or constrained by his beliefs (which include only the a priori).6 
At the other extreme from this example, there is the Very Fine case 

of a probability function P for which every non-empty set is normal. 

DEFINITION. P is belief covered if the union of the belief cores 

equals U. 

In that case, P is Very Fine. For let A be any non-empty proposition; 
there will be some belief core K such that K n A is not empty, hence 

normal, thus making A normal. 

Example 3 in Section 2.1 furnishes us with a relatively simple ex- 

ample of this sort. Recall that P is there constructed from the series 

popl,--... , pn, ... where the whole probability mass of Pn is concen- 
trated (and evenly distributed) on the natural numbers { 10n,..., 

10n + 9}. In this example, the belief cores are exactly the sets 

Ko = {0,...,9}, K1 = {0,..., 19}, 

K2 = {0,...,29},...Ki = {0,..., 10i + 9} 

Clearly Ki is normal, since P(- Ki) = P(- I Ko) = po. The 

complement of Ki is normal too, for 

P(- I U - Ki) = P(- I {10(i + 1),...}) = pi+l. 
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If A is a non-empty subset of Ki and B is disjoint from Ki, then A is 

superior to B. Specifically, the first n such that pn(A) > 0 can be no 

higher than i in that case, while the first m such that Pm(B) > 0 can 

be no lower than i + 1. Therefore, the first k such that pk(A + B) > 0 

will assign a positive probability to A and zero to B. 

These belief cores clearly cover U; P is belief covered and Very 
Fine. Indeed, the belief cores are well-ordered. 

Define the belief remnants 

Ro = Ko 

Rj+I = Kj+i - Kj (j = 0, 1,2,...). 

Clearly pi = P(I Ri); for example, pl = P(I {10,..., 19}). Probabil- 

ities conditional on belief remnants (beliefs remaining upon retrench- 

ment to a weaker core) determine all probabilities in this case: 

P(- I A) = P(- I A n R) for the first i 

such that P(A I Ri) > 0. 

This says quite clearly that (in this case) belief guides opinion, for 

probabilities conditional on belief remnants are, so to speak, all the 

conditional probabilities there are. 

7. THE MULTIPLICATION AXIOM VISUALIZED 

In the basic theory of two-place probability, the Multiplication Axiom 

places the only constraint on how the one-place functions P(I A), P(I 

B),... are related to each other. It entails that the proposition A - B 

is irrelevant to the value of P(B I A) - that this value is the same as 

P(A n B I A) - and that the usual ratio-formula calculates the condi- 

tional probability when applicable. Indeed, the ratio formula applies in 

the generalized form summarized in the following: 
If X is a subset of A which is a subset of B, then: 

[T7.1] if P(A I B) > 0 then P(X I A)= P(X I B) : P(A B) 

[T7.2] if X is normal, then P(X I B) < P(X I A). 

There is another way to sum up how the Multiplication Axiom con- 

strains the relation between P(I A) and P(I B) in general. When we 
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consider the two conditional probabilities thus assigned to any proposi- 
tion that implies both A and B, we find a proportionality factor, which 

is constant when defined. 

[T7.3] If P(A I B) > 0 then there is a constant k > 0 such that 

for all subsets X of A n B, P(X I A) = kP(X I B). The 

constant k = k(A, B) = [P(B I A)/P(A I B)], defined 

provided P(A I B) > 0. 

8. EQUIVALENCE RELATIONS ON PROPOSITIONS 

In the main literature on two-place probability we find an equivalence 

relationship other than a priori equivalence, which I shall call surface 

equivalence:7 

[T8. 1] The following conditions are equivalent: 

(a) P(- I A)= P(- I B) 

(b) P(A+B I AUB) = 0 or else both A, B are abnormal 

(c) P(A I B)= P(B I A)= 1. 

(I use the dot for function notation: (a) means that P(X I A) = P(X I 
B) for all X.) It is easy to prove that (a) implies (b), for if (a) and 

either A or B is normal then both are normal. Secondly suppose (b). 
If A, B abnormal then (c) follows. Suppose then that one of A, B is 

normal, so A U B is normal. Then either P(A I AU B) or P(B I AU B) 
is positive; suppose the first. Since A n B C A c A U B it follows 

by [T7.1] that P(B I A) = P(B n A IA U B) : P(A I A u B). But 

P(A - B I A U B) = 
0 so P(A n B I A U B) = P(A I A U B) > 0; hence 

we conclude that P(B I A) = 1. Accordingly, B too is normal and 

P(B I AU B) is positive; the same argument leads mutatis mutandis to 

P(A I B) = 1. Therefore (b) implies (c). 

Finally suppose (c). If A is abnormal, then so is B and (a) follows 

at once. If A is normal, then B and A U B are also normal. But then 

P(A n B I A U B) = P(A I A U B) = P(B I A U B) = i, using (c) and 

the Multiplication Axioms. Hence P(X n A n B I A U B) = P(X n A 

A U B) = P(X I A) and by similar reasoning P(X n A n B I A U B) = 

P(X I B). Therefore (c) implies (a). 
The relationship of a priori equivalence is much "deeper". As pre- 

lude let us introduce another operation on probability functions which 
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is something like "deep conditionalization". Instead of raising a propo- 
sition to the status of subjective certainty it raises it to subjective ap- 

prioricity. To prevent confusion, I shall call this "relativization".8 

DEFINITION. The relativization of P to A is the function P//A de- 

fined by P//A(X I Y) = P(X I Y n A) for all X, Y. 

[T8.2] The following are equivalent: 

(i) P(A I -)= P(B I -) 

(ii) P(- I n A) = P(-I - n B) (i.e. P//A = P//B) 

(iii) P(A I A + B) (a priori equivalence) 
= P(B I A + B) = 1 

(iv) A + B is abnormal (i.e. A(P)B) 

(For proof that (ii) implies (iv), use the Lemma: if A, B are disjoint 
and abnormal then A U B is abnormal.). 

[T8.3] A priori equivalence implies surface equivalence. 

The converse does not hold, as can be seen from our Example 3 

in Section 2.1, where U is the set of natural numbers, and is surface 

equivalent, but not a priori equivalent, to {0, 1,..., 9}. For P({0O, 1,..., 

9} 1 {10,..., 19}) = 0 there. 

9. IMPLICATION RELATIONS; 
SUPERIORITY IS TRANSITIVE 

We are representing propositions by means of a field of sets, whose 

elements are thought of as alternative possible situations or worlds. 

Accordingly, "A implies B" can be equated only with "A c B." But 

when two propositions are a priori equivalent for P then they are not 

distinguishable as far as P is concerned. Therefore we can introduce 

a less sensitive partial ordering as a "coarser" implication relationship 
with respect to a given two-place probability measure. 

[T9. 1] The following are equivalent: 

(a) A P-implies B: ) < P(B I ) 
(b) A - B is abnormal 

(c) for all X, if P(A I X)= 1 then P(B I X) = 1. 
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The superiority relation is not a (converse) implication relationship, 

despite formal similarities. If A is superior to B, A may still have 

probability zero conditional on B, for example. It is just that the sup- 

position that A has to be given up - in fact, denied - before B comes 

into play on our thinking. The hierarchy so indicated John Vickers 

(loc. cit.) calls the De Finetti hierarchy. As he points out, it is crucial 

to this role that we can describe the comparison in terms of a transi- 

tive relationship. 
In fact, only one further point needs to be made concerning normal- 

ity to show that the propositions form a partially ordered set under su- 

periority (with the abnormal propositions forming an equivalence class 

at the bottom of this p.o.set). 

[T9.2] If X is a subset of Y and Y a subset of normal set E, 
and P(Y I E) > 0, then P(X I Y) = 0 iff P(X I E) = 0. 

[T9.3] P > is transitive. 

Let it be given that A P > B and B P > C; we need to prove that 

A P > C. To visualize the proof, think of a Venn Diagram with the 

following labels for relevant propositions: 

1 = (A-B-C), 2=(AB-C), 3=B-A-C, 

4= AC-B 

5=BC-A, 6=C-B-A 

E= (A+B)u(B+C)= (A+B)u(B+C)u(A+C) 

I will denote unions by concatenation of the labels; thus E = 123456 

and A - C = 12. We now consider all possible cases. 

(1) A + C is abnormal. Then P(A I A + C) = 1 

(2) A + C is normal; then also E is normal. 

Hence P(A + B I E) or P(B + C I E) or both are positive; we proceed 
to the possible subcases: 

(2.1) P(A + B I E) > 0. By the given and [T9.2] it follows that 

P(B - A I E) = 0, i.e. P(3 I E) = P(5 I E) = 0. 

(2.11) Assume P(B + C I E) > 0. By [T9.2], and the given, also 

P(C - B I E) = 0, so P(4 E) = P(6 I E) = 0. Altogether, 
P(3456 I E) = 0 hence P(12 I E) = P(A - C I E) = 1. It follows that 
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P(A + C I E) > 0, so by [T9.2] P(56 I A + C) = P(C I A + C) = 0, 
and therefore P(A I A + C) = 1. 

(2.12) Assume P(B + C E) = 0. Then P(2346 I E) = 0, so 

altogether P(23456 I E) = 0. Hence P(1 I E) = 1. It follows that 

P(A + C I E) > 0, therefore by [T9.2] again P(56 I A + C) = 0. It 

follows then that P(A I A + C) = 1. 

(2.2) P(A + B I E) = 0 and P(B + C I E) > 0. The former entails 

that P(1345 I E) = 0. The latter entails by [T9.2] that P(C - B I 
E) = P(46 I E) = 0. Altogether therefore P(13456 1 E) = 0 and 

P(2 I E) = 1. Therefore P(A+C I E) > 0, and so P(C-A I A+C) = 0 

by [T9.2]; therefore P(A I A + C) = 1. This ends the proof. 

Adding this to the fact that P > is reflexive, we conclude that P > 

is a partial ordering of the field of propositions. The abnormal propo- 
sitions form a (P) equivalence class at the very bottom of this partial 

ordering. 

10. A LARGE CLASS OF MODELS 

I will define a class of models such that P satisfies principles I-II iff 
P can be represented by one of these models, in the way to be ex- 

plained. The class will be chosen large; a special subclass ("lexico- 

graphic models") will yield nontrivial, easily constructed examples to 

be used in illustrations and refutations. (The term "lexicographic" is 

used similarly in decision theory literature; see Blume et al., 1991a, 

1991b.) 
A model begins with a sample space S = (U, F), where U is a non- 

empty set (the universe of possibilities) and F a sigma-field of sets on 

U (the propositions). We define the subfields: 

if A is in F then FA = {En A: E in F}; 

thus FA is a field on A. For each such field designate as PA the set 

of probability measures defined on FA. (When A is empty, FA = {A} 
and PA is empty.) The restriction of a member p of PA to a subfield 

FB, with B a subset of A, will be designed p I FB. Finally let PS be 

the union of all the sets PA, A in F. 

A model M will consist of a sample space S as above, and a func- 

tion 7r defined on a subset of F, with range in PS. That is, 7r asso- 
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ciates some probability measure on some subfield with certain propo- 
sitions. (These will be the normal propositions.) I will abbreviate 

"ir(A)" to "irA", and when p is in FB I will also designate B as Up 

(the universe of p). Thus B = UirA means that 
7r associates with A a 

probability measure defined on the measurable subsets of B, i.e. on the 

propositions which imply B, i.e. on FB. The function 7r is subject to 

the following conditions: 

(M1) 

(M2) 

(M3) 

7rA(A) is defined and positive. 

If 7rB(A) is defined and positive, then 7rA is defined 

If 7rB(A) is defined and positive, then rA I F(A n B) 

is proportional to rB I F(A n B). 

This does not entail that if 7rB(A n B) > 0 then 7rA(A n B) > 0, 
because the proportionality constant can be 0 (in which case 7rA gives 
0 to all members of F(A n B) - see further the discussion of [T7.3] 
which suggested this condition). It is easy to see what the constant of 

proportionality has to be: 

[T10.1] If 7rB(A) is defined and positive, then 

A7rAIF(An B): 7rB IF(An B) 

= irA(A n B): -rB(A n B). 

Finally we define what it means for one of these functions to represent 
a two-place function: 

DEFINITION. Model M = (S, 7r) with S = (U, F) represents binary 
function P iff the domain of P is F and for all A, B in F, P(A I 
B) = 7rB(A n B)/IrB(B) if defined, and = 1 otherwise. 

It is easy to prove that: 

[T10.2] If P is represented by a model, then P is 

a two-place probability measure. 

Conversely, suppose that P is a two-place probability measure in the 

sense of satisfying I-II, defined on F in space S = (U, F). For all 

normal sets A of P define 7rA on FA by: 

irA(B) = P(B I A). 
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That (M1) and (M2) are satisfied by M = (S, 7r) follows at once 

from the facts about normal sets. Suppose now, equivalently to the 

antecedent of (M3) that A and B are normal sets with 7r(B) > 0. To 

prove that (M3) holds, suppose that 7rB(A) is defined and positive, 
so that B and A are normal sets, P(A I B) > 0. Then according to 

[T7.3], for each subset X of A n B we have P(X I A) = [P(B I 
A)/P(A I B)]P(X I B). Therefore here 7rA(X) = [P(B I A)/P(A I 
B)]7rB(X). In conclusion: 

[T10.3] If P is a two-place probability measure satisfying the 

principles I-II, then P is represented by a model. 

Having established this representation result, we now look for easily 
constructed models, for illustration, refutation of conjectures, and ex- 

ploration of examples. 

DEFINITION. Model M = (S, 7r) with S = (U, F) is lexicographic 
iff there is a sequence (well-ordered class) SEQ of 1-place probability 
measures defined on the whole of F, such that 7rB(A) = q(AnB)/q(B) 
for the first member q of the sequence SEQ such that q(B) > 0; 7rB is 

undefined when there is no such q. 

The members of SEQ correspond to the probabilities conditional on 

belief remnants (see discussion in Section 6 of Example 3). We will 

say that 7rA comes before rB in SEQ exactly when the first q in SEQ 
such that q(A) > 0 comes before the first q in SEQ such that q(B) > 0. 

It is easily checked that M = (S, 7r) is a model. Specifically, if A is a 

subset of B then rB will not come after 7rA, since whatever measure 

assigns a positive value to A will then assign one to B. Neither can 

7rA come after rB if irB(A) > 0; in that case rA = 7rB. Consequently 
condition (M3) is easily verified: the proportionality constant = 1. 

It is now very easy to make up examples of 2-place probability 
measures. Just take two or three or indeed any number, finite or in- 

finite, of ordinary probability measures and well-order them. A special 

example, whose existence depends on the axiom of choice is this: let 

SEQ contain all one-place probability measures defined on given do- 

main F. In that case, the only abnormal proposition is the empty set 

(the self-contradiction). Also the only a priori is the tautology. Short 
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of this, we could of course have a sequence which does not contain 

literally all the definable probability measures, but contains all those 

which give 1 to a given set A. In that case, all propositions other than 

A that imply A are normal. Let us call P Very Fine on A in such a 

case. (The case of P Very Fine on U was already called "Very Fine" 

above.) Note that one of the defining conditions of a belief core K 

was that P had to be Very Fine on K. 

11. BELIEF IN A LEXICOGRAPHIC MODEL 

I will first show that in a lexicographic model, the intersection of all 

belief cores, if any, is always a belief core too. Since this does not 

depend on cardinality or the character of the sample space, the result 

adds significantly to the previous theorems. Then I will construct a 

lexicographic model to show that in general not all propositions with 

probability 1 are full beliefs. This model will be a reconstruction of 

Example 4 (Petra and Noah's Arc). 

[T11.1] If P is represented by lexicographic model M = (S,p) 
defined by w.o. sequence SEQ, and A, B are disjoint 
normal sets for P, then the following are equivalent: 

(i) AP>BandnotBP>A 

(ii) 7rA comes before 7rB in SEQ. 

[T11.2] If P is represented by lexicographic model M = (S, 7r) 
defined by w.o. sequence SEQ, and K, K1, K2 are 

belief cores with K a proper subset of K 1 and K 1 a 

proper subset of K2 then 7r (K1 - K) comes before 

7r(K2 - K1) in SEQ 

For proof note that K 1 - K and K2 - K 1 are disjoint normal sets 

(belief remnants), so [Ti11.1] applies. 

[T11.3] If P is represented by lexicographic model M = (S, 7r) 
defined by w.o. sequence SEQ, then the intersection of 

all its belief cores is also a belief core. 

For convenience in the proof, call 7r(K" - K') a marker of K' when 

both are belief cores and K' is a proper subset of K". This measure 

exists in the model since the set is normal. If no superset of K is a 
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core, call 7r(U - K) its marker. We now consider the whole class 

of markers; it must have a first member in SEQ. Let that be p* = 

7r(K2 - K1). It remains to prove that K1 is the intersection of all the 

belief cores. Suppose to the contrary that core K is a proper subset of 

K1. Then by [T11.2] marker p (K1 - K) comes before p* in SEQ - 

contra the hypothesis. This ends the proof. 
At this point we know enough about lexicographic models in gen- 

eral to exploit their illustrative uses. Recall Example 4. Petra has sub- 

jective probability 1 for N: the center of mass of Noah's Ark lies in 

the Northern Hemisphere and also for W: that it lies in the Western 

Hemisphere. I shall take it here that the Equator is part of the North- 

ern Hemisphere; she has probability 1 that -EQ: it does not lie on the 

Equator. Let me add here that she also has probability 1 that -GR: 

it does not lie on the Greenwich Meridian (which I shall here take to 

be part of the Western Hemisphere). But she has probability 1 that it 

lies in Northern Hemisphere on the supposition that N + W: it lies ei- 

ther in the Northern or in he Western Hemisphere but not both (which 

supposition has 0 probability for her). 

For the sample space, let U be the entire surface are of the Earth, 

and let F be the family of measurable subsets of U in the usual sense, 

so we can speak of area and length where appropriate. Let us first de- 

fine some measures and classes of measures: 

mA(X) = area of X nA : area of A 

1A(X)= length of X nA : length of A 

where XX is a subset of F 

M(XX) = the class of all measures on F 

which give 1 to a member of XX. 

The sequence SEQ is now pieced together from some other well or- 

dered sequences as follows: 

SEQ = m(N n W), l(GR n N), l(EQ n W), S 1, S2, 

mN, mW, mU, S3, S4 

where the indicated subsequences are: 

S1: a well-ordering of {lA: A is a subset of N n W with 0 area but 

positive length}, 
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S2: a well-ordering of M{A in F: A is a non-empty subset of N n 

W with 0 area and 0 length}, 
S3: a well-ordering of {1A: A is has 0 area but positive length}, 
S4: a well-ordering of M{A in F: A is a non-empty and has 0 area 

and 0 length}. 
Let us call the so constructed lexicographic model PETRA, in her 

honor. The construction is a little redundant: we would be construct- 

ing a Very Fine measure already if we just took the tail end mU, S3, 
S4. Preceding them with the others has the effect of establishing de- 

sired superiority relationships. For example, N + W first receives 

a positive value from mN, which gives 0 to W - N, so that P(N I 
N + W) = 1. I made GReenwich similarly superior to EQuator. 

[TI1.4] N n W is a belief core in PETRA. 

[T11.5] No proper subset of N n W - GR is a belief core. 

For let X be such a subset; to be a belief core it must have proba- 

bility 1 tout court, so its area equals that of N n W. Let X' be one of 

its non-empty subsets with 0 area. Then X' as well as X itself are dis- 

joint of N n W n GR = Y. The first measure to assign positive value 

to X' + Y is the second member of SEQ, namely m(GR n N), which 

assigns 1 to Y (because GR is part of W) and 0 to X'. Therefore X' 

is not superior to Y, and so X is not a belief core. 

[T11.6] In PETRA some propositions not among its full beliefs 

have probability 1. 

In view of the preceding, it suffices to reflect that N n W - GR has 

proper subsets with probability 1; for example N n W - GR - EQ. 

APPENDIX 

Al. Previous literature 

The basic theory of two-place probability functions is a common part 
of a number of theories. Such probability functions have been called 

Popper functions because Popper's axioms originally presented in his 

The Logic of Scientific Discovery were adopted by other writers (see 
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Harper (1976), Field (1977), van Fraassen (1979, 1981a, 1981b)). Car- 

nap used essentially the same axioms for his "c-functions", but con- 
centrated his research on those which derive trivially from one-place 
probability functions ("m-functions"). Reichenbach's probability was 
also irreducibly two-place. I have mentioned De Finetti's paper (1936) 
which introduced the idea of local comparisons (like my "superior"; 
Vickers' "thinner"); see also Section 4.18 in his Theory of Probabil- 

ity, vol. 1. The most extensive work on two-place probability theory 
is by Renyi. The theory of two-place probability here presented is es- 

sentially as explored in my (1979), but with considerable improvement 
in the characterization of the described classes of models. Finally, the 

discussion of supposition in Section 2 is related to work on belief revi- 

sion, much of it indebted to ideas of Isaac Levi; see Gardenfors 1988 

for a qualitative version. 

A2. Transfinite consistency 

The ordering P(A) < P(B) extends the partial ordering of logical im- 

plication: if A C B then P(A) < P(B). Unfortunately, the ordering 
P(A) < P(B) does not extend in general the partial ordering of proper 

implication: P(A) = P(B) is possible even when A j B. Indeed, 
this is inevitable if there are more than countably many disjoint propo- 
sitions. As a corollary, the intersection of all propositions of maximal 

probability may itself even be empty. Kolmogoroff himself reacted to 

this problem by suggesting that we focus on probability algebras: al- 

gebras of propositions reduced by the relation of equivalence modulo 

differences of measure zero: P(A + B) = 0. (See Birkhoff (1967), XI, 
5 and Kappos (1969), II, 4 and III, 3.) 

The difficulty with this approach is that a probability algebra does 

not have the structure usually demanded of an algebra of proposi- 
tions. For the latter, the notion of truth is relevant, so it should be 

possible to map the algebra homomorphically into {0, 1}. As example 
take the unit interval with Lebesgue measure, reduced by the above 

equivalence relation. This is a probability (sigma-)algebra. Let T be 
the class of elements designated as true, i.e. mapped into 1, and let A 

with measure x be in T. Then A is the join of two disjoint elements 

of measure z/2 each. Since the mapping is a homomorphism, one 
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of these is in T. We conclude that T contains a countable downward 

chain A1, A2,... with the measures converging to zero. Therefore its 

meet is the zero element of the algebra. The meet should be in T be- 

cause it is the countable meet of a family of "true" propositions; but it 

can't be in T, since the zero element is mapped into 0. 

This "transfinite inconsistency" of the propositions which have prob- 

ability one, was forcefully advanced by Patrick Maher (1990) as a dif- 

ficulty for the integration of subjective probability and belief.. My con- 

clusion, contrary to Maher's, is that the role of subjective probability 
is to grade the alternatives left open by fully belief. That automatically 
bestows maximal probability on the full beliefs, but allows for other 

propositions to also be maximally probable. The question became 

then: how are the two classes of maximally probable propositions to 

be distinguished? 

A3. Rejection of the Bayesian paradigm? 

While I hold to the probabilist conviction that our opinion is to be 

represented by means of probability models, I reject many features 

associated with so-called "Bayesian" views in epistemology. In the 

present context, a main difference concerns the status of probability 
one. Conditionalization of an absolute (one-place) probability func- 

tion cannot lower probability from one nor raise it from zero. As a re- 

sult, such changes have often been relegated to epistemological catas- 

trophes or irrational shifts of opinion. This is definitely not so in all 

probabilist work in epistemology (Isaac Levi and William Harper pro- 
vide notable exceptions). In my view, probability one is easily be- 

stowed, and as easily retracted, especially when it is only maximal 

unconditional probability (conditional on the tautology). 

Obviously, then, I reject the naive Pascalian equation that a bet on 

A, with any payoff whatsoever, is worth to me my probability for A 

times that payoff. I think that Pascal's equation holds under restricted 

circumstances, with relevant assumptions kept fixed and in place. I 

mean this roughly in the sense of the "constructivist" view of subjec- 
tive probability suggested in various ways by Glenn Shafer and Dick 

Jeffrey (and possibly meant by Dan Garber when he talks about the 

Bayesian hand-held calculator). In a given context I have a number 
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of full beliefs which delimit the presently contemplated range of pos- 
sibilities; it is the latter which I grade with respect to their compara- 
tive likelihood. The context may be anchored to a problem or type of 

problem, for which I go to this trouble. Some of the beliefs will in- 

deed be "deepseated", and to some I subscribe so strongly that they 
would survive most any change of context. They are part of what I 

fall back on especially if I try to specify the context in which I am 

presently operating - for this involves seeing myself in a "larger" per- 

spective. 

A4. Infinitesimals ?1o 

There is another solution on offer for most problems which two-place 

probability solves. That is to stick with one-place probability, but in- 

troduce infinitesimals. Any non-self-contradictory proposition can then 

receive a non-zero probability, though often it is infinitesimal (greater 
than zero but smaller than any rational fraction). 

The infinitesimals solution is to say that all the non-self-contradictory 

propositions (that are not contrary to my full beliefs) receive not zero 

probability but an infinitesimal number as probability [in a non-standard 

model]. There is an important result, due to Vann McGee (1994) which 

shows that every finitely additive 2-place probability function P(A I 
B) is the standard part of p(AnB)/p(B) for some non-standard 1-place 

probability function p (and conversely). Despite this I see advantages 
to the present approach to conditional probability which eschews in- 

finitesimals. First of all, there is really no such thing as "the" infinites- 

imals solution. If you go to non-standard models, there will in princi- 

ple be many ways to generalize the old or ordinary concept of measure 

so as to keep agreement with measure in the embedded standard mod- 

els. You don't have a specific solution till you specify exactly which 

reconstruction you prefer, and what its properties are. 

In addition, in the present approach it is very easy to see how you 
can have "layering" of the following sort. Task: produce a two-place 

probability measure P such that for given A, B, C, the following is 

the case: 

P(A) = 1, P(B I A) = 0, P(C I A) = 0 

A, B, C are normal 
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If P(X I C) = P(X I B) = P(X I A) = 0 then X 

is abnormal. 

It is easy to construct a small lexicographic model in which this is the 

case. Let C be a subset of B and B a subset of A; let pl give 1 to A 

but 0 to B and to C; P2 give 1 to B but 0 to C; and p3 give I to C. 

If these are all the measures in the sequence, then subsets of C which 

receive probability 0 conditional on C are all abnormal. Intuitively it 

would seem that in the infinitesimal approach this would require the 

construction in which there are exactly two layers L and M of in- 

finitesimals: x in L is infinitesimal in comparison to standard num- 

bers, Y in M is infinitesimal in comparison (even) to any number in 

L, and no numbers at all are infinitesimal in comparison to numbers in 

M. I leave this as an exercise for the reader. 

As to the problem of belief, I wonder if the nonstandard reconstruc- 

tion would have the desirable features for which we naturally turn to 

infinitesimals. Suppose for example that I choose a model in which 

each non-empty set has a positive (possibly infinitesimal) probability. 
Then my full beliefs are not just those which have probability 1, since 

that includes the tautology only. On the other hand, I can't make it a 

requirement that my full beliefs have probability > 1 - d, for any in- 

finitesimal d one could choose. For the intersection of the sets with 

probability > 1 - d will generally have a lower probability. Hence 

the lottery paradox comes back to haunt us. We would again face the 

trilemma of either restricting full beliefs to the tautology, or specifying 
them in terms of some factor foreign to the degrees-of-belief frame- 

work, or banishing them from epistemology altogether. 

NOTES 

I This was essentially the model provided in Hintikka's book Knowledge and Be- 

lief. By propositions I mean the semantic content of statements; the same proposition 
can be expressed by many statements. I am not addressing how opinion is stored or 
communicated. 
2 This has been denied, e.g. by Henry Kyburg, and doubted, e.g. by Richard Foley 
(1993, Ch. 4). 
3 De Finetti (1936). I want to thank John M. Vickers for bringing this to my atten- 

tion; De Finetti's idea is developed considerably further, with special reference to 
zero relative frequency, in Vickers (1988), Sections 3.6 and 5.4. The relation here 
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defined is slightly different from the so-named one in my (1979) - to which the 
name was somewhat better suited - for convenience in some of the proofs. 
4 See B. De Finetti (1972), Section 5.22. 
5 From this point on I shall drop the ubiquitous "for P" unless confusion threatens, 
and just write "a priori", "abnormal", etc. leaving the context to specify the relevant 

2-place probability measure. 

6 Could a person's opinion be devoid of belief cores? Our definitions allow this, 
and it seems to me this case is related to the idea of a "Zen mind" which I have 

explored elsewhere (van Fraassen 1988). 
7 In earlier treatments of two-place probability this relationship has appeared as a 

special axiom: If P(A B) = P(B I A) = 1 then P(- I A) = P(- I B). 
8 As I have argued elsewhere (van Fraassen 1981a) this construction provides us 

with the "right" clue to the treatment of quantification and of intuitionistic implica- 
tion in so-called probabilistic (or generally, subjective) semantics. 

9 In my (1981a), P//A was designated as pA and called "P conditioned on A." I 

now think this terminology likely to result in confusion, and prefer "P relativized 

to A." 
10 For related critiques of the 'infinitesimals' gambit, see Skyrms (1983, 1994), Ha- 

jek. 
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